]> Git Repo - linux.git/blame - mm/swap.c
Merge tag 'for-linus-5.16-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
8cc621d2 39#include <linux/buffer_head.h>
1da177e4 40
64d6519d
LS
41#include "internal.h"
42
c6286c98
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
1da177e4
LT
46/* How many pages do we try to swap or page in/out together? */
47int page_cluster;
48
b01b2141
IM
49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
50struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53};
54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56};
57
58/*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
a4a921aa 68#ifdef CONFIG_SMP
b01b2141 69 struct pagevec activate_page;
a4a921aa 70#endif
b01b2141
IM
71};
72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74};
902aaed0 75
b221385b
AB
76/*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
920c7a5d 80static void __page_cache_release(struct page *page)
b221385b
AB
81{
82 if (PageLRU(page)) {
e809c3fe 83 struct folio *folio = page_folio(page);
fa9add64
HD
84 struct lruvec *lruvec;
85 unsigned long flags;
b221385b 86
e809c3fe 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
46ae6b2c 88 del_page_from_lru_list(page, lruvec);
87560179 89 __clear_page_lru_flags(page);
6168d0da 90 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 91 }
62906027 92 __ClearPageWaiters(page);
91807063
AA
93}
94
95static void __put_single_page(struct page *page)
96{
97 __page_cache_release(page);
bbc6b703 98 mem_cgroup_uncharge(page_folio(page));
44042b44 99 free_unref_page(page, 0);
b221385b
AB
100}
101
91807063 102static void __put_compound_page(struct page *page)
1da177e4 103{
822fc613
NH
104 /*
105 * __page_cache_release() is supposed to be called for thp, not for
106 * hugetlb. This is because hugetlb page does never have PageLRU set
107 * (it's never listed to any LRU lists) and no memcg routines should
108 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 */
110 if (!PageHuge(page))
111 __page_cache_release(page);
ff45fc3c 112 destroy_compound_page(page);
91807063
AA
113}
114
ddc58f27 115void __put_page(struct page *page)
8519fb30 116{
71389703
DW
117 if (is_zone_device_page(page)) {
118 put_dev_pagemap(page->pgmap);
119
120 /*
121 * The page belongs to the device that created pgmap. Do
122 * not return it to page allocator.
123 */
124 return;
125 }
126
8519fb30 127 if (unlikely(PageCompound(page)))
ddc58f27
KS
128 __put_compound_page(page);
129 else
91807063 130 __put_single_page(page);
1da177e4 131}
ddc58f27 132EXPORT_SYMBOL(__put_page);
70b50f94 133
1d7ea732 134/**
7682486b
RD
135 * put_pages_list() - release a list of pages
136 * @pages: list of pages threaded on page->lru
1d7ea732 137 *
988c69f1 138 * Release a list of pages which are strung together on page.lru.
1d7ea732
AZ
139 */
140void put_pages_list(struct list_head *pages)
141{
988c69f1
MWO
142 struct page *page, *next;
143
144 list_for_each_entry_safe(page, next, pages, lru) {
145 if (!put_page_testzero(page)) {
146 list_del(&page->lru);
147 continue;
148 }
149 if (PageHead(page)) {
150 list_del(&page->lru);
151 __put_compound_page(page);
152 continue;
153 }
154 /* Cannot be PageLRU because it's passed to us using the lru */
155 __ClearPageWaiters(page);
1d7ea732 156 }
988c69f1
MWO
157
158 free_unref_page_list(pages);
1d7ea732
AZ
159}
160EXPORT_SYMBOL(put_pages_list);
161
18022c5d
MG
162/*
163 * get_kernel_pages() - pin kernel pages in memory
164 * @kiov: An array of struct kvec structures
165 * @nr_segs: number of segments to pin
166 * @write: pinning for read/write, currently ignored
167 * @pages: array that receives pointers to the pages pinned.
168 * Should be at least nr_segs long.
169 *
170 * Returns number of pages pinned. This may be fewer than the number
171 * requested. If nr_pages is 0 or negative, returns 0. If no pages
172 * were pinned, returns -errno. Each page returned must be released
173 * with a put_page() call when it is finished with.
