]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * JFFS2 -- Journalling Flash File System, Version 2. | |
3 | * | |
c00c310e | 4 | * Copyright © 2001-2007 Red Hat, Inc. |
1da177e4 LT |
5 | * |
6 | * Created by David Woodhouse <[email protected]> | |
7 | * | |
8 | * For licensing information, see the file 'LICENCE' in this directory. | |
9 | * | |
1da177e4 LT |
10 | */ |
11 | ||
12 | #include <linux/kernel.h> | |
13 | #include <linux/mtd/mtd.h> | |
14 | #include <linux/slab.h> | |
15 | #include <linux/pagemap.h> | |
16 | #include <linux/crc32.h> | |
17 | #include <linux/compiler.h> | |
18 | #include <linux/stat.h> | |
19 | #include "nodelist.h" | |
20 | #include "compr.h" | |
21 | ||
182ec4ee | 22 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
1da177e4 LT |
23 | struct jffs2_inode_cache *ic, |
24 | struct jffs2_raw_node_ref *raw); | |
182ec4ee | 25 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 | 26 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); |
182ec4ee | 27 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 | 28 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
182ec4ee | 29 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
30 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
31 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
32 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
33 | uint32_t start, uint32_t end); | |
34 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
35 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
36 | uint32_t start, uint32_t end); | |
37 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
38 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); | |
39 | ||
40 | /* Called with erase_completion_lock held */ | |
41 | static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) | |
42 | { | |
43 | struct jffs2_eraseblock *ret; | |
44 | struct list_head *nextlist = NULL; | |
45 | int n = jiffies % 128; | |
46 | ||
47 | /* Pick an eraseblock to garbage collect next. This is where we'll | |
48 | put the clever wear-levelling algorithms. Eventually. */ | |
49 | /* We possibly want to favour the dirtier blocks more when the | |
50 | number of free blocks is low. */ | |
a42163d7 | 51 | again: |
1da177e4 LT |
52 | if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { |
53 | D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); | |
54 | nextlist = &c->bad_used_list; | |
55 | } else if (n < 50 && !list_empty(&c->erasable_list)) { | |
182ec4ee | 56 | /* Note that most of them will have gone directly to be erased. |
1da177e4 LT |
57 | So don't favour the erasable_list _too_ much. */ |
58 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); | |
59 | nextlist = &c->erasable_list; | |
60 | } else if (n < 110 && !list_empty(&c->very_dirty_list)) { | |
61 | /* Most of the time, pick one off the very_dirty list */ | |
62 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); | |
63 | nextlist = &c->very_dirty_list; | |
64 | } else if (n < 126 && !list_empty(&c->dirty_list)) { | |
65 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); | |
66 | nextlist = &c->dirty_list; | |
67 | } else if (!list_empty(&c->clean_list)) { | |
68 | D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); | |
69 | nextlist = &c->clean_list; | |
70 | } else if (!list_empty(&c->dirty_list)) { | |
71 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); | |
72 | ||
73 | nextlist = &c->dirty_list; | |
74 | } else if (!list_empty(&c->very_dirty_list)) { | |
75 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); | |
76 | nextlist = &c->very_dirty_list; | |
77 | } else if (!list_empty(&c->erasable_list)) { | |
78 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); | |
79 | ||
80 | nextlist = &c->erasable_list; | |
a42163d7 AB |
81 | } else if (!list_empty(&c->erasable_pending_wbuf_list)) { |
82 | /* There are blocks are wating for the wbuf sync */ | |
83 | D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); | |
3cceb9f6 | 84 | spin_unlock(&c->erase_completion_lock); |
a42163d7 | 85 | jffs2_flush_wbuf_pad(c); |
3cceb9f6 | 86 | spin_lock(&c->erase_completion_lock); |
a42163d7 | 87 | goto again; |
1da177e4 LT |
88 | } else { |
89 | /* Eep. All were empty */ | |
90 | D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); | |
91 | return NULL; | |
92 | } | |
93 | ||
94 | ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); | |
95 | list_del(&ret->list); | |
96 | c->gcblock = ret; | |
97 | ret->gc_node = ret->first_node; | |
98 | if (!ret->gc_node) { | |
99 | printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); | |
100 | BUG(); | |
101 | } | |
182ec4ee | 102 | |
1da177e4 LT |
103 | /* Have we accidentally picked a clean block with wasted space ? */ |
104 | if (ret->wasted_size) { | |
105 | D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); | |
106 | ret->dirty_size += ret->wasted_size; | |
107 | c->wasted_size -= ret->wasted_size; | |
108 | c->dirty_size += ret->wasted_size; | |
109 | ret->wasted_size = 0; | |
110 | } | |
111 | ||
1da177e4 LT |
112 | return ret; |
113 | } | |
114 | ||
115 | /* jffs2_garbage_collect_pass | |
116 | * Make a single attempt to progress GC. Move one node, and possibly | |
117 | * start erasing one eraseblock. | |
118 | */ | |
119 | int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) | |
120 | { | |
121 | struct jffs2_inode_info *f; | |
122 | struct jffs2_inode_cache *ic; | |
123 | struct jffs2_eraseblock *jeb; | |
124 | struct jffs2_raw_node_ref *raw; | |
2665ea84 | 125 | uint32_t gcblock_dirty; |
1da177e4 | 126 | int ret = 0, inum, nlink; |
aa98d7cf | 127 | int xattr = 0; |
1da177e4 | 128 | |
ced22070 | 129 | if (mutex_lock_interruptible(&c->alloc_sem)) |
1da177e4 LT |
130 | return -EINTR; |
131 | ||
132 | for (;;) { | |
133 | spin_lock(&c->erase_completion_lock); | |
134 | if (!c->unchecked_size) | |
135 | break; | |
136 | ||
137 | /* We can't start doing GC yet. We haven't finished checking | |
138 | the node CRCs etc. Do it now. */ | |
182ec4ee | 139 | |
1da177e4 | 140 | /* checked_ino is protected by the alloc_sem */ |
aa98d7cf | 141 | if (c->checked_ino > c->highest_ino && xattr) { |
1da177e4 LT |
142 | printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", |
143 | c->unchecked_size); | |
e0c8e42f | 144 | jffs2_dbg_dump_block_lists_nolock(c); |
1da177e4 | 145 | spin_unlock(&c->erase_completion_lock); |
ced22070 | 146 | mutex_unlock(&c->alloc_sem); |
44b998e1 | 147 | return -ENOSPC; |
1da177e4 LT |
148 | } |
149 | ||
150 | spin_unlock(&c->erase_completion_lock); | |
151 | ||
aa98d7cf KK |
152 | if (!xattr) |
153 | xattr = jffs2_verify_xattr(c); | |
