]>
Commit | Line | Data |
---|---|---|
6a0979df | 1 | /* |
9b17f588 | 2 | * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. |
6a0979df AG |
3 | * |
4 | * This software is available to you under a choice of one of two | |
5 | * licenses. You may choose to be licensed under the terms of the GNU | |
6 | * General Public License (GPL) Version 2, available from the file | |
7 | * COPYING in the main directory of this source tree, or the | |
8 | * OpenIB.org BSD license below: | |
9 | * | |
10 | * Redistribution and use in source and binary forms, with or | |
11 | * without modification, are permitted provided that the following | |
12 | * conditions are met: | |
13 | * | |
14 | * - Redistributions of source code must retain the above | |
15 | * copyright notice, this list of conditions and the following | |
16 | * disclaimer. | |
17 | * | |
18 | * - Redistributions in binary form must reproduce the above | |
19 | * copyright notice, this list of conditions and the following | |
20 | * disclaimer in the documentation and/or other materials | |
21 | * provided with the distribution. | |
22 | * | |
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
30 | * SOFTWARE. | |
31 | * | |
32 | */ | |
33 | #include <linux/kernel.h> | |
34 | #include <linux/in.h> | |
35 | #include <linux/device.h> | |
36 | #include <linux/dmapool.h> | |
cb0a6056 | 37 | #include <linux/ratelimit.h> |
6a0979df | 38 | |
0cb43965 | 39 | #include "rds_single_path.h" |
6a0979df | 40 | #include "rds.h" |
6a0979df | 41 | #include "ib.h" |
2eafa174 | 42 | #include "ib_mr.h" |
6a0979df | 43 | |
9c030391 AG |
44 | /* |
45 | * Convert IB-specific error message to RDS error message and call core | |
46 | * completion handler. | |
47 | */ | |
48 | static void rds_ib_send_complete(struct rds_message *rm, | |
49 | int wc_status, | |
50 | void (*complete)(struct rds_message *rm, int status)) | |
6a0979df AG |
51 | { |
52 | int notify_status; | |
53 | ||
54 | switch (wc_status) { | |
55 | case IB_WC_WR_FLUSH_ERR: | |
56 | return; | |
57 | ||
58 | case IB_WC_SUCCESS: | |
59 | notify_status = RDS_RDMA_SUCCESS; | |
60 | break; | |
61 | ||
62 | case IB_WC_REM_ACCESS_ERR: | |
63 | notify_status = RDS_RDMA_REMOTE_ERROR; | |
64 | break; | |
65 | ||
66 | default: | |
67 | notify_status = RDS_RDMA_OTHER_ERROR; | |
68 | break; | |
69 | } | |
9c030391 | 70 | complete(rm, notify_status); |
6a0979df AG |
71 | } |
72 | ||
616d37a0 SS |
73 | static void rds_ib_send_unmap_data(struct rds_ib_connection *ic, |
74 | struct rm_data_op *op, | |
75 | int wc_status) | |
76 | { | |
77 | if (op->op_nents) | |
78 | ib_dma_unmap_sg(ic->i_cm_id->device, | |
79 | op->op_sg, op->op_nents, | |
80 | DMA_TO_DEVICE); | |
81 | } | |
82 | ||
ff3d7d36 AG |
83 | static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, |
84 | struct rm_rdma_op *op, | |
85 | int wc_status) | |
86 | { | |
87 | if (op->op_mapped) { | |
88 | ib_dma_unmap_sg(ic->i_cm_id->device, | |
89 | op->op_sg, op->op_nents, | |
90 | op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | |
91 | op->op_mapped = 0; | |
92 | } | |
15133f6e | 93 | |
ff3d7d36 AG |
94 | /* If the user asked for a completion notification on this |
95 | * message, we can implement three different semantics: | |
96 | * 1. Notify when we received the ACK on the RDS message | |
97 | * that was queued with the RDMA. This provides reliable | |
98 | * notification of RDMA status at the expense of a one-way | |
99 | * packet delay. | |
100 | * 2. Notify when the IB stack gives us the completion event for | |
101 | * the RDMA operation. | |
102 | * 3. Notify when the IB stack gives us the completion event for | |
103 | * the accompanying RDS messages. | |
104 | * Here, we implement approach #3. To implement approach #2, | |
105 | * we would need to take an event for the rdma WR. To implement #1, | |
106 | * don't call rds_rdma_send_complete at all, and fall back to the notify | |
107 | * handling in the ACK processing code. | |
108 | * | |
109 | * Note: There's no need to explicitly sync any RDMA buffers using | |
110 | * ib_dma_sync_sg_for_cpu - the completion for the RDMA | |
111 | * operation itself unmapped the RDMA buffers, which takes care | |
112 | * of synching. | |
113 | */ | |
114 | rds_ib_send_complete(container_of(op, struct rds_message, rdma), | |
115 | wc_status, rds_rdma_send_complete); | |
6a0979df | 116 | |
ff3d7d36 AG |
117 | if (op->op_write) |
118 | rds_stats_add(s_send_rdma_bytes, op->op_bytes); | |
119 | else | |
120 | rds_stats_add(s_recv_rdma_bytes, op->op_bytes); | |
121 | } | |
6a0979df | 122 | |
ff3d7d36 AG |
123 | static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic, |
124 | struct rm_atomic_op *op, | |
125 | int wc_status) | |
126 | { | |
127 | /* unmap atomic recvbuf */ | |
128 | if (op->op_mapped) { | |
129 | ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1, | |
130 | DMA_FROM_DEVICE); | |
131 | op->op_mapped = 0; | |
6a0979df AG |
132 | } |
133 | ||
ff3d7d36 AG |
134 | rds_ib_send_complete(container_of(op, struct rds_message, atomic), |
135 | wc_status, rds_atomic_send_complete); | |
15133f6e | 136 | |
ff3d7d36 | 137 | if (op->op_type == RDS_ATOMIC_TYPE_CSWP) |
