]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/ipc/sem.c | |
4 | * Copyright (C) 1992 Krishna Balasubramanian | |
5 | * Copyright (C) 1995 Eric Schenk, Bruno Haible | |
6 | * | |
1da177e4 LT |
7 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]> |
8 | * | |
9 | * SMP-threaded, sysctl's added | |
624dffcb | 10 | * (c) 1999 Manfred Spraul <[email protected]> |
1da177e4 | 11 | * Enforced range limit on SEM_UNDO |
046c6884 | 12 | * (c) 2001 Red Hat Inc |
1da177e4 LT |
13 | * Lockless wakeup |
14 | * (c) 2003 Manfred Spraul <[email protected]> | |
9ae949fa | 15 | * (c) 2016 Davidlohr Bueso <[email protected]> |
c5cf6359 MS |
16 | * Further wakeup optimizations, documentation |
17 | * (c) 2010 Manfred Spraul <[email protected]> | |
073115d6 SG |
18 | * |
19 | * support for audit of ipc object properties and permission changes | |
20 | * Dustin Kirkland <[email protected]> | |
e3893534 KK |
21 | * |
22 | * namespaces support | |
23 | * OpenVZ, SWsoft Inc. | |
24 | * Pavel Emelianov <[email protected]> | |
c5cf6359 MS |
25 | * |
26 | * Implementation notes: (May 2010) | |
27 | * This file implements System V semaphores. | |
28 | * | |
29 | * User space visible behavior: | |
30 | * - FIFO ordering for semop() operations (just FIFO, not starvation | |
31 | * protection) | |
32 | * - multiple semaphore operations that alter the same semaphore in | |
33 | * one semop() are handled. | |
34 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | |
35 | * SETALL calls. | |
36 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | |
37 | * - undo adjustments at process exit are limited to 0..SEMVMX. | |
38 | * - namespace are supported. | |
39 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | |
40 | * to /proc/sys/kernel/sem. | |
41 | * - statistics about the usage are reported in /proc/sysvipc/sem. | |
42 | * | |
43 | * Internals: | |
44 | * - scalability: | |
45 | * - all global variables are read-mostly. | |
46 | * - semop() calls and semctl(RMID) are synchronized by RCU. | |
47 | * - most operations do write operations (actually: spin_lock calls) to | |
48 | * the per-semaphore array structure. | |
49 | * Thus: Perfect SMP scaling between independent semaphore arrays. | |
50 | * If multiple semaphores in one array are used, then cache line | |
51 | * trashing on the semaphore array spinlock will limit the scaling. | |
2f2ed41d | 52 | * - semncnt and semzcnt are calculated on demand in count_semcnt() |
c5cf6359 MS |
53 | * - the task that performs a successful semop() scans the list of all |
54 | * sleeping tasks and completes any pending operations that can be fulfilled. | |
55 | * Semaphores are actively given to waiting tasks (necessary for FIFO). | |
56 | * (see update_queue()) | |
57 | * - To improve the scalability, the actual wake-up calls are performed after | |
9ae949fa | 58 | * dropping all locks. (see wake_up_sem_queue_prepare()) |
c5cf6359 MS |
59 | * - All work is done by the waker, the woken up task does not have to do |
60 | * anything - not even acquiring a lock or dropping a refcount. | |
61 | * - A woken up task may not even touch the semaphore array anymore, it may | |
62 | * have been destroyed already by a semctl(RMID). | |
c5cf6359 MS |
63 | * - UNDO values are stored in an array (one per process and per |
64 | * semaphore array, lazily allocated). For backwards compatibility, multiple | |
65 | * modes for the UNDO variables are supported (per process, per thread) | |
66 | * (see copy_semundo, CLONE_SYSVSEM) | |
67 | * - There are two lists of the pending operations: a per-array list | |
68 | * and per-semaphore list (stored in the array). This allows to achieve FIFO | |
69 | * ordering without always scanning all pending operations. | |
70 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. | |
1da177e4 LT |
71 | */ |
72 | ||
b0d17578 | 73 | #include <linux/compat.h> |
1da177e4 LT |
74 | #include <linux/slab.h> |
75 | #include <linux/spinlock.h> | |
76 | #include <linux/init.h> | |
77 | #include <linux/proc_fs.h> | |
78 | #include <linux/time.h> | |
1da177e4 LT |
79 | #include <linux/security.h> |
80 | #include <linux/syscalls.h> | |
81 | #include <linux/audit.h> | |
c59ede7b | 82 | #include <linux/capability.h> |
19b4946c | 83 | #include <linux/seq_file.h> |
3e148c79 | 84 | #include <linux/rwsem.h> |
e3893534 | 85 | #include <linux/nsproxy.h> |
ae5e1b22 | 86 | #include <linux/ipc_namespace.h> |
84f001e1 | 87 | #include <linux/sched/wake_q.h> |
ec67aaa4 | 88 | #include <linux/nospec.h> |
0eb71a9d | 89 | #include <linux/rhashtable.h> |
5f921ae9 | 90 | |
7153e402 | 91 | #include <linux/uaccess.h> |
1da177e4 LT |
92 | #include "util.h" |
93 | ||
1a5c1349 EB |
94 | /* One semaphore structure for each semaphore in the system. */ |
95 | struct sem { | |
96 | int semval; /* current value */ | |
97 | /* | |
98 | * PID of the process that last modified the semaphore. For | |
99 | * Linux, specifically these are: | |
100 | * - semop | |
101 | * - semctl, via SETVAL and SETALL. | |
102 | * - at task exit when performing undo adjustments (see exit_sem). | |
103 | */ | |
51d6f263 | 104 | struct pid *sempid; |
1a5c1349 EB |
105 | spinlock_t lock; /* spinlock for fine-grained semtimedop */ |
106 | struct list_head pending_alter; /* pending single-sop operations */ | |
107 | /* that alter the semaphore */ | |
108 | struct list_head pending_const; /* pending single-sop operations */ | |
109 | /* that do not alter the semaphore*/ | |
2a70b787 | 110 | time64_t sem_otime; /* candidate for sem_otime */ |
1a5c1349 EB |
111 | } ____cacheline_aligned_in_smp; |
112 | ||
113 | /* One sem_array data structure for each set of semaphores in the system. */ | |
114 | struct sem_array { | |
115 | struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ | |
116 | time64_t sem_ctime; /* create/last semctl() time */ | |
117 | struct list_head pending_alter; /* pending operations */ | |
118 | /* that alter the array */ | |
119 | struct list_head pending_const; /* pending complex operations */ | |
120 | /* that do not alter semvals */ | |
121 | struct list_head list_id; /* undo requests on this array */ | |
122 | int sem_nsems; /* no. of semaphores in array */ | |
123 | int complex_count; /* pending complex operations */ | |
124 | unsigned int use_global_lock;/* >0: global lock required */ | |
125 | ||
126 | struct sem sems[]; | |
127 | } __randomize_layout; | |
e57940d7 MS |
128 | |
129 | /* One queue for each sleeping process in the system. */ | |
130 | struct sem_queue { | |
e57940d7 MS |
131 | struct list_head list; /* queue of pending operations */ |
132 | struct task_struct *sleeper; /* this process */ | |
133 | struct sem_undo *undo; /* undo structure */ | |
51d6f263 | 134 | struct pid *pid; /* process id of requesting process */ |
e57940d7 MS |
135 | int status; /* completion status of operation */ |
136 | struct sembuf *sops; /* array of pending operations */ | |
ed247b7c | 137 | struct sembuf *blocking; /* the operation that blocked */ |
e57940d7 | 138 | int nsops; /* number of operations */ |
4ce33ec2 DB |
139 | bool alter; /* does *sops alter the array? */ |
140 | bool dupsop; /* sops on more than one sem_num */ | |
e57940d7 MS |
141 | }; |
142 | ||
143 | /* Each task has a list of undo requests. They are executed automatically | |
144 | * when the process exits. | |
145 | */ | |
146 | struct sem_undo { | |
147 | struct list_head list_proc; /* per-process list: * | |
148 | * all undos from one process | |
149 | * rcu protected */ | |
150 | struct rcu_head rcu; /* rcu struct for sem_undo */ | |
151 | struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ | |
152 | struct list_head list_id; /* per semaphore array list: | |
153 | * all undos for one array */ | |
154 | int semid; /* semaphore set identifier */ | |
155 | short *semadj; /* array of adjustments */ | |
156 | /* one per semaphore */ | |
157 | }; | |
158 | ||
159 | /* sem_undo_list controls shared access to the list of sem_undo structures | |
160 | * that may be shared among all a CLONE_SYSVSEM task group. | |
161 | */ | |
162 | struct sem_undo_list { | |
f74370b8 | 163 | refcount_t refcnt; |
e57940d7 MS |
164 | spinlock_t lock; |
165 | struct list_head list_proc; | |
166 | }; | |
167 | ||
168 | ||
ed2ddbf8 | 169 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
e3893534 | 170 | |
7748dbfa | 171 | static int newary(struct ipc_namespace *, struct ipc_params *); |
01b8b07a | 172 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
1da177e4 | 173 | #ifdef CONFIG_PROC_FS |
19b4946c | 174 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
1da177e4 LT |
175 | #endif |
176 | ||
177 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ | |
178 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ | |
179 | ||
9de5ab8a MS |
180 | /* |
181 | * Switching from the mode suitable for simple ops | |
182 | * to the mode for complex ops is costly. Therefore: | |
183 | * use some hysteresis | |
184 | */ | |
185 | #define USE_GLOBAL_LOCK_HYSTERESIS 10 | |
186 | ||
1da177e4 | 187 | /* |
758a6ba3 | 188 | * Locking: |
5864a2fd | 189 | * a) global sem_lock() for read/write |
1da177e4 | 190 | * sem_undo.id_next, |
758a6ba3 | 191 | * sem_array.complex_count, |
5864a2fd MS |
192 | * sem_array.pending{_alter,_const}, |
193 | * sem_array.sem_undo | |
46c0a8ca | 194 | * |
5864a2fd | 195 | * b) global or semaphore sem_lock() for read/write: |
1a233956 | 196 | * sem_array.sems[i].pending_{const,alter}: |
5864a2fd MS |
197 | * |
198 | * c) special: | |
199 | * sem_undo_list.list_proc: | |
200 | * * undo_list->lock for write | |
201 | * * rcu for read | |
9de5ab8a MS |
202 | * use_global_lock: |
203 | * * global sem_lock() for write | |
204 | * * either local or global sem_lock() for read. | |
205 | * | |
206 | * Memory ordering: | |
207 | * Most ordering is enforced by using spin_lock() and spin_unlock(). | |
208 | * The special case is use_global_lock: | |
209 | * Setting it from non-zero to 0 is a RELEASE, this is ensured by | |
210 | * using smp_store_release(). | |
211 | * Testing if it is non-zero is an ACQUIRE, this is ensured by using | |
212 | * smp_load_acquire(). | |
213 | * Setting it from 0 to non-zero must be ordered with regards to | |
214 | * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() | |
215 | * is inside a spin_lock() and after a write from 0 to non-zero a | |
216 | * spin_lock()+spin_unlock() is done. | |
1da177e4 LT |
217 | */ |
218 | ||
e3893534 KK |
219 | #define sc_semmsl sem_ctls[0] |
220 | #define sc_semmns sem_ctls[1] | |
221 | #define sc_semopm sem_ctls[2] | |
222 | #define sc_semmni sem_ctls[3] | |
223 | ||
eae04d25 | 224 | void sem_init_ns(struct ipc_namespace *ns) |
e3893534 | 225 | { |
e3893534 KK |
226 | ns->sc_semmsl = SEMMSL; |
227 | ns->sc_semmns = SEMMNS; | |
228 | ns->sc_semopm = SEMOPM; | |
229 | ns->sc_semmni = SEMMNI; | |
230 | ns->used_sems = 0; | |
eae04d25 | 231 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
e3893534 KK |
232 | } |
233 | ||
ae5e1b22 | 234 | #ifdef CONFIG_IPC_NS |
e3893534 KK |
235 | void sem_exit_ns(struct ipc_namespace *ns) |
236 | { | |
01b8b07a | 237 | free_ipcs(ns, &sem_ids(ns), freeary); |
7d6feeb2 | 238 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
0cfb6aee | 239 | rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); |
e3893534 | 240 | } |
ae5e1b22 | 241 | #endif |
1da177e4 | 242 | |
eae04d25 | 243 | void __init sem_init(void) |
1da177e4 | 244 | { |
eae04d25 | 245 | sem_init_ns(&init_ipc_ns); |
19b4946c MW |
246 | ipc_init_proc_interface("sysvipc/sem", |
247 | " key semid perms nsems uid gid cuid cgid otime ctime\n", | |
e3893534 | 248 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
1da177e4 LT |
249 | } |
250 | ||
f269f40a MS |
251 | /** |
252 | * unmerge_queues - unmerge queues, if possible. | |
253 | * @sma: semaphore array | |