154 | ||
1da177e4 LT |
155 | spin_lock(&c->inocache_lock); |
156 | ||
157 | ic = jffs2_get_ino_cache(c, c->checked_ino++); | |
158 | ||
159 | if (!ic) { | |
160 | spin_unlock(&c->inocache_lock); | |
161 | continue; | |
162 | } | |
163 | ||
27c72b04 DW |
164 | if (!ic->pino_nlink) { |
165 | D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n", | |
1da177e4 LT |
166 | ic->ino)); |
167 | spin_unlock(&c->inocache_lock); | |
355ed4e1 | 168 | jffs2_xattr_delete_inode(c, ic); |
1da177e4 LT |
169 | continue; |
170 | } | |
171 | switch(ic->state) { | |
172 | case INO_STATE_CHECKEDABSENT: | |
173 | case INO_STATE_PRESENT: | |
174 | D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); | |
175 | spin_unlock(&c->inocache_lock); | |
176 | continue; | |
177 | ||
178 | case INO_STATE_GC: | |
179 | case INO_STATE_CHECKING: | |
180 | printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); | |
181 | spin_unlock(&c->inocache_lock); | |
182 | BUG(); | |
183 | ||
184 | case INO_STATE_READING: | |
185 | /* We need to wait for it to finish, lest we move on | |
182ec4ee | 186 | and trigger the BUG() above while we haven't yet |
1da177e4 LT |
187 | finished checking all its nodes */ |
188 | D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); | |
d96fb997 DW |
189 | /* We need to come back again for the _same_ inode. We've |
190 | made no progress in this case, but that should be OK */ | |
191 | c->checked_ino--; | |
192 | ||
ced22070 | 193 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
194 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); |
195 | return 0; | |
196 | ||
197 | default: | |
198 | BUG(); | |
199 | ||
200 | case INO_STATE_UNCHECKED: | |
201 | ; | |
202 | } | |
203 | ic->state = INO_STATE_CHECKING; | |
204 | spin_unlock(&c->inocache_lock); | |
205 | ||
206 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); | |
207 | ||
208 | ret = jffs2_do_crccheck_inode(c, ic); | |
209 | if (ret) | |
210 | printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); | |
211 | ||
212 | jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); | |
ced22070 | 213 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
214 | return ret; |
215 | } | |
216 | ||
217 | /* First, work out which block we're garbage-collecting */ | |
218 | jeb = c->gcblock; | |
219 | ||
220 | if (!jeb) | |
221 | jeb = jffs2_find_gc_block(c); | |
222 | ||
223 | if (!jeb) { | |
422b1202 DW |
224 | /* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */ |
225 | if (!list_empty(&c->erase_pending_list)) { | |
226 | spin_unlock(&c->erase_completion_lock); | |
227 | mutex_unlock(&c->alloc_sem); | |
228 | return -EAGAIN; | |
229 | } | |
230 | D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); | |
1da177e4 | 231 | spin_unlock(&c->erase_completion_lock); |
ced22070 | 232 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
233 | return -EIO; |
234 | } | |
235 | ||
236 | D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); | |
237 | D1(if (c->nextblock) | |
238 | printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); | |
239 | ||
240 | if (!jeb->used_size) { | |
ced22070 | 241 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
242 | goto eraseit; |
243 | } | |
244 | ||
245 | raw = jeb->gc_node; | |
2665ea84 | 246 | gcblock_dirty = jeb->dirty_size; |
182ec4ee | 247 | |
1da177e4 LT |
248 | while(ref_obsolete(raw)) { |
249 | D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); | |
99988f7b | 250 | raw = ref_next(raw); |
1da177e4 LT |
251 | if (unlikely(!raw)) { |
252 | printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); | |
182ec4ee | 253 | printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", |
1da177e4 LT |
254 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); |
255 | jeb->gc_node = raw; | |
256 | spin_unlock(&c->erase_completion_lock); | |
ced22070 | 257 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
258 | BUG(); |
259 | } | |
260 | } | |
261 | jeb->gc_node = raw; | |
262 | ||
263 | D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); | |
264 | ||
265 | if (!raw->next_in_ino) { | |
266 | /* Inode-less node. Clean marker, snapshot or something like that */ | |
1da177e4 | 267 | spin_unlock(&c->erase_completion_lock); |
6171586a DW |
268 | if (ref_flags(raw) == REF_PRISTINE) { |
269 | /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */ | |
270 | jffs2_garbage_collect_pristine(c, NULL, raw); | |
271 | } else { | |
272 | /* Just mark it obsolete */ | |
273 | jffs2_mark_node_obsolete(c, raw); | |
274 | } | |
ced22070 | 275 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
276 | goto eraseit_lock; |
277 | } | |
278 | ||
279 | ic = jffs2_raw_ref_to_ic(raw); | |
280 | ||
084702e0 | 281 | #ifdef CONFIG_JFFS2_FS_XATTR |
aa98d7cf | 282 | /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr. |
084702e0 KK |
283 | * We can decide whether this node is inode or xattr by ic->class. */ |
284 | if (ic->class == RAWNODE_CLASS_XATTR_DATUM | |
285 | || ic->class == RAWNODE_CLASS_XATTR_REF) { | |
084702e0 KK |
286 | spin_unlock(&c->erase_completion_lock); |
287 | ||
288 | if (ic->class == RAWNODE_CLASS_XATTR_DATUM) { | |
c9f700f8 | 289 | ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw); |
084702e0 | 290 | } else { |
c9f700f8 | 291 | ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw); |
084702e0 | 292 | } |
2665ea84 | 293 | goto test_gcnode; |
084702e0 KK |
294 | } |
295 | #endif | |
aa98d7cf | 296 | |
1da177e4 | 297 | /* We need to hold the inocache. Either the erase_completion_lock or |
182ec4ee | 298 | the inocache_lock are sufficient; we trade down since the inocache_lock |
1da177e4 LT |
299 | causes less contention. */ |
300 | spin_lock(&c->inocache_lock); | |
301 | ||
302 | spin_unlock(&c->erase_completion_lock); | |
303 | ||
304 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); | |
305 | ||
306 | /* Three possibilities: | |
307 | 1. Inode is already in-core. We must iget it and do proper | |
308 | updating to its fragtree, etc. | |
309 | 2. Inode is not in-core, node is REF_PRISTINE. We lock the | |
310 | inocache to prevent a read_inode(), copy the node intact. | |
311 | 3. Inode is not in-core, node is not pristine. We must iget() | |
312 | and take the slow path. | |
313 | */ | |
314 | ||
315 | switch(ic->state) { | |
316 | case INO_STATE_CHECKEDABSENT: | |
182ec4ee | 317 | /* It's been checked, but it's not currently in-core. |
1da177e4 LT |
318 | We can just copy any pristine nodes, but have |
319 | to prevent anyone else from doing read_inode() while | |
320 | we're at it, so we set the state accordingly */ | |
