]>
Commit | Line | Data |
---|---|---|
4ec656bd TL |
1 | /* |
2 | * EDAC driver for Intel(R) Xeon(R) Skylake processors | |
3 | * Copyright (c) 2016, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | */ | |
14 | ||
15 | #include <linux/module.h> | |
16 | #include <linux/init.h> | |
58ca9ac1 TL |
17 | #include <linux/acpi.h> |
18 | #include <linux/dmi.h> | |
4ec656bd TL |
19 | #include <linux/pci.h> |
20 | #include <linux/pci_ids.h> | |
21 | #include <linux/slab.h> | |
22 | #include <linux/delay.h> | |
23 | #include <linux/edac.h> | |
24 | #include <linux/mmzone.h> | |
25 | #include <linux/smp.h> | |
26 | #include <linux/bitmap.h> | |
27 | #include <linux/math64.h> | |
28 | #include <linux/mod_devicetable.h> | |
ad6e1605 | 29 | #include <linux/adxl.h> |
58ca9ac1 | 30 | #include <acpi/nfit.h> |
4ec656bd | 31 | #include <asm/cpu_device_id.h> |
20f4d692 | 32 | #include <asm/intel-family.h> |
4ec656bd TL |
33 | #include <asm/processor.h> |
34 | #include <asm/mce.h> | |
35 | ||
78d88e8a | 36 | #include "edac_module.h" |
4ec656bd | 37 | |
301375e7 | 38 | #define EDAC_MOD_STR "skx_edac" |
ad6e1605 | 39 | #define MSG_SIZE 1024 |
301375e7 | 40 | |
4ec656bd TL |
41 | /* |
42 | * Debug macros | |
43 | */ | |
44 | #define skx_printk(level, fmt, arg...) \ | |
45 | edac_printk(level, "skx", fmt, ##arg) | |
46 | ||
47 | #define skx_mc_printk(mci, level, fmt, arg...) \ | |
48 | edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) | |
49 | ||
50 | /* | |
51 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | |
52 | */ | |
53 | #define GET_BITFIELD(v, lo, hi) \ | |
54 | (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) | |
55 | ||
56 | static LIST_HEAD(skx_edac_list); | |
57 | ||
58 | static u64 skx_tolm, skx_tohm; | |
ad6e1605 QZ |
59 | static char *skx_msg; |
60 | static unsigned int nvdimm_count; | |
61 | ||
62 | enum { | |
63 | INDEX_SOCKET, | |
64 | INDEX_MEMCTRL, | |
65 | INDEX_CHANNEL, | |
66 | INDEX_DIMM, | |
67 | INDEX_MAX | |
68 | }; | |
69 | ||
70 | static const char * const component_names[] = { | |
71 | [INDEX_SOCKET] = "ProcessorSocketId", | |
72 | [INDEX_MEMCTRL] = "MemoryControllerId", | |
73 | [INDEX_CHANNEL] = "ChannelId", | |
74 | [INDEX_DIMM] = "DimmSlotId", | |
75 | }; | |
76 | ||
77 | static int component_indices[ARRAY_SIZE(component_names)]; | |
78 | static int adxl_component_count; | |
79 | static const char * const *adxl_component_names; | |
80 | static u64 *adxl_values; | |
81 | static char *adxl_msg; | |
4ec656bd TL |
82 | |
83 | #define NUM_IMC 2 /* memory controllers per socket */ | |
84 | #define NUM_CHANNELS 3 /* channels per memory controller */ | |
85 | #define NUM_DIMMS 2 /* Max DIMMS per channel */ | |
86 | ||
87 | #define MASK26 0x3FFFFFF /* Mask for 2^26 */ | |
88 | #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ | |
89 | ||
90 | /* | |
91 | * Each cpu socket contains some pci devices that provide global | |
92 | * information, and also some that are local to each of the two | |
93 | * memory controllers on the die. | |
94 | */ | |
95 | struct skx_dev { | |
96 | struct list_head list; | |
97 | u8 bus[4]; | |
88ae80aa | 98 | int seg; |
4ec656bd TL |
99 | struct pci_dev *sad_all; |
100 | struct pci_dev *util_all; | |
101 | u32 mcroute; | |
102 | struct skx_imc { | |
103 | struct mem_ctl_info *mci; | |
104 | u8 mc; /* system wide mc# */ | |
105 | u8 lmc; /* socket relative mc# */ | |
106 | u8 src_id, node_id; | |
107 | struct skx_channel { | |
108 | struct pci_dev *cdev; | |
109 | struct skx_dimm { | |
110 | u8 close_pg; | |
111 | u8 bank_xor_enable; | |
112 | u8 fine_grain_bank; | |
113 | u8 rowbits; | |
114 | u8 colbits; | |
115 | } dimms[NUM_DIMMS]; | |
116 | } chan[NUM_CHANNELS]; | |
117 | } imc[NUM_IMC]; | |
118 | }; | |
119 | static int skx_num_sockets; | |
120 | ||
121 | struct skx_pvt { | |
122 | struct skx_imc *imc; | |
123 | }; | |
124 | ||
125 | struct decoded_addr { | |
126 | struct skx_dev *dev; | |
127 | u64 addr; | |
128 | int socket; | |
129 | int imc; | |
130 | int channel; | |
131 | u64 chan_addr; | |
132 | int sktways; | |
133 | int chanways; | |
134 | int dimm; | |
135 | int rank; | |
136 | int channel_rank; | |
137 | u64 rank_address; | |
138 | int row; | |
139 | int column; | |
140 | int bank_address; | |
141 | int bank_group; | |
142 | }; | |
143 | ||
88ae80aa | 144 | static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) |
4ec656bd TL |
145 | { |
146 | struct skx_dev *d; | |
147 | ||
148 | list_for_each_entry(d, &skx_edac_list, list) { | |
88ae80aa | 149 | if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) |
4ec656bd TL |
150 | return d; |
151 | } | |
152 | ||
153 | return NULL; | |
154 | } | |
155 | ||
156 | enum munittype { | |
157 | CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD | |
158 | }; | |
159 | ||
160 | struct munit { | |
161 | u16 did; | |
162 | u16 devfn[NUM_IMC]; | |
163 | u8 busidx; | |
164 | u8 per_socket; | |
165 | enum munittype mtype; | |
166 | }; | |
167 | ||
168 | /* | |
169 | * List of PCI device ids that we need together with some device | |
170 | * number and function numbers to tell which memory controller the | |
171 | * device belongs to. | |
172 | */ | |
173 | static const struct munit skx_all_munits[] = { | |
174 | { 0x2054, { }, 1, 1, SAD_ALL }, | |
175 | { 0x2055, { }, 1, 1, UTIL_ALL }, | |
176 | { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, | |
177 | { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, | |
178 | { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, | |
179 | { 0x208e, { }, 1, 0, SAD }, | |
180 | { } | |
181 | }; | |
182 | ||
183 | /* | |
184 | * We use the per-socket device 0x2016 to count how many sockets are present, | |