254 | * | |
255 | * The function unmerges the wait queues if complex_count is 0. | |
256 | * It must be called prior to dropping the global semaphore array lock. | |
257 | */ | |
258 | static void unmerge_queues(struct sem_array *sma) | |
259 | { | |
260 | struct sem_queue *q, *tq; | |
261 | ||
262 | /* complex operations still around? */ | |
263 | if (sma->complex_count) | |
264 | return; | |
265 | /* | |
266 | * We will switch back to simple mode. | |
267 | * Move all pending operation back into the per-semaphore | |
268 | * queues. | |
269 | */ | |
270 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
271 | struct sem *curr; | |
1a233956 | 272 | curr = &sma->sems[q->sops[0].sem_num]; |
f269f40a MS |
273 | |
274 | list_add_tail(&q->list, &curr->pending_alter); | |
275 | } | |
276 | INIT_LIST_HEAD(&sma->pending_alter); | |
277 | } | |
278 | ||
279 | /** | |
8001c858 | 280 | * merge_queues - merge single semop queues into global queue |
f269f40a MS |
281 | * @sma: semaphore array |
282 | * | |
283 | * This function merges all per-semaphore queues into the global queue. | |
284 | * It is necessary to achieve FIFO ordering for the pending single-sop | |
285 | * operations when a multi-semop operation must sleep. | |
286 | * Only the alter operations must be moved, the const operations can stay. | |
287 | */ | |
288 | static void merge_queues(struct sem_array *sma) | |
289 | { | |
290 | int i; | |
291 | for (i = 0; i < sma->sem_nsems; i++) { | |
1a233956 | 292 | struct sem *sem = &sma->sems[i]; |
f269f40a MS |
293 | |
294 | list_splice_init(&sem->pending_alter, &sma->pending_alter); | |
295 | } | |
296 | } | |
297 | ||
53dad6d3 DB |
298 | static void sem_rcu_free(struct rcu_head *head) |
299 | { | |
dba4cdd3 MS |
300 | struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); |
301 | struct sem_array *sma = container_of(p, struct sem_array, sem_perm); | |
53dad6d3 | 302 | |
aefad959 | 303 | security_sem_free(&sma->sem_perm); |
e2029dfe | 304 | kvfree(sma); |
53dad6d3 DB |
305 | } |
306 | ||
5e9d5275 | 307 | /* |
5864a2fd | 308 | * Enter the mode suitable for non-simple operations: |
5e9d5275 | 309 | * Caller must own sem_perm.lock. |
5e9d5275 | 310 | */ |
5864a2fd | 311 | static void complexmode_enter(struct sem_array *sma) |
5e9d5275 MS |
312 | { |
313 | int i; | |
314 | struct sem *sem; | |
315 | ||
9de5ab8a MS |
316 | if (sma->use_global_lock > 0) { |
317 | /* | |
318 | * We are already in global lock mode. | |
319 | * Nothing to do, just reset the | |
320 | * counter until we return to simple mode. | |
321 | */ | |
322 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | |
6d07b68c MS |
323 | return; |
324 | } | |
9de5ab8a | 325 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; |
5864a2fd | 326 | |
5e9d5275 | 327 | for (i = 0; i < sma->sem_nsems; i++) { |
1a233956 | 328 | sem = &sma->sems[i]; |
27d7be18 MS |
329 | spin_lock(&sem->lock); |
330 | spin_unlock(&sem->lock); | |
5e9d5275 | 331 | } |
5864a2fd MS |
332 | } |
333 | ||
334 | /* | |
335 | * Try to leave the mode that disallows simple operations: | |
336 | * Caller must own sem_perm.lock. | |
337 | */ | |
338 | static void complexmode_tryleave(struct sem_array *sma) | |
339 | { | |
340 | if (sma->complex_count) { | |
341 | /* Complex ops are sleeping. | |
342 | * We must stay in complex mode | |
343 | */ | |
344 | return; | |
345 | } | |
9de5ab8a MS |
346 | if (sma->use_global_lock == 1) { |
347 | /* | |
348 | * Immediately after setting use_global_lock to 0, | |
349 | * a simple op can start. Thus: all memory writes | |
350 | * performed by the current operation must be visible | |
351 | * before we set use_global_lock to 0. | |
352 | */ | |
353 | smp_store_release(&sma->use_global_lock, 0); | |
354 | } else { | |
355 | sma->use_global_lock--; | |
356 | } | |
5e9d5275 MS |
357 | } |
358 | ||
5864a2fd | 359 | #define SEM_GLOBAL_LOCK (-1) |
6062a8dc RR |
360 | /* |
361 | * If the request contains only one semaphore operation, and there are | |
362 | * no complex transactions pending, lock only the semaphore involved. | |
363 | * Otherwise, lock the entire semaphore array, since we either have | |
364 | * multiple semaphores in our own semops, or we need to look at | |
365 | * semaphores from other pending complex operations. | |
6062a8dc RR |
366 | */ |
367 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | |
368 | int nsops) | |
369 | { | |
5e9d5275 | 370 | struct sem *sem; |
ec67aaa4 | 371 | int idx; |
6062a8dc | 372 | |
5e9d5275 MS |
373 | if (nsops != 1) { |
374 | /* Complex operation - acquire a full lock */ | |
375 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 376 | |
5864a2fd MS |
377 | /* Prevent parallel simple ops */ |
378 | complexmode_enter(sma); | |
379 | return SEM_GLOBAL_LOCK; | |
5e9d5275 MS |
380 | } |
381 | ||
382 | /* | |
383 | * Only one semaphore affected - try to optimize locking. | |
5864a2fd MS |
384 | * Optimized locking is possible if no complex operation |
385 | * is either enqueued or processed right now. | |
386 | * | |
9de5ab8a | 387 | * Both facts are tracked by use_global_mode. |
5e9d5275 | 388 | */ |
ec67aaa4 DB |
389 | idx = array_index_nospec(sops->sem_num, sma->sem_nsems); |
390 | sem = &sma->sems[idx]; | |
6062a8dc | 391 | |
5864a2fd | 392 | /* |
9de5ab8a | 393 | * Initial check for use_global_lock. Just an optimization, |
5864a2fd MS |
394 | * no locking, no memory barrier. |
395 | */ | |
9de5ab8a | 396 | if (!sma->use_global_lock) { |
6062a8dc | 397 | /* |
5e9d5275 MS |
398 | * It appears that no complex operation is around. |
399 | * Acquire the per-semaphore lock. | |
6062a8dc | 400 | */ |
5e9d5275 MS |
401 | spin_lock(&sem->lock); |
402 | ||
9de5ab8a MS |
403 | /* pairs with smp_store_release() */ |
404 | if (!smp_load_acquire(&sma->use_global_lock)) { | |
5864a2fd MS |
405 | /* fast path successful! */ |
406 | return sops->sem_num; | |
6062a8dc | 407 | } |
5e9d5275 MS |
408 | spin_unlock(&sem->lock); |
409 | } | |
410 | ||
411 | /* slow path: acquire the full lock */ | |
412 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 413 | |
9de5ab8a MS |
414 | if (sma->use_global_lock == 0) { |
415 | /* | |
416 | * The use_global_lock mode ended while we waited for | |
417 | * sma->sem_perm.lock. Thus we must switch to locking | |
418 | * with sem->lock. | |
419 | * Unlike in the fast path, there is no need to recheck | |
420 | * sma->use_global_lock after we have acquired sem->lock: | |
421 | * We own sma->sem_perm.lock, thus use_global_lock cannot | |
422 | * change. | |
5e9d5275 MS |
423 | */ |
424 | spin_lock(&sem->lock); | |
9de5ab8a | 425 | |
5e9d5275 MS |
426 | ipc_unlock_object(&sma->sem_perm); |
427 | return sops->sem_num; | |
6062a8dc | 428 | } else { |
9de5ab8a MS |
429 | /* |
430 | * Not a false alarm, thus continue to use the global lock | |
431 | * mode. No need for complexmode_enter(), this was done by | |
432 | * the caller that has set use_global_mode to non-zero. | |
6062a8dc | 433 | */ |
5864a2fd | 434 | return SEM_GLOBAL_LOCK; |
6062a8dc | 435 | } |
6062a8dc RR |
436 | } |
437 | ||
438 | static inline void sem_unlock(struct sem_array *sma, int locknum) | |
439 | { | |
5864a2fd | 440 | if (locknum == SEM_GLOBAL_LOCK) { |
f269f40a | 441 | unmerge_queues(sma); |
5864a2fd | 442 | complexmode_tryleave(sma); |
cf9d5d78 | 443 | ipc_unlock_object(&sma->sem_perm); |
6062a8dc | 444 | } else { |
1a233956 | 445 | struct sem *sem = &sma->sems[locknum]; |
6062a8dc RR |
446 | spin_unlock(&sem->lock); |
447 | } | |
6062a8dc RR |
448 | } |
449 | ||
3e148c79 | 450 | /* |
d9a605e4 | 451 | * sem_lock_(check_) routines are called in the paths where the rwsem |
3e148c79 | 452 | * is not held. |
321310ce LT |
453 | * |
454 | * The caller holds the RCU read lock. | |
3e148c79 | 455 | */ |
16df3674 DB |
456 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) |
457 | { | |
55b7ae50 | 458 | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
16df3674 DB |
459 | |
460 | if (IS_ERR(ipcp)) | |
461 | return ERR_CAST(ipcp); | |
462 | ||
463 | return container_of(ipcp, struct sem_array, sem_perm); | |
464 | } | |
465 | ||
16df3674 DB |
466 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, |
467 | int id) | |
468 | { | |
469 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | |
470 | ||
471 | if (IS_ERR(ipcp)) | |
472 | return ERR_CAST(ipcp); | |
b1ed88b4 | 473 | |
03f02c76 | 474 | return container_of(ipcp, struct sem_array, sem_perm); |
023a5355 ND |
475 | } |
476 | ||
6ff37972 PP |
477 | static inline void sem_lock_and_putref(struct sem_array *sma) |
478 | { | |
6062a8dc | 479 | sem_lock(sma, NULL, -1); |
dba4cdd3 | 480 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
6ff37972 PP |
481 | } |
482 | ||
7ca7e564 ND |
483 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
484 | { | |
485 | ipc_rmid(&sem_ids(ns), &s->sem_perm); | |
486 | } | |
487 | ||
101ede01 KC |
488 | static struct sem_array *sem_alloc(size_t nsems) |
489 | { | |
490 | struct sem_array *sma; | |
491 | size_t size; | |
492 | ||
493 | if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) | |
494 | return NULL; | |
495 | ||
496 | size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); | |
497 | sma = kvmalloc(size, GFP_KERNEL); | |
498 | if (unlikely(!sma)) | |
499 | return NULL; | |
500 | ||
501 | memset(sma, 0, size); | |
101ede01 KC |
502 | |
503 | return sma; | |
504 | } | |
505 | ||
f4566f04 ND |
506 | /** |
507 | * newary - Create a new semaphore set | |
508 | * @ns: namespace | |
509 | * @params: ptr to the structure that contains key, semflg and nsems | |
510 | * | |
d9a605e4 | 511 | * Called with sem_ids.rwsem held (as a writer) |
f4566f04 | 512 | */ |
7748dbfa | 513 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
1da177e4 | 514 | { |
1da177e4 LT |
515 | int retval; |
516 | struct sem_array *sma; | |
7748dbfa ND |
517 | key_t key = params->key; |
518 | int nsems = params->u.nsems; | |
519 | int semflg = params->flg; | |
b97e820f | 520 | int i; |
1da177e4 LT |
521 | |
522 | if (!nsems) | |
523 | return -EINVAL; | |
e3893534 | 524 | if (ns->used_sems + nsems > ns->sc_semmns) |
1da177e4 LT |
525 | return -ENOSPC; |
526 | ||
101ede01 | 527 | sma = sem_alloc(nsems); |
3ab08fe2 | 528 | if (!sma) |
1da177e4 | 529 | return -ENOMEM; |
3ab08fe2 | 530 | |
1da177e4 LT |
531 | sma->sem_perm.mode = (semflg & S_IRWXUGO); |
532 | sma->sem_perm.key = key; | |
533 | ||
534 | sma->sem_perm.security = NULL; | |
aefad959 | 535 | retval = security_sem_alloc(&sma->sem_perm); |
1da177e4 | 536 | if (retval) { |
e2029dfe | 537 | kvfree(sma); |
1da177e4 LT |
538 | return retval; |
539 | } | |
540 | ||
6062a8dc | 541 | for (i = 0; i < nsems; i++) { |
1a233956 MS |
542 | INIT_LIST_HEAD(&sma->sems[i].pending_alter); |
543 | INIT_LIST_HEAD(&sma->sems[i].pending_const); | |
544 | spin_lock_init(&sma->sems[i].lock); | |
6062a8dc | 545 | } |
b97e820f MS |
546 | |
547 | sma->complex_count = 0; | |
9de5ab8a | 548 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; |
1a82e9e1 MS |
549 | INIT_LIST_HEAD(&sma->pending_alter); |
550 | INIT_LIST_HEAD(&sma->pending_const); | |
4daa28f6 | 551 | INIT_LIST_HEAD(&sma->list_id); |
1da177e4 | 552 | sma->sem_nsems = nsems; |
e54d02b2 | 553 | sma->sem_ctime = ktime_get_real_seconds(); |
e8577d1f | 554 | |
39c96a1b | 555 | /* ipc_addid() locks sma upon success. */ |
2ec55f80 MS |
556 | retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); |
557 | if (retval < 0) { | |
39cfffd7 | 558 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
2ec55f80 | 559 | return retval; |
e8577d1f MS |
560 | } |
561 | ns->used_sems += nsems; | |
562 | ||
6062a8dc | 563 | sem_unlock(sma, -1); |
6d49dab8 | 564 | rcu_read_unlock(); |
1da177e4 | 565 | |
7ca7e564 | 566 | return sma->sem_perm.id; |
1da177e4 LT |
567 | } |
568 | ||
7748dbfa | 569 | |
f4566f04 | 570 | /* |