321 | if (ref_flags(raw) == REF_PRISTINE) | |
322 | ic->state = INO_STATE_GC; | |
323 | else { | |
182ec4ee | 324 | D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", |
1da177e4 LT |
325 | ic->ino)); |
326 | } | |
327 | break; | |
328 | ||
329 | case INO_STATE_PRESENT: | |
330 | /* It's in-core. GC must iget() it. */ | |
331 | break; | |
332 | ||
333 | case INO_STATE_UNCHECKED: | |
334 | case INO_STATE_CHECKING: | |
335 | case INO_STATE_GC: | |
336 | /* Should never happen. We should have finished checking | |
182ec4ee TG |
337 | by the time we actually start doing any GC, and since |
338 | we're holding the alloc_sem, no other garbage collection | |
1da177e4 LT |
339 | can happen. |
340 | */ | |
341 | printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", | |
342 | ic->ino, ic->state); | |
ced22070 | 343 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
344 | spin_unlock(&c->inocache_lock); |
345 | BUG(); | |
346 | ||
347 | case INO_STATE_READING: | |
348 | /* Someone's currently trying to read it. We must wait for | |
349 | them to finish and then go through the full iget() route | |
350 | to do the GC. However, sometimes read_inode() needs to get | |
351 | the alloc_sem() (for marking nodes invalid) so we must | |
352 | drop the alloc_sem before sleeping. */ | |
353 | ||
ced22070 | 354 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
355 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", |
356 | ic->ino, ic->state)); | |
357 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | |
182ec4ee | 358 | /* And because we dropped the alloc_sem we must start again from the |
1da177e4 LT |
359 | beginning. Ponder chance of livelock here -- we're returning success |
360 | without actually making any progress. | |
361 | ||
182ec4ee | 362 | Q: What are the chances that the inode is back in INO_STATE_READING |
1da177e4 LT |
363 | again by the time we next enter this function? And that this happens |
364 | enough times to cause a real delay? | |
365 | ||
182ec4ee | 366 | A: Small enough that I don't care :) |
1da177e4 LT |
367 | */ |
368 | return 0; | |
369 | } | |
370 | ||
371 | /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the | |
182ec4ee | 372 | node intact, and we don't have to muck about with the fragtree etc. |
1da177e4 LT |
373 | because we know it's not in-core. If it _was_ in-core, we go through |
374 | all the iget() crap anyway */ | |
375 | ||
376 | if (ic->state == INO_STATE_GC) { | |
377 | spin_unlock(&c->inocache_lock); | |
378 | ||
379 | ret = jffs2_garbage_collect_pristine(c, ic, raw); | |
380 | ||
381 | spin_lock(&c->inocache_lock); | |
382 | ic->state = INO_STATE_CHECKEDABSENT; | |
383 | wake_up(&c->inocache_wq); | |
384 | ||
385 | if (ret != -EBADFD) { | |
386 | spin_unlock(&c->inocache_lock); | |
2665ea84 | 387 | goto test_gcnode; |
1da177e4 LT |
388 | } |
389 | ||
390 | /* Fall through if it wanted us to, with inocache_lock held */ | |
391 | } | |
392 | ||
393 | /* Prevent the fairly unlikely race where the gcblock is | |
394 | entirely obsoleted by the final close of a file which had | |
395 | the only valid nodes in the block, followed by erasure, | |
396 | followed by freeing of the ic because the erased block(s) | |
397 | held _all_ the nodes of that inode.... never been seen but | |
398 | it's vaguely possible. */ | |
399 | ||
400 | inum = ic->ino; | |
27c72b04 | 401 | nlink = ic->pino_nlink; |
1da177e4 LT |
402 | spin_unlock(&c->inocache_lock); |
403 | ||
1b690b48 | 404 | f = jffs2_gc_fetch_inode(c, inum, !nlink); |
1da177e4 LT |
405 | if (IS_ERR(f)) { |
406 | ret = PTR_ERR(f); | |
407 | goto release_sem; | |
408 | } | |
409 | if (!f) { | |
410 | ret = 0; | |
411 | goto release_sem; | |
412 | } | |
413 | ||
414 | ret = jffs2_garbage_collect_live(c, jeb, raw, f); | |
415 | ||
416 | jffs2_gc_release_inode(c, f); | |
417 | ||
2665ea84 DW |
418 | test_gcnode: |
419 | if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) { | |
420 | /* Eep. This really should never happen. GC is broken */ | |
421 | printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node)); | |
422 | ret = -ENOSPC; | |
4fc8a607 | 423 | } |
1da177e4 | 424 | release_sem: |
ced22070 | 425 | mutex_unlock(&c->alloc_sem); |
1da177e4 LT |
426 | |
427 | eraseit_lock: | |
428 | /* If we've finished this block, start it erasing */ | |
429 | spin_lock(&c->erase_completion_lock); | |
430 | ||
431 | eraseit: | |
432 | if (c->gcblock && !c->gcblock->used_size) { | |
433 | D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); | |
434 | /* We're GC'ing an empty block? */ | |
435 | list_add_tail(&c->gcblock->list, &c->erase_pending_list); | |
436 | c->gcblock = NULL; | |
437 | c->nr_erasing_blocks++; | |
438 | jffs2_erase_pending_trigger(c); | |
439 | } | |
440 | spin_unlock(&c->erase_completion_lock); | |
441 | ||
442 | return ret; | |
443 | } | |
444 | ||
445 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
446 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) | |
447 | { | |
448 | struct jffs2_node_frag *frag; | |
449 | struct jffs2_full_dnode *fn = NULL; | |
450 | struct jffs2_full_dirent *fd; | |
451 | uint32_t start = 0, end = 0, nrfrags = 0; | |
452 | int ret = 0; | |
453 | ||
ced22070 | 454 | mutex_lock(&f->sem); |
1da177e4 LT |
455 | |
456 | /* Now we have the lock for this inode. Check that it's still the one at the head | |
457 | of the list. */ | |
458 | ||
459 | spin_lock(&c->erase_completion_lock); | |
460 | ||
461 | if (c->gcblock != jeb) { | |
462 | spin_unlock(&c->erase_completion_lock); | |
463 | D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); | |
464 | goto upnout; | |
465 | } | |
466 | if (ref_obsolete(raw)) { | |
467 | spin_unlock(&c->erase_completion_lock); | |
468 | D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); | |
469 | /* They'll call again */ | |
470 | goto upnout; | |
471 | } | |
472 | spin_unlock(&c->erase_completion_lock); | |
473 | ||
474 | /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ | |
475 | if (f->metadata && f->metadata->raw == raw) { | |
476 | fn = f->metadata; | |
477 | ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); | |
478 | goto upnout; | |
479 | } | |
480 | ||
481 | /* FIXME. Read node and do lookup? */ | |
482 | for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { | |
483 | if (frag->node && frag->node->raw == raw) { | |
484 | fn = frag->node; | |
485 | end = frag->ofs + frag->size; | |
486 | if (!nrfrags++) | |
487 | start = frag->ofs; | |
488 | if (nrfrags == frag->node->frags) | |
489 | break; /* We've found them all */ | |
490 | } | |
491 | } | |
492 | if (fn) { | |