185 | * and to detemine which PCI buses are associated with each socket. Allocate | |
186 | * and build the full list of all the skx_dev structures that we need here. | |
187 | */ | |
188 | static int get_all_bus_mappings(void) | |
189 | { | |
190 | struct pci_dev *pdev, *prev; | |
191 | struct skx_dev *d; | |
192 | u32 reg; | |
193 | int ndev = 0; | |
194 | ||
195 | prev = NULL; | |
196 | for (;;) { | |
197 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); | |
198 | if (!pdev) | |
199 | break; | |
200 | ndev++; | |
201 | d = kzalloc(sizeof(*d), GFP_KERNEL); | |
202 | if (!d) { | |
203 | pci_dev_put(pdev); | |
204 | return -ENOMEM; | |
205 | } | |
88ae80aa | 206 | d->seg = pci_domain_nr(pdev->bus); |
4ec656bd TL |
207 | pci_read_config_dword(pdev, 0xCC, ®); |
208 | d->bus[0] = GET_BITFIELD(reg, 0, 7); | |
209 | d->bus[1] = GET_BITFIELD(reg, 8, 15); | |
210 | d->bus[2] = GET_BITFIELD(reg, 16, 23); | |
211 | d->bus[3] = GET_BITFIELD(reg, 24, 31); | |
212 | edac_dbg(2, "busses: %x, %x, %x, %x\n", | |
213 | d->bus[0], d->bus[1], d->bus[2], d->bus[3]); | |
214 | list_add_tail(&d->list, &skx_edac_list); | |
215 | skx_num_sockets++; | |
216 | prev = pdev; | |
217 | } | |
218 | ||
219 | return ndev; | |
220 | } | |
221 | ||
222 | static int get_all_munits(const struct munit *m) | |
223 | { | |
224 | struct pci_dev *pdev, *prev; | |
225 | struct skx_dev *d; | |
226 | u32 reg; | |
227 | int i = 0, ndev = 0; | |
228 | ||
229 | prev = NULL; | |
230 | for (;;) { | |
231 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); | |
232 | if (!pdev) | |
233 | break; | |
234 | ndev++; | |
235 | if (m->per_socket == NUM_IMC) { | |
236 | for (i = 0; i < NUM_IMC; i++) | |
237 | if (m->devfn[i] == pdev->devfn) | |
238 | break; | |
239 | if (i == NUM_IMC) | |
240 | goto fail; | |
241 | } | |
88ae80aa | 242 | d = get_skx_dev(pdev->bus, m->busidx); |
4ec656bd TL |
243 | if (!d) |
244 | goto fail; | |
245 | ||
246 | /* Be sure that the device is enabled */ | |
247 | if (unlikely(pci_enable_device(pdev) < 0)) { | |
248 | skx_printk(KERN_ERR, | |
249 | "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); | |
250 | goto fail; | |
251 | } | |
252 | ||
253 | switch (m->mtype) { | |
254 | case CHAN0: case CHAN1: case CHAN2: | |
255 | pci_dev_get(pdev); | |
256 | d->imc[i].chan[m->mtype].cdev = pdev; | |
257 | break; | |
258 | case SAD_ALL: | |
259 | pci_dev_get(pdev); | |
260 | d->sad_all = pdev; | |
261 | break; | |
262 | case UTIL_ALL: | |
263 | pci_dev_get(pdev); | |
264 | d->util_all = pdev; | |
265 | break; | |
266 | case SAD: | |
267 | /* | |
268 | * one of these devices per core, including cores | |
269 | * that don't exist on this SKU. Ignore any that | |
270 | * read a route table of zero, make sure all the | |
271 | * non-zero values match. | |
272 | */ | |
273 | pci_read_config_dword(pdev, 0xB4, ®); | |
274 | if (reg != 0) { | |
275 | if (d->mcroute == 0) | |
276 | d->mcroute = reg; | |
277 | else if (d->mcroute != reg) { | |
278 | skx_printk(KERN_ERR, | |
279 | "mcroute mismatch\n"); | |
280 | goto fail; | |
281 | } | |
282 | } | |
283 | ndev--; | |
284 | break; | |
285 | } | |
286 | ||
287 | prev = pdev; | |
288 | } | |
289 | ||
290 | return ndev; | |
291 | fail: | |
292 | pci_dev_put(pdev); | |
293 | return -ENODEV; | |
294 | } | |
295 | ||
240ea921 | 296 | static const struct x86_cpu_id skx_cpuids[] = { |
20f4d692 | 297 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, |
4ec656bd TL |
298 | { } |
299 | }; | |
300 | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); | |
301 | ||
302 | static u8 get_src_id(struct skx_dev *d) | |
303 | { | |
304 | u32 reg; | |
305 | ||
306 | pci_read_config_dword(d->util_all, 0xF0, ®); | |
307 | ||
308 | return GET_BITFIELD(reg, 12, 14); | |
309 | } | |
310 | ||
311 | static u8 skx_get_node_id(struct skx_dev *d) | |
312 | { | |
313 | u32 reg; | |
314 | ||
315 | pci_read_config_dword(d->util_all, 0xF4, ®); | |
316 | ||
317 | return GET_BITFIELD(reg, 0, 2); | |
318 | } | |
319 | ||
320 | static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, | |
321 | int maxval, char *name) | |
322 | { | |
323 | u32 val = GET_BITFIELD(reg, lobit, hibit); | |
324 | ||
325 | if (val < minval || val > maxval) { | |
326 | edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); | |
327 | return -EINVAL; | |
328 | } | |
329 | return val + add; | |
330 | } | |
331 | ||
332 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15) | |
58ca9ac1 | 333 | #define IS_NVDIMM_PRESENT(mcddrtcfg, i) GET_BITFIELD((mcddrtcfg), (i), (i)) |
4ec656bd | 334 | |
a9c0a108 | 335 | #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks") |
4ec656bd TL |
336 | #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") |
337 | #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") | |
338 | ||
339 | static int get_width(u32 mtr) | |
340 | { | |
341 | switch (GET_BITFIELD(mtr, 8, 9)) { | |
342 | case 0: | |
343 | return DEV_X4; | |
344 | case 1: | |
345 | return DEV_X8; | |
346 | case 2: | |
347 | return DEV_X16; | |
348 | } | |
349 | return DEV_UNKNOWN; | |
350 | } | |
351 | ||
352 | static int skx_get_hi_lo(void) | |
353 | { | |
354 | struct pci_dev *pdev; | |
355 | u32 reg; | |
356 | ||
357 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); | |
358 | if (!pdev) { | |
359 | edac_dbg(0, "Can't get tolm/tohm\n"); | |
360 | return -ENODEV; | |
361 | } | |
362 | ||
363 | pci_read_config_dword(pdev, 0xD0, ®); | |
364 | skx_tolm = reg; | |
365 | pci_read_config_dword(pdev, 0xD4, ®); | |
366 | skx_tohm = reg; | |
367 | pci_read_config_dword(pdev, 0xD8, ®); | |
368 | skx_tohm |= (u64)reg << 32; | |
369 | ||
370 | pci_dev_put(pdev); | |