51e2cba8 | 138 | rds_ib_stats_inc(s_ib_atomic_cswp); |
ff3d7d36 | 139 | else |
51e2cba8 | 140 | rds_ib_stats_inc(s_ib_atomic_fadd); |
ff3d7d36 | 141 | } |
15133f6e | 142 | |
ff3d7d36 AG |
143 | /* |
144 | * Unmap the resources associated with a struct send_work. | |
145 | * | |
146 | * Returns the rm for no good reason other than it is unobtainable | |
147 | * other than by switching on wr.opcode, currently, and the caller, | |
148 | * the event handler, needs it. | |
149 | */ | |
150 | static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic, | |
151 | struct rds_ib_send_work *send, | |
152 | int wc_status) | |
153 | { | |
154 | struct rds_message *rm = NULL; | |
155 | ||
156 | /* In the error case, wc.opcode sometimes contains garbage */ | |
157 | switch (send->s_wr.opcode) { | |
158 | case IB_WR_SEND: | |
159 | if (send->s_op) { | |
160 | rm = container_of(send->s_op, struct rds_message, data); | |
161 | rds_ib_send_unmap_data(ic, send->s_op, wc_status); | |
162 | } | |
163 | break; | |
164 | case IB_WR_RDMA_WRITE: | |
165 | case IB_WR_RDMA_READ: | |
166 | if (send->s_op) { | |
167 | rm = container_of(send->s_op, struct rds_message, rdma); | |
168 | rds_ib_send_unmap_rdma(ic, send->s_op, wc_status); | |
169 | } | |
170 | break; | |
171 | case IB_WR_ATOMIC_FETCH_AND_ADD: | |
172 | case IB_WR_ATOMIC_CMP_AND_SWP: | |
173 | if (send->s_op) { | |
174 | rm = container_of(send->s_op, struct rds_message, atomic); | |
175 | rds_ib_send_unmap_atomic(ic, send->s_op, wc_status); | |
176 | } | |
177 | break; | |
178 | default: | |
cb0a6056 | 179 | printk_ratelimited(KERN_NOTICE |
ff3d7d36 AG |
180 | "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", |
181 | __func__, send->s_wr.opcode); | |
182 | break; | |
15133f6e AG |
183 | } |
184 | ||
ff3d7d36 | 185 | send->s_wr.opcode = 0xdead; |
6a0979df | 186 | |
ff3d7d36 | 187 | return rm; |
6a0979df AG |
188 | } |
189 | ||
190 | void rds_ib_send_init_ring(struct rds_ib_connection *ic) | |
191 | { | |
192 | struct rds_ib_send_work *send; | |
193 | u32 i; | |
194 | ||
195 | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | |
196 | struct ib_sge *sge; | |
197 | ||
6a0979df AG |
198 | send->s_op = NULL; |
199 | ||
dcfd041c | 200 | send->s_wr.wr_id = i; |
6a0979df | 201 | send->s_wr.sg_list = send->s_sge; |
6a0979df AG |
202 | send->s_wr.ex.imm_data = 0; |
203 | ||
919ced4c | 204 | sge = &send->s_sge[0]; |
9b17f588 KCP |
205 | sge->addr = ic->i_send_hdrs_dma[i]; |
206 | ||
6a0979df | 207 | sge->length = sizeof(struct rds_header); |
e5580242 | 208 | sge->lkey = ic->i_pd->local_dma_lkey; |
919ced4c | 209 | |
e5580242 | 210 | send->s_sge[1].lkey = ic->i_pd->local_dma_lkey; |
6a0979df AG |
211 | } |
212 | } | |
213 | ||
214 | void rds_ib_send_clear_ring(struct rds_ib_connection *ic) | |
215 | { | |
216 | struct rds_ib_send_work *send; | |
217 | u32 i; | |
218 | ||
219 | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | |
ff3d7d36 AG |
220 | if (send->s_op && send->s_wr.opcode != 0xdead) |
221 | rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR); | |
6a0979df AG |
222 | } |
223 | } | |
224 | ||
f046011c ZB |
225 | /* |
226 | * The only fast path caller always has a non-zero nr, so we don't | |
227 | * bother testing nr before performing the atomic sub. | |
228 | */ | |
229 | static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr) | |
230 | { | |
231 | if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) && | |
232 | waitqueue_active(&rds_ib_ring_empty_wait)) | |
233 | wake_up(&rds_ib_ring_empty_wait); | |
234 | BUG_ON(atomic_read(&ic->i_signaled_sends) < 0); | |
235 | } | |
236 | ||
6a0979df AG |
237 | /* |
238 | * The _oldest/_free ring operations here race cleanly with the alloc/unalloc | |
239 | * operations performed in the send path. As the sender allocs and potentially | |
240 | * unallocs the next free entry in the ring it doesn't alter which is | |
241 | * the next to be freed, which is what this is concerned with. | |
242 | */ | |
0c28c045 | 243 | void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc) |
6a0979df | 244 | { |
ff3d7d36 | 245 | struct rds_message *rm = NULL; |
0c28c045 | 246 | struct rds_connection *conn = ic->conn; |
6a0979df AG |
247 | struct rds_ib_send_work *send; |
248 | u32 completed; | |
249 | u32 oldest; | |
250 | u32 i = 0; | |
f046011c | 251 | int nr_sig = 0; |
6a0979df | 252 | |
6a0979df | 253 | |
0c28c045 SS |
254 | rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", |
255 | (unsigned long long)wc->wr_id, wc->status, | |
256 | ib_wc_status_msg(wc->status), wc->byte_len, | |
257 | be32_to_cpu(wc->ex.imm_data)); | |
258 | rds_ib_stats_inc(s_ib_tx_cq_event); | |
6a0979df | 259 | |
0c28c045 SS |
260 | if (wc->wr_id == RDS_IB_ACK_WR_ID) { |
261 | if (time_after(jiffies, ic->i_ack_queued + HZ / 2)) | |
262 | rds_ib_stats_inc(s_ib_tx_stalled); | |
263 | rds_ib_ack_send_complete(ic); | |
264 | return; | |
265 | } | |
6a0979df | 266 | |
0c28c045 | 267 | oldest = rds_ib_ring_oldest(&ic->i_send_ring); |
6a0979df | 268 | |
dcfd041c | 269 | completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest); |
6a0979df | 270 | |
0c28c045 SS |
271 | for (i = 0; i < completed; i++) { |
272 | send = &ic->i_sends[oldest]; | |
273 | if (send->s_wr.send_flags & IB_SEND_SIGNALED) | |
274 | nr_sig++; | |
6a0979df | 275 | |
0c28c045 SS |
276 | rm = rds_ib_send_unmap_op(ic, send, wc->status); |
277 | ||
278 | if (time_after(jiffies, send->s_queued + HZ / 2)) | |
279 | rds_ib_stats_inc(s_ib_tx_stalled); | |
6a0979df | 280 | |
0c28c045 SS |
281 | if (send->s_op) { |
282 | if (send->s_op == rm->m_final_op) { | |
283 | /* If anyone waited for this message to get | |
284 | * flushed out, wake them up now | |
285 | */ | |
286 | rds_message_unmapped(rm); | |
287 | } | |
288 | rds_message_put(rm); | |
289 | send->s_op = NULL; | |
6a0979df AG |
290 | } |
291 | ||
0c28c045 SS |
292 | oldest = (oldest + 1) % ic->i_send_ring.w_nr; |
293 | } | |
6a0979df | 294 | |
0c28c045 SS |
295 | rds_ib_ring_free(&ic->i_send_ring, completed); |
296 | rds_ib_sub_signaled(ic, nr_sig); | |
6a0979df | 297 | |
0c28c045 SS |
298 | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || |
299 | test_bit(0, &conn->c_map_queued)) | |
300 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | |
301 | ||
302 | /* We expect errors as the qp is drained during shutdown */ | |
303 | if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) { | |
fab401e1 | 304 | rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n", |
fd261ce6 SS |
305 | &conn->c_laddr, &conn->c_faddr, |
306 | conn->c_tos, wc->status, | |
fab401e1 | 307 | ib_wc_status_msg(wc->status), wc->vendor_err); |
6a0979df AG |
308 | } |
309 | } | |
310 | ||
311 | /* | |
312 | * This is the main function for allocating credits when sending | |
313 | * messages. | |
314 | * | |
315 | * Conceptually, we have two counters: | |
316 | * - send credits: this tells us how many WRs we're allowed | |
25985edc | 317 | * to submit without overruning the receiver's queue. For |
6a0979df AG |
318 | * each SEND WR we post, we decrement this by one. |
319 | * | |
320 | * - posted credits: this tells us how many WRs we recently | |
321 | * posted to the receive queue. This value is transferred | |
322 | * to the peer as a "credit update" in a RDS header field. | |
323 | * Every time we transmit credits to the peer, we subtract | |
324 | * the amount of transferred credits from this counter. | |
325 | * | |
326 | * It is essential that we avoid situations where both sides have | |
327 | * exhausted their send credits, and are unable to send new credits | |
328 | * to the peer. We achieve this by requiring that we send at least | |
329 | * one credit update to the peer before exhausting our credits. | |
330 | * When new credits arrive, we subtract one credit that is withheld | |
331 | * until we've posted new buffers and are ready to transmit these | |
332 | * credits (see rds_ib_send_add_credits below). | |
333 | * | |
334 | * The RDS send code is essentially single-threaded; rds_send_xmit | |
0f4b1c7e | 335 | * sets RDS_IN_XMIT to ensure exclusive access to the send ring. |
6a0979df AG |
336 | * However, the ACK sending code is independent and can race with |
337 | * message SENDs. | |
338 | * | |
339 | * In the send path, we need to update the counters for send credits | |
340 | * and the counter of posted buffers atomically - when we use the | |
341 | * last available credit, we cannot allow another thread to race us | |
342 | * and grab the posted credits counter. Hence, we have to use a | |
343 | * spinlock to protect the credit counter, or use atomics. | |
344 | * | |
345 | * Spinlocks shared between the send and the receive path are bad, | |
346 | * because they create unnecessary delays. An early implementation | |
347 | * using a spinlock showed a 5% degradation in throughput at some | |
348 | * loads. | |
349 | * | |
350 | * This implementation avoids spinlocks completely, putting both | |
351 | * counters into a single atomic, and updating that atomic using | |
352 | * atomic_add (in the receive path, when receiving fresh credits), | |
353 | * and using atomic_cmpxchg when updating the two counters. | |
354 | */ | |
355 | int rds_ib_send_grab_credits(struct rds_ib_connection *ic, | |
7b70d033 | 356 | u32 wanted, u32 *adv_credits, int need_posted, int max_posted) |
6a0979df AG |
357 | { |
358 | unsigned int avail, posted, got = 0, advertise; | |
359 | long oldval, newval; | |
360 | ||
361 | *adv_credits = 0; | |
362 | if (!ic->i_flowctl) | |
363 | return wanted; | |
364 | ||
365 | try_again: | |
366 | advertise = 0; | |
367 | oldval = newval = atomic_read(&ic->i_credits); | |
368 | posted = IB_GET_POST_CREDITS(oldval); | |
369 | avail = IB_GET_SEND_CREDITS(oldval); | |
370 | ||
11ac1199 | 371 | rdsdebug("wanted=%u credits=%u posted=%u\n", |
6a0979df AG |
372 | wanted, avail, posted); |
373 | ||
374 | /* The last credit must be used to send a credit update. */ | |
375 | if (avail && !posted) | |
376 | avail--; | |
377 | ||
378 | if (avail < wanted) { | |
379 | struct rds_connection *conn = ic->i_cm_id->context; | |
380 | ||
381 | /* Oops, there aren't that many credits left! */ | |
382 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | |
383 | got = avail; | |
384 | } else { | |
385 | /* Sometimes you get what you want, lalala. */ | |
386 | got = wanted; | |
387 | } | |
388 | newval -= IB_SET_SEND_CREDITS(got); | |
389 | ||
390 | /* | |
391 | * If need_posted is non-zero, then the caller wants | |
392 | * the posted regardless of whether any send credits are | |
393 | * available. | |
394 | */ | |
395 | if (posted && (got || need_posted)) { | |
7b70d033 | 396 | advertise = min_t(unsigned int, posted, max_posted); |
6a0979df AG |
397 | newval -= IB_SET_POST_CREDITS(advertise); |
398 | } | |
399 | ||
400 | /* Finally bill everything */ | |
401 | if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) | |
402 | goto try_again; | |
403 | ||
404 | *adv_credits = advertise; | |
405 | return got; | |
406 | } | |
407 | ||
408 | void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) | |
409 | { | |
410 | struct rds_ib_connection *ic = conn->c_transport_data; | |
411 | ||
412 | if (credits == 0) | |
413 | return; | |
414 | ||
11ac1199 | 415 | rdsdebug("credits=%u current=%u%s\n", |
6a0979df AG |
416 | credits, |
417 | IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), | |
418 | test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); | |
419 | ||
420 | atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); | |
421 | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) | |
422 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | |
423 | ||
424 | WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); | |
425 | ||
426 | rds_ib_stats_inc(s_ib_rx_credit_updates); | |
427 | } | |
428 | ||
429 | void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) | |
430 | { | |
431 | struct rds_ib_connection *ic = conn->c_transport_data; | |
432 | ||
433 | if (posted == 0) | |
434 | return; | |
435 | ||
436 | atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); | |
437 | ||
438 | /* Decide whether to send an update to the peer now. | |
439 | * If we would send a credit update for every single buffer we | |
440 | * post, we would end up with an ACK storm (ACK arrives, | |
441 | * consumes buffer, we refill the ring, send ACK to remote | |
442 | * advertising the newly posted buffer... ad inf) | |
443 | * | |
444 | * Performance pretty much depends on how often we send | |
445 | * credit updates - too frequent updates mean lots of ACKs. | |
446 | * Too infrequent updates, and the peer will run out of | |
447 | * credits and has to throttle. | |
448 | * For the time being, 16 seems to be a good compromise. | |
449 | */ | |
450 | if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) | |
451 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
452 | } | |
453 | ||
f046011c ZB |
454 | static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic, |
455 | struct rds_ib_send_work *send, | |
456 | bool notify) | |
241eef3e AG |
457 | { |
458 | /* | |
459 | * We want to delay signaling completions just enough to get | |
460 | * the batching benefits but not so much that we create dead time | |
461 | * on the wire. | |
462 | */ | |
463 | if (ic->i_unsignaled_wrs-- == 0 || notify) { | |
464 | ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; | |
465 | send->s_wr.send_flags |= IB_SEND_SIGNALED; | |
f046011c | 466 | return 1; |
241eef3e | 467 | } |
f046011c | 468 | return 0; |
241eef3e AG |
469 | } |
470 | ||
6a0979df AG |
471 | /* |
472 | * This can be called multiple times for a given message. The first time | |
473 | * we see a message we map its scatterlist into the IB device so that | |
474 | * we can provide that mapped address to the IB scatter gather entries | |
475 | * in the IB work requests. We translate the scatterlist into a series | |
476 | * of work requests that fragment the message. These work requests complete | |
477 | * in order so we pass ownership of the message to the completion handler | |
478 | * once we send the final fragment. | |
479 | * | |
480 | * The RDS core uses the c_send_lock to only enter this function once | |
481 | * per connection. This makes sure that the tx ring alloc/unalloc pairs | |
482 | * don't get out of sync and confuse the ring. | |
483 | */ | |
484 | int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, | |
485 | unsigned int hdr_off, unsigned int sg, unsigned int off) | |
486 | { | |
487 | struct rds_ib_connection *ic = conn->c_transport_data; | |
488 | struct ib_device *dev = ic->i_cm_id->device; | |
489 | struct rds_ib_send_work *send = NULL; | |
490 | struct rds_ib_send_work *first; | |
491 | struct rds_ib_send_work *prev; | |
d34ac5cd | 492 | const struct ib_send_wr *failed_wr; |
6a0979df AG |
493 | struct scatterlist *scat; |
494 | u32 pos; | |
495 | u32 i; | |
496 | u32 work_alloc; | |
da5a06ce | 497 | u32 credit_alloc = 0; |
6a0979df AG |
498 | u32 posted; |
499 | u32 adv_credits = 0; | |
500 | int send_flags = 0; | |
da5a06ce | 501 | int bytes_sent = 0; |
6a0979df AG |
502 | int ret; |
503 | int flow_controlled = 0; | |
f046011c | 504 | int nr_sig = 0; |
6a0979df AG |
505 | |
506 | BUG_ON(off % RDS_FRAG_SIZE); | |
507 | BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); | |
508 | ||
2e7b3b99 AG |
509 | /* Do not send cong updates to IB loopback */ |
510 | if (conn->c_loopback | |
511 | && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { | |
512 | rds_cong_map_updated(conn->c_fcong, ~(u64) 0); | |
6094628b | 513 | scat = &rm->data.op_sg[sg]; |
18fc25c9 VV |
514 | ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length); |
515 | return sizeof(struct rds_header) + ret; | |
2e7b3b99 AG |
516 | } |
517 | ||
6a0979df AG |
518 | /* FIXME we may overallocate here */ |
519 | if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) | |
520 | i = 1; | |
521 | else | |
eeb2c4fb | 522 | i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); |
6a0979df AG |
523 | |
524 | work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); | |
525 | if (work_alloc == 0) { | |
526 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | |
527 | rds_ib_stats_inc(s_ib_tx_ring_full); | |
528 | ret = -ENOMEM; | |
529 | goto out; | |
530 | } | |
531 | ||
6a0979df | 532 | if (ic->i_flowctl) { |
7b70d033 | 533 | credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); |
6a0979df AG |
534 | adv_credits += posted; |
535 | if (credit_alloc < work_alloc) { | |
536 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); | |
537 | work_alloc = credit_alloc; | |
c8de3f10 | 538 | flow_controlled = 1; |
6a0979df AG |
539 | } |
540 | if (work_alloc == 0) { | |
d39e0602 | 541 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); |
6a0979df AG |
542 | rds_ib_stats_inc(s_ib_tx_throttle); |
543 | ret = -ENOMEM; | |
544 | goto out; | |
545 | } | |
546 | } | |
547 | ||
548 | /* map the message the first time we see it */ | |
ff3d7d36 | 549 | if (!ic->i_data_op) { |
6c7cc6e4 AG |
550 | if (rm->data.op_nents) { |
551 | rm->data.op_count = ib_dma_map_sg(dev, | |
552 | rm->data.op_sg, | |
553 | rm->data.op_nents, | |
554 | DMA_TO_DEVICE); | |
555 | rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count); | |
556 | if (rm->data.op_count == 0) { | |
6a0979df AG |
557 | rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); |
558 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | |
559 | ret = -ENOMEM; /* XXX ? */ | |
560 | goto out; | |
561 | } | |
562 | } else { | |
6c7cc6e4 | 563 | rm->data.op_count = 0; |
6a0979df AG |
564 | } |
565 | ||
6a0979df | 566 | rds_message_addref(rm); |
d655a9fb WW |
567 | rm->data.op_dmasg = 0; |
568 | rm->data.op_dmaoff = 0; | |
ff3d7d36 | 569 | ic->i_data_op = &rm->data; |
6a0979df AG |
570 | |
571 | /* Finalize the header */ | |
572 | if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) | |
573 | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; | |
574 | if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) | |
575 | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; | |
576 | ||
577 | /* If it has a RDMA op, tell the peer we did it. This is | |
578 | * used by the peer to release use-once RDMA MRs. */ | |
f8b3aaf2 | 579 | if (rm->rdma.op_active) { |
6a0979df AG |
580 | struct rds_ext_header_rdma ext_hdr; |
581 | ||
f8b3aaf2 | 582 | ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey); |
6a0979df AG |
583 | rds_message_add_extension(&rm->m_inc.i_hdr, |
584 | RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); | |
585 | } | |
586 | if (rm->m_rdma_cookie) { | |
587 | rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, | |
588 | rds_rdma_cookie_key(rm->m_rdma_cookie), | |
589 | rds_rdma_cookie_offset(rm->m_rdma_cookie)); | |
590 | } | |
591 | ||
592 | /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so | |
593 | * we should not do this unless we have a chance of at least | |
594 | * sticking the header into the send ring. Which is why we | |
595 | * should call rds_ib_ring_alloc first. */ | |
596 | rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); | |
597 | rds_message_make_checksum(&rm->m_inc.i_hdr); | |
598 | ||
599 | /* | |
600 | * Update adv_credits since we reset the ACK_REQUIRED bit. | |
601 | */ | |
c8de3f10 AG |
602 | if (ic->i_flowctl) { |
603 | rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); | |
604 | adv_credits += posted; | |
605 | BUG_ON(adv_credits > 255); | |
606 | } | |
735f61e6 | 607 | } |
6a0979df | 608 | |
6a0979df AG |
609 | /* Sometimes you want to put a fence between an RDMA |
610 | * READ and the following SEND. | |
611 | * We could either do this all the time | |
612 | * or when requested by the user. Right now, we let | |
613 | * the application choose. | |
614 | */ | |
f8b3aaf2 | 615 | if (rm->rdma.op_active && rm->rdma.op_fence) |
6a0979df AG |
616 | send_flags = IB_SEND_FENCE; |
617 | ||
da5a06ce AG |
618 | /* Each frag gets a header. Msgs may be 0 bytes */ |
619 | send = &ic->i_sends[pos]; | |
620 | first = send; | |
621 | prev = NULL; | |
d655a9fb | 622 | scat = &ic->i_data_op->op_sg[rm->data.op_dmasg]; |
da5a06ce AG |
623 | i = 0; |
624 | do { | |
625 | unsigned int len = 0; | |
626 | ||
627 | /* Set up the header */ | |
628 | send->s_wr.send_flags = send_flags; | |
629 | send->s_wr.opcode = IB_WR_SEND; | |
630 | send->s_wr.num_sge = 1; | |
631 | send->s_wr.next = NULL; | |
632 | send->s_queued = jiffies; | |
633 | send->s_op = NULL; | |
6a0979df | 634 | |
9b17f588 KCP |
635 | send->s_sge[0].addr = ic->i_send_hdrs_dma[pos]; |
636 | ||
da5a06ce | 637 | send->s_sge[0].length = sizeof(struct rds_header); |