d9a605e4 | 571 | * Called with sem_ids.rwsem and ipcp locked. |
f4566f04 | 572 | */ |
03f02c76 ND |
573 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
574 | struct ipc_params *params) | |
7748dbfa | 575 | { |
03f02c76 ND |
576 | struct sem_array *sma; |
577 | ||
578 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
579 | if (params->u.nsems > sma->sem_nsems) | |
7748dbfa ND |
580 | return -EINVAL; |
581 | ||
582 | return 0; | |
583 | } | |
584 | ||
69894718 | 585 | long ksys_semget(key_t key, int nsems, int semflg) |
1da177e4 | 586 | { |
e3893534 | 587 | struct ipc_namespace *ns; |
eb66ec44 MK |
588 | static const struct ipc_ops sem_ops = { |
589 | .getnew = newary, | |
50ab44b1 | 590 | .associate = security_sem_associate, |
eb66ec44 MK |
591 | .more_checks = sem_more_checks, |
592 | }; | |
7748dbfa | 593 | struct ipc_params sem_params; |
e3893534 KK |
594 | |
595 | ns = current->nsproxy->ipc_ns; | |
1da177e4 | 596 | |
e3893534 | 597 | if (nsems < 0 || nsems > ns->sc_semmsl) |
1da177e4 | 598 | return -EINVAL; |
7ca7e564 | 599 | |
7748dbfa ND |
600 | sem_params.key = key; |
601 | sem_params.flg = semflg; | |
602 | sem_params.u.nsems = nsems; | |
1da177e4 | 603 | |
7748dbfa | 604 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
1da177e4 LT |
605 | } |
606 | ||
69894718 DB |
607 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
608 | { | |
609 | return ksys_semget(key, nsems, semflg); | |
610 | } | |
611 | ||
78f5009c | 612 | /** |
4ce33ec2 DB |
613 | * perform_atomic_semop[_slow] - Attempt to perform semaphore |
614 | * operations on a given array. | |
758a6ba3 | 615 | * @sma: semaphore array |
d198cd6d | 616 | * @q: struct sem_queue that describes the operation |
758a6ba3 | 617 | * |
4ce33ec2 DB |
618 | * Caller blocking are as follows, based the value |
619 | * indicated by the semaphore operation (sem_op): | |
620 | * | |
621 | * (1) >0 never blocks. | |
622 | * (2) 0 (wait-for-zero operation): semval is non-zero. | |
623 | * (3) <0 attempting to decrement semval to a value smaller than zero. | |
624 | * | |
758a6ba3 MS |
625 | * Returns 0 if the operation was possible. |
626 | * Returns 1 if the operation is impossible, the caller must sleep. | |
4ce33ec2 | 627 | * Returns <0 for error codes. |
1da177e4 | 628 | */ |
4ce33ec2 | 629 | static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) |
1da177e4 | 630 | { |
51d6f263 EB |
631 | int result, sem_op, nsops; |
632 | struct pid *pid; | |
1da177e4 | 633 | struct sembuf *sop; |
239521f3 | 634 | struct sem *curr; |
d198cd6d MS |
635 | struct sembuf *sops; |
636 | struct sem_undo *un; | |
637 | ||
638 | sops = q->sops; | |
639 | nsops = q->nsops; | |
640 | un = q->undo; | |
1da177e4 LT |
641 | |
642 | for (sop = sops; sop < sops + nsops; sop++) { | |
ec67aaa4 DB |
643 | int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); |
644 | curr = &sma->sems[idx]; | |
1da177e4 LT |
645 | sem_op = sop->sem_op; |
646 | result = curr->semval; | |
78f5009c | 647 | |
1da177e4 LT |
648 | if (!sem_op && result) |
649 | goto would_block; | |
650 | ||
651 | result += sem_op; | |
652 | if (result < 0) | |
653 | goto would_block; | |
654 | if (result > SEMVMX) | |
655 | goto out_of_range; | |
78f5009c | 656 | |
1da177e4 LT |
657 | if (sop->sem_flg & SEM_UNDO) { |
658 | int undo = un->semadj[sop->sem_num] - sem_op; | |
78f5009c | 659 | /* Exceeding the undo range is an error. */ |
1da177e4 LT |
660 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
661 | goto out_of_range; | |
78f5009c | 662 | un->semadj[sop->sem_num] = undo; |
1da177e4 | 663 | } |
78f5009c | 664 | |
1da177e4 LT |
665 | curr->semval = result; |
666 | } | |
667 | ||
668 | sop--; | |
d198cd6d | 669 | pid = q->pid; |
1da177e4 | 670 | while (sop >= sops) { |
51d6f263 | 671 | ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); |
1da177e4 LT |
672 | sop--; |
673 | } | |
78f5009c | 674 | |
1da177e4 LT |
675 | return 0; |
676 | ||
677 | out_of_range: | |
678 | result = -ERANGE; | |
679 | goto undo; | |
680 | ||
681 | would_block: | |
ed247b7c MS |
682 | q->blocking = sop; |
683 | ||
1da177e4 LT |
684 | if (sop->sem_flg & IPC_NOWAIT) |
685 | result = -EAGAIN; | |
686 | else | |
687 | result = 1; | |
688 | ||
689 | undo: | |
690 | sop--; | |
691 | while (sop >= sops) { | |
78f5009c | 692 | sem_op = sop->sem_op; |
1a233956 | 693 | sma->sems[sop->sem_num].semval -= sem_op; |
78f5009c PM |
694 | if (sop->sem_flg & SEM_UNDO) |
695 | un->semadj[sop->sem_num] += sem_op; | |
1da177e4 LT |
696 | sop--; |
697 | } | |
698 | ||
699 | return result; | |
700 | } | |
701 | ||
4ce33ec2 DB |
702 | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) |
703 | { | |
704 | int result, sem_op, nsops; | |
705 | struct sembuf *sop; | |
706 | struct sem *curr; | |
707 | struct sembuf *sops; | |
708 | struct sem_undo *un; | |
709 | ||
710 | sops = q->sops; | |
711 | nsops = q->nsops; | |
712 | un = q->undo; | |
713 | ||
714 | if (unlikely(q->dupsop)) | |
715 | return perform_atomic_semop_slow(sma, q); | |
716 | ||
717 | /* | |
718 | * We scan the semaphore set twice, first to ensure that the entire | |
719 | * operation can succeed, therefore avoiding any pointless writes | |
720 | * to shared memory and having to undo such changes in order to block | |
721 | * until the operations can go through. | |
722 | */ | |
723 | for (sop = sops; sop < sops + nsops; sop++) { | |
ec67aaa4 DB |
724 | int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); |
725 | ||
726 | curr = &sma->sems[idx]; | |
4ce33ec2 DB |
727 | sem_op = sop->sem_op; |
728 | result = curr->semval; | |
729 | ||
730 | if (!sem_op && result) | |
731 | goto would_block; /* wait-for-zero */ | |
732 | ||
733 | result += sem_op; | |
734 | if (result < 0) | |
735 | goto would_block; | |
736 | ||
737 | if (result > SEMVMX) | |
738 | return -ERANGE; | |
739 | ||
740 | if (sop->sem_flg & SEM_UNDO) { | |
741 | int undo = un->semadj[sop->sem_num] - sem_op; | |
742 | ||
743 | /* Exceeding the undo range is an error. */ | |
744 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | |
745 | return -ERANGE; | |
746 | } | |
747 | } | |
748 | ||
749 | for (sop = sops; sop < sops + nsops; sop++) { | |
1a233956 | 750 | curr = &sma->sems[sop->sem_num]; |
4ce33ec2 DB |
751 | sem_op = sop->sem_op; |
752 | result = curr->semval; | |
753 | ||
754 | if (sop->sem_flg & SEM_UNDO) { | |
755 | int undo = un->semadj[sop->sem_num] - sem_op; | |
756 | ||
757 | un->semadj[sop->sem_num] = undo; | |
758 | } | |
759 | curr->semval += sem_op; | |
51d6f263 | 760 | ipc_update_pid(&curr->sempid, q->pid); |
4ce33ec2 DB |
761 | } |
762 | ||
763 | return 0; | |
764 | ||
765 | would_block: | |
766 | q->blocking = sop; | |
767 | return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; | |
768 | } | |
769 | ||
9ae949fa DB |
770 | static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, |
771 | struct wake_q_head *wake_q) | |
0a2b9d4c | 772 | { |
9ae949fa DB |
773 | wake_q_add(wake_q, q->sleeper); |
774 | /* | |
775 | * Rely on the above implicit barrier, such that we can | |
776 | * ensure that we hold reference to the task before setting | |
777 | * q->status. Otherwise we could race with do_exit if the | |
778 | * task is awoken by an external event before calling | |
779 | * wake_up_process(). | |
780 | */ | |
781 | WRITE_ONCE(q->status, error); | |
d4212093 NP |
782 | } |
783 | ||
b97e820f MS |
784 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
785 | { | |
786 | list_del(&q->list); | |
9f1bc2c9 | 787 | if (q->nsops > 1) |
b97e820f MS |
788 | sma->complex_count--; |
789 | } | |
790 | ||
fd5db422 MS |
791 | /** check_restart(sma, q) |
792 | * @sma: semaphore array | |
793 | * @q: the operation that just completed | |
794 | * | |
795 | * update_queue is O(N^2) when it restarts scanning the whole queue of | |
796 | * waiting operations. Therefore this function checks if the restart is | |
797 | * really necessary. It is called after a previously waiting operation | |
1a82e9e1 MS |
798 | * modified the array. |
799 | * Note that wait-for-zero operations are handled without restart. | |
fd5db422 | 800 | */ |
4663d3e8 | 801 | static inline int check_restart(struct sem_array *sma, struct sem_queue *q) |
fd5db422 | 802 | { |
1a82e9e1 MS |
803 | /* pending complex alter operations are too difficult to analyse */ |
804 | if (!list_empty(&sma->pending_alter)) | |
fd5db422 MS |
805 | return 1; |
806 | ||
807 | /* we were a sleeping complex operation. Too difficult */ | |
808 | if (q->nsops > 1) | |
809 | return 1; | |
810 | ||
1a82e9e1 MS |
811 | /* It is impossible that someone waits for the new value: |
812 | * - complex operations always restart. | |
813 | * - wait-for-zero are handled seperately. | |
814 | * - q is a previously sleeping simple operation that | |
815 | * altered the array. It must be a decrement, because | |
816 | * simple increments never sleep. | |
817 | * - If there are older (higher priority) decrements | |
818 | * in the queue, then they have observed the original | |
819 | * semval value and couldn't proceed. The operation | |
820 | * decremented to value - thus they won't proceed either. | |
821 | */ | |
822 | return 0; | |
823 | } | |
fd5db422 | 824 | |
1a82e9e1 | 825 | /** |
8001c858 | 826 | * wake_const_ops - wake up non-alter tasks |
1a82e9e1 MS |
827 | * @sma: semaphore array. |
828 | * @semnum: semaphore that was modified. | |
9ae949fa | 829 | * @wake_q: lockless wake-queue head. |
1a82e9e1 MS |
830 | * |
831 | * wake_const_ops must be called after a semaphore in a semaphore array | |
832 | * was set to 0. If complex const operations are pending, wake_const_ops must | |
833 | * be called with semnum = -1, as well as with the number of each modified | |
834 | * semaphore. | |
9ae949fa | 835 | * The tasks that must be woken up are added to @wake_q. The return code |
1a82e9e1 MS |
836 | * is stored in q->pid. |
837 | * The function returns 1 if at least one operation was completed successfully. | |
838 | */ | |
839 | static int wake_const_ops(struct sem_array *sma, int semnum, | |
9ae949fa | 840 | struct wake_q_head *wake_q) |
1a82e9e1 | 841 | { |
f150f02c | 842 | struct sem_queue *q, *tmp; |
1a82e9e1 MS |
843 | struct list_head *pending_list; |
844 | int semop_completed = 0; | |
845 | ||
846 | if (semnum == -1) | |
847 | pending_list = &sma->pending_const; | |
848 | else | |
1a233956 | 849 | pending_list = &sma->sems[semnum].pending_const; |
fd5db422 | 850 | |
f150f02c DB |
851 | list_for_each_entry_safe(q, tmp, pending_list, list) { |
852 | int error = perform_atomic_semop(sma, q); | |
1a82e9e1 | 853 | |
f150f02c DB |
854 | if (error > 0) |
855 | continue; | |
856 | /* operation completed, remove from queue & wakeup */ | |
857 | unlink_queue(sma, q); | |
1a82e9e1 | 858 | |
f150f02c DB |
859 | wake_up_sem_queue_prepare(q, error, wake_q); |
860 | if (error == 0) | |
861 | semop_completed = 1; | |
1a82e9e1 | 862 | } |
f150f02c | 863 | |
1a82e9e1 MS |
864 | return semop_completed; |
865 | } | |
866 | ||
867 | /** | |
8001c858 | 868 | * do_smart_wakeup_zero - wakeup all wait for zero tasks |
1a82e9e1 MS |
869 | * @sma: semaphore array |
870 | * @sops: operations that were performed | |
871 | * @nsops: number of operations | |
9ae949fa | 872 | * @wake_q: lockless wake-queue head |
1a82e9e1 | 873 | * |
8001c858 DB |
874 | * Checks all required queue for wait-for-zero operations, based |
875 | * on the actual changes that were performed on the semaphore array. | |
1a82e9e1 MS |
876 | * The function returns 1 if at least one operation was completed successfully. |
877 | */ | |
878 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | |
9ae949fa | 879 | int nsops, struct wake_q_head *wake_q) |
1a82e9e1 MS |
880 | { |
881 | int i; | |
882 | int semop_completed = 0; | |
883 | int got_zero = 0; | |
884 | ||
885 | /* first: the per-semaphore queues, if known */ | |