371 | edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); | |
372 | ||
373 | return 0; | |
374 | } | |
375 | ||
376 | static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, | |
377 | struct skx_imc *imc, int chan, int dimmno) | |
378 | { | |
379 | int banks = 16, ranks, rows, cols, npages; | |
380 | u64 size; | |
381 | ||
4ec656bd TL |
382 | ranks = numrank(mtr); |
383 | rows = numrow(mtr); | |
384 | cols = numcol(mtr); | |
385 | ||
386 | /* | |
387 | * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) | |
388 | */ | |
389 | size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); | |
390 | npages = MiB_TO_PAGES(size); | |
391 | ||
6f6da136 | 392 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", |
4ec656bd | 393 | imc->mc, chan, dimmno, size, npages, |
a9c0a108 | 394 | banks, 1 << ranks, rows, cols); |
4ec656bd TL |
395 | |
396 | imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); | |
397 | imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); | |
398 | imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); | |
399 | imc->chan[chan].dimms[dimmno].rowbits = rows; | |
400 | imc->chan[chan].dimms[dimmno].colbits = cols; | |
401 | ||
402 | dimm->nr_pages = npages; | |
403 | dimm->grain = 32; | |
404 | dimm->dtype = get_width(mtr); | |
405 | dimm->mtype = MEM_DDR4; | |
406 | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ | |
407 | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", | |
408 | imc->src_id, imc->lmc, chan, dimmno); | |
409 | ||
410 | return 1; | |
411 | } | |
412 | ||
58ca9ac1 TL |
413 | static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, |
414 | int chan, int dimmno) | |
415 | { | |
416 | int smbios_handle; | |
417 | u32 dev_handle; | |
418 | u16 flags; | |
419 | u64 size = 0; | |
420 | ||
ad6e1605 QZ |
421 | nvdimm_count++; |
422 | ||
58ca9ac1 TL |
423 | dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, |
424 | imc->src_id, 0); | |
425 | ||
426 | smbios_handle = nfit_get_smbios_id(dev_handle, &flags); | |
427 | if (smbios_handle == -EOPNOTSUPP) { | |
428 | pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n"); | |
429 | goto unknown_size; | |
430 | } | |
431 | ||
432 | if (smbios_handle < 0) { | |
433 | skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle); | |
434 | goto unknown_size; | |
435 | } | |
436 | ||
437 | if (flags & ACPI_NFIT_MEM_MAP_FAILED) { | |
438 | skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle); | |
439 | goto unknown_size; | |
440 | } | |
441 | ||
442 | size = dmi_memdev_size(smbios_handle); | |
443 | if (size == ~0ull) | |
444 | skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n", | |
445 | dev_handle, smbios_handle); | |
446 | ||
447 | unknown_size: | |
448 | dimm->nr_pages = size >> PAGE_SHIFT; | |
449 | dimm->grain = 32; | |
450 | dimm->dtype = DEV_UNKNOWN; | |
451 | dimm->mtype = MEM_NVDIMM; | |
452 | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ | |
453 | ||
6f6da136 | 454 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", |
58ca9ac1 TL |
455 | imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); |
456 | ||
457 | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", | |
458 | imc->src_id, imc->lmc, chan, dimmno); | |
459 | ||
460 | return (size == 0 || size == ~0ull) ? 0 : 1; | |
461 | } | |
462 | ||
4ec656bd TL |
463 | #define SKX_GET_MTMTR(dev, reg) \ |
464 | pci_read_config_dword((dev), 0x87c, ®) | |
465 | ||
466 | static bool skx_check_ecc(struct pci_dev *pdev) | |
467 | { | |
468 | u32 mtmtr; | |
469 | ||
470 | SKX_GET_MTMTR(pdev, mtmtr); | |
471 | ||
472 | return !!GET_BITFIELD(mtmtr, 2, 2); | |
473 | } | |
474 | ||
475 | static int skx_get_dimm_config(struct mem_ctl_info *mci) | |
476 | { | |
477 | struct skx_pvt *pvt = mci->pvt_info; | |
478 | struct skx_imc *imc = pvt->imc; | |
58ca9ac1 | 479 | u32 mtr, amap, mcddrtcfg; |
4ec656bd TL |
480 | struct dimm_info *dimm; |
481 | int i, j; | |
4ec656bd TL |
482 | int ndimms; |
483 | ||
484 | for (i = 0; i < NUM_CHANNELS; i++) { | |
485 | ndimms = 0; | |
486 | pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); | |
58ca9ac1 | 487 | pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); |
4ec656bd TL |
488 | for (j = 0; j < NUM_DIMMS; j++) { |
489 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | |
490 | mci->n_layers, i, j, 0); | |
491 | pci_read_config_dword(imc->chan[i].cdev, | |
492 | 0x80 + 4*j, &mtr); | |
58ca9ac1 TL |
493 | if (IS_DIMM_PRESENT(mtr)) |
494 | ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); | |
495 | else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) | |
496 | ndimms += get_nvdimm_info(dimm, imc, i, j); | |
4ec656bd TL |
497 | } |
498 | if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { | |
499 | skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); | |
500 | return -ENODEV; | |
501 | } | |
502 | } | |
503 | ||
504 | return 0; | |
505 | } | |
506 | ||
507 | static void skx_unregister_mci(struct skx_imc *imc) | |
508 | { | |
509 | struct mem_ctl_info *mci = imc->mci; | |
510 | ||
511 | if (!mci) | |
512 | return; | |
513 | ||
514 | edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); | |
515 | ||
516 | /* Remove MC sysfs nodes */ | |
517 | edac_mc_del_mc(mci->pdev); | |
518 | ||
519 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | |
520 | kfree(mci->ctl_name); | |
521 | edac_mc_free(mci); | |
522 | } | |
523 | ||
524 | static int skx_register_mci(struct skx_imc *imc) | |
525 | { | |
526 | struct mem_ctl_info *mci; | |
527 | struct edac_mc_layer layers[2]; | |
528 | struct pci_dev *pdev = imc->chan[0].cdev; | |
529 | struct skx_pvt *pvt; | |
530 | int rc; | |
531 | ||
532 | /* allocate a new MC control structure */ | |