2eafa174 | 638 | send->s_sge[0].lkey = ic->i_pd->local_dma_lkey; |
da5a06ce | 639 | |
42f2611c CH |
640 | ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, |
641 | ic->i_send_hdrs_dma[pos], | |
642 | sizeof(struct rds_header), | |
643 | DMA_TO_DEVICE); | |
9b17f588 KCP |
644 | memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, |
645 | sizeof(struct rds_header)); | |
646 | ||
6a0979df | 647 | |
da5a06ce AG |
648 | /* Set up the data, if present */ |
649 | if (i < work_alloc | |
6c7cc6e4 | 650 | && scat != &rm->data.op_sg[rm->data.op_count]) { |
d655a9fb | 651 | len = min(RDS_FRAG_SIZE, |
a163afc8 | 652 | sg_dma_len(scat) - rm->data.op_dmaoff); |
da5a06ce | 653 | send->s_wr.num_sge = 2; |
6a0979df | 654 | |
a163afc8 | 655 | send->s_sge[1].addr = sg_dma_address(scat); |
d655a9fb | 656 | send->s_sge[1].addr += rm->data.op_dmaoff; |
da5a06ce | 657 | send->s_sge[1].length = len; |
2eafa174 | 658 | send->s_sge[1].lkey = ic->i_pd->local_dma_lkey; |
6a0979df | 659 | |
da5a06ce | 660 | bytes_sent += len; |
d655a9fb | 661 | rm->data.op_dmaoff += len; |
a163afc8 | 662 | if (rm->data.op_dmaoff == sg_dma_len(scat)) { |
da5a06ce | 663 | scat++; |
d655a9fb WW |
664 | rm->data.op_dmasg++; |
665 | rm->data.op_dmaoff = 0; | |
da5a06ce AG |
666 | } |
667 | } | |
6a0979df | 668 | |
a0c0865f | 669 | rds_ib_set_wr_signal_state(ic, send, false); |
6a0979df | 670 | |
6a0979df AG |
671 | /* |
672 | * Always signal the last one if we're stopping due to flow control. | |
673 | */ | |
a0c0865f HB |
674 | if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) { |
675 | rds_ib_set_wr_signal_state(ic, send, true); | |
676 | send->s_wr.send_flags |= IB_SEND_SOLICITED; | |
677 | } | |
6a0979df | 678 | |
f046011c ZB |
679 | if (send->s_wr.send_flags & IB_SEND_SIGNALED) |
680 | nr_sig++; | |
681 | ||
6a0979df AG |
682 | rdsdebug("send %p wr %p num_sge %u next %p\n", send, |
683 | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | |
684 | ||
c8de3f10 | 685 | if (ic->i_flowctl && adv_credits) { |
9b17f588 | 686 | struct rds_header *hdr = ic->i_send_hdrs[pos]; |
6a0979df AG |
687 | |
688 | /* add credit and redo the header checksum */ | |
689 | hdr->h_credit = adv_credits; | |
690 | rds_message_make_checksum(hdr); | |
691 | adv_credits = 0; | |
692 | rds_ib_stats_inc(s_ib_tx_credit_updates); | |
693 | } | |
42f2611c CH |
694 | ib_dma_sync_single_for_device(ic->rds_ibdev->dev, |
695 | ic->i_send_hdrs_dma[pos], | |
696 | sizeof(struct rds_header), | |
697 | DMA_TO_DEVICE); | |
6a0979df AG |
698 | |
699 | if (prev) | |
700 | prev->s_wr.next = &send->s_wr; | |
701 | prev = send; | |
702 | ||
703 | pos = (pos + 1) % ic->i_send_ring.w_nr; | |
da5a06ce AG |
704 | send = &ic->i_sends[pos]; |
705 | i++; | |
706 | ||
707 | } while (i < work_alloc | |
6c7cc6e4 | 708 | && scat != &rm->data.op_sg[rm->data.op_count]); |
6a0979df AG |
709 | |
710 | /* Account the RDS header in the number of bytes we sent, but just once. | |
711 | * The caller has no concept of fragmentation. */ | |
712 | if (hdr_off == 0) | |
da5a06ce | 713 | bytes_sent += sizeof(struct rds_header); |
6a0979df AG |
714 | |
715 | /* if we finished the message then send completion owns it */ | |
6c7cc6e4 | 716 | if (scat == &rm->data.op_sg[rm->data.op_count]) { |
ff3d7d36 | 717 | prev->s_op = ic->i_data_op; |
241eef3e | 718 | prev->s_wr.send_flags |= IB_SEND_SOLICITED; |
a0c0865f HB |
719 | if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED)) |
720 | nr_sig += rds_ib_set_wr_signal_state(ic, prev, true); | |
ff3d7d36 | 721 | ic->i_data_op = NULL; |
6a0979df AG |
722 | } |
723 | ||
da5a06ce | 724 | /* Put back wrs & credits we didn't use */ |
6a0979df AG |
725 | if (i < work_alloc) { |
726 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); | |
727 | work_alloc = i; | |
728 | } | |
729 | if (ic->i_flowctl && i < credit_alloc) | |
730 | rds_ib_send_add_credits(conn, credit_alloc - i); | |
731 | ||
f046011c ZB |
732 | if (nr_sig) |
733 | atomic_add(nr_sig, &ic->i_signaled_sends); | |
734 | ||
6a0979df AG |
735 | /* XXX need to worry about failed_wr and partial sends. */ |
736 | failed_wr = &first->s_wr; | |
737 | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | |
738 | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | |
739 | first, &first->s_wr, ret, failed_wr); | |
740 | BUG_ON(failed_wr != &first->s_wr); | |
741 | if (ret) { | |
eee2fa6a | 742 | printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c " |
6a0979df AG |
743 | "returned %d\n", &conn->c_faddr, ret); |
744 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | |
f046011c | 745 | rds_ib_sub_signaled(ic, nr_sig); |
ff3d7d36 AG |
746 | if (prev->s_op) { |
747 | ic->i_data_op = prev->s_op; | |
748 | prev->s_op = NULL; | |
6a0979df | 749 | } |
735f61e6 AG |
750 | |
751 | rds_ib_conn_error(ic->conn, "ib_post_send failed\n"); | |
6a0979df AG |
752 | goto out; |
753 | } | |
754 | ||
da5a06ce | 755 | ret = bytes_sent; |
6a0979df AG |
756 | out: |
757 | BUG_ON(adv_credits); | |
758 | return ret; | |
759 | } | |
760 | ||
15133f6e AG |
761 | /* |
762 | * Issue atomic operation. | |
763 | * A simplified version of the rdma case, we always map 1 SG, and | |