174 */
175int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
176 struct page **pages)
177{
178 int seg;
179
180 for (seg = 0; seg < nr_segs; seg++) {
181 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
182 return seg;
183
5a178119 184 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 185 get_page(pages[seg]);
18022c5d
MG
186 }
187
188 return seg;
189}
190EXPORT_SYMBOL_GPL(get_kernel_pages);
191
3dd7ae8e 192static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 193 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
194{
195 int i;
6168d0da 196 struct lruvec *lruvec = NULL;
3dd7ae8e 197 unsigned long flags = 0;
902aaed0
HH
198
199 for (i = 0; i < pagevec_count(pvec); i++) {
200 struct page *page = pvec->pages[i];
0de340cb 201 struct folio *folio = page_folio(page);
3dd7ae8e 202
fc574c23
AS
203 /* block memcg migration during page moving between lru */
204 if (!TestClearPageLRU(page))
205 continue;
206
0de340cb 207 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
c7c7b80c 208 (*move_fn)(page, lruvec);
fc574c23
AS
209
210 SetPageLRU(page);
902aaed0 211 }
6168d0da
AS
212 if (lruvec)
213 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 214 release_pages(pvec->pages, pvec->nr);
83896fb5 215 pagevec_reinit(pvec);
d8505dee
SL
216}
217
c7c7b80c 218static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 219{
575ced1c
MWO
220 struct folio *folio = page_folio(page);
221
222 if (!folio_test_unevictable(folio)) {
223 lruvec_del_folio(lruvec, folio);
224 folio_clear_active(folio);
225 lruvec_add_folio_tail(lruvec, folio);
226 __count_vm_events(PGROTATED, folio_nr_pages(folio));
3dd7ae8e
SL
227 }
228}
229
d479960e
MK
230/* return true if pagevec needs to drain */
231static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
232{
233 bool ret = false;
234
235 if (!pagevec_add(pvec, page) || PageCompound(page) ||
236 lru_cache_disabled())
237 ret = true;
238
239 return ret;
240}
241
1da177e4 242/*
575ced1c
MWO
243 * Writeback is about to end against a folio which has been marked for
244 * immediate reclaim. If it still appears to be reclaimable, move it
245 * to the tail of the inactive list.
c7c7b80c 246 *
575ced1c 247 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
1da177e4 248 */
575ced1c 249void folio_rotate_reclaimable(struct folio *folio)
1da177e4 250{
575ced1c
MWO
251 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
252 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
ac6aadb2
MS
253 struct pagevec *pvec;
254 unsigned long flags;
255
575ced1c 256 folio_get(folio);
b01b2141
IM
257 local_lock_irqsave(&lru_rotate.lock, flags);
258 pvec = this_cpu_ptr(&lru_rotate.pvec);
575ced1c 259 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 260 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 261 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 262 }
1da177e4
LT
263}
264
96f8bf4f 265void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 266{
7cf111bc
JW
267 do {
268 unsigned long lrusize;
269
6168d0da
AS
270 /*
271 * Hold lruvec->lru_lock is safe here, since
272 * 1) The pinned lruvec in reclaim, or
273 * 2) From a pre-LRU page during refault (which also holds the
274 * rcu lock, so would be safe even if the page was on the LRU
275 * and could move simultaneously to a new lruvec).
276 */
277 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 278 /* Record cost event */
96f8bf4f
JW
279 if (file)
280 lruvec->file_cost += nr_pages;
7cf111bc 281 else
96f8bf4f 282 lruvec->anon_cost += nr_pages;
7cf111bc
JW
283
284 /*
285 * Decay previous events
286 *
287 * Because workloads change over time (and to avoid
288 * overflow) we keep these statistics as a floating
289 * average, which ends up weighing recent refaults
290 * more than old ones.
291 */
292 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
293 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
294 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
295 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
296
297 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
298 lruvec->file_cost /= 2;
299 lruvec->anon_cost /= 2;
300 }
6168d0da 301 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 302 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
303}
304
0995d7e5 305void lru_note_cost_folio(struct folio *folio)
96f8bf4f 306{
0995d7e5
MWO
307 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
308 folio_nr_pages(folio));
96f8bf4f
JW
309}
310
f2d27392 311static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
1da177e4 312{
f2d27392
MWO
313 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
314 long nr_pages = folio_nr_pages(folio);
744ed144 315
f2d27392
MWO
316 lruvec_del_folio(lruvec, folio);
317 folio_set_active(folio);
318 lruvec_add_folio(lruvec, folio);
319 trace_mm_lru_activate(folio);
4f98a2fe 320
21e330fc
SB
321 __count_vm_events(PGACTIVATE, nr_pages);
322 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
323 nr_pages);
1da177e4 324 }
eb709b0d
SL
325}
326
327#ifdef CONFIG_SMP
f2d27392
MWO
328static void __activate_page(struct page *page, struct lruvec *lruvec)
329{
330 return __folio_activate(page_folio(page), lruvec);
331}
332
eb709b0d
SL
333static void activate_page_drain(int cpu)
334{
b01b2141 335 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