533 | layers[0].type = EDAC_MC_LAYER_CHANNEL; | |
534 | layers[0].size = NUM_CHANNELS; | |
535 | layers[0].is_virt_csrow = false; | |
536 | layers[1].type = EDAC_MC_LAYER_SLOT; | |
537 | layers[1].size = NUM_DIMMS; | |
538 | layers[1].is_virt_csrow = true; | |
539 | mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, | |
540 | sizeof(struct skx_pvt)); | |
541 | ||
542 | if (unlikely(!mci)) | |
543 | return -ENOMEM; | |
544 | ||
545 | edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); | |
546 | ||
547 | /* Associate skx_dev and mci for future usage */ | |
548 | imc->mci = mci; | |
549 | pvt = mci->pvt_info; | |
550 | pvt->imc = imc; | |
551 | ||
58ca9ac1 TL |
552 | mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", |
553 | imc->node_id, imc->lmc); | |
75f029c3 AY |
554 | if (!mci->ctl_name) { |
555 | rc = -ENOMEM; | |
556 | goto fail0; | |
557 | } | |
558 | ||
58ca9ac1 | 559 | mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; |
4ec656bd TL |
560 | mci->edac_ctl_cap = EDAC_FLAG_NONE; |
561 | mci->edac_cap = EDAC_FLAG_NONE; | |
301375e7 | 562 | mci->mod_name = EDAC_MOD_STR; |
4ec656bd | 563 | mci->dev_name = pci_name(imc->chan[0].cdev); |
4ec656bd TL |
564 | mci->ctl_page_to_phys = NULL; |
565 | ||
566 | rc = skx_get_dimm_config(mci); | |
567 | if (rc < 0) | |
568 | goto fail; | |
569 | ||
570 | /* record ptr to the generic device */ | |
571 | mci->pdev = &pdev->dev; | |
572 | ||
573 | /* add this new MC control structure to EDAC's list of MCs */ | |
574 | if (unlikely(edac_mc_add_mc(mci))) { | |
575 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | |
576 | rc = -EINVAL; | |
577 | goto fail; | |
578 | } | |
579 | ||
580 | return 0; | |
581 | ||
582 | fail: | |
583 | kfree(mci->ctl_name); | |
75f029c3 | 584 | fail0: |
4ec656bd TL |
585 | edac_mc_free(mci); |
586 | imc->mci = NULL; | |
587 | return rc; | |
588 | } | |
589 | ||
590 | #define SKX_MAX_SAD 24 | |
591 | ||
592 | #define SKX_GET_SAD(d, i, reg) \ | |
593 | pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) | |
594 | #define SKX_GET_ILV(d, i, reg) \ | |
595 | pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) | |
596 | ||
597 | #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) | |
598 | #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) | |
599 | #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) | |
600 | #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) | |
601 | #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) | |
602 | #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) | |
603 | #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) | |
604 | ||
605 | #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) | |
606 | #define SKX_ILV_TARGET(tgt) ((tgt) & 7) | |
607 | ||
608 | static bool skx_sad_decode(struct decoded_addr *res) | |
609 | { | |
610 | struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); | |
611 | u64 addr = res->addr; | |
612 | int i, idx, tgt, lchan, shift; | |
613 | u32 sad, ilv; | |
614 | u64 limit, prev_limit; | |
615 | int remote = 0; | |
616 | ||
617 | /* Simple sanity check for I/O space or out of range */ | |
618 | if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { | |
619 | edac_dbg(0, "Address %llx out of range\n", addr); | |
620 | return false; | |
621 | } | |
622 | ||
623 | restart: | |
624 | prev_limit = 0; | |
625 | for (i = 0; i < SKX_MAX_SAD; i++) { | |
626 | SKX_GET_SAD(d, i, sad); | |
627 | limit = SKX_SAD_LIMIT(sad); | |
628 | if (SKX_SAD_ENABLE(sad)) { | |
629 | if (addr >= prev_limit && addr <= limit) | |
630 | goto sad_found; | |
631 | } | |
632 | prev_limit = limit + 1; | |
633 | } | |
634 | edac_dbg(0, "No SAD entry for %llx\n", addr); | |
635 | return false; | |
636 | ||
637 | sad_found: | |
638 | SKX_GET_ILV(d, i, ilv); | |
639 | ||
640 | switch (SKX_SAD_INTERLEAVE(sad)) { | |
641 | case 0: | |
642 | idx = GET_BITFIELD(addr, 6, 8); | |
643 | break; | |
644 | case 1: | |
645 | idx = GET_BITFIELD(addr, 8, 10); | |
646 | break; | |
647 | case 2: | |
648 | idx = GET_BITFIELD(addr, 12, 14); | |
649 | break; | |
650 | case 3: | |
651 | idx = GET_BITFIELD(addr, 30, 32); | |
652 | break; | |
653 | } | |
654 | ||
655 | tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); | |
656 | ||
657 | /* If point to another node, find it and start over */ | |
658 | if (SKX_ILV_REMOTE(tgt)) { | |
659 | if (remote) { | |
660 | edac_dbg(0, "Double remote!\n"); | |
661 | return false; | |
662 | } | |
663 | remote = 1; | |
664 | list_for_each_entry(d, &skx_edac_list, list) { | |
665 | if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) | |
666 | goto restart; | |
667 | } | |
668 | edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); | |
669 | return false; | |
670 | } | |
671 | ||
672 | if (SKX_SAD_MOD3(sad) == 0) | |
673 | lchan = SKX_ILV_TARGET(tgt); | |
674 | else { | |
675 | switch (SKX_SAD_MOD3MODE(sad)) { | |
676 | case 0: | |
677 | shift = 6; | |
678 | break; | |
679 | case 1: | |
680 | shift = 8; | |
681 | break; | |
682 | case 2: | |
683 | shift = 12; | |
684 | break; | |
685 | default: | |
686 | edac_dbg(0, "illegal mod3mode\n"); | |
687 | return false; | |
688 | } | |
689 | switch (SKX_SAD_MOD3ASMOD2(sad)) { | |
690 | case 0: | |
691 | lchan = (addr >> shift) % 3; | |
692 | break; | |
693 | case 1: | |
694 | lchan = (addr >> shift) % 2; | |
695 | break; | |
696 | case 2: | |
697 | lchan = (addr >> shift) % 2; | |
8f189738 | 698 | lchan = (lchan << 1) | !lchan; |
4ec656bd TL |
699 | break; |
700 | case 3: | |
701 | lchan = ((addr >> shift) % 2) << 1; | |
702 | break; | |
703 | } | |
704 | lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); | |