764 | * only 8 bytes, for the return value from the atomic operation. | |
765 | */ | |
ff3d7d36 | 766 | int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op) |
15133f6e AG |
767 | { |
768 | struct rds_ib_connection *ic = conn->c_transport_data; | |
769 | struct rds_ib_send_work *send = NULL; | |
d34ac5cd | 770 | const struct ib_send_wr *failed_wr; |
15133f6e AG |
771 | u32 pos; |
772 | u32 work_alloc; | |
773 | int ret; | |
f046011c | 774 | int nr_sig = 0; |
15133f6e | 775 | |
15133f6e AG |
776 | work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos); |
777 | if (work_alloc != 1) { | |
15133f6e AG |
778 | rds_ib_stats_inc(s_ib_tx_ring_full); |
779 | ret = -ENOMEM; | |
780 | goto out; | |
781 | } | |
782 | ||
783 | /* address of send request in ring */ | |
784 | send = &ic->i_sends[pos]; | |
785 | send->s_queued = jiffies; | |
786 | ||
787 | if (op->op_type == RDS_ATOMIC_TYPE_CSWP) { | |
e622f2f4 CH |
788 | send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP; |
789 | send->s_atomic_wr.compare_add = op->op_m_cswp.compare; | |
790 | send->s_atomic_wr.swap = op->op_m_cswp.swap; | |
791 | send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask; | |
792 | send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask; | |
15133f6e | 793 | } else { /* FADD */ |
e622f2f4 CH |
794 | send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD; |
795 | send->s_atomic_wr.compare_add = op->op_m_fadd.add; | |
796 | send->s_atomic_wr.swap = 0; | |
797 | send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask; | |
798 | send->s_atomic_wr.swap_mask = 0; | |
15133f6e | 799 | } |
e9a0b998 | 800 | send->s_wr.send_flags = 0; |
f046011c | 801 | nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify); |
e622f2f4 CH |
802 | send->s_atomic_wr.wr.num_sge = 1; |
803 | send->s_atomic_wr.wr.next = NULL; | |
804 | send->s_atomic_wr.remote_addr = op->op_remote_addr; | |
805 | send->s_atomic_wr.rkey = op->op_rkey; | |
1cc2228c CM |
806 | send->s_op = op; |
807 | rds_message_addref(container_of(send->s_op, struct rds_message, atomic)); | |
15133f6e AG |
808 | |
809 | /* map 8 byte retval buffer to the device */ | |
810 | ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); | |
811 | rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret); | |
812 | if (ret != 1) { | |
813 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | |
814 | rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); | |
815 | ret = -ENOMEM; /* XXX ? */ | |
816 | goto out; | |
817 | } | |
818 | ||
819 | /* Convert our struct scatterlist to struct ib_sge */ | |
a163afc8 BVA |
820 | send->s_sge[0].addr = sg_dma_address(op->op_sg); |
821 | send->s_sge[0].length = sg_dma_len(op->op_sg); | |
e5580242 | 822 | send->s_sge[0].lkey = ic->i_pd->local_dma_lkey; |
15133f6e AG |
823 | |
824 | rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr, | |
825 | send->s_sge[0].addr, send->s_sge[0].length); | |
826 | ||
f046011c ZB |
827 | if (nr_sig) |
828 | atomic_add(nr_sig, &ic->i_signaled_sends); | |
829 | ||
e622f2f4 CH |
830 | failed_wr = &send->s_atomic_wr.wr; |
831 | ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr); | |
15133f6e | 832 | rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic, |
e622f2f4 CH |
833 | send, &send->s_atomic_wr, ret, failed_wr); |
834 | BUG_ON(failed_wr != &send->s_atomic_wr.wr); | |
15133f6e | 835 | if (ret) { |
eee2fa6a | 836 | printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c " |
15133f6e AG |
837 | "returned %d\n", &conn->c_faddr, ret); |
838 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | |
f046011c | 839 | rds_ib_sub_signaled(ic, nr_sig); |
15133f6e AG |
840 | goto out; |
841 | } | |
842 | ||
e622f2f4 | 843 | if (unlikely(failed_wr != &send->s_atomic_wr.wr)) { |
15133f6e | 844 | printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret); |
e622f2f4 | 845 | BUG_ON(failed_wr != &send->s_atomic_wr.wr); |
15133f6e AG |
846 | } |
847 | ||
848 | out: | |
849 | return ret; | |
850 | } | |
851 | ||
f8b3aaf2 | 852 | int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op) |
6a0979df AG |
853 | { |
854 | struct rds_ib_connection *ic = conn->c_transport_data; | |
855 | struct rds_ib_send_work *send = NULL; | |
856 | struct rds_ib_send_work *first; | |
857 | struct rds_ib_send_work *prev; | |
d34ac5cd | 858 | const struct ib_send_wr *failed_wr; |
6a0979df AG |
859 | struct scatterlist *scat; |
860 | unsigned long len; | |
f8b3aaf2 | 861 | u64 remote_addr = op->op_remote_addr; |
89bf9d41 | 862 | u32 max_sge = ic->rds_ibdev->max_sge; |
6a0979df AG |
863 | u32 pos; |
864 | u32 work_alloc; | |
865 | u32 i; | |
866 | u32 j; | |
867 | int sent; | |
868 | int ret; | |
869 | int num_sge; | |
f046011c | 870 | int nr_sig = 0; |
2eafa174 HWR |
871 | u64 odp_addr = op->op_odp_addr; |
872 | u32 odp_lkey = 0; | |
6a0979df | 873 | |
ff3d7d36 | 874 | /* map the op the first time we see it */ |
2eafa174 HWR |
875 | if (!op->op_odp_mr) { |
876 | if (!op->op_mapped) { | |
877 | op->op_count = | |
878 | ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, | |
879 | op->op_nents, | |
880 | (op->op_write) ? DMA_TO_DEVICE : | |
881 | DMA_FROM_DEVICE); | |
882 | rdsdebug("ic %p mapping op %p: %d\n", ic, op, | |
883 | op->op_count); | |
884 | if (op->op_count == 0) { | |
885 | rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); | |
886 | ret = -ENOMEM; /* XXX ? */ | |
887 | goto out; | |
888 | } | |
889 | op->op_mapped = 1; | |
6a0979df | 890 | } |
2eafa174 HWR |
891 | } else { |
892 | op->op_count = op->op_nents; | |
893 | odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private); | |
6a0979df AG |
894 | } |
895 | ||
896 | /* | |
897 | * Instead of knowing how to return a partial rdma read/write we insist that there | |
898 | * be enough work requests to send the entire message. | |
899 | */ | |
eeb2c4fb | 900 | i = DIV_ROUND_UP(op->op_count, max_sge); |
6a0979df AG |
901 | |
902 | work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); | |
903 | if (work_alloc != i) { | |
904 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | |
905 | rds_ib_stats_inc(s_ib_tx_ring_full); | |
906 | ret = -ENOMEM; | |
907 | goto out; | |
908 | } | |
909 | ||
910 | send = &ic->i_sends[pos]; | |
911 | first = send; | |
912 | prev = NULL; | |
f8b3aaf2 | 913 | scat = &op->op_sg[0]; |
6a0979df | 914 | sent = 0; |
f8b3aaf2 | 915 | num_sge = op->op_count; |
6a0979df | 916 | |
f8b3aaf2 | 917 | for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) { |
6a0979df AG |
918 | send->s_wr.send_flags = 0; |
919 | send->s_queued = jiffies; | |
1cc2228c | 920 | send->s_op = NULL; |
241eef3e | 921 | |
616d37a0 SS |
922 | if (!op->op_notify) |
923 | nr_sig += rds_ib_set_wr_signal_state(ic, send, | |
924 | op->op_notify); | |
6a0979df | 925 | |
f8b3aaf2 | 926 | send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; |
e622f2f4 CH |
927 | send->s_rdma_wr.remote_addr = remote_addr; |
928 | send->s_rdma_wr.rkey = op->op_rkey; | |
6a0979df | 929 | |
89bf9d41 | 930 | if (num_sge > max_sge) { |
e622f2f4 | 931 | send->s_rdma_wr.wr.num_sge = max_sge; |
89bf9d41 | 932 | num_sge -= max_sge; |
6a0979df | 933 | } else { |
e622f2f4 | 934 | send->s_rdma_wr.wr.num_sge = num_sge; |
6a0979df AG |
935 | } |
936 | ||
e622f2f4 | 937 | send->s_rdma_wr.wr.next = NULL; |
6a0979df AG |
938 | |
939 | if (prev) | |
e622f2f4 | 940 | prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr; |
6a0979df | 941 | |
e622f2f4 CH |
942 | for (j = 0; j < send->s_rdma_wr.wr.num_sge && |
943 | scat != &op->op_sg[op->op_count]; j++) { | |
a163afc8 | 944 | len = sg_dma_len(scat); |
2eafa174 HWR |
945 | if (!op->op_odp_mr) { |
946 | send->s_sge[j].addr = sg_dma_address(scat); | |
947 | send->s_sge[j].lkey = ic->i_pd->local_dma_lkey; | |
948 | } else { | |
949 | send->s_sge[j].addr = odp_addr; | |
950 | send->s_sge[j].lkey = odp_lkey; | |
951 | } | |
6a0979df | 952 | send->s_sge[j].length = len; |
6a0979df AG |
953 | |
954 | sent += len; | |
955 | rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); | |
956 | ||
957 | remote_addr += len; | |
2eafa174 | 958 | odp_addr += len; |
6a0979df AG |
959 | scat++; |
960 | } | |
961 | ||
962 | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | |
e622f2f4 CH |
963 | &send->s_rdma_wr.wr, |
964 | send->s_rdma_wr.wr.num_sge, | |
965 | send->s_rdma_wr.wr.next); | |
6a0979df AG |
966 | |
967 | prev = send; | |
968 | if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) | |
969 | send = ic->i_sends; | |
970 | } | |
971 | ||
1cc2228c CM |
972 | /* give a reference to the last op */ |
973 | if (scat == &op->op_sg[op->op_count]) { | |
974 | prev->s_op = op; | |
975 | rds_message_addref(container_of(op, struct rds_message, rdma)); | |
976 | } | |
977 | ||
6a0979df AG |
978 | if (i < work_alloc) { |
979 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); | |
980 | work_alloc = i; | |
981 | } | |
982 | ||
f046011c ZB |
983 | if (nr_sig) |
984 | atomic_add(nr_sig, &ic->i_signaled_sends); | |
985 | ||
e622f2f4 CH |
986 | failed_wr = &first->s_rdma_wr.wr; |
987 | ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr); | |
6a0979df | 988 | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, |
e622f2f4 CH |
989 | first, &first->s_rdma_wr.wr, ret, failed_wr); |
990 | BUG_ON(failed_wr != &first->s_rdma_wr.wr); | |
6a0979df | 991 | if (ret) { |
eee2fa6a | 992 | printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c " |
6a0979df AG |
993 | "returned %d\n", &conn->c_faddr, ret); |
994 | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | |
f046011c | 995 | rds_ib_sub_signaled(ic, nr_sig); |
6a0979df AG |
996 | goto out; |
997 | } | |
998 | ||
e622f2f4 | 999 | if (unlikely(failed_wr != &first->s_rdma_wr.wr)) { |
6a0979df | 1000 | printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); |
e622f2f4 | 1001 | BUG_ON(failed_wr != &first->s_rdma_wr.wr); |
6a0979df AG |
1002 | } |
1003 | ||
1004 | ||
1005 | out: | |
1006 | return ret; | |
1007 | } | |
1008 | ||
226f7a7d | 1009 | void rds_ib_xmit_path_complete(struct rds_conn_path *cp) |
6a0979df | 1010 | { |
226f7a7d | 1011 | struct rds_connection *conn = cp->cp_conn; |
6a0979df AG |
1012 | struct rds_ib_connection *ic = conn->c_transport_data; |
1013 | ||
1014 | /* We may have a pending ACK or window update we were unable | |
1015 | * to send previously (due to flow control). Try again. */ | |
1016 | rds_ib_attempt_ack(ic); | |
1017 | } |