886 | if (sops) { | |
887 | for (i = 0; i < nsops; i++) { | |
888 | int num = sops[i].sem_num; | |
889 | ||
1a233956 | 890 | if (sma->sems[num].semval == 0) { |
1a82e9e1 | 891 | got_zero = 1; |
9ae949fa | 892 | semop_completed |= wake_const_ops(sma, num, wake_q); |
1a82e9e1 MS |
893 | } |
894 | } | |
895 | } else { | |
896 | /* | |
897 | * No sops means modified semaphores not known. | |
898 | * Assume all were changed. | |
fd5db422 | 899 | */ |
1a82e9e1 | 900 | for (i = 0; i < sma->sem_nsems; i++) { |
1a233956 | 901 | if (sma->sems[i].semval == 0) { |
1a82e9e1 | 902 | got_zero = 1; |
9ae949fa | 903 | semop_completed |= wake_const_ops(sma, i, wake_q); |
1a82e9e1 MS |
904 | } |
905 | } | |
fd5db422 MS |
906 | } |
907 | /* | |
1a82e9e1 MS |
908 | * If one of the modified semaphores got 0, |
909 | * then check the global queue, too. | |
fd5db422 | 910 | */ |
1a82e9e1 | 911 | if (got_zero) |
9ae949fa | 912 | semop_completed |= wake_const_ops(sma, -1, wake_q); |
fd5db422 | 913 | |
1a82e9e1 | 914 | return semop_completed; |
fd5db422 MS |
915 | } |
916 | ||
636c6be8 MS |
917 | |
918 | /** | |
8001c858 | 919 | * update_queue - look for tasks that can be completed. |
636c6be8 MS |
920 | * @sma: semaphore array. |
921 | * @semnum: semaphore that was modified. | |
9ae949fa | 922 | * @wake_q: lockless wake-queue head. |
636c6be8 MS |
923 | * |
924 | * update_queue must be called after a semaphore in a semaphore array | |
9f1bc2c9 RR |
925 | * was modified. If multiple semaphores were modified, update_queue must |
926 | * be called with semnum = -1, as well as with the number of each modified | |
927 | * semaphore. | |
9ae949fa | 928 | * The tasks that must be woken up are added to @wake_q. The return code |
0a2b9d4c | 929 | * is stored in q->pid. |
1a82e9e1 MS |
930 | * The function internally checks if const operations can now succeed. |
931 | * | |
0a2b9d4c | 932 | * The function return 1 if at least one semop was completed successfully. |
1da177e4 | 933 | */ |
9ae949fa | 934 | static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) |
1da177e4 | 935 | { |
f150f02c | 936 | struct sem_queue *q, *tmp; |
636c6be8 | 937 | struct list_head *pending_list; |
0a2b9d4c | 938 | int semop_completed = 0; |
636c6be8 | 939 | |
9f1bc2c9 | 940 | if (semnum == -1) |
1a82e9e1 | 941 | pending_list = &sma->pending_alter; |
9f1bc2c9 | 942 | else |
1a233956 | 943 | pending_list = &sma->sems[semnum].pending_alter; |
9cad200c NP |
944 | |
945 | again: | |
f150f02c | 946 | list_for_each_entry_safe(q, tmp, pending_list, list) { |
fd5db422 | 947 | int error, restart; |
636c6be8 | 948 | |
d987f8b2 MS |
949 | /* If we are scanning the single sop, per-semaphore list of |
950 | * one semaphore and that semaphore is 0, then it is not | |
1a82e9e1 | 951 | * necessary to scan further: simple increments |
d987f8b2 MS |
952 | * that affect only one entry succeed immediately and cannot |
953 | * be in the per semaphore pending queue, and decrements | |
954 | * cannot be successful if the value is already 0. | |
955 | */ | |
1a233956 | 956 | if (semnum != -1 && sma->sems[semnum].semval == 0) |
d987f8b2 MS |
957 | break; |
958 | ||
d198cd6d | 959 | error = perform_atomic_semop(sma, q); |
1da177e4 LT |
960 | |
961 | /* Does q->sleeper still need to sleep? */ | |
9cad200c NP |
962 | if (error > 0) |
963 | continue; | |
964 | ||
b97e820f | 965 | unlink_queue(sma, q); |
9cad200c | 966 | |
0a2b9d4c | 967 | if (error) { |
fd5db422 | 968 | restart = 0; |
0a2b9d4c MS |
969 | } else { |
970 | semop_completed = 1; | |
9ae949fa | 971 | do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); |
fd5db422 | 972 | restart = check_restart(sma, q); |
0a2b9d4c | 973 | } |
fd5db422 | 974 | |
9ae949fa | 975 | wake_up_sem_queue_prepare(q, error, wake_q); |
fd5db422 | 976 | if (restart) |
9cad200c | 977 | goto again; |
1da177e4 | 978 | } |
0a2b9d4c | 979 | return semop_completed; |
1da177e4 LT |
980 | } |
981 | ||
0e8c6656 | 982 | /** |
8001c858 | 983 | * set_semotime - set sem_otime |
0e8c6656 MS |
984 | * @sma: semaphore array |
985 | * @sops: operations that modified the array, may be NULL | |
986 | * | |
987 | * sem_otime is replicated to avoid cache line trashing. | |
988 | * This function sets one instance to the current time. | |
989 | */ | |
990 | static void set_semotime(struct sem_array *sma, struct sembuf *sops) | |
991 | { | |
992 | if (sops == NULL) { | |
2a70b787 | 993 | sma->sems[0].sem_otime = ktime_get_real_seconds(); |
0e8c6656 | 994 | } else { |
1a233956 | 995 | sma->sems[sops[0].sem_num].sem_otime = |
2a70b787 | 996 | ktime_get_real_seconds(); |
0e8c6656 MS |
997 | } |
998 | } | |
999 | ||
0a2b9d4c | 1000 | /** |
8001c858 | 1001 | * do_smart_update - optimized update_queue |
fd5db422 MS |
1002 | * @sma: semaphore array |
1003 | * @sops: operations that were performed | |
1004 | * @nsops: number of operations | |
0a2b9d4c | 1005 | * @otime: force setting otime |
9ae949fa | 1006 | * @wake_q: lockless wake-queue head |
fd5db422 | 1007 | * |
1a82e9e1 MS |
1008 | * do_smart_update() does the required calls to update_queue and wakeup_zero, |
1009 | * based on the actual changes that were performed on the semaphore array. | |
0a2b9d4c | 1010 | * Note that the function does not do the actual wake-up: the caller is |
9ae949fa | 1011 | * responsible for calling wake_up_q(). |
0a2b9d4c | 1012 | * It is safe to perform this call after dropping all locks. |
fd5db422 | 1013 | */ |
0a2b9d4c | 1014 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
9ae949fa | 1015 | int otime, struct wake_q_head *wake_q) |
fd5db422 MS |
1016 | { |
1017 | int i; | |
1018 | ||
9ae949fa | 1019 | otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); |
1a82e9e1 | 1020 | |
f269f40a MS |
1021 | if (!list_empty(&sma->pending_alter)) { |
1022 | /* semaphore array uses the global queue - just process it. */ | |
9ae949fa | 1023 | otime |= update_queue(sma, -1, wake_q); |
f269f40a MS |
1024 | } else { |
1025 | if (!sops) { | |
1026 | /* | |
1027 | * No sops, thus the modified semaphores are not | |
1028 | * known. Check all. | |
1029 | */ | |
1030 | for (i = 0; i < sma->sem_nsems; i++) | |
9ae949fa | 1031 | otime |= update_queue(sma, i, wake_q); |
f269f40a MS |
1032 | } else { |
1033 | /* | |
1034 | * Check the semaphores that were increased: | |
1035 | * - No complex ops, thus all sleeping ops are | |
1036 | * decrease. | |
1037 | * - if we decreased the value, then any sleeping | |
1038 | * semaphore ops wont be able to run: If the | |
1039 | * previous value was too small, then the new | |
1040 | * value will be too small, too. | |
1041 | */ | |
1042 | for (i = 0; i < nsops; i++) { | |
1043 | if (sops[i].sem_op > 0) { | |
1044 | otime |= update_queue(sma, | |
9ae949fa | 1045 | sops[i].sem_num, wake_q); |
f269f40a | 1046 | } |
ab465df9 | 1047 | } |
9f1bc2c9 | 1048 | } |
fd5db422 | 1049 | } |
0e8c6656 MS |
1050 | if (otime) |
1051 | set_semotime(sma, sops); | |
fd5db422 MS |
1052 | } |
1053 | ||
2f2ed41d | 1054 | /* |
b220c57a | 1055 | * check_qop: Test if a queued operation sleeps on the semaphore semnum |
2f2ed41d MS |
1056 | */ |
1057 | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, | |
1058 | bool count_zero) | |
1059 | { | |
b220c57a | 1060 | struct sembuf *sop = q->blocking; |
2f2ed41d | 1061 | |
9b44ee2e MS |
1062 | /* |
1063 | * Linux always (since 0.99.10) reported a task as sleeping on all | |
1064 | * semaphores. This violates SUS, therefore it was changed to the | |
1065 | * standard compliant behavior. | |
1066 | * Give the administrators a chance to notice that an application | |
1067 | * might misbehave because it relies on the Linux behavior. | |
1068 | */ | |
1069 | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" | |
1070 | "The task %s (%d) triggered the difference, watch for misbehavior.\n", | |
1071 | current->comm, task_pid_nr(current)); | |
1072 | ||
b220c57a MS |
1073 | if (sop->sem_num != semnum) |
1074 | return 0; | |
2f2ed41d | 1075 | |
b220c57a MS |
1076 | if (count_zero && sop->sem_op == 0) |
1077 | return 1; | |
1078 | if (!count_zero && sop->sem_op < 0) | |
1079 | return 1; | |
1080 | ||
1081 | return 0; | |
2f2ed41d MS |
1082 | } |
1083 | ||
1da177e4 LT |
1084 | /* The following counts are associated to each semaphore: |
1085 | * semncnt number of tasks waiting on semval being nonzero | |
1086 | * semzcnt number of tasks waiting on semval being zero | |
b220c57a MS |
1087 | * |
1088 | * Per definition, a task waits only on the semaphore of the first semop | |
1089 | * that cannot proceed, even if additional operation would block, too. | |
1da177e4 | 1090 | */ |
2f2ed41d MS |
1091 | static int count_semcnt(struct sem_array *sma, ushort semnum, |
1092 | bool count_zero) | |
1da177e4 | 1093 | { |
2f2ed41d | 1094 | struct list_head *l; |
239521f3 | 1095 | struct sem_queue *q; |
2f2ed41d | 1096 | int semcnt; |
1da177e4 | 1097 | |
2f2ed41d MS |
1098 | semcnt = 0; |
1099 | /* First: check the simple operations. They are easy to evaluate */ | |
1100 | if (count_zero) | |
1a233956 | 1101 | l = &sma->sems[semnum].pending_const; |
2f2ed41d | 1102 | else |
1a233956 | 1103 | l = &sma->sems[semnum].pending_alter; |
1da177e4 | 1104 | |
2f2ed41d MS |
1105 | list_for_each_entry(q, l, list) { |
1106 | /* all task on a per-semaphore list sleep on exactly | |
1107 | * that semaphore | |
1108 | */ | |
1109 | semcnt++; | |
ebc2e5e6 RR |
1110 | } |
1111 | ||
2f2ed41d | 1112 | /* Then: check the complex operations. */ |
1994862d | 1113 | list_for_each_entry(q, &sma->pending_alter, list) { |
2f2ed41d MS |
1114 | semcnt += check_qop(sma, semnum, q, count_zero); |
1115 | } | |
1116 | if (count_zero) { | |
1117 | list_for_each_entry(q, &sma->pending_const, list) { | |
1118 | semcnt += check_qop(sma, semnum, q, count_zero); | |
1119 | } | |
1994862d | 1120 | } |
2f2ed41d | 1121 | return semcnt; |
1da177e4 LT |
1122 | } |
1123 | ||
d9a605e4 DB |
1124 | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked |
1125 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem | |
3e148c79 | 1126 | * remains locked on exit. |
1da177e4 | 1127 | */ |
01b8b07a | 1128 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
1da177e4 | 1129 | { |
380af1b3 MS |
1130 | struct sem_undo *un, *tu; |
1131 | struct sem_queue *q, *tq; | |
01b8b07a | 1132 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
9f1bc2c9 | 1133 | int i; |
9ae949fa | 1134 | DEFINE_WAKE_Q(wake_q); |
1da177e4 | 1135 | |
380af1b3 | 1136 | /* Free the existing undo structures for this semaphore set. */ |
cf9d5d78 | 1137 | ipc_assert_locked_object(&sma->sem_perm); |
380af1b3 MS |
1138 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
1139 | list_del(&un->list_id); | |
1140 | spin_lock(&un->ulp->lock); | |
1da177e4 | 1141 | un->semid = -1; |
380af1b3 MS |
1142 | list_del_rcu(&un->list_proc); |
1143 | spin_unlock(&un->ulp->lock); | |
693a8b6e | 1144 | kfree_rcu(un, rcu); |
380af1b3 | 1145 | } |
1da177e4 LT |
1146 | |
1147 | /* Wake up all pending processes and let them fail with EIDRM. */ | |
1a82e9e1 MS |
1148 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { |
1149 | unlink_queue(sma, q); | |
9ae949fa | 1150 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
1a82e9e1 MS |
1151 | } |
1152 | ||
1153 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
b97e820f | 1154 | unlink_queue(sma, q); |
9ae949fa | 1155 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
1da177e4 | 1156 | } |
9f1bc2c9 | 1157 | for (i = 0; i < sma->sem_nsems; i++) { |
1a233956 | 1158 | struct sem *sem = &sma->sems[i]; |
1a82e9e1 MS |
1159 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { |
1160 | unlink_queue(sma, q); | |
9ae949fa | 1161 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
1a82e9e1 MS |
1162 | } |
1163 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | |
9f1bc2c9 | 1164 | unlink_queue(sma, q); |
9ae949fa | 1165 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
9f1bc2c9 | 1166 | } |
51d6f263 | 1167 | ipc_update_pid(&sem->sempid, NULL); |
9f1bc2c9 | 1168 | } |
1da177e4 | 1169 | |
7ca7e564 ND |
1170 | /* Remove the semaphore set from the IDR */ |
1171 | sem_rmid(ns, sma); | |
6062a8dc | 1172 | sem_unlock(sma, -1); |
6d49dab8 | 1173 | rcu_read_unlock(); |
1da177e4 | 1174 | |
9ae949fa | 1175 | wake_up_q(&wake_q); |
e3893534 | 1176 | ns->used_sems -= sma->sem_nsems; |
dba4cdd3 | 1177 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1178 | } |
1179 | ||
1180 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | |
1181 | { | |
239521f3 | 1182 | switch (version) { |
1da177e4 LT |
1183 | case IPC_64: |
1184 | return copy_to_user(buf, in, sizeof(*in)); | |
1185 | case IPC_OLD: | |
1186 | { | |
1187 | struct semid_ds out; | |
1188 | ||
982f7c2b DR |
1189 | memset(&out, 0, sizeof(out)); |
1190 | ||
1da177e4 LT |
1191 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
1192 | ||
1193 | out.sem_otime = in->sem_otime; | |
1194 | out.sem_ctime = in->sem_ctime; | |
1195 | out.sem_nsems = in->sem_nsems; | |
1196 | ||
1197 | return copy_to_user(buf, &out, sizeof(out)); | |
1198 | } | |
1199 | default: | |
1200 | return -EINVAL; | |
1201 | } | |
1202 | } | |
1203 | ||
e54d02b2 | 1204 | static time64_t get_semotime(struct sem_array *sma) |
d12e1e50 MS |
1205 | { |
1206 | int i; | |
e54d02b2 | 1207 | time64_t res; |
d12e1e50 | 1208 | |
1a233956 | 1209 | res = sma->sems[0].sem_otime; |
d12e1e50 | 1210 | for (i = 1; i < sma->sem_nsems; i++) { |
e54d02b2 | 1211 | time64_t to = sma->sems[i].sem_otime; |
d12e1e50 MS |
1212 | |
1213 | if (to > res) | |
1214 | res = to; | |
1215 | } | |
1216 | return res; | |
1217 | } | |
1218 | ||
45a4a64a AV |
1219 | static int semctl_stat(struct ipc_namespace *ns, int semid, |
1220 | int cmd, struct semid64_ds *semid64) | |
1da177e4 | 1221 | { |
1da177e4 | 1222 | struct sem_array *sma; |
c2ab975c | 1223 | time64_t semotime; |
45a4a64a | 1224 | int err; |
1da177e4 | 1225 | |
45a4a64a | 1226 | memset(semid64, 0, sizeof(*semid64)); |
46c0a8ca | 1227 | |
45a4a64a | 1228 | rcu_read_lock(); |
a280d6dc | 1229 | if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { |
45a4a64a AV |
1230 | sma = sem_obtain_object(ns, semid); |
1231 | if (IS_ERR(sma)) { | |
1232 | err = PTR_ERR(sma); | |
1233 | goto out_unlock; | |
1234 | } | |
a280d6dc | 1235 | } else { /* IPC_STAT */ |
45a4a64a AV |
1236 | sma = sem_obtain_object_check(ns, semid); |
1237 | if (IS_ERR(sma)) { | |
1238 | err = PTR_ERR(sma); | |
1239 | goto out_unlock; | |
1da177e4 | 1240 | } |
1da177e4 | 1241 | } |
1da177e4 | 1242 | |
a280d6dc DB |
1243 | /* see comment for SHM_STAT_ANY */ |
1244 | if (cmd == SEM_STAT_ANY) | |
1245 | audit_ipc_obj(&sma->sem_perm); | |
1246 | else { | |
1247 | err = -EACCES; | |
1248 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) | |
1249 | goto out_unlock; | |
1250 | } | |
1da177e4 | 1251 | |
aefad959 | 1252 | err = security_sem_semctl(&sma->sem_perm, cmd); |
45a4a64a AV |
1253 | if (err) |
1254 | goto out_unlock; | |
1da177e4 | 1255 | |
87ad4b0d PM |
1256 | ipc_lock_object(&sma->sem_perm); |
1257 | ||
1258 | if (!ipc_valid_object(&sma->sem_perm)) { | |
1259 | ipc_unlock_object(&sma->sem_perm); | |
1260 | err = -EIDRM; | |
1261 | goto out_unlock; | |
1262 | } | |
1263 | ||
45a4a64a | 1264 | kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); |
c2ab975c AB |
1265 | semotime = get_semotime(sma); |
1266 | semid64->sem_otime = semotime; | |
45a4a64a | 1267 | semid64->sem_ctime = sma->sem_ctime; |
c2ab975c AB |
1268 | #ifndef CONFIG_64BIT |
1269 | semid64->sem_otime_high = semotime >> 32; | |
1270 | semid64->sem_ctime_high = sma->sem_ctime >> 32; | |
1271 | #endif | |
45a4a64a | 1272 | semid64->sem_nsems = sma->sem_nsems; |
87ad4b0d | 1273 | |
615c999c MS |
1274 | if (cmd == IPC_STAT) { |
1275 | /* | |
1276 | * As defined in SUS: | |
1277 | * Return 0 on success | |
1278 | */ | |
1279 | err = 0; | |
1280 | } else { | |
1281 | /* | |
1282 | * SEM_STAT and SEM_STAT_ANY (both Linux specific) | |
1283 | * Return the full id, including the sequence number | |
1284 | */ | |
1285 | err = sma->sem_perm.id; | |
1286 | } | |
87ad4b0d | 1287 | ipc_unlock_object(&sma->sem_perm); |
1da177e4 | 1288 | out_unlock: |
16df3674 | 1289 | rcu_read_unlock(); |
1da177e4 LT |
1290 | return err; |
1291 | } | |
1292 | ||
45a4a64a AV |
1293 | static int semctl_info(struct ipc_namespace *ns, int semid, |
1294 | int cmd, void __user *p) | |
1295 | { | |
1296 | struct seminfo seminfo; | |
27c331a1 | 1297 | int max_idx; |
45a4a64a AV |
1298 | int err; |
1299 | ||
1300 | err = security_sem_semctl(NULL, cmd); | |
1301 | if (err) | |
1302 | return err; | |
1303 | ||
1304 | memset(&seminfo, 0, sizeof(seminfo)); | |
1305 | seminfo.semmni = ns->sc_semmni; | |
1306 | seminfo.semmns = ns->sc_semmns; | |
1307 | seminfo.semmsl = ns->sc_semmsl; | |
1308 | seminfo.semopm = ns->sc_semopm; | |
1309 | seminfo.semvmx = SEMVMX; | |
1310 | seminfo.semmnu = SEMMNU; | |
1311 | seminfo.semmap = SEMMAP; | |
1312 | seminfo.semume = SEMUME; | |
1313 | down_read(&sem_ids(ns).rwsem); | |
1314 | if (cmd == SEM_INFO) { | |
1315 | seminfo.semusz = sem_ids(ns).in_use; | |
1316 | seminfo.semaem = ns->used_sems; | |
1317 | } else { | |
1318 | seminfo.semusz = SEMUSZ; | |
1319 | seminfo.semaem = SEMAEM; | |
1320 | } | |
27c331a1 | 1321 | max_idx = ipc_get_maxidx(&sem_ids(ns)); |
45a4a64a AV |
1322 | up_read(&sem_ids(ns).rwsem); |
1323 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) | |
1324 | return -EFAULT; | |
27c331a1 | 1325 | return (max_idx < 0) ? 0 : max_idx; |
45a4a64a AV |
1326 | } |
1327 | ||
e1fd1f49 | 1328 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, |
45a4a64a | 1329 | int val) |
e1fd1f49 AV |
1330 | { |
1331 | struct sem_undo *un; | |
1332 | struct sem_array *sma; | |
239521f3 | 1333 | struct sem *curr; |
45a4a64a | 1334 | int err; |
9ae949fa DB |
1335 | DEFINE_WAKE_Q(wake_q); |
1336 | ||
6062a8dc RR |
1337 | if (val > SEMVMX || val < 0) |
1338 | return -ERANGE; | |
e1fd1f49 | 1339 | |
6062a8dc RR |
1340 | rcu_read_lock(); |
1341 | sma = sem_obtain_object_check(ns, semid); | |
1342 | if (IS_ERR(sma)) { | |
1343 | rcu_read_unlock(); | |
1344 | return PTR_ERR(sma); | |
1345 | } | |
1346 | ||
1347 | if (semnum < 0 || semnum >= sma->sem_nsems) { | |
1348 | rcu_read_unlock(); | |
1349 | return -EINVAL; | |
1350 | } | |
1351 | ||
1352 | ||
1353 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | |
1354 | rcu_read_unlock(); | |
1355 | return -EACCES; | |
1356 | } | |
e1fd1f49 | 1357 | |
aefad959 | 1358 | err = security_sem_semctl(&sma->sem_perm, SETVAL); |
6062a8dc RR |
1359 | if (err) { |
1360 | rcu_read_unlock(); | |
1361 | return -EACCES; | |
1362 | } | |
e1fd1f49 | 1363 | |
6062a8dc | 1364 | sem_lock(sma, NULL, -1); |
e1fd1f49 | 1365 | |
0f3d2b01 | 1366 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1367 | sem_unlock(sma, -1); |
1368 | rcu_read_unlock(); | |
1369 | return -EIDRM; | |
1370 | } | |
1371 | ||
ec67aaa4 | 1372 | semnum = array_index_nospec(semnum, sma->sem_nsems); |
1a233956 | 1373 | curr = &sma->sems[semnum]; |
e1fd1f49 | 1374 | |
cf9d5d78 | 1375 | ipc_assert_locked_object(&sma->sem_perm); |
e1fd1f49 AV |
1376 | list_for_each_entry(un, &sma->list_id, list_id) |
1377 | un->semadj[semnum] = 0; | |
1378 | ||
1379 | curr->semval = val; | |
51d6f263 | 1380 | ipc_update_pid(&curr->sempid, task_tgid(current)); |
e54d02b2 | 1381 | sma->sem_ctime = ktime_get_real_seconds(); |
e1fd1f49 | 1382 | /* maybe some queued-up processes were waiting for this */ |
9ae949fa | 1383 | do_smart_update(sma, NULL, 0, 0, &wake_q); |
6062a8dc | 1384 | sem_unlock(sma, -1); |
6d49dab8 | 1385 | rcu_read_unlock(); |
9ae949fa | 1386 | wake_up_q(&wake_q); |
6062a8dc | 1387 | return 0; |
e1fd1f49 AV |
1388 | } |
1389 | ||
e3893534 | 1390 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
e1fd1f49 | 1391 | int cmd, void __user *p) |
1da177e4 LT |
1392 | { |
1393 | struct sem_array *sma; | |
239521f3 | 1394 | struct sem *curr; |
16df3674 | 1395 | int err, nsems; |
1da177e4 | 1396 | ushort fast_sem_io[SEMMSL_FAST]; |
239521f3 | 1397 | ushort *sem_io = fast_sem_io; |
9ae949fa | 1398 | DEFINE_WAKE_Q(wake_q); |
16df3674 DB |
1399 | |
1400 | rcu_read_lock(); | |
1401 | sma = sem_obtain_object_check(ns, semid); | |
1402 | if (IS_ERR(sma)) { | |
1403 | rcu_read_unlock(); | |
023a5355 | 1404 | return PTR_ERR(sma); |
16df3674 | 1405 | } |
1da177e4 LT |
1406 | |
1407 | nsems = sma->sem_nsems; | |
1408 | ||
1da177e4 | 1409 | err = -EACCES; |
c728b9c8 LT |
1410 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) |
1411 | goto out_rcu_wakeup; | |
1da177e4 | 1412 | |
aefad959 | 1413 | err = security_sem_semctl(&sma->sem_perm, cmd); |
c728b9c8 LT |
1414 | if (err) |
1415 | goto out_rcu_wakeup; | |
1da177e4 LT |
1416 | |
1417 | err = -EACCES; | |
1418 | switch (cmd) { | |
1419 | case GETALL: | |
1420 | { | |
e1fd1f49 | 1421 | ushort __user *array = p; |
1da177e4 LT |
1422 | int i; |
1423 | ||
ce857229 | 1424 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1425 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1426 | err = -EIDRM; |
1427 | goto out_unlock; | |
1428 | } | |
239521f3 | 1429 | if (nsems > SEMMSL_FAST) { |
dba4cdd3 | 1430 | if (!ipc_rcu_getref(&sma->sem_perm)) { |
ce857229 | 1431 | err = -EIDRM; |
6e224f94 | 1432 | goto out_unlock; |
ce857229 AV |
1433 | } |
1434 | sem_unlock(sma, -1); | |
6d49dab8 | 1435 | rcu_read_unlock(); |
f8dbe8d2 KC |
1436 | sem_io = kvmalloc_array(nsems, sizeof(ushort), |
1437 | GFP_KERNEL); | |
239521f3 | 1438 | if (sem_io == NULL) { |
dba4cdd3 | 1439 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1440 | return -ENOMEM; |
1441 | } | |
1442 | ||
4091fd94 | 1443 | rcu_read_lock(); |
6ff37972 | 1444 | sem_lock_and_putref(sma); |
0f3d2b01 | 1445 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1446 | err = -EIDRM; |
6e224f94 | 1447 | goto out_unlock; |
1da177e4 | 1448 | } |
ce857229 | 1449 | } |
1da177e4 | 1450 | for (i = 0; i < sma->sem_nsems; i++) |
1a233956 | 1451 | sem_io[i] = sma->sems[i].semval; |
6062a8dc | 1452 | sem_unlock(sma, -1); |
6d49dab8 | 1453 | rcu_read_unlock(); |
1da177e4 | 1454 | err = 0; |
239521f3 | 1455 | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
1da177e4 LT |
1456 | err = -EFAULT; |
1457 | goto out_free; | |
1458 | } | |
1459 | case SETALL: | |
1460 | { | |
1461 | int i; | |
1462 | struct sem_undo *un; | |
1463 | ||
dba4cdd3 | 1464 | if (!ipc_rcu_getref(&sma->sem_perm)) { |
6e224f94 MS |
1465 | err = -EIDRM; |
1466 | goto out_rcu_wakeup; | |
6062a8dc | 1467 | } |
16df3674 | 1468 | rcu_read_unlock(); |
1da177e4 | 1469 | |
239521f3 | 1470 | if (nsems > SEMMSL_FAST) { |
f8dbe8d2 KC |
1471 | sem_io = kvmalloc_array(nsems, sizeof(ushort), |
1472 | GFP_KERNEL); | |
239521f3 | 1473 | if (sem_io == NULL) { |
dba4cdd3 | 1474 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1475 | return -ENOMEM; |
1476 | } | |
1477 | } | |
1478 | ||
239521f3 | 1479 | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { |
dba4cdd3 | 1480 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1481 | err = -EFAULT; |
1482 | goto out_free; | |
1483 | } | |
1484 | ||
1485 | for (i = 0; i < nsems; i++) { | |
1486 | if (sem_io[i] > SEMVMX) { | |
dba4cdd3 | 1487 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1488 | err = -ERANGE; |
1489 | goto out_free; | |
1490 | } | |
1491 | } | |
4091fd94 | 1492 | rcu_read_lock(); |
6ff37972 | 1493 | sem_lock_and_putref(sma); |
0f3d2b01 | 1494 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1495 | err = -EIDRM; |
6e224f94 | 1496 | goto out_unlock; |
1da177e4 LT |
1497 | } |
1498 | ||
a5f4db87 | 1499 | for (i = 0; i < nsems; i++) { |
1a233956 | 1500 | sma->sems[i].semval = sem_io[i]; |
51d6f263 | 1501 | ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); |
a5f4db87 | 1502 | } |
4daa28f6 | 1503 | |
cf9d5d78 | 1504 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1505 | list_for_each_entry(un, &sma->list_id, list_id) { |
1da177e4 LT |
1506 | for (i = 0; i < nsems; i++) |
1507 | un->semadj[i] = 0; | |
4daa28f6 | 1508 | } |
e54d02b2 | 1509 | sma->sem_ctime = ktime_get_real_seconds(); |
1da177e4 | 1510 | /* maybe some queued-up processes were waiting for this */ |
9ae949fa | 1511 | do_smart_update(sma, NULL, 0, 0, &wake_q); |
1da177e4 LT |
1512 | err = 0; |
1513 | goto out_unlock; | |
1514 | } | |
e1fd1f49 | 1515 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ |
1da177e4 LT |
1516 | } |
1517 | err = -EINVAL; | |
c728b9c8 LT |
1518 | if (semnum < 0 || semnum >= nsems) |
1519 | goto out_rcu_wakeup; | |
1da177e4 | 1520 | |
6062a8dc | 1521 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1522 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1523 | err = -EIDRM; |
1524 | goto out_unlock; | |
1525 | } | |
ec67aaa4 DB |
1526 | |
1527 | semnum = array_index_nospec(semnum, nsems); | |
1a233956 | 1528 | curr = &sma->sems[semnum]; |
1da177e4 LT |
1529 | |
1530 | switch (cmd) { | |
1531 | case GETVAL: | |
1532 | err = curr->semval; | |
1533 | goto out_unlock; | |
1534 | case GETPID: | |
51d6f263 | 1535 | err = pid_vnr(curr->sempid); |
1da177e4 LT |
1536 | goto out_unlock; |
1537 | case GETNCNT: | |
2f2ed41d | 1538 | err = count_semcnt(sma, semnum, 0); |
1da177e4 LT |
1539 | goto out_unlock; |
1540 | case GETZCNT: | |
2f2ed41d | 1541 | err = count_semcnt(sma, semnum, 1); |
1da177e4 | 1542 | goto out_unlock; |
1da177e4 | 1543 | } |
16df3674 | 1544 | |
1da177e4 | 1545 | out_unlock: |
6062a8dc | 1546 | sem_unlock(sma, -1); |
c728b9c8 | 1547 | out_rcu_wakeup: |
6d49dab8 | 1548 | rcu_read_unlock(); |
9ae949fa | 1549 | wake_up_q(&wake_q); |
1da177e4 | 1550 | out_free: |
239521f3 | 1551 | if (sem_io != fast_sem_io) |
f8dbe8d2 | 1552 | kvfree(sem_io); |
1da177e4 LT |
1553 | return err; |
1554 | } | |
1555 | ||
016d7132 PP |
1556 | static inline unsigned long |
1557 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | |
1da177e4 | 1558 | { |
239521f3 | 1559 | switch (version) { |
1da177e4 | 1560 | case IPC_64: |
016d7132 | 1561 | if (copy_from_user(out, buf, sizeof(*out))) |
1da177e4 | 1562 | return -EFAULT; |
1da177e4 | 1563 | return 0; |
1da177e4 LT |
1564 | case IPC_OLD: |
1565 | { | |
1566 | struct semid_ds tbuf_old; | |
1567 | ||
239521f3 | 1568 | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
1da177e4 LT |
1569 | return -EFAULT; |
1570 | ||
016d7132 PP |
1571 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
1572 | out->sem_perm.gid = tbuf_old.sem_perm.gid; | |
1573 | out->sem_perm.mode = tbuf_old.sem_perm.mode; | |
1da177e4 LT |
1574 | |
1575 | return 0; | |
1576 | } | |
1577 | default: | |
1578 | return -EINVAL; | |
1579 | } | |
1580 | } | |
1581 | ||
522bb2a2 | 1582 | /* |
d9a605e4 | 1583 | * This function handles some semctl commands which require the rwsem |
522bb2a2 | 1584 | * to be held in write mode. |
d9a605e4 | 1585 | * NOTE: no locks must be held, the rwsem is taken inside this function. |
522bb2a2 | 1586 | */ |
21a4826a | 1587 | static int semctl_down(struct ipc_namespace *ns, int semid, |
45a4a64a | 1588 | int cmd, struct semid64_ds *semid64) |
1da177e4 LT |
1589 | { |
1590 | struct sem_array *sma; | |
1591 | int err; | |
1da177e4 LT |
1592 | struct kern_ipc_perm *ipcp; |
1593 | ||
d9a605e4 | 1594 | down_write(&sem_ids(ns).rwsem); |
7b4cc5d8 DB |
1595 | rcu_read_lock(); |
1596 | ||
4241c1a3 | 1597 | ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, |
45a4a64a | 1598 | &semid64->sem_perm, 0); |
7b4cc5d8 DB |
1599 | if (IS_ERR(ipcp)) { |
1600 | err = PTR_ERR(ipcp); | |
7b4cc5d8 DB |
1601 | goto out_unlock1; |
1602 | } | |
073115d6 | 1603 | |
a5f75e7f | 1604 | sma = container_of(ipcp, struct sem_array, sem_perm); |
1da177e4 | 1605 | |
aefad959 | 1606 | err = security_sem_semctl(&sma->sem_perm, cmd); |
7b4cc5d8 DB |
1607 | if (err) |
1608 | goto out_unlock1; | |
1da177e4 | 1609 | |
7b4cc5d8 | 1610 | switch (cmd) { |
1da177e4 | 1611 | case IPC_RMID: |
6062a8dc | 1612 | sem_lock(sma, NULL, -1); |
7b4cc5d8 | 1613 | /* freeary unlocks the ipc object and rcu */ |
01b8b07a | 1614 | freeary(ns, ipcp); |
522bb2a2 | 1615 | goto out_up; |
1da177e4 | 1616 | case IPC_SET: |
6062a8dc | 1617 | sem_lock(sma, NULL, -1); |
45a4a64a | 1618 | err = ipc_update_perm(&semid64->sem_perm, ipcp); |
1efdb69b | 1619 | if (err) |
7b4cc5d8 | 1620 | goto out_unlock0; |
e54d02b2 | 1621 | sma->sem_ctime = ktime_get_real_seconds(); |
1da177e4 LT |
1622 | break; |
1623 | default: | |
1da177e4 | 1624 | err = -EINVAL; |
7b4cc5d8 | 1625 | goto out_unlock1; |
1da177e4 | 1626 | } |
1da177e4 | 1627 | |
7b4cc5d8 | 1628 | out_unlock0: |
6062a8dc | 1629 | sem_unlock(sma, -1); |
7b4cc5d8 | 1630 | out_unlock1: |
6d49dab8 | 1631 | rcu_read_unlock(); |
522bb2a2 | 1632 | out_up: |
d9a605e4 | 1633 | up_write(&sem_ids(ns).rwsem); |
1da177e4 LT |
1634 | return err; |
1635 | } | |
1636 | ||
d969c6fa | 1637 | long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg) |
1da177e4 | 1638 | { |
1da177e4 | 1639 | int version; |
e3893534 | 1640 | struct ipc_namespace *ns; |
e1fd1f49 | 1641 | void __user *p = (void __user *)arg; |
45a4a64a AV |
1642 | struct semid64_ds semid64; |
1643 | int err; | |
1da177e4 LT |
1644 | |
1645 | if (semid < 0) | |
1646 | return -EINVAL; | |
1647 | ||
1648 | version = ipc_parse_version(&cmd); | |
e3893534 | 1649 | ns = current->nsproxy->ipc_ns; |
1da177e4 | 1650 | |
239521f3 | 1651 | switch (cmd) { |
1da177e4 LT |
1652 | case IPC_INFO: |
1653 | case SEM_INFO: | |
45a4a64a | 1654 | return semctl_info(ns, semid, cmd, p); |
4b9fcb0e | 1655 | case IPC_STAT: |
1da177e4 | 1656 | case SEM_STAT: |
a280d6dc | 1657 | case SEM_STAT_ANY: |
45a4a64a AV |
1658 | err = semctl_stat(ns, semid, cmd, &semid64); |
1659 | if (err < 0) | |
1660 | return err; | |
1661 | if (copy_semid_to_user(p, &semid64, version)) | |
1662 | err = -EFAULT; | |
1663 | return err; | |
1da177e4 LT |
1664 | case GETALL: |
1665 | case GETVAL: | |
1666 | case GETPID: | |
1667 | case GETNCNT: | |
1668 | case GETZCNT: | |
1da177e4 | 1669 | case SETALL: |
e1fd1f49 | 1670 | return semctl_main(ns, semid, semnum, cmd, p); |
45a4a64a AV |
1671 | case SETVAL: { |
1672 | int val; | |
1673 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | |
1674 | /* big-endian 64bit */ | |
1675 | val = arg >> 32; | |
1676 | #else | |
1677 | /* 32bit or little-endian 64bit */ | |
1678 | val = arg; | |
1679 | #endif | |
1680 | return semctl_setval(ns, semid, semnum, val); | |
1681 | } | |
1da177e4 | 1682 | case IPC_SET: |
45a4a64a AV |
1683 | if (copy_semid_from_user(&semid64, p, version)) |
1684 | return -EFAULT; | |
1685 | case IPC_RMID: | |
1686 | return semctl_down(ns, semid, cmd, &semid64); | |
1da177e4 LT |
1687 | default: |
1688 | return -EINVAL; | |
1689 | } | |
1690 | } | |
1691 | ||
d969c6fa DB |
1692 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) |
1693 | { | |
1694 | return ksys_semctl(semid, semnum, cmd, arg); | |
1695 | } | |
1696 | ||
c0ebccb6 AV |
1697 | #ifdef CONFIG_COMPAT |
1698 | ||
1699 | struct compat_semid_ds { | |
1700 | struct compat_ipc_perm sem_perm; | |
9afc5eee AB |
1701 | old_time32_t sem_otime; |
1702 | old_time32_t sem_ctime; | |
c0ebccb6 AV |
1703 | compat_uptr_t sem_base; |
1704 | compat_uptr_t sem_pending; | |
1705 | compat_uptr_t sem_pending_last; | |
1706 | compat_uptr_t undo; | |
1707 | unsigned short sem_nsems; | |
1708 | }; | |
1709 | ||
1710 | static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, | |
1711 | int version) | |
1712 | { | |
1713 | memset(out, 0, sizeof(*out)); | |
1714 | if (version == IPC_64) { | |
6aa211e8 | 1715 | struct compat_semid64_ds __user *p = buf; |
c0ebccb6 AV |
1716 | return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); |
1717 | } else { | |
6aa211e8 | 1718 | struct compat_semid_ds __user *p = buf; |
c0ebccb6 AV |
1719 | return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); |
1720 | } | |
1721 | } | |
1722 | ||
1723 | static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, | |
1724 | int version) | |
1725 | { | |
1726 | if (version == IPC_64) { | |
1727 | struct compat_semid64_ds v; | |
1728 | memset(&v, 0, sizeof(v)); | |
1729 | to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); | |
c2ab975c AB |
1730 | v.sem_otime = lower_32_bits(in->sem_otime); |
1731 | v.sem_otime_high = upper_32_bits(in->sem_otime); | |
1732 | v.sem_ctime = lower_32_bits(in->sem_ctime); | |
1733 | v.sem_ctime_high = upper_32_bits(in->sem_ctime); | |
c0ebccb6 AV |
1734 | v.sem_nsems = in->sem_nsems; |
1735 | return copy_to_user(buf, &v, sizeof(v)); | |
1736 | } else { | |
1737 | struct compat_semid_ds v; | |
1738 | memset(&v, 0, sizeof(v)); | |
1739 | to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); | |
1740 | v.sem_otime = in->sem_otime; | |
1741 | v.sem_ctime = in->sem_ctime; | |
1742 | v.sem_nsems = in->sem_nsems; | |
1743 | return copy_to_user(buf, &v, sizeof(v)); | |
1744 | } | |
1745 | } | |
1746 | ||
d969c6fa | 1747 | long compat_ksys_semctl(int semid, int semnum, int cmd, int arg) |
c0ebccb6 AV |
1748 | { |
1749 | void __user *p = compat_ptr(arg); | |
1750 | struct ipc_namespace *ns; | |
1751 | struct semid64_ds semid64; | |
1752 | int version = compat_ipc_parse_version(&cmd); | |
1753 | int err; | |
1754 | ||
1755 | ns = current->nsproxy->ipc_ns; | |
1756 | ||
1757 | if (semid < 0) | |
1758 | return -EINVAL; | |
1759 | ||
1760 | switch (cmd & (~IPC_64)) { | |
1761 | case IPC_INFO: | |
1762 | case SEM_INFO: | |
1763 | return semctl_info(ns, semid, cmd, p); | |
1764 | case IPC_STAT: | |
1765 | case SEM_STAT: | |
a280d6dc | 1766 | case SEM_STAT_ANY: |
c0ebccb6 AV |
1767 | err = semctl_stat(ns, semid, cmd, &semid64); |
1768 | if (err < 0) | |
1769 | return err; | |
1770 | if (copy_compat_semid_to_user(p, &semid64, version)) | |
1771 | err = -EFAULT; | |
1772 | return err; | |
1773 | case GETVAL: | |
1774 | case GETPID: | |
1775 | case GETNCNT: | |
1776 | case GETZCNT: | |
1777 | case GETALL: | |
1da177e4 | 1778 | case SETALL: |
e1fd1f49 AV |
1779 | return semctl_main(ns, semid, semnum, cmd, p); |
1780 | case SETVAL: | |
1781 | return semctl_setval(ns, semid, semnum, arg); | |
1da177e4 | 1782 | case IPC_SET: |
c0ebccb6 AV |
1783 | if (copy_compat_semid_from_user(&semid64, p, version)) |
1784 | return -EFAULT; | |
1785 | /* fallthru */ | |
1786 | case IPC_RMID: | |
1787 | return semctl_down(ns, semid, cmd, &semid64); | |
1da177e4 LT |
1788 | default: |
1789 | return -EINVAL; | |
1790 | } | |
1791 | } | |
d969c6fa DB |
1792 | |
1793 | COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) | |
1794 | { | |
1795 | return compat_ksys_semctl(semid, semnum, cmd, arg); | |
1796 | } | |
c0ebccb6 | 1797 | #endif |
1da177e4 | 1798 | |
1da177e4 LT |
1799 | /* If the task doesn't already have a undo_list, then allocate one |
1800 | * here. We guarantee there is only one thread using this undo list, | |
1801 | * and current is THE ONE | |
1802 | * | |
1803 | * If this allocation and assignment succeeds, but later | |
1804 | * portions of this code fail, there is no need to free the sem_undo_list. | |
1805 | * Just let it stay associated with the task, and it'll be freed later | |
1806 | * at exit time. | |
1807 | * | |
1808 | * This can block, so callers must hold no locks. | |
1809 | */ | |
1810 | static inline int get_undo_list(struct sem_undo_list **undo_listp) | |
1811 | { | |
1812 | struct sem_undo_list *undo_list; | |
1da177e4 LT |
1813 | |
1814 | undo_list = current->sysvsem.undo_list; | |
1815 | if (!undo_list) { | |
2453a306 | 1816 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
1da177e4 LT |
1817 | if (undo_list == NULL) |
1818 | return -ENOMEM; | |
00a5dfdb | 1819 | spin_lock_init(&undo_list->lock); |
f74370b8 | 1820 | refcount_set(&undo_list->refcnt, 1); |
4daa28f6 MS |
1821 | INIT_LIST_HEAD(&undo_list->list_proc); |
1822 | ||
1da177e4 LT |
1823 | current->sysvsem.undo_list = undo_list; |
1824 | } | |
1825 | *undo_listp = undo_list; | |
1826 | return 0; | |
1827 | } | |
1828 | ||
bf17bb71 | 1829 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
1da177e4 | 1830 | { |
bf17bb71 | 1831 | struct sem_undo *un; |
4daa28f6 | 1832 | |
bf17bb71 NP |
1833 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { |
1834 | if (un->semid == semid) | |
1835 | return un; | |
1da177e4 | 1836 | } |
4daa28f6 | 1837 | return NULL; |
1da177e4 LT |
1838 | } |
1839 | ||
bf17bb71 NP |
1840 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
1841 | { | |
1842 | struct sem_undo *un; | |
1843 | ||
239521f3 | 1844 | assert_spin_locked(&ulp->lock); |
bf17bb71 NP |
1845 | |
1846 | un = __lookup_undo(ulp, semid); | |
1847 | if (un) { | |
1848 | list_del_rcu(&un->list_proc); | |
1849 | list_add_rcu(&un->list_proc, &ulp->list_proc); | |
1850 | } | |
1851 | return un; | |
1852 | } | |
1853 | ||
4daa28f6 | 1854 | /** |
8001c858 | 1855 | * find_alloc_undo - lookup (and if not present create) undo array |
4daa28f6 MS |
1856 | * @ns: namespace |
1857 | * @semid: semaphore array id | |
1858 | * | |
1859 | * The function looks up (and if not present creates) the undo structure. | |
1860 | * The size of the undo structure depends on the size of the semaphore | |
1861 | * array, thus the alloc path is not that straightforward. | |
380af1b3 MS |
1862 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
1863 | * performs a rcu_read_lock(). | |
4daa28f6 MS |
1864 | */ |
1865 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | |
1da177e4 LT |
1866 | { |
1867 | struct sem_array *sma; | |
1868 | struct sem_undo_list *ulp; | |
1869 | struct sem_undo *un, *new; | |
6062a8dc | 1870 | int nsems, error; |
1da177e4 LT |
1871 | |
1872 | error = get_undo_list(&ulp); | |
1873 | if (error) | |
1874 | return ERR_PTR(error); | |
1875 | ||
380af1b3 | 1876 | rcu_read_lock(); |
c530c6ac | 1877 | spin_lock(&ulp->lock); |
1da177e4 | 1878 | un = lookup_undo(ulp, semid); |
c530c6ac | 1879 | spin_unlock(&ulp->lock); |
239521f3 | 1880 | if (likely(un != NULL)) |
1da177e4 LT |
1881 | goto out; |
1882 | ||
1883 | /* no undo structure around - allocate one. */ | |
4daa28f6 | 1884 | /* step 1: figure out the size of the semaphore array */ |
16df3674 DB |
1885 | sma = sem_obtain_object_check(ns, semid); |
1886 | if (IS_ERR(sma)) { | |
1887 | rcu_read_unlock(); | |
4de85cd6 | 1888 | return ERR_CAST(sma); |
16df3674 | 1889 | } |
023a5355 | 1890 | |
1da177e4 | 1891 | nsems = sma->sem_nsems; |
dba4cdd3 | 1892 | if (!ipc_rcu_getref(&sma->sem_perm)) { |
6062a8dc RR |
1893 | rcu_read_unlock(); |
1894 | un = ERR_PTR(-EIDRM); | |
1895 | goto out; | |
1896 | } | |
16df3674 | 1897 | rcu_read_unlock(); |
1da177e4 | 1898 | |
4daa28f6 | 1899 | /* step 2: allocate new undo structure */ |
4668edc3 | 1900 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
1da177e4 | 1901 | if (!new) { |
dba4cdd3 | 1902 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1903 | return ERR_PTR(-ENOMEM); |
1904 | } | |
1da177e4 | 1905 | |
380af1b3 | 1906 | /* step 3: Acquire the lock on semaphore array */ |
4091fd94 | 1907 | rcu_read_lock(); |
6ff37972 | 1908 | sem_lock_and_putref(sma); |
0f3d2b01 | 1909 | if (!ipc_valid_object(&sma->sem_perm)) { |
6062a8dc | 1910 | sem_unlock(sma, -1); |
6d49dab8 | 1911 | rcu_read_unlock(); |
1da177e4 LT |
1912 | kfree(new); |
1913 | un = ERR_PTR(-EIDRM); | |
1914 | goto out; | |
1915 | } | |
380af1b3 MS |
1916 | spin_lock(&ulp->lock); |
1917 | ||
1918 | /* | |
1919 | * step 4: check for races: did someone else allocate the undo struct? | |
1920 | */ | |
1921 | un = lookup_undo(ulp, semid); | |
1922 | if (un) { | |
1923 | kfree(new); | |
1924 | goto success; | |
1925 | } | |
4daa28f6 MS |
1926 | /* step 5: initialize & link new undo structure */ |
1927 | new->semadj = (short *) &new[1]; | |
380af1b3 | 1928 | new->ulp = ulp; |
4daa28f6 MS |
1929 | new->semid = semid; |
1930 | assert_spin_locked(&ulp->lock); | |
380af1b3 | 1931 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
cf9d5d78 | 1932 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1933 | list_add(&new->list_id, &sma->list_id); |
380af1b3 | 1934 | un = new; |
4daa28f6 | 1935 | |
380af1b3 | 1936 | success: |
c530c6ac | 1937 | spin_unlock(&ulp->lock); |
6062a8dc | 1938 | sem_unlock(sma, -1); |
1da177e4 LT |
1939 | out: |
1940 | return un; | |
1941 | } | |
1942 | ||
44ee4546 | 1943 | static long do_semtimedop(int semid, struct sembuf __user *tsops, |
3ef56dc2 | 1944 | unsigned nsops, const struct timespec64 *timeout) |
1da177e4 LT |
1945 | { |
1946 | int error = -EINVAL; | |
1947 | struct sem_array *sma; | |
1948 | struct sembuf fast_sops[SEMOPM_FAST]; | |
239521f3 | 1949 | struct sembuf *sops = fast_sops, *sop; |
1da177e4 | 1950 | struct sem_undo *un; |
4ce33ec2 DB |
1951 | int max, locknum; |
1952 | bool undos = false, alter = false, dupsop = false; | |
1da177e4 | 1953 | struct sem_queue queue; |
4ce33ec2 | 1954 | unsigned long dup = 0, jiffies_left = 0; |
e3893534 KK |
1955 | struct ipc_namespace *ns; |
1956 | ||
1957 | ns = current->nsproxy->ipc_ns; | |
1da177e4 LT |
1958 | |
1959 | if (nsops < 1 || semid < 0) | |
1960 | return -EINVAL; | |
e3893534 | 1961 | if (nsops > ns->sc_semopm) |
1da177e4 | 1962 | return -E2BIG; |
239521f3 | 1963 | if (nsops > SEMOPM_FAST) { |
344476e1 | 1964 | sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); |
239521f3 | 1965 | if (sops == NULL) |
1da177e4 LT |
1966 | return -ENOMEM; |
1967 | } | |
4ce33ec2 | 1968 | |
239521f3 MS |
1969 | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { |
1970 | error = -EFAULT; | |
1da177e4 LT |
1971 | goto out_free; |
1972 | } | |
4ce33ec2 | 1973 | |
1da177e4 | 1974 | if (timeout) { |
44ee4546 AV |
1975 | if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || |
1976 | timeout->tv_nsec >= 1000000000L) { | |
1da177e4 LT |
1977 | error = -EINVAL; |
1978 | goto out_free; | |
1979 | } | |
3ef56dc2 | 1980 | jiffies_left = timespec64_to_jiffies(timeout); |
1da177e4 | 1981 | } |
4ce33ec2 | 1982 | |
1da177e4 LT |
1983 | max = 0; |
1984 | for (sop = sops; sop < sops + nsops; sop++) { | |
4ce33ec2 DB |
1985 | unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); |
1986 | ||
1da177e4 LT |
1987 | if (sop->sem_num >= max) |
1988 | max = sop->sem_num; | |
1989 | if (sop->sem_flg & SEM_UNDO) | |
4ce33ec2 DB |
1990 | undos = true; |
1991 | if (dup & mask) { | |
1992 | /* | |
1993 | * There was a previous alter access that appears | |
1994 | * to have accessed the same semaphore, thus use | |
1995 | * the dupsop logic. "appears", because the detection | |
1996 | * can only check % BITS_PER_LONG. | |
1997 | */ | |
1998 | dupsop = true; | |
1999 | } | |
2000 | if (sop->sem_op != 0) { | |
2001 | alter = true; | |
2002 | dup |= mask; | |
2003 | } | |
1da177e4 | 2004 | } |
1da177e4 | 2005 | |
1da177e4 | 2006 | if (undos) { |
6062a8dc | 2007 | /* On success, find_alloc_undo takes the rcu_read_lock */ |
4daa28f6 | 2008 | un = find_alloc_undo(ns, semid); |
1da177e4 LT |
2009 | if (IS_ERR(un)) { |
2010 | error = PTR_ERR(un); | |
2011 | goto out_free; | |
2012 | } | |
6062a8dc | 2013 | } else { |
1da177e4 | 2014 | un = NULL; |
6062a8dc RR |
2015 | rcu_read_lock(); |
2016 | } | |
1da177e4 | 2017 | |
16df3674 | 2018 | sma = sem_obtain_object_check(ns, semid); |
023a5355 | 2019 | if (IS_ERR(sma)) { |
6062a8dc | 2020 | rcu_read_unlock(); |
023a5355 | 2021 | error = PTR_ERR(sma); |
1da177e4 | 2022 | goto out_free; |
023a5355 ND |
2023 | } |
2024 | ||
16df3674 | 2025 | error = -EFBIG; |
248e7357 DB |
2026 | if (max >= sma->sem_nsems) { |
2027 | rcu_read_unlock(); | |
2028 | goto out_free; | |
2029 | } | |
16df3674 DB |
2030 | |
2031 | error = -EACCES; | |
248e7357 DB |
2032 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { |
2033 | rcu_read_unlock(); | |
2034 | goto out_free; | |
2035 | } | |
16df3674 | 2036 | |
aefad959 | 2037 | error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); |
248e7357 DB |
2038 | if (error) { |
2039 | rcu_read_unlock(); | |
2040 | goto out_free; | |
2041 | } | |
16df3674 | 2042 | |
6e224f94 MS |
2043 | error = -EIDRM; |
2044 | locknum = sem_lock(sma, sops, nsops); | |
0f3d2b01 RA |
2045 | /* |
2046 | * We eventually might perform the following check in a lockless | |
2047 | * fashion, considering ipc_valid_object() locking constraints. | |
2048 | * If nsops == 1 and there is no contention for sem_perm.lock, then | |
2049 | * only a per-semaphore lock is held and it's OK to proceed with the | |
2050 | * check below. More details on the fine grained locking scheme | |
2051 | * entangled here and why it's RMID race safe on comments at sem_lock() | |
2052 | */ | |
2053 | if (!ipc_valid_object(&sma->sem_perm)) | |
6e224f94 | 2054 | goto out_unlock_free; |
1da177e4 | 2055 | /* |
4daa28f6 | 2056 | * semid identifiers are not unique - find_alloc_undo may have |
1da177e4 | 2057 | * allocated an undo structure, it was invalidated by an RMID |
4daa28f6 | 2058 | * and now a new array with received the same id. Check and fail. |
25985edc | 2059 | * This case can be detected checking un->semid. The existence of |
380af1b3 | 2060 | * "un" itself is guaranteed by rcu. |
1da177e4 | 2061 | */ |
6062a8dc RR |
2062 | if (un && un->semid == -1) |
2063 | goto out_unlock_free; | |
4daa28f6 | 2064 | |
d198cd6d MS |
2065 | queue.sops = sops; |
2066 | queue.nsops = nsops; | |
2067 | queue.undo = un; | |
51d6f263 | 2068 | queue.pid = task_tgid(current); |
d198cd6d | 2069 | queue.alter = alter; |
4ce33ec2 | 2070 | queue.dupsop = dupsop; |
d198cd6d MS |
2071 | |
2072 | error = perform_atomic_semop(sma, &queue); | |
9ae949fa DB |
2073 | if (error == 0) { /* non-blocking succesfull path */ |
2074 | DEFINE_WAKE_Q(wake_q); | |
2075 | ||
2076 | /* | |
2077 | * If the operation was successful, then do | |
0e8c6656 MS |
2078 | * the required updates. |
2079 | */ | |
2080 | if (alter) | |
9ae949fa | 2081 | do_smart_update(sma, sops, nsops, 1, &wake_q); |
0e8c6656 MS |
2082 | else |
2083 | set_semotime(sma, sops); | |
9ae949fa DB |
2084 | |
2085 | sem_unlock(sma, locknum); | |
2086 | rcu_read_unlock(); | |
2087 | wake_up_q(&wake_q); | |
2088 | ||
2089 | goto out_free; | |
1da177e4 | 2090 | } |
9ae949fa | 2091 | if (error < 0) /* non-blocking error path */ |
0e8c6656 | 2092 | goto out_unlock_free; |
1da177e4 | 2093 | |
9ae949fa DB |
2094 | /* |
2095 | * We need to sleep on this operation, so we put the current | |
1da177e4 LT |
2096 | * task into the pending queue and go to sleep. |
2097 | */ | |
b97e820f MS |
2098 | if (nsops == 1) { |
2099 | struct sem *curr; | |
ec67aaa4 DB |
2100 | int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); |
2101 | curr = &sma->sems[idx]; | |
b97e820f | 2102 | |
f269f40a MS |
2103 | if (alter) { |
2104 | if (sma->complex_count) { | |
2105 | list_add_tail(&queue.list, | |
2106 | &sma->pending_alter); | |
2107 | } else { | |
2108 | ||
2109 | list_add_tail(&queue.list, | |
2110 | &curr->pending_alter); | |
2111 | } | |
2112 | } else { | |
1a82e9e1 | 2113 | list_add_tail(&queue.list, &curr->pending_const); |
f269f40a | 2114 | } |
b97e820f | 2115 | } else { |
f269f40a MS |
2116 | if (!sma->complex_count) |
2117 | merge_queues(sma); | |
2118 | ||
9f1bc2c9 | 2119 | if (alter) |
1a82e9e1 | 2120 | list_add_tail(&queue.list, &sma->pending_alter); |
9f1bc2c9 | 2121 | else |
1a82e9e1 MS |
2122 | list_add_tail(&queue.list, &sma->pending_const); |
2123 | ||
b97e820f MS |
2124 | sma->complex_count++; |
2125 | } | |
2126 | ||
b5fa01a2 | 2127 | do { |
f075faa3 | 2128 | WRITE_ONCE(queue.status, -EINTR); |
b5fa01a2 | 2129 | queue.sleeper = current; |
0b0577f6 | 2130 | |
b5fa01a2 DB |
2131 | __set_current_state(TASK_INTERRUPTIBLE); |
2132 | sem_unlock(sma, locknum); | |
2133 | rcu_read_unlock(); | |
1da177e4 | 2134 | |
b5fa01a2 DB |
2135 | if (timeout) |
2136 | jiffies_left = schedule_timeout(jiffies_left); | |
2137 | else | |
2138 | schedule(); | |
1da177e4 | 2139 | |
9ae949fa | 2140 | /* |
b5fa01a2 DB |
2141 | * fastpath: the semop has completed, either successfully or |
2142 | * not, from the syscall pov, is quite irrelevant to us at this | |
2143 | * point; we're done. | |
2144 | * | |
2145 | * We _do_ care, nonetheless, about being awoken by a signal or | |
2146 | * spuriously. The queue.status is checked again in the | |
2147 | * slowpath (aka after taking sem_lock), such that we can detect | |
2148 | * scenarios where we were awakened externally, during the | |
2149 | * window between wake_q_add() and wake_up_q(). | |
c61284e9 | 2150 | */ |
b5fa01a2 DB |
2151 | error = READ_ONCE(queue.status); |
2152 | if (error != -EINTR) { | |
2153 | /* | |
2154 | * User space could assume that semop() is a memory | |
2155 | * barrier: Without the mb(), the cpu could | |
2156 | * speculatively read in userspace stale data that was | |
2157 | * overwritten by the previous owner of the semaphore. | |
2158 | */ | |
2159 | smp_mb(); | |
2160 | goto out_free; | |
2161 | } | |
d694ad62 | 2162 | |
b5fa01a2 | 2163 | rcu_read_lock(); |
c626bc46 | 2164 | locknum = sem_lock(sma, sops, nsops); |
1da177e4 | 2165 | |
370b262c DB |
2166 | if (!ipc_valid_object(&sma->sem_perm)) |
2167 | goto out_unlock_free; | |
2168 | ||
2169 | error = READ_ONCE(queue.status); | |
1da177e4 | 2170 | |
b5fa01a2 DB |
2171 | /* |
2172 | * If queue.status != -EINTR we are woken up by another process. | |
2173 | * Leave without unlink_queue(), but with sem_unlock(). | |
2174 | */ | |
2175 | if (error != -EINTR) | |
2176 | goto out_unlock_free; | |
0b0577f6 | 2177 | |
b5fa01a2 DB |
2178 | /* |
2179 | * If an interrupt occurred we have to clean up the queue. | |
2180 | */ | |
2181 | if (timeout && jiffies_left == 0) | |
2182 | error = -EAGAIN; | |
2183 | } while (error == -EINTR && !signal_pending(current)); /* spurious */ | |
0b0577f6 | 2184 | |
b97e820f | 2185 | unlink_queue(sma, &queue); |
1da177e4 LT |
2186 | |
2187 | out_unlock_free: | |
6062a8dc | 2188 | sem_unlock(sma, locknum); |
6d49dab8 | 2189 | rcu_read_unlock(); |
1da177e4 | 2190 | out_free: |
239521f3 | 2191 | if (sops != fast_sops) |
e4243b80 | 2192 | kvfree(sops); |
1da177e4 LT |
2193 | return error; |
2194 | } | |
2195 | ||
41f4f0e2 | 2196 | long ksys_semtimedop(int semid, struct sembuf __user *tsops, |
21fc538d | 2197 | unsigned int nsops, const struct __kernel_timespec __user *timeout) |
44ee4546 AV |
2198 | { |
2199 | if (timeout) { | |
3ef56dc2 DD |
2200 | struct timespec64 ts; |
2201 | if (get_timespec64(&ts, timeout)) | |
44ee4546 AV |
2202 | return -EFAULT; |
2203 | return do_semtimedop(semid, tsops, nsops, &ts); | |
2204 | } | |
2205 | return do_semtimedop(semid, tsops, nsops, NULL); | |
2206 | } | |
2207 | ||
41f4f0e2 | 2208 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
21fc538d | 2209 | unsigned int, nsops, const struct __kernel_timespec __user *, timeout) |
41f4f0e2 DB |
2210 | { |
2211 | return ksys_semtimedop(semid, tsops, nsops, timeout); | |
2212 | } | |
2213 | ||
b0d17578 | 2214 | #ifdef CONFIG_COMPAT_32BIT_TIME |
41f4f0e2 DB |
2215 | long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, |
2216 | unsigned int nsops, | |
9afc5eee | 2217 | const struct old_timespec32 __user *timeout) |
44ee4546 AV |
2218 | { |
2219 | if (timeout) { | |
3ef56dc2 | 2220 | struct timespec64 ts; |
9afc5eee | 2221 | if (get_old_timespec32(&ts, timeout)) |
44ee4546 AV |
2222 | return -EFAULT; |
2223 | return do_semtimedop(semid, tsems, nsops, &ts); | |
2224 | } | |
2225 | return do_semtimedop(semid, tsems, nsops, NULL); | |
2226 | } | |
41f4f0e2 DB |
2227 | |
2228 | COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems, | |
2229 | unsigned int, nsops, | |
9afc5eee | 2230 | const struct old_timespec32 __user *, timeout) |
41f4f0e2 DB |
2231 | { |
2232 | return compat_ksys_semtimedop(semid, tsems, nsops, timeout); | |
2233 | } | |
44ee4546 AV |
2234 | #endif |
2235 | ||
d5460c99 HC |
2236 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
2237 | unsigned, nsops) | |
1da177e4 | 2238 | { |
44ee4546 | 2239 | return do_semtimedop(semid, tsops, nsops, NULL); |
1da177e4 LT |
2240 | } |
2241 | ||
2242 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | |
2243 | * parent and child tasks. | |
1da177e4 LT |
2244 | */ |
2245 | ||
2246 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | |
2247 | { | |
2248 | struct sem_undo_list *undo_list; | |
2249 | int error; | |
2250 | ||
2251 | if (clone_flags & CLONE_SYSVSEM) { | |
2252 | error = get_undo_list(&undo_list); | |
2253 | if (error) | |
2254 | return error; | |
f74370b8 | 2255 | refcount_inc(&undo_list->refcnt); |
1da177e4 | 2256 | tsk->sysvsem.undo_list = undo_list; |
46c0a8ca | 2257 | } else |
1da177e4 LT |
2258 | tsk->sysvsem.undo_list = NULL; |
2259 | ||
2260 | return 0; | |
2261 | } | |
2262 | ||
2263 | /* | |
2264 | * add semadj values to semaphores, free undo structures. | |
2265 | * undo structures are not freed when semaphore arrays are destroyed | |
2266 | * so some of them may be out of date. | |
2267 | * IMPLEMENTATION NOTE: There is some confusion over whether the | |
2268 | * set of adjustments that needs to be done should be done in an atomic | |
2269 | * manner or not. That is, if we are attempting to decrement the semval | |
2270 | * should we queue up and wait until we can do so legally? | |
2271 | * The original implementation attempted to do this (queue and wait). | |
2272 | * The current implementation does not do so. The POSIX standard | |
2273 | * and SVID should be consulted to determine what behavior is mandated. | |
2274 | */ | |
2275 | void exit_sem(struct task_struct *tsk) | |
2276 | { | |
4daa28f6 | 2277 | struct sem_undo_list *ulp; |
1da177e4 | 2278 | |
4daa28f6 MS |
2279 | ulp = tsk->sysvsem.undo_list; |
2280 | if (!ulp) | |
1da177e4 | 2281 | return; |
9edff4ab | 2282 | tsk->sysvsem.undo_list = NULL; |
1da177e4 | 2283 | |
f74370b8 | 2284 | if (!refcount_dec_and_test(&ulp->refcnt)) |
1da177e4 LT |
2285 | return; |
2286 | ||
380af1b3 | 2287 | for (;;) { |
1da177e4 | 2288 | struct sem_array *sma; |
380af1b3 | 2289 | struct sem_undo *un; |
6062a8dc | 2290 | int semid, i; |
9ae949fa | 2291 | DEFINE_WAKE_Q(wake_q); |
4daa28f6 | 2292 | |
2a1613a5 NB |
2293 | cond_resched(); |
2294 | ||
380af1b3 | 2295 | rcu_read_lock(); |
05725f7e JP |
2296 | un = list_entry_rcu(ulp->list_proc.next, |
2297 | struct sem_undo, list_proc); | |
602b8593 HK |
2298 | if (&un->list_proc == &ulp->list_proc) { |
2299 | /* | |
2300 | * We must wait for freeary() before freeing this ulp, | |
2301 | * in case we raced with last sem_undo. There is a small | |
2302 | * possibility where we exit while freeary() didn't | |
2303 | * finish unlocking sem_undo_list. | |
2304 | */ | |
e0892e08 PM |
2305 | spin_lock(&ulp->lock); |
2306 | spin_unlock(&ulp->lock); | |
602b8593 HK |
2307 | rcu_read_unlock(); |
2308 | break; | |
2309 | } | |
2310 | spin_lock(&ulp->lock); | |
2311 | semid = un->semid; | |
2312 | spin_unlock(&ulp->lock); | |
4daa28f6 | 2313 | |
602b8593 | 2314 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2315 | if (semid == -1) { |
2316 | rcu_read_unlock(); | |
602b8593 | 2317 | continue; |
6062a8dc | 2318 | } |
1da177e4 | 2319 | |
602b8593 | 2320 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); |
380af1b3 | 2321 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2322 | if (IS_ERR(sma)) { |
2323 | rcu_read_unlock(); | |
380af1b3 | 2324 | continue; |
6062a8dc | 2325 | } |
1da177e4 | 2326 | |
6062a8dc | 2327 | sem_lock(sma, NULL, -1); |
6e224f94 | 2328 | /* exit_sem raced with IPC_RMID, nothing to do */ |
0f3d2b01 | 2329 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
2330 | sem_unlock(sma, -1); |
2331 | rcu_read_unlock(); | |
2332 | continue; | |
2333 | } | |
bf17bb71 | 2334 | un = __lookup_undo(ulp, semid); |
380af1b3 MS |
2335 | if (un == NULL) { |
2336 | /* exit_sem raced with IPC_RMID+semget() that created | |
2337 | * exactly the same semid. Nothing to do. | |
2338 | */ | |
6062a8dc | 2339 | sem_unlock(sma, -1); |
6d49dab8 | 2340 | rcu_read_unlock(); |
380af1b3 MS |
2341 | continue; |
2342 | } | |
2343 | ||
2344 | /* remove un from the linked lists */ | |
cf9d5d78 | 2345 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 MS |
2346 | list_del(&un->list_id); |
2347 | ||
a9795584 HK |
2348 | /* we are the last process using this ulp, acquiring ulp->lock |
2349 | * isn't required. Besides that, we are also protected against | |
2350 | * IPC_RMID as we hold sma->sem_perm lock now | |
2351 | */ | |
380af1b3 | 2352 | list_del_rcu(&un->list_proc); |
380af1b3 | 2353 | |
4daa28f6 MS |
2354 | /* perform adjustments registered in un */ |
2355 | for (i = 0; i < sma->sem_nsems; i++) { | |
1a233956 | 2356 | struct sem *semaphore = &sma->sems[i]; |
4daa28f6 MS |
2357 | if (un->semadj[i]) { |
2358 | semaphore->semval += un->semadj[i]; | |
1da177e4 LT |
2359 | /* |
2360 | * Range checks of the new semaphore value, | |
2361 | * not defined by sus: | |
2362 | * - Some unices ignore the undo entirely | |
2363 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) | |
2364 | * - some cap the value (e.g. FreeBSD caps | |
2365 | * at 0, but doesn't enforce SEMVMX) | |
2366 | * | |
2367 | * Linux caps the semaphore value, both at 0 | |
2368 | * and at SEMVMX. | |
2369 | * | |
239521f3 | 2370 | * Manfred <[email protected]> |
1da177e4 | 2371 | */ |
5f921ae9 IM |
2372 | if (semaphore->semval < 0) |
2373 | semaphore->semval = 0; | |
2374 | if (semaphore->semval > SEMVMX) | |
2375 | semaphore->semval = SEMVMX; | |
51d6f263 | 2376 | ipc_update_pid(&semaphore->sempid, task_tgid(current)); |
1da177e4 LT |
2377 | } |
2378 | } | |
1da177e4 | 2379 | /* maybe some queued-up processes were waiting for this */ |
9ae949fa | 2380 | do_smart_update(sma, NULL, 0, 1, &wake_q); |
6062a8dc | 2381 | sem_unlock(sma, -1); |
6d49dab8 | 2382 | rcu_read_unlock(); |
9ae949fa | 2383 | wake_up_q(&wake_q); |
380af1b3 | 2384 | |
693a8b6e | 2385 | kfree_rcu(un, rcu); |
1da177e4 | 2386 | } |
4daa28f6 | 2387 | kfree(ulp); |
1da177e4 LT |
2388 | } |
2389 | ||
2390 | #ifdef CONFIG_PROC_FS | |
19b4946c | 2391 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
1da177e4 | 2392 | { |
1efdb69b | 2393 | struct user_namespace *user_ns = seq_user_ns(s); |
ade9f91b KC |
2394 | struct kern_ipc_perm *ipcp = it; |
2395 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | |
e54d02b2 | 2396 | time64_t sem_otime; |
d12e1e50 | 2397 | |
d8c63376 MS |
2398 | /* |
2399 | * The proc interface isn't aware of sem_lock(), it calls | |
2400 | * ipc_lock_object() directly (in sysvipc_find_ipc). | |
5864a2fd MS |
2401 | * In order to stay compatible with sem_lock(), we must |
2402 | * enter / leave complex_mode. | |
d8c63376 | 2403 | */ |
5864a2fd | 2404 | complexmode_enter(sma); |
d8c63376 | 2405 | |
d12e1e50 | 2406 | sem_otime = get_semotime(sma); |
19b4946c | 2407 | |
7f032d6e | 2408 | seq_printf(s, |
e54d02b2 | 2409 | "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", |
7f032d6e JP |
2410 | sma->sem_perm.key, |
2411 | sma->sem_perm.id, | |
2412 | sma->sem_perm.mode, | |
2413 | sma->sem_nsems, | |
2414 | from_kuid_munged(user_ns, sma->sem_perm.uid), | |
2415 | from_kgid_munged(user_ns, sma->sem_perm.gid), | |
2416 | from_kuid_munged(user_ns, sma->sem_perm.cuid), | |
2417 | from_kgid_munged(user_ns, sma->sem_perm.cgid), | |
2418 | sem_otime, | |
2419 | sma->sem_ctime); | |
2420 | ||
5864a2fd MS |
2421 | complexmode_tryleave(sma); |
2422 | ||
7f032d6e | 2423 | return 0; |
1da177e4 LT |
2424 | } |
2425 | #endif |