705 | } | |
706 | ||
707 | res->dev = d; | |
708 | res->socket = d->imc[0].src_id; | |
709 | res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); | |
710 | res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); | |
711 | ||
712 | edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", | |
713 | res->addr, res->socket, res->imc, res->channel); | |
714 | return true; | |
715 | } | |
716 | ||
717 | #define SKX_MAX_TAD 8 | |
718 | ||
719 | #define SKX_GET_TADBASE(d, mc, i, reg) \ | |
720 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) | |
721 | #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ | |
722 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) | |
723 | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ | |
724 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) | |
725 | ||
726 | #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) | |
727 | #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) | |
728 | #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) | |
729 | #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) | |
730 | #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) | |
731 | #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) | |
732 | #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) | |
733 | ||
734 | /* which bit used for both socket and channel interleave */ | |
735 | static int skx_granularity[] = { 6, 8, 12, 30 }; | |
736 | ||
737 | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) | |
738 | { | |
739 | addr >>= shift; | |
740 | addr /= ways; | |
741 | addr <<= shift; | |
742 | ||
743 | return addr | (lowbits & ((1ull << shift) - 1)); | |
744 | } | |
745 | ||
746 | static bool skx_tad_decode(struct decoded_addr *res) | |
747 | { | |
748 | int i; | |
749 | u32 base, wayness, chnilvoffset; | |
750 | int skt_interleave_bit, chn_interleave_bit; | |
751 | u64 channel_addr; | |
752 | ||
753 | for (i = 0; i < SKX_MAX_TAD; i++) { | |
754 | SKX_GET_TADBASE(res->dev, res->imc, i, base); | |
755 | SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); | |
756 | if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) | |
757 | goto tad_found; | |
758 | } | |
759 | edac_dbg(0, "No TAD entry for %llx\n", res->addr); | |
760 | return false; | |
761 | ||
762 | tad_found: | |
763 | res->sktways = SKX_TAD_SKTWAYS(wayness); | |
764 | res->chanways = SKX_TAD_CHNWAYS(wayness); | |
765 | skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; | |
766 | chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; | |
767 | ||
768 | SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); | |
769 | channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); | |
770 | ||
771 | if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { | |
772 | /* Must handle channel first, then socket */ | |
773 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | |
774 | res->chanways, channel_addr); | |
775 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | |
776 | res->sktways, channel_addr); | |
777 | } else { | |
778 | /* Handle socket then channel. Preserve low bits from original address */ | |
779 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | |
780 | res->sktways, res->addr); | |
781 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | |
782 | res->chanways, res->addr); | |
783 | } | |
784 | ||
785 | res->chan_addr = channel_addr; | |
786 | ||
787 | edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", | |
788 | res->addr, res->chan_addr, res->sktways, res->chanways); | |
789 | return true; | |
790 | } | |
791 | ||
792 | #define SKX_MAX_RIR 4 | |
793 | ||
794 | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ | |
795 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ | |
796 | 0x108 + 4 * (i), ®) | |
797 | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ | |
798 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ | |
799 | 0x120 + 16 * idx + 4 * (i), ®) | |
800 | ||
801 | #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) | |
802 | #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) | |
803 | #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) | |
804 | #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) | |
805 | #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) | |
806 | ||
807 | static bool skx_rir_decode(struct decoded_addr *res) | |
808 | { | |
809 | int i, idx, chan_rank; | |
810 | int shift; | |
811 | u32 rirway, rirlv; | |
812 | u64 rank_addr, prev_limit = 0, limit; | |
813 | ||
814 | if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) | |
815 | shift = 6; | |
816 | else | |
817 | shift = 13; | |
818 | ||
819 | for (i = 0; i < SKX_MAX_RIR; i++) { | |
820 | SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); | |
821 | limit = SKX_RIR_LIMIT(rirway); | |
822 | if (SKX_RIR_VALID(rirway)) { | |
823 | if (prev_limit <= res->chan_addr && | |
824 | res->chan_addr <= limit) | |
825 | goto rir_found; | |
826 | } | |
827 | prev_limit = limit; | |
828 | } | |
829 | edac_dbg(0, "No RIR entry for %llx\n", res->addr); | |
830 | return false; | |
831 | ||
832 | rir_found: | |
833 | rank_addr = res->chan_addr >> shift; | |
834 | rank_addr /= SKX_RIR_WAYS(rirway); | |
835 | rank_addr <<= shift; | |
836 | rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); | |
837 | ||
838 | res->rank_address = rank_addr; | |
839 | idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); | |
840 | ||
841 | SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); | |
842 | res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); | |
843 | chan_rank = SKX_RIR_CHAN_RANK(rirlv); | |
844 | res->channel_rank = chan_rank; | |
845 | res->dimm = chan_rank / 4; | |