336
337 if (pagevec_count(pvec))
c7c7b80c 338 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
339}
340
5fbc4616
CM
341static bool need_activate_page_drain(int cpu)
342{
b01b2141 343 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
344}
345
f2d27392 346static void folio_activate(struct folio *folio)
eb709b0d 347{
f2d27392
MWO
348 if (folio_test_lru(folio) && !folio_test_active(folio) &&
349 !folio_test_unevictable(folio)) {
b01b2141 350 struct pagevec *pvec;
eb709b0d 351
f2d27392 352 folio_get(folio);
b01b2141
IM
353 local_lock(&lru_pvecs.lock);
354 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
f2d27392 355 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 356 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 357 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
358 }
359}
360
361#else
362static inline void activate_page_drain(int cpu)
363{
364}
365
f2d27392 366static void folio_activate(struct folio *folio)
eb709b0d 367{
6168d0da 368 struct lruvec *lruvec;
eb709b0d 369
f2d27392 370 if (folio_test_clear_lru(folio)) {
e809c3fe 371 lruvec = folio_lruvec_lock_irq(folio);
f2d27392 372 __folio_activate(folio, lruvec);
6168d0da 373 unlock_page_lruvec_irq(lruvec);
f2d27392 374 folio_set_lru(folio);
6168d0da 375 }
1da177e4 376}
eb709b0d 377#endif
1da177e4 378
76580b65 379static void __lru_cache_activate_folio(struct folio *folio)
059285a2 380{
b01b2141 381 struct pagevec *pvec;
059285a2
MG
382 int i;
383
b01b2141
IM
384 local_lock(&lru_pvecs.lock);
385 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
386
059285a2
MG
387 /*
388 * Search backwards on the optimistic assumption that the page being
389 * activated has just been added to this pagevec. Note that only
390 * the local pagevec is examined as a !PageLRU page could be in the
391 * process of being released, reclaimed, migrated or on a remote
392 * pagevec that is currently being drained. Furthermore, marking
393 * a remote pagevec's page PageActive potentially hits a race where
394 * a page is marked PageActive just after it is added to the inactive
395 * list causing accounting errors and BUG_ON checks to trigger.
396 */
397 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
398 struct page *pagevec_page = pvec->pages[i];
399
76580b65
MWO
400 if (pagevec_page == &folio->page) {
401 folio_set_active(folio);
059285a2
MG
402 break;
403 }
404 }
405
b01b2141 406 local_unlock(&lru_pvecs.lock);
059285a2
MG
407}
408
1da177e4
LT
409/*
410 * Mark a page as having seen activity.
411 *
412 * inactive,unreferenced -> inactive,referenced
413 * inactive,referenced -> active,unreferenced
414 * active,unreferenced -> active,referenced
eb39d618
HD
415 *
416 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
417 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 418 */
76580b65 419void folio_mark_accessed(struct folio *folio)
1da177e4 420{
76580b65
MWO
421 if (!folio_test_referenced(folio)) {
422 folio_set_referenced(folio);
423 } else if (folio_test_unevictable(folio)) {
a1100a74
FW
424 /*
425 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
426 * this list is never rotated or maintained, so marking an
427 * evictable page accessed has no effect.
428 */
76580b65 429 } else if (!folio_test_active(folio)) {
059285a2
MG
430 /*
431 * If the page is on the LRU, queue it for activation via
b01b2141 432 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
433 * pagevec, mark it active and it'll be moved to the active
434 * LRU on the next drain.
435 */
76580b65
MWO
436 if (folio_test_lru(folio))
437 folio_activate(folio);
059285a2 438 else
76580b65
MWO
439 __lru_cache_activate_folio(folio);
440 folio_clear_referenced(folio);
441 workingset_activation(folio);
1da177e4 442 }
76580b65
MWO
443 if (folio_test_idle(folio))
444 folio_clear_idle(folio);
1da177e4 445}
76580b65 446EXPORT_SYMBOL(folio_mark_accessed);
1da177e4 447
f04e9ebb 448/**
0d31125d
MWO
449 * folio_add_lru - Add a folio to an LRU list.
450 * @folio: The folio to be added to the LRU.
2329d375 451 *
0d31125d 452 * Queue the folio for addition to the LRU. The decision on whether
2329d375 453 * to add the page to the [in]active [file|anon] list is deferred until the
0d31125d
MWO
454 * pagevec is drained. This gives a chance for the caller of folio_add_lru()
455 * have the folio added to the active list using folio_mark_accessed().
f04e9ebb 456 */
0d31125d 457void folio_add_lru(struct folio *folio)
1da177e4 458{
6058eaec
JW
459 struct pagevec *pvec;
460
0d31125d
MWO
461 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
462 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6058eaec 463
0d31125d 464 folio_get(folio);
6058eaec
JW
465 local_lock(&lru_pvecs.lock);
466 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
0d31125d 467 if (pagevec_add_and_need_flush(pvec, &folio->page))
6058eaec
JW
468 __pagevec_lru_add(pvec);
469 local_unlock(&lru_pvecs.lock);
1da177e4 470}
0d31125d 471EXPORT_SYMBOL(folio_add_lru);
1da177e4 472
00501b53 473/**
b518154e 474 * lru_cache_add_inactive_or_unevictable
00501b53
JW
475 * @page: the page to be added to LRU
476 * @vma: vma in which page is mapped for determining reclaimability
477 *
b518154e 478 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 479 * evictability.
00501b53 480 */
b518154e 481void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
482 struct vm_area_struct *vma)
483{
b518154e
JK
484 bool unevictable;
485
00501b53
JW
486 VM_BUG_ON_PAGE(PageLRU(page), page);
487
b518154e
JK
488 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
489 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 490 int nr_pages = thp_nr_pages(page);
00501b53 491 /*
cb152a1a 492 * We use the irq-unsafe __mod_zone_page_state because this
00501b53
JW
493 * counter is not modified from interrupt context, and the pte
494 * lock is held(spinlock), which implies preemption disabled.
495 */
0964730b
HD
496 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
497 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 498 }
9c4e6b1a 499 lru_cache_add(page);
00501b53
JW
500}
501
31560180
MK
502/*
503 * If the page can not be invalidated, it is moved to the
504 * inactive list to speed up its reclaim. It is moved to the
505 * head of the list, rather than the tail, to give the flusher
506 * threads some time to write it out, as this is much more
507 * effective than the single-page writeout from reclaim.
278df9f4
MK
508 *
509 * If the page isn't page_mapped and dirty/writeback, the page
510 * could reclaim asap using PG_reclaim.
511 *
512 * 1. active, mapped page -> none
513 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
514 * 3. inactive, mapped page -> none
515 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
516 * 5. inactive, clean -> inactive, tail
517 * 6. Others -> none
518 *
519 * In 4, why it moves inactive's head, the VM expects the page would
520 * be write it out by flusher threads as this is much more effective
521 * than the single-page writeout from reclaim.
31560180 522 */
c7c7b80c 523static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 524{
46ae6b2c 525 bool active = PageActive(page);
6c357848 526 int nr_pages = thp_nr_pages(page);
31560180 527
bad49d9c
MK
528 if (PageUnevictable(page))
529 return;
530
31560180
MK
531 /* Some processes are using the page */
532 if (page_mapped(page))
533 return;
534
46ae6b2c 535 del_page_from_lru_list(page, lruvec);
31560180
MK
536 ClearPageActive(page);
537 ClearPageReferenced(page);
31560180 538
278df9f4
MK
539 if (PageWriteback(page) || PageDirty(page)) {
540 /*
541 * PG_reclaim could be raced with end_page_writeback
542 * It can make readahead confusing. But race window
543 * is _really_ small and it's non-critical problem.
544 */
3a9c9788 545 add_page_to_lru_list(page, lruvec);
278df9f4
MK
546 SetPageReclaim(page);
547 } else {
548 /*
549 * The page's writeback ends up during pagevec
c4ffefd1 550 * We move that page into tail of inactive.
278df9f4 551 */
3a9c9788 552 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 553 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
554 }
555
21e330fc 556 if (active) {
5d91f31f 557 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
558 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
559 nr_pages);
560 }
31560180
MK
561}
562
c7c7b80c 563static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 564{
fc574c23 565 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 566 int nr_pages = thp_nr_pages(page);
9c276cc6 567
46ae6b2c 568 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
569 ClearPageActive(page);
570 ClearPageReferenced(page);
3a9c9788 571 add_page_to_lru_list(page, lruvec);
9c276cc6 572
21e330fc
SB
573 __count_vm_events(PGDEACTIVATE, nr_pages);
574 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
575 nr_pages);
9c276cc6
MK
576 }
577}
10853a03 578
c7c7b80c 579static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 580{
fc574c23 581 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 582 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 583 int nr_pages = thp_nr_pages(page);
10853a03 584
46ae6b2c 585 del_page_from_lru_list(page, lruvec);
10853a03
MK
586 ClearPageActive(page);
587 ClearPageReferenced(page);
f7ad2a6c 588 /*
9de4f22a
YH
589 * Lazyfree pages are clean anonymous pages. They have
590 * PG_swapbacked flag cleared, to distinguish them from normal
591 * anonymous pages
f7ad2a6c
SL
592 */
593 ClearPageSwapBacked(page);
3a9c9788 594 add_page_to_lru_list(page, lruvec);
10853a03 595
21e330fc
SB
596 __count_vm_events(PGLAZYFREE, nr_pages);
597 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
598 nr_pages);
10853a03
MK
599 }
600}
601
902aaed0
HH
602/*
603 * Drain pages out of the cpu's pagevecs.
604 * Either "cpu" is the current CPU, and preemption has already been
605 * disabled; or "cpu" is being hot-unplugged, and is already dead.
606 */
f0cb3c76 607void lru_add_drain_cpu(int cpu)
1da177e4 608{
b01b2141 609 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 610
13f7f789 611 if (pagevec_count(pvec))
a0b8cab3 612 __pagevec_lru_add(pvec);
902aaed0 613
b01b2141 614 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
615 /* Disabling interrupts below acts as a compiler barrier. */
616 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
617 unsigned long flags;
618
619 /* No harm done if a racing interrupt already did this */
b01b2141 620 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 621 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 622 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 623 }
31560180 624
b01b2141 625 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 626 if (pagevec_count(pvec))
c7c7b80c 627 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 628
b01b2141 629 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 630 if (pagevec_count(pvec))
c7c7b80c 631 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 632
b01b2141 633 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 634 if (pagevec_count(pvec))
c7c7b80c 635 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 636
eb709b0d 637 activate_page_drain(cpu);
31560180
MK
638}
639
640/**
cc5993bd 641 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
642 * @page: page to deactivate
643 *
644 * This function hints the VM that @page is a good reclaim candidate,
645 * for example if its invalidation fails due to the page being dirty
646 * or under writeback.
647 */
cc5993bd 648void deactivate_file_page(struct page *page)
31560180 649{
821ed6bb 650 /*
cc5993bd
MK
651 * In a workload with many unevictable page such as mprotect,
652 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
653 */
654 if (PageUnevictable(page))
655 return;
656
31560180 657 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
658 struct pagevec *pvec;
659
660 local_lock(&lru_pvecs.lock);
661 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 662
d479960e 663 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 664 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 665 local_unlock(&lru_pvecs.lock);
31560180 666 }
80bfed90
AM
667}
668
9c276cc6
MK
669/*
670 * deactivate_page - deactivate a page
671 * @page: page to deactivate
672 *
673 * deactivate_page() moves @page to the inactive list if @page was on the active
674 * list and was not an unevictable page. This is done to accelerate the reclaim
675 * of @page.
676 */
677void deactivate_page(struct page *page)
678{
679 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 680 struct pagevec *pvec;
9c276cc6 681
b01b2141
IM
682 local_lock(&lru_pvecs.lock);
683 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 684 get_page(page);
d479960e 685 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 686 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 687 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
688 }
689}
690
10853a03 691/**
f7ad2a6c 692 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
693 * @page: page to deactivate
694 *
f7ad2a6c
SL
695 * mark_page_lazyfree() moves @page to the inactive file list.
696 * This is done to accelerate the reclaim of @page.
10853a03 697 */
f7ad2a6c 698void mark_page_lazyfree(struct page *page)
10853a03 699{
f7ad2a6c 700 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 701 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 702 struct pagevec *pvec;
10853a03 703
b01b2141
IM
704 local_lock(&lru_pvecs.lock);
705 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 706 get_page(page);
d479960e 707 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 708 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 709 local_unlock(&lru_pvecs.lock);
10853a03
MK
710 }
711}
712
80bfed90
AM
713void lru_add_drain(void)
714{
b01b2141
IM
715 local_lock(&lru_pvecs.lock);
716 lru_add_drain_cpu(smp_processor_id());
717 local_unlock(&lru_pvecs.lock);
718}
719
243418e3
MK
720/*
721 * It's called from per-cpu workqueue context in SMP case so
722 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
723 * the same cpu. It shouldn't be a problem in !SMP case since
724 * the core is only one and the locks will disable preemption.
725 */
726static void lru_add_and_bh_lrus_drain(void)
727{
728 local_lock(&lru_pvecs.lock);
729 lru_add_drain_cpu(smp_processor_id());
730 local_unlock(&lru_pvecs.lock);
731 invalidate_bh_lrus_cpu();
732}
733
b01b2141
IM
734void lru_add_drain_cpu_zone(struct zone *zone)
735{
736 local_lock(&lru_pvecs.lock);
737 lru_add_drain_cpu(smp_processor_id());
738 drain_local_pages(zone);
739 local_unlock(&lru_pvecs.lock);
1da177e4
LT
740}
741
6ea183d6
MH
742#ifdef CONFIG_SMP
743
744static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
745
c4028958 746static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc 747{
243418e3 748 lru_add_and_bh_lrus_drain();
053837fc
NP
749}
750
9852a721
MH
751/*
752 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
753 * kworkers being shut down before our page_alloc_cpu_dead callback is
754 * executed on the offlined cpu.
755 * Calling this function with cpu hotplug locks held can actually lead
756 * to obscure indirect dependencies via WQ context.
757 */
d479960e 758inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 759{
6446a513
AD
760 /*
761 * lru_drain_gen - Global pages generation number
762 *
763 * (A) Definition: global lru_drain_gen = x implies that all generations
764 * 0 < n <= x are already *scheduled* for draining.
765 *
766 * This is an optimization for the highly-contended use case where a
767 * user space workload keeps constantly generating a flow of pages for
768 * each CPU.
769 */
770 static unsigned int lru_drain_gen;
5fbc4616 771 static struct cpumask has_work;
6446a513
AD
772 static DEFINE_MUTEX(lock);
773 unsigned cpu, this_gen;
5fbc4616 774
ce612879
MH
775 /*
776 * Make sure nobody triggers this path before mm_percpu_wq is fully
777 * initialized.
778 */
779 if (WARN_ON(!mm_percpu_wq))
780 return;
781
6446a513
AD
782 /*
783 * Guarantee pagevec counter stores visible by this CPU are visible to
784 * other CPUs before loading the current drain generation.
785 */
786 smp_mb();
787
788 /*
789 * (B) Locally cache global LRU draining generation number
790 *
791 * The read barrier ensures that the counter is loaded before the mutex
792 * is taken. It pairs with smp_mb() inside the mutex critical section
793 * at (D).
794 */
795 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 796
5fbc4616 797 mutex_lock(&lock);
eef1a429
KK
798
799 /*
6446a513
AD
800 * (C) Exit the draining operation if a newer generation, from another
801 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 802 */
d479960e 803 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
804 goto done;
805
6446a513
AD
806 /*
807 * (D) Increment global generation number
808 *
809 * Pairs with smp_load_acquire() at (B), outside of the critical
810 * section. Use a full memory barrier to guarantee that the new global
811 * drain generation number is stored before loading pagevec counters.
812 *
813 * This pairing must be done here, before the for_each_online_cpu loop
814 * below which drains the page vectors.
815 *
816 * Let x, y, and z represent some system CPU numbers, where x < y < z.
cb152a1a 817 * Assume CPU #z is in the middle of the for_each_online_cpu loop
6446a513
AD
818 * below and has already reached CPU #y's per-cpu data. CPU #x comes
819 * along, adds some pages to its per-cpu vectors, then calls
820 * lru_add_drain_all().
821 *
822 * If the paired barrier is done at any later step, e.g. after the
823 * loop, CPU #x will just exit at (C) and miss flushing out all of its
824 * added pages.
825 */
826 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
827 smp_mb();
eef1a429 828
5fbc4616 829 cpumask_clear(&has_work);
5fbc4616
CM
830 for_each_online_cpu(cpu) {
831 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
832
d479960e
MK
833 if (force_all_cpus ||
834 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 835 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
836 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
837 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
838 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
8cc621d2
MK
839 need_activate_page_drain(cpu) ||
840 has_bh_in_lru(cpu, NULL)) {
5fbc4616 841 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 842 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 843 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
844 }
845 }
846
847 for_each_cpu(cpu, &has_work)
848 flush_work(&per_cpu(lru_add_drain_work, cpu));
849
eef1a429 850done:
5fbc4616 851 mutex_unlock(&lock);
053837fc 852}
d479960e
MK
853
854void lru_add_drain_all(void)
855{
856 __lru_add_drain_all(false);
857}
6ea183d6
MH
858#else
859void lru_add_drain_all(void)
860{
861 lru_add_drain();
862}
6446a513 863#endif /* CONFIG_SMP */
053837fc 864
d479960e
MK
865atomic_t lru_disable_count = ATOMIC_INIT(0);
866
867/*
868 * lru_cache_disable() needs to be called before we start compiling
869 * a list of pages to be migrated using isolate_lru_page().
870 * It drains pages on LRU cache and then disable on all cpus until
871 * lru_cache_enable is called.
872 *
873 * Must be paired with a call to lru_cache_enable().
874 */
875void lru_cache_disable(void)
876{
877 atomic_inc(&lru_disable_count);
878#ifdef CONFIG_SMP
879 /*
880 * lru_add_drain_all in the force mode will schedule draining on
881 * all online CPUs so any calls of lru_cache_disabled wrapped by
882 * local_lock or preemption disabled would be ordered by that.
883 * The atomic operation doesn't need to have stronger ordering
884 * requirements because that is enforeced by the scheduling
885 * guarantees.
886 */
887 __lru_add_drain_all(true);
888#else
243418e3 889 lru_add_and_bh_lrus_drain();
d479960e
MK
890#endif
891}
892
aabfb572 893/**
ea1754a0 894 * release_pages - batched put_page()
aabfb572
MH
895 * @pages: array of pages to release
896 * @nr: number of pages
1da177e4 897 *
aabfb572
MH
898 * Decrement the reference count on all the pages in @pages. If it
899 * fell to zero, remove the page from the LRU and free it.
1da177e4 900 */
c6f92f9f 901void release_pages(struct page **pages, int nr)
1da177e4
LT
902{
903 int i;
cc59850e 904 LIST_HEAD(pages_to_free);
6168d0da 905 struct lruvec *lruvec = NULL;
0de340cb 906 unsigned long flags = 0;
3f649ab7 907 unsigned int lock_batch;
1da177e4 908
1da177e4
LT
909 for (i = 0; i < nr; i++) {
910 struct page *page = pages[i];
0de340cb 911 struct folio *folio = page_folio(page);
1da177e4 912
aabfb572
MH
913 /*
914 * Make sure the IRQ-safe lock-holding time does not get
915 * excessive with a continuous string of pages from the
6168d0da 916 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 917 */
6168d0da
AS
918 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
919 unlock_page_lruvec_irqrestore(lruvec, flags);
920 lruvec = NULL;
aabfb572
MH
921 }
922
0de340cb 923 page = &folio->page;
6fcb52a5 924 if (is_huge_zero_page(page))
aa88b68c 925 continue;
aa88b68c 926
c5d6c45e 927 if (is_zone_device_page(page)) {
6168d0da
AS
928 if (lruvec) {
929 unlock_page_lruvec_irqrestore(lruvec, flags);
930 lruvec = NULL;
df6ad698 931 }
c5d6c45e
IW
932 /*
933 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 934 * page_is_devmap_managed() do not require special
c5d6c45e
IW
935 * processing, and instead, expect a call to
936 * put_page_testzero().
937 */
07d80269
JH
938 if (page_is_devmap_managed(page)) {
939 put_devmap_managed_page(page);
c5d6c45e 940 continue;
07d80269 941 }
43fbdeb3
RC
942 if (put_page_testzero(page))
943 put_dev_pagemap(page->pgmap);
944 continue;
df6ad698
JG
945 }
946
b5810039 947 if (!put_page_testzero(page))
1da177e4
LT
948 continue;
949
ddc58f27 950 if (PageCompound(page)) {
6168d0da
AS
951 if (lruvec) {
952 unlock_page_lruvec_irqrestore(lruvec, flags);
953 lruvec = NULL;
ddc58f27
KS
954 }
955 __put_compound_page(page);
956 continue;
957 }
958
46453a6e 959 if (PageLRU(page)) {
2a5e4e34
AD
960 struct lruvec *prev_lruvec = lruvec;
961
0de340cb 962 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
2a5e4e34
AD
963 &flags);
964 if (prev_lruvec != lruvec)
aabfb572 965 lock_batch = 0;
fa9add64 966
46ae6b2c 967 del_page_from_lru_list(page, lruvec);
87560179 968 __clear_page_lru_flags(page);
46453a6e
NP
969 }
970
62906027 971 __ClearPageWaiters(page);
c53954a0 972
cc59850e 973 list_add(&page->lru, &pages_to_free);
1da177e4 974 }
6168d0da
AS
975 if (lruvec)
976 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 977
747db954 978 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 979 free_unref_page_list(&pages_to_free);
1da177e4 980}
0be8557b 981EXPORT_SYMBOL(release_pages);
1da177e4
LT
982
983/*
984 * The pages which we're about to release may be in the deferred lru-addition
985 * queues. That would prevent them from really being freed right now. That's
986 * OK from a correctness point of view but is inefficient - those pages may be
987 * cache-warm and we want to give them back to the page allocator ASAP.
988 *
989 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
990 * and __pagevec_lru_add_active() call release_pages() directly to avoid
991 * mutual recursion.
992 */
993void __pagevec_release(struct pagevec *pvec)
994{
7f0b5fb9 995 if (!pvec->percpu_pvec_drained) {
d9ed0d08 996 lru_add_drain();
7f0b5fb9 997 pvec->percpu_pvec_drained = true;
d9ed0d08 998 }
c6f92f9f 999 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
1000 pagevec_reinit(pvec);
1001}
7f285701
SF
1002EXPORT_SYMBOL(__pagevec_release);
1003
934387c9 1004static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
3dd7ae8e 1005{
934387c9
MWO
1006 int was_unevictable = folio_test_clear_unevictable(folio);
1007 long nr_pages = folio_nr_pages(folio);
3dd7ae8e 1008
934387c9 1009 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
3dd7ae8e 1010
9c4e6b1a 1011 /*
934387c9 1012 * A folio becomes evictable in two ways:
dae966dc 1013 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
934387c9
MWO
1014 * 2) Before acquiring LRU lock to put the folio on the correct LRU
1015 * and then
9c4e6b1a
SB
1016 * a) do PageLRU check with lock [check_move_unevictable_pages]
1017 * b) do PageLRU check before lock [clear_page_mlock]
1018 *
1019 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1020 * following strict ordering:
1021 *
1022 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1023 *
934387c9 1024 * folio_set_lru() folio_test_clear_mlocked()
9c4e6b1a
SB
1025 * smp_mb() // explicit ordering // above provides strict
1026 * // ordering
934387c9 1027 * folio_test_mlocked() folio_test_lru()
9c4e6b1a
SB
1028 *
1029 *
934387c9
MWO
1030 * if '#1' does not observe setting of PG_lru by '#0' and
1031 * fails isolation, the explicit barrier will make sure that
1032 * folio_evictable check will put the folio on the correct
1033 * LRU. Without smp_mb(), folio_set_lru() can be reordered
1034 * after folio_test_mlocked() check and can make '#1' fail the
1035 * isolation of the folio whose mlocked bit is cleared (#0 is
1036 * also looking at the same folio) and the evictable folio will
1037 * be stranded on an unevictable LRU.
9c4e6b1a 1038 */
934387c9 1039 folio_set_lru(folio);
9a9b6cce 1040 smp_mb__after_atomic();
9c4e6b1a 1041
934387c9 1042 if (folio_evictable(folio)) {
9c4e6b1a 1043 if (was_unevictable)
5d91f31f 1044 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1045 } else {
934387c9
MWO
1046 folio_clear_active(folio);
1047 folio_set_unevictable(folio);
9c4e6b1a 1048 if (!was_unevictable)
5d91f31f 1049 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1050 }
1051
934387c9
MWO
1052 lruvec_add_folio(lruvec, folio);
1053 trace_mm_lru_insertion(folio);
3dd7ae8e
SL
1054}
1055
1da177e4
LT
1056/*
1057 * Add the passed pages to the LRU, then drop the caller's refcount
1058 * on them. Reinitialises the caller's pagevec.
1059 */
a0b8cab3 1060void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1061{
fc574c23 1062 int i;
6168d0da 1063 struct lruvec *lruvec = NULL;
fc574c23
AS
1064 unsigned long flags = 0;
1065
1066 for (i = 0; i < pagevec_count(pvec); i++) {
934387c9 1067 struct folio *folio = page_folio(pvec->pages[i]);
fc574c23 1068
0de340cb 1069 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
934387c9 1070 __pagevec_lru_add_fn(folio, lruvec);
fc574c23 1071 }
6168d0da
AS
1072 if (lruvec)
1073 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1074 release_pages(pvec->pages, pvec->nr);
1075 pagevec_reinit(pvec);
1da177e4 1076}
1da177e4 1077
0cd6144a
JW
1078/**
1079 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1080 * @pvec: The pagevec to prune
1081 *
a656a202
MWO
1082 * find_get_entries() fills both pages and XArray value entries (aka
1083 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1084 * exceptionals from @pvec without leaving holes, so that it can be
1085 * passed on to page-only pagevec operations.
1086 */
1087void pagevec_remove_exceptionals(struct pagevec *pvec)
1088{
1089 int i, j;
1090
1091 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1092 struct page *page = pvec->pages[i];
3159f943 1093 if (!xa_is_value(page))
0cd6144a
JW
1094 pvec->pages[j++] = page;
1095 }
1096 pvec->nr = j;
1097}
1098
1da177e4 1099/**
b947cee4 1100 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1101 * @pvec: Where the resulting pages are placed
1102 * @mapping: The address_space to search
1103 * @start: The starting page index
b947cee4 1104 * @end: The final page index
1da177e4 1105 *
e02a9f04 1106 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1107 * pages in the mapping starting from index @start and upto index @end
1108 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1109 * reference against the pages in @pvec.
1110 *
1111 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1112 * indexes. There may be holes in the indices due to not-present pages. We
1113 * also update @start to index the next page for the traversal.
1da177e4 1114 *
b947cee4 1115 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1116 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1117 * reached.
1da177e4 1118 */
b947cee4 1119unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1120 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1121{
397162ff 1122 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1123 pvec->pages);
1da177e4
LT
1124 return pagevec_count(pvec);
1125}
b947cee4 1126EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1127
72b045ae
JK
1128unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1129 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1130 xa_mark_t tag)
1da177e4 1131{
72b045ae 1132 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1133 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1134 return pagevec_count(pvec);
1135}
72b045ae 1136EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1137
1da177e4
LT
1138/*
1139 * Perform any setup for the swap system
1140 */
1141void __init swap_setup(void)
1142{
ca79b0c2 1143 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1144
1da177e4
LT
1145 /* Use a smaller cluster for small-memory machines */
1146 if (megs < 16)
1147 page_cluster = 2;
1148 else
1149 page_cluster = 3;
1150 /*
1151 * Right now other parts of the system means that we
1152 * _really_ don't want to cluster much more
1153 */
1da177e4 1154}
07d80269
JH
1155
1156#ifdef CONFIG_DEV_PAGEMAP_OPS
1157void put_devmap_managed_page(struct page *page)
1158{
1159 int count;
1160
1161 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1162 return;
1163
1164 count = page_ref_dec_return(page);
1165
1166 /*
1167 * devmap page refcounts are 1-based, rather than 0-based: if
1168 * refcount is 1, then the page is free and the refcount is
1169 * stable because nobody holds a reference on the page.
1170 */
1171 if (count == 1)
1172 free_devmap_managed_page(page);
1173 else if (!count)
1174 __put_page(page);
1175}
1176EXPORT_SYMBOL(put_devmap_managed_page);
1177#endif
This page took 1.33428 seconds and 4 git commands to generate.