493 | if (ref_flags(raw) == REF_PRISTINE) { | |
494 | ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); | |
495 | if (!ret) { | |
496 | /* Urgh. Return it sensibly. */ | |
497 | frag->node->raw = f->inocache->nodes; | |
182ec4ee | 498 | } |
1da177e4 LT |
499 | if (ret != -EBADFD) |
500 | goto upnout; | |
501 | } | |
502 | /* We found a datanode. Do the GC */ | |
503 | if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { | |
504 | /* It crosses a page boundary. Therefore, it must be a hole. */ | |
505 | ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); | |
506 | } else { | |
507 | /* It could still be a hole. But we GC the page this way anyway */ | |
508 | ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); | |
509 | } | |
510 | goto upnout; | |
511 | } | |
182ec4ee | 512 | |
1da177e4 LT |
513 | /* Wasn't a dnode. Try dirent */ |
514 | for (fd = f->dents; fd; fd=fd->next) { | |
515 | if (fd->raw == raw) | |
516 | break; | |
517 | } | |
518 | ||
519 | if (fd && fd->ino) { | |
520 | ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); | |
521 | } else if (fd) { | |
522 | ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); | |
523 | } else { | |
524 | printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", | |
525 | ref_offset(raw), f->inocache->ino); | |
526 | if (ref_obsolete(raw)) { | |
527 | printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); | |
528 | } else { | |
e0c8e42f AB |
529 | jffs2_dbg_dump_node(c, ref_offset(raw)); |
530 | BUG(); | |
1da177e4 LT |
531 | } |
532 | } | |
533 | upnout: | |
ced22070 | 534 | mutex_unlock(&f->sem); |
1da177e4 LT |
535 | |
536 | return ret; | |
537 | } | |
538 | ||
182ec4ee | 539 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
1da177e4 LT |
540 | struct jffs2_inode_cache *ic, |
541 | struct jffs2_raw_node_ref *raw) | |
542 | { | |
543 | union jffs2_node_union *node; | |
1da177e4 LT |
544 | size_t retlen; |
545 | int ret; | |
546 | uint32_t phys_ofs, alloclen; | |
547 | uint32_t crc, rawlen; | |
548 | int retried = 0; | |
549 | ||
550 | D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); | |
551 | ||
6171586a | 552 | alloclen = rawlen = ref_totlen(c, c->gcblock, raw); |
1da177e4 LT |
553 | |
554 | /* Ask for a small amount of space (or the totlen if smaller) because we | |
555 | don't want to force wastage of the end of a block if splitting would | |
556 | work. */ | |
6171586a DW |
557 | if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) |
558 | alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN; | |
559 | ||
9fe4854c | 560 | ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen); |
6171586a | 561 | /* 'rawlen' is not the exact summary size; it is only an upper estimation */ |
e631ddba | 562 | |
1da177e4 LT |
563 | if (ret) |
564 | return ret; | |
565 | ||
566 | if (alloclen < rawlen) { | |
567 | /* Doesn't fit untouched. We'll go the old route and split it */ | |
568 | return -EBADFD; | |
569 | } | |
570 | ||
571 | node = kmalloc(rawlen, GFP_KERNEL); | |
572 | if (!node) | |
ef53cb02 | 573 | return -ENOMEM; |
1da177e4 LT |
574 | |
575 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); | |
576 | if (!ret && retlen != rawlen) | |
577 | ret = -EIO; | |
578 | if (ret) | |
579 | goto out_node; | |
580 | ||
581 | crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); | |
582 | if (je32_to_cpu(node->u.hdr_crc) != crc) { | |
583 | printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
584 | ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); | |
585 | goto bail; | |
586 | } | |
587 | ||
588 | switch(je16_to_cpu(node->u.nodetype)) { | |
589 | case JFFS2_NODETYPE_INODE: | |
590 | crc = crc32(0, node, sizeof(node->i)-8); | |
591 | if (je32_to_cpu(node->i.node_crc) != crc) { | |
592 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
593 | ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); | |
594 | goto bail; | |
595 | } | |
596 | ||
597 | if (je32_to_cpu(node->i.dsize)) { | |
598 | crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); | |
599 | if (je32_to_cpu(node->i.data_crc) != crc) { | |
600 | printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
601 | ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); | |
602 | goto bail; | |
603 | } | |
604 | } | |
605 | break; | |
606 | ||
607 | case JFFS2_NODETYPE_DIRENT: | |
608 | crc = crc32(0, node, sizeof(node->d)-8); | |
609 | if (je32_to_cpu(node->d.node_crc) != crc) { | |
610 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
611 | ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); | |
612 | goto bail; | |
613 | } | |
614 | ||
b534e70c DW |
615 | if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) { |
616 | printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw)); | |
617 | goto bail; | |
618 | } | |
619 | ||
1da177e4 LT |
620 | if (node->d.nsize) { |
621 | crc = crc32(0, node->d.name, node->d.nsize); | |
622 | if (je32_to_cpu(node->d.name_crc) != crc) { | |
b534e70c | 623 | printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
1da177e4 LT |
624 | ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); |
625 | goto bail; | |
626 | } | |
627 | } | |
628 | break; | |
629 | default: | |
6171586a DW |
630 | /* If it's inode-less, we don't _know_ what it is. Just copy it intact */ |
631 | if (ic) { | |
632 | printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", | |
633 | ref_offset(raw), je16_to_cpu(node->u.nodetype)); | |
634 | goto bail; | |
635 | } | |
1da177e4 LT |
636 | } |
637 | ||
1da177e4 LT |
638 | /* OK, all the CRCs are good; this node can just be copied as-is. */ |
639 | retry: | |
2f785402 | 640 | phys_ofs = write_ofs(c); |
1da177e4 LT |
641 | |
642 | ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); | |
643 | ||
644 | if (ret || (retlen != rawlen)) { | |
645 | printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", | |
ef53cb02 | 646 | rawlen, phys_ofs, ret, retlen); |
1da177e4 | 647 | if (retlen) { |
2f785402 | 648 | jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL); |
1da177e4 | 649 | } else { |
2f785402 | 650 | printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs); |
1da177e4 | 651 | } |
2f785402 | 652 | if (!retried) { |
1da177e4 LT |
653 | /* Try to reallocate space and retry */ |
654 | uint32_t dummy; | |
655 | struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; | |
656 | ||
657 | retried = 1; | |
658 | ||
659 | D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); | |
182ec4ee | 660 | |
730554d9 AB |
661 | jffs2_dbg_acct_sanity_check(c,jeb); |
662 | jffs2_dbg_acct_paranoia_check(c, jeb); | |
1da177e4 | 663 | |
9fe4854c | 664 | ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen); |
e631ddba FH |
665 | /* this is not the exact summary size of it, |
666 | it is only an upper estimation */ | |
1da177e4 LT |
667 | |
668 | if (!ret) { | |
669 | D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); | |
670 | ||
730554d9 AB |
671 | jffs2_dbg_acct_sanity_check(c,jeb); |
672 | jffs2_dbg_acct_paranoia_check(c, jeb); | |
1da177e4 LT |
673 | |
674 | goto retry; | |
675 | } | |
676 | D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); | |
1da177e4 LT |
677 | } |
678 | ||
1da177e4 LT |
679 | if (!ret) |
680 | ret = -EIO; | |
681 | goto out_node; | |
682 | } | |
2f785402 | 683 | jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic); |
1da177e4 | 684 | |
1da177e4 LT |
685 | jffs2_mark_node_obsolete(c, raw); |
686 | D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); | |
687 | ||
688 | out_node: | |
689 | kfree(node); | |
690 | return ret; | |
691 | bail: | |
692 | ret = -EBADFD; | |
693 | goto out_node; | |
694 | } | |
695 | ||
182ec4ee | 696 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
697 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) |
698 | { | |
699 | struct jffs2_full_dnode *new_fn; | |
700 | struct jffs2_raw_inode ri; | |
8557fd51 | 701 | struct jffs2_node_frag *last_frag; |
aef9ab47 | 702 | union jffs2_device_node dev; |
1da177e4 | 703 | char *mdata = NULL, mdatalen = 0; |
9fe4854c | 704 | uint32_t alloclen, ilen; |
1da177e4 LT |
705 | int ret; |
706 | ||
707 | if (S_ISBLK(JFFS2_F_I_MODE(f)) || | |
708 | S_ISCHR(JFFS2_F_I_MODE(f)) ) { | |
709 | /* For these, we don't actually need to read the old node */ | |
aef9ab47 | 710 | mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f)); |
1da177e4 | 711 | mdata = (char *)&dev; |
1da177e4 LT |
712 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); |
713 | } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { | |
714 | mdatalen = fn->size; | |
715 | mdata = kmalloc(fn->size, GFP_KERNEL); | |
716 | if (!mdata) { | |
717 | printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); | |
718 | return -ENOMEM; | |
719 | } | |
720 | ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); | |
721 | if (ret) { | |
722 | printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); | |
723 | kfree(mdata); | |
724 | return ret; | |
725 | } | |
726 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); | |
727 | ||
728 | } | |
182ec4ee | 729 | |
9fe4854c | 730 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen, |
e631ddba | 731 | JFFS2_SUMMARY_INODE_SIZE); |
1da177e4 LT |
732 | if (ret) { |
733 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", | |
734 | sizeof(ri)+ mdatalen, ret); | |
735 | goto out; | |
736 | } | |
182ec4ee | 737 | |
8557fd51 AB |
738 | last_frag = frag_last(&f->fragtree); |
739 | if (last_frag) | |
740 | /* Fetch the inode length from the fragtree rather then | |
741 | * from i_size since i_size may have not been updated yet */ | |
742 | ilen = last_frag->ofs + last_frag->size; | |
743 | else | |
744 | ilen = JFFS2_F_I_SIZE(f); | |
182ec4ee | 745 | |
1da177e4 LT |
746 | memset(&ri, 0, sizeof(ri)); |
747 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
748 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
749 | ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); | |
750 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
751 | ||
752 | ri.ino = cpu_to_je32(f->inocache->ino); | |
753 | ri.version = cpu_to_je32(++f->highest_version); | |
754 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | |
755 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
756 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
8557fd51 | 757 | ri.isize = cpu_to_je32(ilen); |
1da177e4 LT |
758 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
759 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
760 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
761 | ri.offset = cpu_to_je32(0); | |
762 | ri.csize = cpu_to_je32(mdatalen); | |
763 | ri.dsize = cpu_to_je32(mdatalen); | |
764 | ri.compr = JFFS2_COMPR_NONE; | |
765 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
766 | ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); | |
767 | ||
9fe4854c | 768 | new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC); |
1da177e4 LT |
769 | |
770 | if (IS_ERR(new_fn)) { | |
771 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | |
772 | ret = PTR_ERR(new_fn); | |
773 | goto out; | |
774 | } | |
775 | jffs2_mark_node_obsolete(c, fn->raw); | |
776 | jffs2_free_full_dnode(fn); | |
777 | f->metadata = new_fn; | |
778 | out: | |
779 | if (S_ISLNK(JFFS2_F_I_MODE(f))) | |
780 | kfree(mdata); | |
781 | return ret; | |
782 | } | |
783 | ||
182ec4ee | 784 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
785 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
786 | { | |
787 | struct jffs2_full_dirent *new_fd; | |
788 | struct jffs2_raw_dirent rd; | |
9fe4854c | 789 | uint32_t alloclen; |
1da177e4 LT |
790 | int ret; |
791 | ||
792 | rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
793 | rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); | |
794 | rd.nsize = strlen(fd->name); | |
795 | rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); | |
796 | rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); | |
797 | ||
798 | rd.pino = cpu_to_je32(f->inocache->ino); | |
799 | rd.version = cpu_to_je32(++f->highest_version); | |
800 | rd.ino = cpu_to_je32(fd->ino); | |
3a69e0cd AB |
801 | /* If the times on this inode were set by explicit utime() they can be different, |
802 | so refrain from splatting them. */ | |
803 | if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f)) | |
804 | rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
182ec4ee | 805 | else |
3a69e0cd | 806 | rd.mctime = cpu_to_je32(0); |
1da177e4 LT |
807 | rd.type = fd->type; |
808 | rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); | |
809 | rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); | |
182ec4ee | 810 | |
9fe4854c | 811 | ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen, |
e631ddba | 812 | JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize)); |
1da177e4 LT |
813 | if (ret) { |
814 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", | |
815 | sizeof(rd)+rd.nsize, ret); | |
816 | return ret; | |
817 | } | |
9fe4854c | 818 | new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC); |
1da177e4 LT |
819 | |
820 | if (IS_ERR(new_fd)) { | |
821 | printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); | |
822 | return PTR_ERR(new_fd); | |
823 | } | |
824 | jffs2_add_fd_to_list(c, new_fd, &f->dents); | |
825 | return 0; | |
826 | } | |
827 | ||
182ec4ee | 828 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
829 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
830 | { | |
831 | struct jffs2_full_dirent **fdp = &f->dents; | |
832 | int found = 0; | |
833 | ||
834 | /* On a medium where we can't actually mark nodes obsolete | |
835 | pernamently, such as NAND flash, we need to work out | |
836 | whether this deletion dirent is still needed to actively | |
837 | delete a 'real' dirent with the same name that's still | |
838 | somewhere else on the flash. */ | |
839 | if (!jffs2_can_mark_obsolete(c)) { | |
840 | struct jffs2_raw_dirent *rd; | |
841 | struct jffs2_raw_node_ref *raw; | |
842 | int ret; | |
843 | size_t retlen; | |
844 | int name_len = strlen(fd->name); | |
845 | uint32_t name_crc = crc32(0, fd->name, name_len); | |
846 | uint32_t rawlen = ref_totlen(c, jeb, fd->raw); | |
847 | ||
848 | rd = kmalloc(rawlen, GFP_KERNEL); | |
849 | if (!rd) | |
850 | return -ENOMEM; | |
851 | ||
852 | /* Prevent the erase code from nicking the obsolete node refs while | |
853 | we're looking at them. I really don't like this extra lock but | |
854 | can't see any alternative. Suggestions on a postcard to... */ | |
ced22070 | 855 | mutex_lock(&c->erase_free_sem); |
1da177e4 LT |
856 | |
857 | for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { | |
858 | ||
aba54da3 AB |
859 | cond_resched(); |
860 | ||
1da177e4 LT |
861 | /* We only care about obsolete ones */ |
862 | if (!(ref_obsolete(raw))) | |
863 | continue; | |
864 | ||
865 | /* Any dirent with the same name is going to have the same length... */ | |
866 | if (ref_totlen(c, NULL, raw) != rawlen) | |
867 | continue; | |
868 | ||
182ec4ee | 869 | /* Doesn't matter if there's one in the same erase block. We're going to |
1da177e4 | 870 | delete it too at the same time. */ |
3be36675 | 871 | if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) |
1da177e4 LT |
872 | continue; |
873 | ||
874 | D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); | |
875 | ||
876 | /* This is an obsolete node belonging to the same directory, and it's of the right | |
877 | length. We need to take a closer look...*/ | |
878 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); | |
879 | if (ret) { | |
880 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); | |
881 | /* If we can't read it, we don't need to continue to obsolete it. Continue */ | |
882 | continue; | |
883 | } | |
884 | if (retlen != rawlen) { | |
885 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", | |
886 | retlen, rawlen, ref_offset(raw)); | |
887 | continue; | |
888 | } | |
889 | ||
890 | if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) | |
891 | continue; | |
892 | ||
893 | /* If the name CRC doesn't match, skip */ | |
894 | if (je32_to_cpu(rd->name_crc) != name_crc) | |
895 | continue; | |
896 | ||
897 | /* If the name length doesn't match, or it's another deletion dirent, skip */ | |
898 | if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) | |
899 | continue; | |
900 | ||
901 | /* OK, check the actual name now */ | |
902 | if (memcmp(rd->name, fd->name, name_len)) | |
903 | continue; | |
904 | ||
905 | /* OK. The name really does match. There really is still an older node on | |
906 | the flash which our deletion dirent obsoletes. So we have to write out | |
907 | a new deletion dirent to replace it */ | |
ced22070 | 908 | mutex_unlock(&c->erase_free_sem); |
1da177e4 LT |
909 | |
910 | D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", | |
911 | ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); | |
912 | kfree(rd); | |
913 | ||
914 | return jffs2_garbage_collect_dirent(c, jeb, f, fd); | |
915 | } | |
916 | ||
ced22070 | 917 | mutex_unlock(&c->erase_free_sem); |
1da177e4 LT |
918 | kfree(rd); |
919 | } | |
920 | ||
182ec4ee | 921 | /* FIXME: If we're deleting a dirent which contains the current mtime and ctime, |
3a69e0cd AB |
922 | we should update the metadata node with those times accordingly */ |
923 | ||
1da177e4 LT |
924 | /* No need for it any more. Just mark it obsolete and remove it from the list */ |
925 | while (*fdp) { | |
926 | if ((*fdp) == fd) { | |
927 | found = 1; | |
928 | *fdp = fd->next; | |
929 | break; | |
930 | } | |
931 | fdp = &(*fdp)->next; | |
932 | } | |
933 | if (!found) { | |
934 | printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); | |
935 | } | |
936 | jffs2_mark_node_obsolete(c, fd->raw); | |
937 | jffs2_free_full_dirent(fd); | |
938 | return 0; | |
939 | } | |
940 | ||
941 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
942 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
943 | uint32_t start, uint32_t end) | |
944 | { | |
945 | struct jffs2_raw_inode ri; | |
946 | struct jffs2_node_frag *frag; | |
947 | struct jffs2_full_dnode *new_fn; | |
9fe4854c | 948 | uint32_t alloclen, ilen; |
1da177e4 LT |
949 | int ret; |
950 | ||
951 | D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", | |
952 | f->inocache->ino, start, end)); | |
182ec4ee | 953 | |
1da177e4 LT |
954 | memset(&ri, 0, sizeof(ri)); |
955 | ||
956 | if(fn->frags > 1) { | |
957 | size_t readlen; | |
958 | uint32_t crc; | |
182ec4ee | 959 | /* It's partially obsoleted by a later write. So we have to |
1da177e4 LT |
960 | write it out again with the _same_ version as before */ |
961 | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); | |
962 | if (readlen != sizeof(ri) || ret) { | |
963 | printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); | |
964 | goto fill; | |
965 | } | |
966 | if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { | |
967 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", | |
968 | ref_offset(fn->raw), | |
969 | je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); | |
970 | return -EIO; | |
971 | } | |
972 | if (je32_to_cpu(ri.totlen) != sizeof(ri)) { | |
973 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", | |
974 | ref_offset(fn->raw), | |
975 | je32_to_cpu(ri.totlen), sizeof(ri)); | |
976 | return -EIO; | |
977 | } | |
978 | crc = crc32(0, &ri, sizeof(ri)-8); | |
979 | if (crc != je32_to_cpu(ri.node_crc)) { | |
980 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", | |
182ec4ee | 981 | ref_offset(fn->raw), |
1da177e4 LT |
982 | je32_to_cpu(ri.node_crc), crc); |
983 | /* FIXME: We could possibly deal with this by writing new holes for each frag */ | |
182ec4ee | 984 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
1da177e4 LT |
985 | start, end, f->inocache->ino); |
986 | goto fill; | |
987 | } | |
988 | if (ri.compr != JFFS2_COMPR_ZERO) { | |
989 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); | |
182ec4ee | 990 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
1da177e4 LT |
991 | start, end, f->inocache->ino); |
992 | goto fill; | |
993 | } | |
994 | } else { | |
995 | fill: | |
996 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
997 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
998 | ri.totlen = cpu_to_je32(sizeof(ri)); | |
999 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
1000 | ||
1001 | ri.ino = cpu_to_je32(f->inocache->ino); | |
1002 | ri.version = cpu_to_je32(++f->highest_version); | |
1003 | ri.offset = cpu_to_je32(start); | |
1004 | ri.dsize = cpu_to_je32(end - start); | |
1005 | ri.csize = cpu_to_je32(0); | |
1006 | ri.compr = JFFS2_COMPR_ZERO; | |
1007 | } | |
182ec4ee | 1008 | |
8557fd51 AB |
1009 | frag = frag_last(&f->fragtree); |
1010 | if (frag) | |
1011 | /* Fetch the inode length from the fragtree rather then | |
1012 | * from i_size since i_size may have not been updated yet */ | |
1013 | ilen = frag->ofs + frag->size; | |
1014 | else | |
1015 | ilen = JFFS2_F_I_SIZE(f); | |
1016 | ||
1da177e4 LT |
1017 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
1018 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
1019 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
8557fd51 | 1020 | ri.isize = cpu_to_je32(ilen); |
1da177e4 LT |
1021 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
1022 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
1023 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
1024 | ri.data_crc = cpu_to_je32(0); | |
1025 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
1026 | ||
9fe4854c DW |
1027 | ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen, |
1028 | JFFS2_SUMMARY_INODE_SIZE); | |
1da177e4 LT |
1029 | if (ret) { |
1030 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", | |
1031 | sizeof(ri), ret); | |
1032 | return ret; | |
1033 | } | |
9fe4854c | 1034 | new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC); |
1da177e4 LT |
1035 | |
1036 | if (IS_ERR(new_fn)) { | |
1037 | printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); | |
1038 | return PTR_ERR(new_fn); | |
1039 | } | |
1040 | if (je32_to_cpu(ri.version) == f->highest_version) { | |
1041 | jffs2_add_full_dnode_to_inode(c, f, new_fn); | |
1042 | if (f->metadata) { | |
1043 | jffs2_mark_node_obsolete(c, f->metadata->raw); | |
1044 | jffs2_free_full_dnode(f->metadata); | |
1045 | f->metadata = NULL; | |
1046 | } | |
1047 | return 0; | |
1048 | } | |
1049 | ||
182ec4ee | 1050 | /* |
1da177e4 LT |
1051 | * We should only get here in the case where the node we are |
1052 | * replacing had more than one frag, so we kept the same version | |
182ec4ee | 1053 | * number as before. (Except in case of error -- see 'goto fill;' |
1da177e4 LT |
1054 | * above.) |
1055 | */ | |
1056 | D1(if(unlikely(fn->frags <= 1)) { | |
1057 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", | |
1058 | fn->frags, je32_to_cpu(ri.version), f->highest_version, | |
1059 | je32_to_cpu(ri.ino)); | |
1060 | }); | |
1061 | ||
1062 | /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ | |
1063 | mark_ref_normal(new_fn->raw); | |
1064 | ||
182ec4ee | 1065 | for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); |
1da177e4 LT |
1066 | frag; frag = frag_next(frag)) { |
1067 | if (frag->ofs > fn->size + fn->ofs) | |
1068 | break; | |
1069 | if (frag->node == fn) { | |
1070 | frag->node = new_fn; | |
1071 | new_fn->frags++; | |
1072 | fn->frags--; | |
1073 | } | |
1074 | } | |
1075 | if (fn->frags) { | |
1076 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); | |
1077 | BUG(); | |
1078 | } | |
1079 | if (!new_fn->frags) { | |
1080 | printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); | |
1081 | BUG(); | |
1082 | } | |
182ec4ee | 1083 | |
1da177e4 LT |
1084 | jffs2_mark_node_obsolete(c, fn->raw); |
1085 | jffs2_free_full_dnode(fn); | |
182ec4ee | 1086 | |
1da177e4 LT |
1087 | return 0; |
1088 | } | |
1089 | ||
25dc30b4 | 1090 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb, |
1da177e4 LT |
1091 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
1092 | uint32_t start, uint32_t end) | |
1093 | { | |
1094 | struct jffs2_full_dnode *new_fn; | |
1095 | struct jffs2_raw_inode ri; | |
9fe4854c | 1096 | uint32_t alloclen, offset, orig_end, orig_start; |
1da177e4 LT |
1097 | int ret = 0; |
1098 | unsigned char *comprbuf = NULL, *writebuf; | |
1099 | unsigned long pg; | |
1100 | unsigned char *pg_ptr; | |
182ec4ee | 1101 | |
1da177e4 LT |
1102 | memset(&ri, 0, sizeof(ri)); |
1103 | ||
1104 | D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", | |
1105 | f->inocache->ino, start, end)); | |
1106 | ||
1107 | orig_end = end; | |
1108 | orig_start = start; | |
1109 | ||
1110 | if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { | |
1111 | /* Attempt to do some merging. But only expand to cover logically | |
1112 | adjacent frags if the block containing them is already considered | |
182ec4ee TG |
1113 | to be dirty. Otherwise we end up with GC just going round in |
1114 | circles dirtying the nodes it already wrote out, especially | |
1da177e4 LT |
1115 | on NAND where we have small eraseblocks and hence a much higher |
1116 | chance of nodes having to be split to cross boundaries. */ | |
1117 | ||
1118 | struct jffs2_node_frag *frag; | |
1119 | uint32_t min, max; | |
1120 | ||
1121 | min = start & ~(PAGE_CACHE_SIZE-1); | |
1122 | max = min + PAGE_CACHE_SIZE; | |
1123 | ||
1124 | frag = jffs2_lookup_node_frag(&f->fragtree, start); | |
1125 | ||
1126 | /* BUG_ON(!frag) but that'll happen anyway... */ | |
1127 | ||
1128 | BUG_ON(frag->ofs != start); | |
1129 | ||
1130 | /* First grow down... */ | |
1131 | while((frag = frag_prev(frag)) && frag->ofs >= min) { | |
1132 | ||
1133 | /* If the previous frag doesn't even reach the beginning, there's | |
1134 | excessive fragmentation. Just merge. */ | |
1135 | if (frag->ofs > min) { | |
1136 | D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", | |
1137 | frag->ofs, frag->ofs+frag->size)); | |
1138 | start = frag->ofs; | |
1139 | continue; | |
1140 | } | |
1141 | /* OK. This frag holds the first byte of the page. */ | |
1142 | if (!frag->node || !frag->node->raw) { | |
1143 | D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", | |
1144 | frag->ofs, frag->ofs+frag->size)); | |
1145 | break; | |
1146 | } else { | |
1147 | ||
182ec4ee | 1148 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
1da177e4 LT |
1149 | in a block which is still considered clean? If so, don't obsolete it. |
1150 | If not, cover it anyway. */ | |
1151 | ||
1152 | struct jffs2_raw_node_ref *raw = frag->node->raw; | |
1153 | struct jffs2_eraseblock *jeb; | |
1154 | ||
1155 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | |
1156 | ||
1157 | if (jeb == c->gcblock) { | |
1158 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", | |
1159 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | |
1160 | start = frag->ofs; | |
1161 | break; | |
1162 | } | |
1163 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | |
1164 | D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", | |
1165 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1166 | break; | |
1167 | } | |
1168 | ||
1169 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", | |
1170 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1171 | start = frag->ofs; | |
1172 | break; | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | /* ... then up */ | |
1177 | ||
1178 | /* Find last frag which is actually part of the node we're to GC. */ | |
1179 | frag = jffs2_lookup_node_frag(&f->fragtree, end-1); | |
1180 | ||
1181 | while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { | |
1182 | ||
1183 | /* If the previous frag doesn't even reach the beginning, there's lots | |
1184 | of fragmentation. Just merge. */ | |
1185 | if (frag->ofs+frag->size < max) { | |
1186 | D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", | |
1187 | frag->ofs, frag->ofs+frag->size)); | |
1188 | end = frag->ofs + frag->size; | |
1189 | continue; | |
1190 | } | |
1191 | ||
1192 | if (!frag->node || !frag->node->raw) { | |
1193 | D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", | |
1194 | frag->ofs, frag->ofs+frag->size)); | |
1195 | break; | |
1196 | } else { | |
1197 | ||
182ec4ee | 1198 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
1da177e4 LT |
1199 | in a block which is still considered clean? If so, don't obsolete it. |
1200 | If not, cover it anyway. */ | |
1201 | ||
1202 | struct jffs2_raw_node_ref *raw = frag->node->raw; | |
1203 | struct jffs2_eraseblock *jeb; | |
1204 | ||
1205 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | |
1206 | ||
1207 | if (jeb == c->gcblock) { | |
1208 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", | |
1209 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | |
1210 | end = frag->ofs + frag->size; | |
1211 | break; | |
1212 | } | |
1213 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | |
1214 | D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", | |
1215 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1216 | break; | |
1217 | } | |
1218 | ||
1219 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", | |
1220 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1221 | end = frag->ofs + frag->size; | |
1222 | break; | |
1223 | } | |
1224 | } | |
182ec4ee | 1225 | D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", |
1da177e4 LT |
1226 | orig_start, orig_end, start, end)); |
1227 | ||
8557fd51 | 1228 | D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size)); |
1da177e4 LT |
1229 | BUG_ON(end < orig_end); |
1230 | BUG_ON(start > orig_start); | |
1231 | } | |
182ec4ee | 1232 | |
1da177e4 LT |
1233 | /* First, use readpage() to read the appropriate page into the page cache */ |
1234 | /* Q: What happens if we actually try to GC the _same_ page for which commit_write() | |
1235 | * triggered garbage collection in the first place? | |
1236 | * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the | |
1237 | * page OK. We'll actually write it out again in commit_write, which is a little | |
1238 | * suboptimal, but at least we're correct. | |
1239 | */ | |
1240 | pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); | |
1241 | ||
1242 | if (IS_ERR(pg_ptr)) { | |
1243 | printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); | |
1244 | return PTR_ERR(pg_ptr); | |
1245 | } | |
1246 | ||
1247 | offset = start; | |
1248 | while(offset < orig_end) { | |
1249 | uint32_t datalen; | |
1250 | uint32_t cdatalen; | |
1251 | uint16_t comprtype = JFFS2_COMPR_NONE; | |
1252 | ||
9fe4854c | 1253 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, |
e631ddba | 1254 | &alloclen, JFFS2_SUMMARY_INODE_SIZE); |
1da177e4 LT |
1255 | |
1256 | if (ret) { | |
1257 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", | |
1258 | sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); | |
1259 | break; | |
1260 | } | |
1261 | cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); | |
1262 | datalen = end - offset; | |
1263 | ||
1264 | writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); | |
1265 | ||
1266 | comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); | |
1267 | ||
1268 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
1269 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
1270 | ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); | |
1271 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
1272 | ||
1273 | ri.ino = cpu_to_je32(f->inocache->ino); | |
1274 | ri.version = cpu_to_je32(++f->highest_version); | |
1275 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | |
1276 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
1277 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
1278 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | |
1279 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | |
1280 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
1281 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
1282 | ri.offset = cpu_to_je32(offset); | |
1283 | ri.csize = cpu_to_je32(cdatalen); | |
1284 | ri.dsize = cpu_to_je32(datalen); | |
1285 | ri.compr = comprtype & 0xff; | |
1286 | ri.usercompr = (comprtype >> 8) & 0xff; | |
1287 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
1288 | ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); | |
182ec4ee | 1289 | |
9fe4854c | 1290 | new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC); |
1da177e4 LT |
1291 | |
1292 | jffs2_free_comprbuf(comprbuf, writebuf); | |
1293 | ||
1294 | if (IS_ERR(new_fn)) { | |
1295 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | |
1296 | ret = PTR_ERR(new_fn); | |
1297 | break; | |
1298 | } | |
1299 | ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); | |
1300 | offset += datalen; | |
1301 | if (f->metadata) { | |
1302 | jffs2_mark_node_obsolete(c, f->metadata->raw); | |
1303 | jffs2_free_full_dnode(f->metadata); | |
1304 | f->metadata = NULL; | |
1305 | } | |
1306 | } | |
1307 | ||
1308 | jffs2_gc_release_page(c, pg_ptr, &pg); | |
1309 | return ret; | |
1310 | } |