846 | res->rank = chan_rank % 4; | |
847 | ||
848 | edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", | |
849 | res->addr, res->dimm, res->rank, | |
850 | res->channel_rank, res->rank_address); | |
851 | return true; | |
852 | } | |
853 | ||
854 | static u8 skx_close_row[] = { | |
855 | 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 | |
856 | }; | |
857 | static u8 skx_close_column[] = { | |
858 | 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 | |
859 | }; | |
860 | static u8 skx_open_row[] = { | |
861 | 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 | |
862 | }; | |
863 | static u8 skx_open_column[] = { | |
864 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | |
865 | }; | |
866 | static u8 skx_open_fine_column[] = { | |
867 | 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 | |
868 | }; | |
869 | ||
870 | static int skx_bits(u64 addr, int nbits, u8 *bits) | |
871 | { | |
872 | int i, res = 0; | |
873 | ||
874 | for (i = 0; i < nbits; i++) | |
875 | res |= ((addr >> bits[i]) & 1) << i; | |
876 | return res; | |
877 | } | |
878 | ||
879 | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) | |
880 | { | |
881 | int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); | |
882 | ||
883 | if (do_xor) | |
884 | ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); | |
885 | ||
886 | return ret; | |
887 | } | |
888 | ||
889 | static bool skx_mad_decode(struct decoded_addr *r) | |
890 | { | |
891 | struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; | |
892 | int bg0 = dimm->fine_grain_bank ? 6 : 13; | |
893 | ||
894 | if (dimm->close_pg) { | |
895 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); | |
896 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); | |
897 | r->column |= 0x400; /* C10 is autoprecharge, always set */ | |
898 | r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); | |
899 | r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); | |
900 | } else { | |
901 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); | |
902 | if (dimm->fine_grain_bank) | |
903 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); | |
904 | else | |
905 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); | |
906 | r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); | |
907 | r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); | |
908 | } | |
909 | r->row &= (1u << dimm->rowbits) - 1; | |
910 | ||
911 | edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", | |
912 | r->addr, r->row, r->column, r->bank_address, | |
913 | r->bank_group); | |
914 | return true; | |
915 | } | |
916 | ||
917 | static bool skx_decode(struct decoded_addr *res) | |
918 | { | |
919 | ||
920 | return skx_sad_decode(res) && skx_tad_decode(res) && | |
921 | skx_rir_decode(res) && skx_mad_decode(res); | |
922 | } | |
923 | ||
924 | #ifdef CONFIG_EDAC_DEBUG | |
925 | /* | |
926 | * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. | |
927 | * Write an address to this file to exercise the address decode | |
928 | * logic in this driver. | |
929 | */ | |
930 | static struct dentry *skx_test; | |
931 | static u64 skx_fake_addr; | |
932 | ||
933 | static int debugfs_u64_set(void *data, u64 val) | |
934 | { | |
935 | struct decoded_addr res; | |
936 | ||
937 | res.addr = val; | |
938 | skx_decode(&res); | |
939 | ||
940 | return 0; | |
941 | } | |
942 | ||
943 | DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); | |
944 | ||
945 | static struct dentry *mydebugfs_create(const char *name, umode_t mode, | |
946 | struct dentry *parent, u64 *value) | |
947 | { | |
948 | return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); | |
949 | } | |
950 | ||
951 | static void setup_skx_debug(void) | |
952 | { | |
953 | skx_test = debugfs_create_dir("skx_edac_test", NULL); | |
954 | mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); | |
955 | } | |
956 | ||
957 | static void teardown_skx_debug(void) | |
958 | { | |
959 | debugfs_remove_recursive(skx_test); | |
960 | } | |
961 | #else | |
962 | static void setup_skx_debug(void) | |
963 | { | |
964 | } | |
965 | ||
966 | static void teardown_skx_debug(void) | |
967 | { | |
968 | } | |
969 | #endif /*CONFIG_EDAC_DEBUG*/ | |
970 | ||
ad6e1605 QZ |
971 | static bool skx_adxl_decode(struct decoded_addr *res) |
972 | ||
973 | { | |
974 | int i, len = 0; | |
975 | ||
976 | if (res->addr >= skx_tohm || (res->addr >= skx_tolm && | |
977 | res->addr < BIT_ULL(32))) { | |
978 | edac_dbg(0, "Address 0x%llx out of range\n", res->addr); | |
979 | return false; | |
980 | } | |
981 | ||
982 | if (adxl_decode(res->addr, adxl_values)) { | |
983 | edac_dbg(0, "Failed to decode 0x%llx\n", res->addr); | |
984 | return false; | |
985 | } | |
986 | ||
987 | res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]]; | |
988 | res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]]; | |
989 | res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]]; | |
990 | res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]]; | |
991 | ||
992 | for (i = 0; i < adxl_component_count; i++) { | |
993 | if (adxl_values[i] == ~0x0ull) | |
994 | continue; | |
995 | ||
996 | len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx", | |
997 | adxl_component_names[i], adxl_values[i]); | |
998 | if (MSG_SIZE - len <= 0) | |
999 | break; | |
1000 | } | |
1001 | ||
1002 | return true; | |
1003 | } | |
1004 | ||
4ec656bd TL |
1005 | static void skx_mce_output_error(struct mem_ctl_info *mci, |
1006 | const struct mce *m, | |
1007 | struct decoded_addr *res) | |
1008 | { | |
1009 | enum hw_event_mc_err_type tp_event; | |
ad6e1605 | 1010 | char *type, *optype; |
4ec656bd TL |
1011 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
1012 | bool overflow = GET_BITFIELD(m->status, 62, 62); | |
1013 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | |
1014 | bool recoverable; | |
1015 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | |
1016 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | |
1017 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | |
1018 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | |
1019 | ||
1020 | recoverable = GET_BITFIELD(m->status, 56, 56); | |
1021 | ||
1022 | if (uncorrected_error) { | |
432de7fd | 1023 | core_err_cnt = 1; |
4ec656bd TL |
1024 | if (ripv) { |
1025 | type = "FATAL"; | |
1026 | tp_event = HW_EVENT_ERR_FATAL; | |
1027 | } else { | |
1028 | type = "NON_FATAL"; | |
1029 | tp_event = HW_EVENT_ERR_UNCORRECTED; | |
1030 | } | |
1031 | } else { | |
1032 | type = "CORRECTED"; | |
1033 | tp_event = HW_EVENT_ERR_CORRECTED; | |
1034 | } | |
1035 | ||
1036 | /* | |
1037 | * According with Table 15-9 of the Intel Architecture spec vol 3A, | |
1038 | * memory errors should fit in this mask: | |
1039 | * 000f 0000 1mmm cccc (binary) | |
1040 | * where: | |
1041 | * f = Correction Report Filtering Bit. If 1, subsequent errors | |
1042 | * won't be shown | |
1043 | * mmm = error type | |
1044 | * cccc = channel | |
1045 | * If the mask doesn't match, report an error to the parsing logic | |
1046 | */ | |
1047 | if (!((errcode & 0xef80) == 0x80)) { | |
1048 | optype = "Can't parse: it is not a mem"; | |
1049 | } else { | |
1050 | switch (optypenum) { | |
1051 | case 0: | |
1052 | optype = "generic undef request error"; | |
1053 | break; | |
1054 | case 1: | |
1055 | optype = "memory read error"; | |
1056 | break; | |
1057 | case 2: | |
1058 | optype = "memory write error"; | |
1059 | break; | |
1060 | case 3: | |
1061 | optype = "addr/cmd error"; | |
1062 | break; | |
1063 | case 4: | |
1064 | optype = "memory scrubbing error"; | |
1065 | break; | |
1066 | default: | |
1067 | optype = "reserved"; | |
1068 | break; | |
1069 | } | |
1070 | } | |
ad6e1605 QZ |
1071 | if (adxl_component_count) { |
1072 | snprintf(skx_msg, MSG_SIZE, "%s%s err_code:%04x:%04x %s", | |
1073 | overflow ? " OVERFLOW" : "", | |
1074 | (uncorrected_error && recoverable) ? " recoverable" : "", | |
1075 | mscod, errcode, adxl_msg); | |
1076 | } else { | |
1077 | snprintf(skx_msg, MSG_SIZE, | |
1078 | "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", | |
1079 | overflow ? " OVERFLOW" : "", | |
1080 | (uncorrected_error && recoverable) ? " recoverable" : "", | |
1081 | mscod, errcode, | |
1082 | res->socket, res->imc, res->rank, | |
1083 | res->bank_group, res->bank_address, res->row, res->column); | |
1084 | } | |
4ec656bd | 1085 | |
ad6e1605 | 1086 | edac_dbg(0, "%s\n", skx_msg); |
4ec656bd TL |
1087 | |
1088 | /* Call the helper to output message */ | |
1089 | edac_mc_handle_error(tp_event, mci, core_err_cnt, | |
1090 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | |
1091 | res->channel, res->dimm, -1, | |
ad6e1605 QZ |
1092 | optype, skx_msg); |
1093 | } | |
1094 | ||
1095 | static struct mem_ctl_info *get_mci(int src_id, int lmc) | |
1096 | { | |
1097 | struct skx_dev *d; | |
1098 | ||
1099 | if (lmc > NUM_IMC - 1) { | |
1100 | skx_printk(KERN_ERR, "Bad lmc %d\n", lmc); | |
1101 | return NULL; | |
1102 | } | |
1103 | ||
1104 | list_for_each_entry(d, &skx_edac_list, list) { | |
1105 | if (d->imc[0].src_id == src_id) | |
1106 | return d->imc[lmc].mci; | |
1107 | } | |
1108 | ||
1109 | skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc); | |
1110 | ||
1111 | return NULL; | |
4ec656bd TL |
1112 | } |
1113 | ||
1114 | static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, | |
1115 | void *data) | |
1116 | { | |
1117 | struct mce *mce = (struct mce *)data; | |
1118 | struct decoded_addr res; | |
1119 | struct mem_ctl_info *mci; | |
1120 | char *type; | |
1121 | ||
bffc7dec | 1122 | if (edac_get_report_status() == EDAC_REPORTING_DISABLED) |
4ec656bd TL |
1123 | return NOTIFY_DONE; |
1124 | ||
1125 | /* ignore unless this is memory related with an address */ | |
1126 | if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) | |
1127 | return NOTIFY_DONE; | |
1128 | ||
ad6e1605 | 1129 | memset(&res, 0, sizeof(res)); |
4ec656bd | 1130 | res.addr = mce->addr; |
ad6e1605 QZ |
1131 | |
1132 | if (adxl_component_count) { | |
1133 | if (!skx_adxl_decode(&res)) | |
1134 | return NOTIFY_DONE; | |
1135 | ||
1136 | mci = get_mci(res.socket, res.imc); | |
1137 | } else { | |
1138 | if (!skx_decode(&res)) | |
1139 | return NOTIFY_DONE; | |
1140 | ||
1141 | mci = res.dev->imc[res.imc].mci; | |
1142 | } | |
1143 | ||
1144 | if (!mci) | |
4ec656bd | 1145 | return NOTIFY_DONE; |
4ec656bd TL |
1146 | |
1147 | if (mce->mcgstatus & MCG_STATUS_MCIP) | |
1148 | type = "Exception"; | |
1149 | else | |
1150 | type = "Event"; | |
1151 | ||
1152 | skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); | |
1153 | ||
1154 | skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " | |
1155 | "Bank %d: %016Lx\n", mce->extcpu, type, | |
1156 | mce->mcgstatus, mce->bank, mce->status); | |
1157 | skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); | |
1158 | skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); | |
1159 | skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); | |
1160 | ||
1161 | skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " | |
1162 | "%u APIC %x\n", mce->cpuvendor, mce->cpuid, | |
1163 | mce->time, mce->socketid, mce->apicid); | |
1164 | ||
1165 | skx_mce_output_error(mci, mce, &res); | |
1166 | ||
1167 | return NOTIFY_DONE; | |
1168 | } | |
1169 | ||
1170 | static struct notifier_block skx_mce_dec = { | |
9026cc82 BP |
1171 | .notifier_call = skx_mce_check_error, |
1172 | .priority = MCE_PRIO_EDAC, | |
4ec656bd TL |
1173 | }; |
1174 | ||
1175 | static void skx_remove(void) | |
1176 | { | |
1177 | int i, j; | |
1178 | struct skx_dev *d, *tmp; | |
1179 | ||
1180 | edac_dbg(0, "\n"); | |
1181 | ||
1182 | list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { | |
1183 | list_del(&d->list); | |
1184 | for (i = 0; i < NUM_IMC; i++) { | |
1185 | skx_unregister_mci(&d->imc[i]); | |
1186 | for (j = 0; j < NUM_CHANNELS; j++) | |
1187 | pci_dev_put(d->imc[i].chan[j].cdev); | |
1188 | } | |
1189 | pci_dev_put(d->util_all); | |
1190 | pci_dev_put(d->sad_all); | |
1191 | ||
1192 | kfree(d); | |
1193 | } | |
1194 | } | |
1195 | ||
ad6e1605 QZ |
1196 | static void __init skx_adxl_get(void) |
1197 | { | |
1198 | const char * const *names; | |
1199 | int i, j; | |
1200 | ||
1201 | names = adxl_get_component_names(); | |
1202 | if (!names) { | |
1203 | skx_printk(KERN_NOTICE, "No firmware support for address translation."); | |
1204 | skx_printk(KERN_CONT, " Only decoding DDR4 address!\n"); | |
1205 | return; | |
1206 | } | |
1207 | ||
1208 | for (i = 0; i < INDEX_MAX; i++) { | |
1209 | for (j = 0; names[j]; j++) { | |
1210 | if (!strcmp(component_names[i], names[j])) { | |
1211 | component_indices[i] = j; | |
1212 | break; | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | if (!names[j]) | |
1217 | goto err; | |
1218 | } | |
1219 | ||
1220 | adxl_component_names = names; | |
1221 | while (*names++) | |
1222 | adxl_component_count++; | |
1223 | ||
1224 | adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values), | |
1225 | GFP_KERNEL); | |
1226 | if (!adxl_values) { | |
1227 | adxl_component_count = 0; | |
1228 | return; | |
1229 | } | |
1230 | ||
1231 | adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL); | |
1232 | if (!adxl_msg) { | |
1233 | adxl_component_count = 0; | |
1234 | kfree(adxl_values); | |
1235 | } | |
1236 | ||
1237 | return; | |
1238 | err: | |
1239 | skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ", | |
1240 | component_names[i]); | |
1241 | for (j = 0; names[j]; j++) | |
1242 | skx_printk(KERN_CONT, "%s ", names[j]); | |
1243 | skx_printk(KERN_CONT, "\n"); | |
1244 | } | |
1245 | ||
1246 | static void __exit skx_adxl_put(void) | |
1247 | { | |
1248 | kfree(adxl_values); | |
1249 | kfree(adxl_msg); | |
1250 | } | |
1251 | ||
4ec656bd TL |
1252 | /* |
1253 | * skx_init: | |
1254 | * make sure we are running on the correct cpu model | |
1255 | * search for all the devices we need | |
1256 | * check which DIMMs are present. | |
1257 | */ | |
240ea921 | 1258 | static int __init skx_init(void) |
4ec656bd TL |
1259 | { |
1260 | const struct x86_cpu_id *id; | |
1261 | const struct munit *m; | |
301375e7 | 1262 | const char *owner; |
4ec656bd TL |
1263 | int rc = 0, i; |
1264 | u8 mc = 0, src_id, node_id; | |
1265 | struct skx_dev *d; | |
1266 | ||
1267 | edac_dbg(2, "\n"); | |
1268 | ||
301375e7 TK |
1269 | owner = edac_get_owner(); |
1270 | if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | |
1271 | return -EBUSY; | |
1272 | ||
4ec656bd TL |
1273 | id = x86_match_cpu(skx_cpuids); |
1274 | if (!id) | |
1275 | return -ENODEV; | |
1276 | ||
1277 | rc = skx_get_hi_lo(); | |
1278 | if (rc) | |
1279 | return rc; | |
1280 | ||
1281 | rc = get_all_bus_mappings(); | |
1282 | if (rc < 0) | |
1283 | goto fail; | |
1284 | if (rc == 0) { | |
1285 | edac_dbg(2, "No memory controllers found\n"); | |
1286 | return -ENODEV; | |
1287 | } | |
1288 | ||
1289 | for (m = skx_all_munits; m->did; m++) { | |
1290 | rc = get_all_munits(m); | |
1291 | if (rc < 0) | |
1292 | goto fail; | |
1293 | if (rc != m->per_socket * skx_num_sockets) { | |
1294 | edac_dbg(2, "Expected %d, got %d of %x\n", | |
1295 | m->per_socket * skx_num_sockets, rc, m->did); | |
1296 | rc = -ENODEV; | |
1297 | goto fail; | |
1298 | } | |
1299 | } | |
1300 | ||
1301 | list_for_each_entry(d, &skx_edac_list, list) { | |
1302 | src_id = get_src_id(d); | |
1303 | node_id = skx_get_node_id(d); | |
1304 | edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); | |
1305 | for (i = 0; i < NUM_IMC; i++) { | |
1306 | d->imc[i].mc = mc++; | |
1307 | d->imc[i].lmc = i; | |
1308 | d->imc[i].src_id = src_id; | |
1309 | d->imc[i].node_id = node_id; | |
1310 | rc = skx_register_mci(&d->imc[i]); | |
1311 | if (rc < 0) | |
1312 | goto fail; | |
1313 | } | |
1314 | } | |
1315 | ||
ad6e1605 QZ |
1316 | skx_msg = kzalloc(MSG_SIZE, GFP_KERNEL); |
1317 | if (!skx_msg) { | |
1318 | rc = -ENOMEM; | |
1319 | goto fail; | |
1320 | } | |
1321 | ||
1322 | if (nvdimm_count) | |
1323 | skx_adxl_get(); | |
1324 | ||
4ec656bd TL |
1325 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
1326 | opstate_init(); | |
1327 | ||
1328 | setup_skx_debug(); | |
1329 | ||
1330 | mce_register_decode_chain(&skx_mce_dec); | |
1331 | ||
1332 | return 0; | |
1333 | fail: | |
1334 | skx_remove(); | |
1335 | return rc; | |
1336 | } | |
1337 | ||
1338 | static void __exit skx_exit(void) | |
1339 | { | |
1340 | edac_dbg(2, "\n"); | |
1341 | mce_unregister_decode_chain(&skx_mce_dec); | |
1342 | skx_remove(); | |
ad6e1605 QZ |
1343 | if (nvdimm_count) |
1344 | skx_adxl_put(); | |
1345 | kfree(skx_msg); | |
4ec656bd TL |
1346 | teardown_skx_debug(); |
1347 | } | |
1348 | ||
1349 | module_init(skx_init); | |
1350 | module_exit(skx_exit); | |
1351 | ||
1352 | module_param(edac_op_state, int, 0444); | |
1353 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | |
1354 | ||
1355 | MODULE_LICENSE("GPL v2"); | |
1356 | MODULE_AUTHOR("Tony Luck"); | |
1357 | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |