]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/swap.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
183ff22b | 8 | * This file contains the default values for the operation of the |
1da177e4 LT |
9 | * Linux VM subsystem. Fine-tuning documentation can be found in |
10 | * Documentation/sysctl/vm.txt. | |
11 | * Started 18.12.91 | |
12 | * Swap aging added 23.2.95, Stephen Tweedie. | |
13 | * Buffermem limits added 12.3.98, Rik van Riel. | |
14 | */ | |
15 | ||
16 | #include <linux/mm.h> | |
17 | #include <linux/sched.h> | |
18 | #include <linux/kernel_stat.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/mman.h> | |
21 | #include <linux/pagemap.h> | |
22 | #include <linux/pagevec.h> | |
23 | #include <linux/init.h> | |
b95f1b31 | 24 | #include <linux/export.h> |
1da177e4 | 25 | #include <linux/mm_inline.h> |
1da177e4 LT |
26 | #include <linux/percpu_counter.h> |
27 | #include <linux/percpu.h> | |
28 | #include <linux/cpu.h> | |
29 | #include <linux/notifier.h> | |
e0bf68dd | 30 | #include <linux/backing-dev.h> |
66e1707b | 31 | #include <linux/memcontrol.h> |
5a0e3ad6 | 32 | #include <linux/gfp.h> |
a27bb332 | 33 | #include <linux/uio.h> |
1da177e4 | 34 | |
64d6519d LS |
35 | #include "internal.h" |
36 | ||
c6286c98 MG |
37 | #define CREATE_TRACE_POINTS |
38 | #include <trace/events/pagemap.h> | |
39 | ||
1da177e4 LT |
40 | /* How many pages do we try to swap or page in/out together? */ |
41 | int page_cluster; | |
42 | ||
13f7f789 | 43 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); |
f84f9504 | 44 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); |
31560180 | 45 | static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); |
902aaed0 | 46 | |
b221385b AB |
47 | /* |
48 | * This path almost never happens for VM activity - pages are normally | |
49 | * freed via pagevecs. But it gets used by networking. | |
50 | */ | |
920c7a5d | 51 | static void __page_cache_release(struct page *page) |
b221385b AB |
52 | { |
53 | if (PageLRU(page)) { | |
b221385b | 54 | struct zone *zone = page_zone(page); |
fa9add64 HD |
55 | struct lruvec *lruvec; |
56 | unsigned long flags; | |
b221385b AB |
57 | |
58 | spin_lock_irqsave(&zone->lru_lock, flags); | |
fa9add64 | 59 | lruvec = mem_cgroup_page_lruvec(page, zone); |
309381fe | 60 | VM_BUG_ON_PAGE(!PageLRU(page), page); |
b221385b | 61 | __ClearPageLRU(page); |
fa9add64 | 62 | del_page_from_lru_list(page, lruvec, page_off_lru(page)); |
b221385b AB |
63 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
64 | } | |
0a31bc97 | 65 | mem_cgroup_uncharge(page); |
91807063 AA |
66 | } |
67 | ||
68 | static void __put_single_page(struct page *page) | |
69 | { | |
70 | __page_cache_release(page); | |
b745bc85 | 71 | free_hot_cold_page(page, false); |
b221385b AB |
72 | } |
73 | ||
91807063 | 74 | static void __put_compound_page(struct page *page) |
1da177e4 | 75 | { |
91807063 | 76 | compound_page_dtor *dtor; |
1da177e4 | 77 | |
91807063 AA |
78 | __page_cache_release(page); |
79 | dtor = get_compound_page_dtor(page); | |
80 | (*dtor)(page); | |
81 | } | |
82 | ||
c747ce79 JZ |
83 | /** |
84 | * Two special cases here: we could avoid taking compound_lock_irqsave | |
85 | * and could skip the tail refcounting(in _mapcount). | |
86 | * | |
87 | * 1. Hugetlbfs page: | |
88 | * | |
89 | * PageHeadHuge will remain true until the compound page | |
90 | * is released and enters the buddy allocator, and it could | |
91 | * not be split by __split_huge_page_refcount(). | |
92 | * | |
93 | * So if we see PageHeadHuge set, and we have the tail page pin, | |
94 | * then we could safely put head page. | |
95 | * | |
96 | * 2. Slab THP page: | |
97 | * | |
98 | * PG_slab is cleared before the slab frees the head page, and | |
99 | * tail pin cannot be the last reference left on the head page, | |
100 | * because the slab code is free to reuse the compound page | |
101 | * after a kfree/kmem_cache_free without having to check if | |
102 | * there's any tail pin left. In turn all tail pinsmust be always | |
103 | * released while the head is still pinned by the slab code | |
104 | * and so we know PG_slab will be still set too. | |
105 | * | |
106 | * So if we see PageSlab set, and we have the tail page pin, | |
107 | * then we could safely put head page. | |
108 | */ | |
109 | static __always_inline | |
110 | void put_unrefcounted_compound_page(struct page *page_head, struct page *page) | |
111 | { | |
112 | /* | |
113 | * If @page is a THP tail, we must read the tail page | |
114 | * flags after the head page flags. The | |
115 | * __split_huge_page_refcount side enforces write memory barriers | |
116 | * between clearing PageTail and before the head page | |
117 | * can be freed and reallocated. | |
118 | */ | |
119 | smp_rmb(); | |
120 | if (likely(PageTail(page))) { | |
121 | /* | |
122 | * __split_huge_page_refcount cannot race | |
123 | * here, see the comment above this function. | |
124 | */ | |
125 | VM_BUG_ON_PAGE(!PageHead(page_head), page_head); | |
126 | VM_BUG_ON_PAGE(page_mapcount(page) != 0, page); | |
127 | if (put_page_testzero(page_head)) { | |
128 | /* | |
129 | * If this is the tail of a slab THP page, | |
130 | * the tail pin must not be the last reference | |
131 | * held on the page, because the PG_slab cannot | |
132 | * be cleared before all tail pins (which skips | |
133 | * the _mapcount tail refcounting) have been | |
134 | * released. | |
135 | * | |
136 | * If this is the tail of a hugetlbfs page, | |
137 | * the tail pin may be the last reference on | |
138 | * the page instead, because PageHeadHuge will | |
139 | * not go away until the compound page enters | |
140 | * the buddy allocator. | |
141 | */ | |
142 | VM_BUG_ON_PAGE(PageSlab(page_head), page_head); | |
143 | __put_compound_page(page_head); | |
144 | } | |
145 | } else | |
146 | /* | |
147 | * __split_huge_page_refcount run before us, | |
148 | * @page was a THP tail. The split @page_head | |
149 | * has been freed and reallocated as slab or | |
150 | * hugetlbfs page of smaller order (only | |
151 | * possible if reallocated as slab on x86). | |
152 | */ | |
153 | if (put_page_testzero(page)) | |
154 | __put_single_page(page); | |
155 | } | |
156 | ||
157 | static __always_inline | |
158 | void put_refcounted_compound_page(struct page *page_head, struct page *page) | |
159 | { | |
160 | if (likely(page != page_head && get_page_unless_zero(page_head))) { | |
161 | unsigned long flags; | |
162 | ||
163 | /* | |
164 | * @page_head wasn't a dangling pointer but it may not | |
165 | * be a head page anymore by the time we obtain the | |
166 | * lock. That is ok as long as it can't be freed from | |
167 | * under us. | |
168 | */ | |
169 | flags = compound_lock_irqsave(page_head); | |
170 | if (unlikely(!PageTail(page))) { | |
171 | /* __split_huge_page_refcount run before us */ | |
172 | compound_unlock_irqrestore(page_head, flags); | |
173 | if (put_page_testzero(page_head)) { | |
174 | /* | |
175 | * The @page_head may have been freed | |
176 | * and reallocated as a compound page | |
177 | * of smaller order and then freed | |
178 | * again. All we know is that it | |
179 | * cannot have become: a THP page, a | |
180 | * compound page of higher order, a | |
181 | * tail page. That is because we | |
182 | * still hold the refcount of the | |
183 | * split THP tail and page_head was | |
184 | * the THP head before the split. | |
185 | */ | |
186 | if (PageHead(page_head)) | |
187 | __put_compound_page(page_head); | |
188 | else | |
189 | __put_single_page(page_head); | |
190 | } | |
191 | out_put_single: | |
192 | if (put_page_testzero(page)) | |
193 | __put_single_page(page); | |
194 | return; | |
195 | } | |
196 | VM_BUG_ON_PAGE(page_head != page->first_page, page); | |
197 | /* | |
198 | * We can release the refcount taken by | |
199 | * get_page_unless_zero() now that | |
200 | * __split_huge_page_refcount() is blocked on the | |
201 | * compound_lock. | |
202 | */ | |
203 | if (put_page_testzero(page_head)) | |
204 | VM_BUG_ON_PAGE(1, page_head); | |
205 | /* __split_huge_page_refcount will wait now */ | |
206 | VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); | |
207 | atomic_dec(&page->_mapcount); | |
208 | VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); | |
209 | VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); | |
210 | compound_unlock_irqrestore(page_head, flags); | |
211 | ||
212 | if (put_page_testzero(page_head)) { | |
213 | if (PageHead(page_head)) | |
214 | __put_compound_page(page_head); | |
215 | else | |
216 | __put_single_page(page_head); | |
217 | } | |
218 | } else { | |
219 | /* @page_head is a dangling pointer */ | |
220 | VM_BUG_ON_PAGE(PageTail(page), page); | |
221 | goto out_put_single; | |
222 | } | |
223 | } | |
224 | ||
91807063 AA |
225 | static void put_compound_page(struct page *page) |
226 | { | |
26296ad2 | 227 | struct page *page_head; |
70b50f94 | 228 | |
4bd3e8f7 JZ |
229 | /* |
230 | * We see the PageCompound set and PageTail not set, so @page maybe: | |
231 | * 1. hugetlbfs head page, or | |
232 | * 2. THP head page. | |
233 | */ | |
26296ad2 AM |
234 | if (likely(!PageTail(page))) { |
235 | if (put_page_testzero(page)) { | |
ebf360f9 | 236 | /* |
26296ad2 AM |
237 | * By the time all refcounts have been released |
238 | * split_huge_page cannot run anymore from under us. | |
ebf360f9 | 239 | */ |
26296ad2 AM |
240 | if (PageHead(page)) |
241 | __put_compound_page(page); | |
242 | else | |
243 | __put_single_page(page); | |
ebf360f9 | 244 | } |
26296ad2 AM |
245 | return; |
246 | } | |
ebf360f9 | 247 | |
26296ad2 | 248 | /* |
4bd3e8f7 JZ |
249 | * We see the PageCompound set and PageTail set, so @page maybe: |
250 | * 1. a tail hugetlbfs page, or | |
251 | * 2. a tail THP page, or | |
252 | * 3. a split THP page. | |
26296ad2 | 253 | * |
4bd3e8f7 JZ |
254 | * Case 3 is possible, as we may race with |
255 | * __split_huge_page_refcount tearing down a THP page. | |
26296ad2 | 256 | */ |
d2ee40ea | 257 | page_head = compound_head_by_tail(page); |
4bd3e8f7 JZ |
258 | if (!__compound_tail_refcounted(page_head)) |
259 | put_unrefcounted_compound_page(page_head, page); | |
260 | else | |
261 | put_refcounted_compound_page(page_head, page); | |
8519fb30 NP |
262 | } |
263 | ||
264 | void put_page(struct page *page) | |
265 | { | |
266 | if (unlikely(PageCompound(page))) | |
267 | put_compound_page(page); | |
268 | else if (put_page_testzero(page)) | |
91807063 | 269 | __put_single_page(page); |
1da177e4 LT |
270 | } |
271 | EXPORT_SYMBOL(put_page); | |
1da177e4 | 272 | |
70b50f94 AA |
273 | /* |
274 | * This function is exported but must not be called by anything other | |
275 | * than get_page(). It implements the slow path of get_page(). | |
276 | */ | |
277 | bool __get_page_tail(struct page *page) | |
278 | { | |
279 | /* | |
280 | * This takes care of get_page() if run on a tail page | |
281 | * returned by one of the get_user_pages/follow_page variants. | |
282 | * get_user_pages/follow_page itself doesn't need the compound | |
283 | * lock because it runs __get_page_tail_foll() under the | |
284 | * proper PT lock that already serializes against | |
285 | * split_huge_page(). | |
286 | */ | |
27c73ae7 | 287 | unsigned long flags; |
ebf360f9 | 288 | bool got; |
668f9abb | 289 | struct page *page_head = compound_head(page); |
70b50f94 | 290 | |
ebf360f9 | 291 | /* Ref to put_compound_page() comment. */ |
3bfcd13e | 292 | if (!__compound_tail_refcounted(page_head)) { |
ebf360f9 AA |
293 | smp_rmb(); |
294 | if (likely(PageTail(page))) { | |
295 | /* | |
296 | * This is a hugetlbfs page or a slab | |
297 | * page. __split_huge_page_refcount | |
298 | * cannot race here. | |
299 | */ | |
309381fe | 300 | VM_BUG_ON_PAGE(!PageHead(page_head), page_head); |
ebf360f9 AA |
301 | __get_page_tail_foll(page, true); |
302 | return true; | |
303 | } else { | |
304 | /* | |
305 | * __split_huge_page_refcount run | |
306 | * before us, "page" was a THP | |
307 | * tail. The split page_head has been | |
308 | * freed and reallocated as slab or | |
309 | * hugetlbfs page of smaller order | |
310 | * (only possible if reallocated as | |
311 | * slab on x86). | |
312 | */ | |
313 | return false; | |
27c73ae7 | 314 | } |
ebf360f9 | 315 | } |
27c73ae7 | 316 | |
ebf360f9 AA |
317 | got = false; |
318 | if (likely(page != page_head && get_page_unless_zero(page_head))) { | |
27c73ae7 AA |
319 | /* |
320 | * page_head wasn't a dangling pointer but it | |
321 | * may not be a head page anymore by the time | |
322 | * we obtain the lock. That is ok as long as it | |
323 | * can't be freed from under us. | |
324 | */ | |
325 | flags = compound_lock_irqsave(page_head); | |
326 | /* here __split_huge_page_refcount won't run anymore */ | |
327 | if (likely(PageTail(page))) { | |
328 | __get_page_tail_foll(page, false); | |
329 | got = true; | |
5bf5f03c | 330 | } |
27c73ae7 AA |
331 | compound_unlock_irqrestore(page_head, flags); |
332 | if (unlikely(!got)) | |
333 | put_page(page_head); | |
70b50f94 AA |
334 | } |
335 | return got; | |
336 | } | |
337 | EXPORT_SYMBOL(__get_page_tail); | |
338 | ||
1d7ea732 | 339 | /** |
7682486b RD |
340 | * put_pages_list() - release a list of pages |
341 | * @pages: list of pages threaded on page->lru | |
1d7ea732 AZ |
342 | * |
343 | * Release a list of pages which are strung together on page.lru. Currently | |
344 | * used by read_cache_pages() and related error recovery code. | |
1d7ea732 AZ |
345 | */ |
346 | void put_pages_list(struct list_head *pages) | |
347 | { | |
348 | while (!list_empty(pages)) { | |
349 | struct page *victim; | |
350 | ||
351 | victim = list_entry(pages->prev, struct page, lru); | |
352 | list_del(&victim->lru); | |
353 | page_cache_release(victim); | |
354 | } | |
355 | } | |
356 | EXPORT_SYMBOL(put_pages_list); | |
357 | ||
18022c5d MG |
358 | /* |
359 | * get_kernel_pages() - pin kernel pages in memory | |
360 | * @kiov: An array of struct kvec structures | |
361 | * @nr_segs: number of segments to pin | |
362 | * @write: pinning for read/write, currently ignored | |
363 | * @pages: array that receives pointers to the pages pinned. | |
364 | * Should be at least nr_segs long. | |
365 | * | |
366 | * Returns number of pages pinned. This may be fewer than the number | |
367 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
368 | * were pinned, returns -errno. Each page returned must be released | |
369 | * with a put_page() call when it is finished with. | |
370 | */ | |
371 | int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, | |
372 | struct page **pages) | |
373 | { | |
374 | int seg; | |
375 | ||
376 | for (seg = 0; seg < nr_segs; seg++) { | |
377 | if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) | |
378 | return seg; | |
379 | ||
5a178119 | 380 | pages[seg] = kmap_to_page(kiov[seg].iov_base); |
18022c5d MG |
381 | page_cache_get(pages[seg]); |
382 | } | |
383 | ||
384 | return seg; | |
385 | } | |
386 | EXPORT_SYMBOL_GPL(get_kernel_pages); | |
387 | ||
388 | /* | |
389 | * get_kernel_page() - pin a kernel page in memory | |
390 | * @start: starting kernel address | |
391 | * @write: pinning for read/write, currently ignored | |
392 | * @pages: array that receives pointer to the page pinned. | |
393 | * Must be at least nr_segs long. | |
394 | * | |
395 | * Returns 1 if page is pinned. If the page was not pinned, returns | |
396 | * -errno. The page returned must be released with a put_page() call | |
397 | * when it is finished with. | |
398 | */ | |
399 | int get_kernel_page(unsigned long start, int write, struct page **pages) | |
400 | { | |
401 | const struct kvec kiov = { | |
402 | .iov_base = (void *)start, | |
403 | .iov_len = PAGE_SIZE | |
404 | }; | |
405 | ||
406 | return get_kernel_pages(&kiov, 1, write, pages); | |
407 | } | |
408 | EXPORT_SYMBOL_GPL(get_kernel_page); | |
409 | ||
3dd7ae8e | 410 | static void pagevec_lru_move_fn(struct pagevec *pvec, |
fa9add64 HD |
411 | void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), |
412 | void *arg) | |
902aaed0 HH |
413 | { |
414 | int i; | |
902aaed0 | 415 | struct zone *zone = NULL; |
fa9add64 | 416 | struct lruvec *lruvec; |
3dd7ae8e | 417 | unsigned long flags = 0; |
902aaed0 HH |
418 | |
419 | for (i = 0; i < pagevec_count(pvec); i++) { | |
420 | struct page *page = pvec->pages[i]; | |
421 | struct zone *pagezone = page_zone(page); | |
422 | ||
423 | if (pagezone != zone) { | |
424 | if (zone) | |
3dd7ae8e | 425 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
902aaed0 | 426 | zone = pagezone; |
3dd7ae8e | 427 | spin_lock_irqsave(&zone->lru_lock, flags); |
902aaed0 | 428 | } |
3dd7ae8e | 429 | |
fa9add64 HD |
430 | lruvec = mem_cgroup_page_lruvec(page, zone); |
431 | (*move_fn)(page, lruvec, arg); | |
902aaed0 HH |
432 | } |
433 | if (zone) | |
3dd7ae8e | 434 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
83896fb5 LT |
435 | release_pages(pvec->pages, pvec->nr, pvec->cold); |
436 | pagevec_reinit(pvec); | |
d8505dee SL |
437 | } |
438 | ||
fa9add64 HD |
439 | static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, |
440 | void *arg) | |
3dd7ae8e SL |
441 | { |
442 | int *pgmoved = arg; | |
3dd7ae8e SL |
443 | |
444 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | |
445 | enum lru_list lru = page_lru_base_type(page); | |
925b7673 | 446 | list_move_tail(&page->lru, &lruvec->lists[lru]); |
3dd7ae8e SL |
447 | (*pgmoved)++; |
448 | } | |
449 | } | |
450 | ||
451 | /* | |
452 | * pagevec_move_tail() must be called with IRQ disabled. | |
453 | * Otherwise this may cause nasty races. | |
454 | */ | |
455 | static void pagevec_move_tail(struct pagevec *pvec) | |
456 | { | |
457 | int pgmoved = 0; | |
458 | ||
459 | pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); | |
460 | __count_vm_events(PGROTATED, pgmoved); | |
461 | } | |
462 | ||
1da177e4 LT |
463 | /* |
464 | * Writeback is about to end against a page which has been marked for immediate | |
465 | * reclaim. If it still appears to be reclaimable, move it to the tail of the | |
902aaed0 | 466 | * inactive list. |
1da177e4 | 467 | */ |
3dd7ae8e | 468 | void rotate_reclaimable_page(struct page *page) |
1da177e4 | 469 | { |
ac6aadb2 | 470 | if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && |
894bc310 | 471 | !PageUnevictable(page) && PageLRU(page)) { |
ac6aadb2 MS |
472 | struct pagevec *pvec; |
473 | unsigned long flags; | |
474 | ||
475 | page_cache_get(page); | |
476 | local_irq_save(flags); | |
7c8e0181 | 477 | pvec = this_cpu_ptr(&lru_rotate_pvecs); |
ac6aadb2 MS |
478 | if (!pagevec_add(pvec, page)) |
479 | pagevec_move_tail(pvec); | |
480 | local_irq_restore(flags); | |
481 | } | |
1da177e4 LT |
482 | } |
483 | ||
fa9add64 | 484 | static void update_page_reclaim_stat(struct lruvec *lruvec, |
3e2f41f1 KM |
485 | int file, int rotated) |
486 | { | |
fa9add64 | 487 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
3e2f41f1 KM |
488 | |
489 | reclaim_stat->recent_scanned[file]++; | |
490 | if (rotated) | |
491 | reclaim_stat->recent_rotated[file]++; | |
3e2f41f1 KM |
492 | } |
493 | ||
fa9add64 HD |
494 | static void __activate_page(struct page *page, struct lruvec *lruvec, |
495 | void *arg) | |
1da177e4 | 496 | { |
744ed144 | 497 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
7a608572 LT |
498 | int file = page_is_file_cache(page); |
499 | int lru = page_lru_base_type(page); | |
744ed144 | 500 | |
fa9add64 | 501 | del_page_from_lru_list(page, lruvec, lru); |
7a608572 LT |
502 | SetPageActive(page); |
503 | lru += LRU_ACTIVE; | |
fa9add64 | 504 | add_page_to_lru_list(page, lruvec, lru); |
24b7e581 | 505 | trace_mm_lru_activate(page); |
4f98a2fe | 506 | |
fa9add64 HD |
507 | __count_vm_event(PGACTIVATE); |
508 | update_page_reclaim_stat(lruvec, file, 1); | |
1da177e4 | 509 | } |
eb709b0d SL |
510 | } |
511 | ||
512 | #ifdef CONFIG_SMP | |
513 | static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); | |
514 | ||
515 | static void activate_page_drain(int cpu) | |
516 | { | |
517 | struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); | |
518 | ||
519 | if (pagevec_count(pvec)) | |
520 | pagevec_lru_move_fn(pvec, __activate_page, NULL); | |
521 | } | |
522 | ||
5fbc4616 CM |
523 | static bool need_activate_page_drain(int cpu) |
524 | { | |
525 | return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; | |
526 | } | |
527 | ||
eb709b0d SL |
528 | void activate_page(struct page *page) |
529 | { | |
530 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | |
531 | struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); | |
532 | ||
533 | page_cache_get(page); | |
534 | if (!pagevec_add(pvec, page)) | |
535 | pagevec_lru_move_fn(pvec, __activate_page, NULL); | |
536 | put_cpu_var(activate_page_pvecs); | |
537 | } | |
538 | } | |
539 | ||
540 | #else | |
541 | static inline void activate_page_drain(int cpu) | |
542 | { | |
543 | } | |
544 | ||
5fbc4616 CM |
545 | static bool need_activate_page_drain(int cpu) |
546 | { | |
547 | return false; | |
548 | } | |
549 | ||
eb709b0d SL |
550 | void activate_page(struct page *page) |
551 | { | |
552 | struct zone *zone = page_zone(page); | |
553 | ||
554 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 | 555 | __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); |
1da177e4 LT |
556 | spin_unlock_irq(&zone->lru_lock); |
557 | } | |
eb709b0d | 558 | #endif |
1da177e4 | 559 | |
059285a2 MG |
560 | static void __lru_cache_activate_page(struct page *page) |
561 | { | |
562 | struct pagevec *pvec = &get_cpu_var(lru_add_pvec); | |
563 | int i; | |
564 | ||
565 | /* | |
566 | * Search backwards on the optimistic assumption that the page being | |
567 | * activated has just been added to this pagevec. Note that only | |
568 | * the local pagevec is examined as a !PageLRU page could be in the | |
569 | * process of being released, reclaimed, migrated or on a remote | |
570 | * pagevec that is currently being drained. Furthermore, marking | |
571 | * a remote pagevec's page PageActive potentially hits a race where | |
572 | * a page is marked PageActive just after it is added to the inactive | |
573 | * list causing accounting errors and BUG_ON checks to trigger. | |
574 | */ | |
575 | for (i = pagevec_count(pvec) - 1; i >= 0; i--) { | |
576 | struct page *pagevec_page = pvec->pages[i]; | |
577 | ||
578 | if (pagevec_page == page) { | |
579 | SetPageActive(page); | |
580 | break; | |
581 | } | |
582 | } | |
583 | ||
584 | put_cpu_var(lru_add_pvec); | |
585 | } | |
586 | ||
1da177e4 LT |
587 | /* |
588 | * Mark a page as having seen activity. | |
589 | * | |
590 | * inactive,unreferenced -> inactive,referenced | |
591 | * inactive,referenced -> active,unreferenced | |
592 | * active,unreferenced -> active,referenced | |
eb39d618 HD |
593 | * |
594 | * When a newly allocated page is not yet visible, so safe for non-atomic ops, | |
595 | * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). | |
1da177e4 | 596 | */ |
920c7a5d | 597 | void mark_page_accessed(struct page *page) |
1da177e4 | 598 | { |
894bc310 | 599 | if (!PageActive(page) && !PageUnevictable(page) && |
059285a2 MG |
600 | PageReferenced(page)) { |
601 | ||
602 | /* | |
603 | * If the page is on the LRU, queue it for activation via | |
604 | * activate_page_pvecs. Otherwise, assume the page is on a | |
605 | * pagevec, mark it active and it'll be moved to the active | |
606 | * LRU on the next drain. | |
607 | */ | |
608 | if (PageLRU(page)) | |
609 | activate_page(page); | |
610 | else | |
611 | __lru_cache_activate_page(page); | |
1da177e4 | 612 | ClearPageReferenced(page); |
a528910e JW |
613 | if (page_is_file_cache(page)) |
614 | workingset_activation(page); | |
1da177e4 LT |
615 | } else if (!PageReferenced(page)) { |
616 | SetPageReferenced(page); | |
617 | } | |
618 | } | |
1da177e4 LT |
619 | EXPORT_SYMBOL(mark_page_accessed); |
620 | ||
2329d375 | 621 | static void __lru_cache_add(struct page *page) |
1da177e4 | 622 | { |
13f7f789 MG |
623 | struct pagevec *pvec = &get_cpu_var(lru_add_pvec); |
624 | ||
1da177e4 | 625 | page_cache_get(page); |
d741c9cd | 626 | if (!pagevec_space(pvec)) |
a0b8cab3 | 627 | __pagevec_lru_add(pvec); |
d741c9cd | 628 | pagevec_add(pvec, page); |
13f7f789 | 629 | put_cpu_var(lru_add_pvec); |
1da177e4 | 630 | } |
2329d375 JZ |
631 | |
632 | /** | |
633 | * lru_cache_add: add a page to the page lists | |
634 | * @page: the page to add | |
635 | */ | |
636 | void lru_cache_add_anon(struct page *page) | |
637 | { | |
6fb81a17 MG |
638 | if (PageActive(page)) |
639 | ClearPageActive(page); | |
2329d375 JZ |
640 | __lru_cache_add(page); |
641 | } | |
642 | ||
643 | void lru_cache_add_file(struct page *page) | |
644 | { | |
6fb81a17 MG |
645 | if (PageActive(page)) |
646 | ClearPageActive(page); | |
2329d375 JZ |
647 | __lru_cache_add(page); |
648 | } | |
649 | EXPORT_SYMBOL(lru_cache_add_file); | |
1da177e4 | 650 | |
f04e9ebb | 651 | /** |
c53954a0 | 652 | * lru_cache_add - add a page to a page list |
f04e9ebb | 653 | * @page: the page to be added to the LRU. |
2329d375 JZ |
654 | * |
655 | * Queue the page for addition to the LRU via pagevec. The decision on whether | |
656 | * to add the page to the [in]active [file|anon] list is deferred until the | |
657 | * pagevec is drained. This gives a chance for the caller of lru_cache_add() | |
658 | * have the page added to the active list using mark_page_accessed(). | |
f04e9ebb | 659 | */ |
c53954a0 | 660 | void lru_cache_add(struct page *page) |
1da177e4 | 661 | { |
309381fe SL |
662 | VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); |
663 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
c53954a0 | 664 | __lru_cache_add(page); |
1da177e4 LT |
665 | } |
666 | ||
894bc310 LS |
667 | /** |
668 | * add_page_to_unevictable_list - add a page to the unevictable list | |
669 | * @page: the page to be added to the unevictable list | |
670 | * | |
671 | * Add page directly to its zone's unevictable list. To avoid races with | |
672 | * tasks that might be making the page evictable, through eg. munlock, | |
673 | * munmap or exit, while it's not on the lru, we want to add the page | |
674 | * while it's locked or otherwise "invisible" to other tasks. This is | |
675 | * difficult to do when using the pagevec cache, so bypass that. | |
676 | */ | |
677 | void add_page_to_unevictable_list(struct page *page) | |
678 | { | |
679 | struct zone *zone = page_zone(page); | |
fa9add64 | 680 | struct lruvec *lruvec; |
894bc310 LS |
681 | |
682 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 | 683 | lruvec = mem_cgroup_page_lruvec(page, zone); |
ef2a2cbd | 684 | ClearPageActive(page); |
894bc310 LS |
685 | SetPageUnevictable(page); |
686 | SetPageLRU(page); | |
fa9add64 | 687 | add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); |
894bc310 LS |
688 | spin_unlock_irq(&zone->lru_lock); |
689 | } | |
690 | ||
00501b53 JW |
691 | /** |
692 | * lru_cache_add_active_or_unevictable | |
693 | * @page: the page to be added to LRU | |
694 | * @vma: vma in which page is mapped for determining reclaimability | |
695 | * | |
696 | * Place @page on the active or unevictable LRU list, depending on its | |
697 | * evictability. Note that if the page is not evictable, it goes | |
698 | * directly back onto it's zone's unevictable list, it does NOT use a | |
699 | * per cpu pagevec. | |
700 | */ | |
701 | void lru_cache_add_active_or_unevictable(struct page *page, | |
702 | struct vm_area_struct *vma) | |
703 | { | |
704 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
705 | ||
706 | if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { | |
707 | SetPageActive(page); | |
708 | lru_cache_add(page); | |
709 | return; | |
710 | } | |
711 | ||
712 | if (!TestSetPageMlocked(page)) { | |
713 | /* | |
714 | * We use the irq-unsafe __mod_zone_page_stat because this | |
715 | * counter is not modified from interrupt context, and the pte | |
716 | * lock is held(spinlock), which implies preemption disabled. | |
717 | */ | |
718 | __mod_zone_page_state(page_zone(page), NR_MLOCK, | |
719 | hpage_nr_pages(page)); | |
720 | count_vm_event(UNEVICTABLE_PGMLOCKED); | |
721 | } | |
722 | add_page_to_unevictable_list(page); | |
723 | } | |
724 | ||
31560180 MK |
725 | /* |
726 | * If the page can not be invalidated, it is moved to the | |
727 | * inactive list to speed up its reclaim. It is moved to the | |
728 | * head of the list, rather than the tail, to give the flusher | |
729 | * threads some time to write it out, as this is much more | |
730 | * effective than the single-page writeout from reclaim. | |
278df9f4 MK |
731 | * |
732 | * If the page isn't page_mapped and dirty/writeback, the page | |
733 | * could reclaim asap using PG_reclaim. | |
734 | * | |
735 | * 1. active, mapped page -> none | |
736 | * 2. active, dirty/writeback page -> inactive, head, PG_reclaim | |
737 | * 3. inactive, mapped page -> none | |
738 | * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim | |
739 | * 5. inactive, clean -> inactive, tail | |
740 | * 6. Others -> none | |
741 | * | |
742 | * In 4, why it moves inactive's head, the VM expects the page would | |
743 | * be write it out by flusher threads as this is much more effective | |
744 | * than the single-page writeout from reclaim. | |
31560180 | 745 | */ |
fa9add64 HD |
746 | static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, |
747 | void *arg) | |
31560180 MK |
748 | { |
749 | int lru, file; | |
278df9f4 | 750 | bool active; |
31560180 | 751 | |
278df9f4 | 752 | if (!PageLRU(page)) |
31560180 MK |
753 | return; |
754 | ||
bad49d9c MK |
755 | if (PageUnevictable(page)) |
756 | return; | |
757 | ||
31560180 MK |
758 | /* Some processes are using the page */ |
759 | if (page_mapped(page)) | |
760 | return; | |
761 | ||
278df9f4 | 762 | active = PageActive(page); |
31560180 MK |
763 | file = page_is_file_cache(page); |
764 | lru = page_lru_base_type(page); | |
fa9add64 HD |
765 | |
766 | del_page_from_lru_list(page, lruvec, lru + active); | |
31560180 MK |
767 | ClearPageActive(page); |
768 | ClearPageReferenced(page); | |
fa9add64 | 769 | add_page_to_lru_list(page, lruvec, lru); |
31560180 | 770 | |
278df9f4 MK |
771 | if (PageWriteback(page) || PageDirty(page)) { |
772 | /* | |
773 | * PG_reclaim could be raced with end_page_writeback | |
774 | * It can make readahead confusing. But race window | |
775 | * is _really_ small and it's non-critical problem. | |
776 | */ | |
777 | SetPageReclaim(page); | |
778 | } else { | |
779 | /* | |
780 | * The page's writeback ends up during pagevec | |
781 | * We moves tha page into tail of inactive. | |
782 | */ | |
925b7673 | 783 | list_move_tail(&page->lru, &lruvec->lists[lru]); |
278df9f4 MK |
784 | __count_vm_event(PGROTATED); |
785 | } | |
786 | ||
787 | if (active) | |
788 | __count_vm_event(PGDEACTIVATE); | |
fa9add64 | 789 | update_page_reclaim_stat(lruvec, file, 0); |
31560180 MK |
790 | } |
791 | ||
902aaed0 HH |
792 | /* |
793 | * Drain pages out of the cpu's pagevecs. | |
794 | * Either "cpu" is the current CPU, and preemption has already been | |
795 | * disabled; or "cpu" is being hot-unplugged, and is already dead. | |
796 | */ | |
f0cb3c76 | 797 | void lru_add_drain_cpu(int cpu) |
1da177e4 | 798 | { |
13f7f789 | 799 | struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); |
1da177e4 | 800 | |
13f7f789 | 801 | if (pagevec_count(pvec)) |
a0b8cab3 | 802 | __pagevec_lru_add(pvec); |
902aaed0 HH |
803 | |
804 | pvec = &per_cpu(lru_rotate_pvecs, cpu); | |
805 | if (pagevec_count(pvec)) { | |
806 | unsigned long flags; | |
807 | ||
808 | /* No harm done if a racing interrupt already did this */ | |
809 | local_irq_save(flags); | |
810 | pagevec_move_tail(pvec); | |
811 | local_irq_restore(flags); | |
812 | } | |
31560180 MK |
813 | |
814 | pvec = &per_cpu(lru_deactivate_pvecs, cpu); | |
815 | if (pagevec_count(pvec)) | |
3dd7ae8e | 816 | pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); |
eb709b0d SL |
817 | |
818 | activate_page_drain(cpu); | |
31560180 MK |
819 | } |
820 | ||
821 | /** | |
822 | * deactivate_page - forcefully deactivate a page | |
823 | * @page: page to deactivate | |
824 | * | |
825 | * This function hints the VM that @page is a good reclaim candidate, | |
826 | * for example if its invalidation fails due to the page being dirty | |
827 | * or under writeback. | |
828 | */ | |
829 | void deactivate_page(struct page *page) | |
830 | { | |
821ed6bb MK |
831 | /* |
832 | * In a workload with many unevictable page such as mprotect, unevictable | |
833 | * page deactivation for accelerating reclaim is pointless. | |
834 | */ | |
835 | if (PageUnevictable(page)) | |
836 | return; | |
837 | ||
31560180 MK |
838 | if (likely(get_page_unless_zero(page))) { |
839 | struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); | |
840 | ||
841 | if (!pagevec_add(pvec, page)) | |
3dd7ae8e | 842 | pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); |
31560180 MK |
843 | put_cpu_var(lru_deactivate_pvecs); |
844 | } | |
80bfed90 AM |
845 | } |
846 | ||
847 | void lru_add_drain(void) | |
848 | { | |
f0cb3c76 | 849 | lru_add_drain_cpu(get_cpu()); |
80bfed90 | 850 | put_cpu(); |
1da177e4 LT |
851 | } |
852 | ||
c4028958 | 853 | static void lru_add_drain_per_cpu(struct work_struct *dummy) |
053837fc NP |
854 | { |
855 | lru_add_drain(); | |
856 | } | |
857 | ||
5fbc4616 CM |
858 | static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); |
859 | ||
860 | void lru_add_drain_all(void) | |
053837fc | 861 | { |
5fbc4616 CM |
862 | static DEFINE_MUTEX(lock); |
863 | static struct cpumask has_work; | |
864 | int cpu; | |
865 | ||
866 | mutex_lock(&lock); | |
867 | get_online_cpus(); | |
868 | cpumask_clear(&has_work); | |
869 | ||
870 | for_each_online_cpu(cpu) { | |
871 | struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); | |
872 | ||
873 | if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || | |
874 | pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || | |
875 | pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || | |
876 | need_activate_page_drain(cpu)) { | |
877 | INIT_WORK(work, lru_add_drain_per_cpu); | |
878 | schedule_work_on(cpu, work); | |
879 | cpumask_set_cpu(cpu, &has_work); | |
880 | } | |
881 | } | |
882 | ||
883 | for_each_cpu(cpu, &has_work) | |
884 | flush_work(&per_cpu(lru_add_drain_work, cpu)); | |
885 | ||
886 | put_online_cpus(); | |
887 | mutex_unlock(&lock); | |
053837fc NP |
888 | } |
889 | ||
1da177e4 LT |
890 | /* |
891 | * Batched page_cache_release(). Decrement the reference count on all the | |
892 | * passed pages. If it fell to zero then remove the page from the LRU and | |
893 | * free it. | |
894 | * | |
895 | * Avoid taking zone->lru_lock if possible, but if it is taken, retain it | |
896 | * for the remainder of the operation. | |
897 | * | |
ab33dc09 FLVC |
898 | * The locking in this function is against shrink_inactive_list(): we recheck |
899 | * the page count inside the lock to see whether shrink_inactive_list() | |
900 | * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() | |
901 | * will free it. | |
1da177e4 | 902 | */ |
b745bc85 | 903 | void release_pages(struct page **pages, int nr, bool cold) |
1da177e4 LT |
904 | { |
905 | int i; | |
cc59850e | 906 | LIST_HEAD(pages_to_free); |
1da177e4 | 907 | struct zone *zone = NULL; |
fa9add64 | 908 | struct lruvec *lruvec; |
902aaed0 | 909 | unsigned long uninitialized_var(flags); |
1da177e4 | 910 | |
1da177e4 LT |
911 | for (i = 0; i < nr; i++) { |
912 | struct page *page = pages[i]; | |
1da177e4 | 913 | |
8519fb30 NP |
914 | if (unlikely(PageCompound(page))) { |
915 | if (zone) { | |
902aaed0 | 916 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
8519fb30 NP |
917 | zone = NULL; |
918 | } | |
919 | put_compound_page(page); | |
920 | continue; | |
921 | } | |
922 | ||
b5810039 | 923 | if (!put_page_testzero(page)) |
1da177e4 LT |
924 | continue; |
925 | ||
46453a6e NP |
926 | if (PageLRU(page)) { |
927 | struct zone *pagezone = page_zone(page); | |
894bc310 | 928 | |
46453a6e NP |
929 | if (pagezone != zone) { |
930 | if (zone) | |
902aaed0 HH |
931 | spin_unlock_irqrestore(&zone->lru_lock, |
932 | flags); | |
46453a6e | 933 | zone = pagezone; |
902aaed0 | 934 | spin_lock_irqsave(&zone->lru_lock, flags); |
46453a6e | 935 | } |
fa9add64 HD |
936 | |
937 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
309381fe | 938 | VM_BUG_ON_PAGE(!PageLRU(page), page); |
67453911 | 939 | __ClearPageLRU(page); |
fa9add64 | 940 | del_page_from_lru_list(page, lruvec, page_off_lru(page)); |
46453a6e NP |
941 | } |
942 | ||
c53954a0 | 943 | /* Clear Active bit in case of parallel mark_page_accessed */ |
e3741b50 | 944 | __ClearPageActive(page); |
c53954a0 | 945 | |
cc59850e | 946 | list_add(&page->lru, &pages_to_free); |
1da177e4 LT |
947 | } |
948 | if (zone) | |
902aaed0 | 949 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
1da177e4 | 950 | |
747db954 | 951 | mem_cgroup_uncharge_list(&pages_to_free); |
cc59850e | 952 | free_hot_cold_page_list(&pages_to_free, cold); |
1da177e4 | 953 | } |
0be8557b | 954 | EXPORT_SYMBOL(release_pages); |
1da177e4 LT |
955 | |
956 | /* | |
957 | * The pages which we're about to release may be in the deferred lru-addition | |
958 | * queues. That would prevent them from really being freed right now. That's | |
959 | * OK from a correctness point of view but is inefficient - those pages may be | |
960 | * cache-warm and we want to give them back to the page allocator ASAP. | |
961 | * | |
962 | * So __pagevec_release() will drain those queues here. __pagevec_lru_add() | |
963 | * and __pagevec_lru_add_active() call release_pages() directly to avoid | |
964 | * mutual recursion. | |
965 | */ | |
966 | void __pagevec_release(struct pagevec *pvec) | |
967 | { | |
968 | lru_add_drain(); | |
969 | release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); | |
970 | pagevec_reinit(pvec); | |
971 | } | |
7f285701 SF |
972 | EXPORT_SYMBOL(__pagevec_release); |
973 | ||
12d27107 | 974 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
71e3aac0 | 975 | /* used by __split_huge_page_refcount() */ |
fa9add64 | 976 | void lru_add_page_tail(struct page *page, struct page *page_tail, |
5bc7b8ac | 977 | struct lruvec *lruvec, struct list_head *list) |
71e3aac0 | 978 | { |
71e3aac0 | 979 | const int file = 0; |
71e3aac0 | 980 | |
309381fe SL |
981 | VM_BUG_ON_PAGE(!PageHead(page), page); |
982 | VM_BUG_ON_PAGE(PageCompound(page_tail), page); | |
983 | VM_BUG_ON_PAGE(PageLRU(page_tail), page); | |
fa9add64 HD |
984 | VM_BUG_ON(NR_CPUS != 1 && |
985 | !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); | |
71e3aac0 | 986 | |
5bc7b8ac SL |
987 | if (!list) |
988 | SetPageLRU(page_tail); | |
71e3aac0 | 989 | |
12d27107 HD |
990 | if (likely(PageLRU(page))) |
991 | list_add_tail(&page_tail->lru, &page->lru); | |
5bc7b8ac SL |
992 | else if (list) { |
993 | /* page reclaim is reclaiming a huge page */ | |
994 | get_page(page_tail); | |
995 | list_add_tail(&page_tail->lru, list); | |
996 | } else { | |
12d27107 HD |
997 | struct list_head *list_head; |
998 | /* | |
999 | * Head page has not yet been counted, as an hpage, | |
1000 | * so we must account for each subpage individually. | |
1001 | * | |
1002 | * Use the standard add function to put page_tail on the list, | |
1003 | * but then correct its position so they all end up in order. | |
1004 | */ | |
e180cf80 | 1005 | add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); |
12d27107 HD |
1006 | list_head = page_tail->lru.prev; |
1007 | list_move_tail(&page_tail->lru, list_head); | |
71e3aac0 | 1008 | } |
7512102c HD |
1009 | |
1010 | if (!PageUnevictable(page)) | |
e180cf80 | 1011 | update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); |
71e3aac0 | 1012 | } |
12d27107 | 1013 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
71e3aac0 | 1014 | |
fa9add64 HD |
1015 | static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, |
1016 | void *arg) | |
3dd7ae8e | 1017 | { |
13f7f789 MG |
1018 | int file = page_is_file_cache(page); |
1019 | int active = PageActive(page); | |
1020 | enum lru_list lru = page_lru(page); | |
3dd7ae8e | 1021 | |
309381fe | 1022 | VM_BUG_ON_PAGE(PageLRU(page), page); |
3dd7ae8e SL |
1023 | |
1024 | SetPageLRU(page); | |
fa9add64 HD |
1025 | add_page_to_lru_list(page, lruvec, lru); |
1026 | update_page_reclaim_stat(lruvec, file, active); | |
24b7e581 | 1027 | trace_mm_lru_insertion(page, lru); |
3dd7ae8e SL |
1028 | } |
1029 | ||
1da177e4 LT |
1030 | /* |
1031 | * Add the passed pages to the LRU, then drop the caller's refcount | |
1032 | * on them. Reinitialises the caller's pagevec. | |
1033 | */ | |
a0b8cab3 | 1034 | void __pagevec_lru_add(struct pagevec *pvec) |
1da177e4 | 1035 | { |
a0b8cab3 | 1036 | pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); |
1da177e4 | 1037 | } |
5095ae83 | 1038 | EXPORT_SYMBOL(__pagevec_lru_add); |
1da177e4 | 1039 | |
0cd6144a JW |
1040 | /** |
1041 | * pagevec_lookup_entries - gang pagecache lookup | |
1042 | * @pvec: Where the resulting entries are placed | |
1043 | * @mapping: The address_space to search | |
1044 | * @start: The starting entry index | |
1045 | * @nr_entries: The maximum number of entries | |
1046 | * @indices: The cache indices corresponding to the entries in @pvec | |
1047 | * | |
1048 | * pagevec_lookup_entries() will search for and return a group of up | |
1049 | * to @nr_entries pages and shadow entries in the mapping. All | |
1050 | * entries are placed in @pvec. pagevec_lookup_entries() takes a | |
1051 | * reference against actual pages in @pvec. | |
1052 | * | |
1053 | * The search returns a group of mapping-contiguous entries with | |
1054 | * ascending indexes. There may be holes in the indices due to | |
1055 | * not-present entries. | |
1056 | * | |
1057 | * pagevec_lookup_entries() returns the number of entries which were | |
1058 | * found. | |
1059 | */ | |
1060 | unsigned pagevec_lookup_entries(struct pagevec *pvec, | |
1061 | struct address_space *mapping, | |
1062 | pgoff_t start, unsigned nr_pages, | |
1063 | pgoff_t *indices) | |
1064 | { | |
1065 | pvec->nr = find_get_entries(mapping, start, nr_pages, | |
1066 | pvec->pages, indices); | |
1067 | return pagevec_count(pvec); | |
1068 | } | |
1069 | ||
1070 | /** | |
1071 | * pagevec_remove_exceptionals - pagevec exceptionals pruning | |
1072 | * @pvec: The pagevec to prune | |
1073 | * | |
1074 | * pagevec_lookup_entries() fills both pages and exceptional radix | |
1075 | * tree entries into the pagevec. This function prunes all | |
1076 | * exceptionals from @pvec without leaving holes, so that it can be | |
1077 | * passed on to page-only pagevec operations. | |
1078 | */ | |
1079 | void pagevec_remove_exceptionals(struct pagevec *pvec) | |
1080 | { | |
1081 | int i, j; | |
1082 | ||
1083 | for (i = 0, j = 0; i < pagevec_count(pvec); i++) { | |
1084 | struct page *page = pvec->pages[i]; | |
1085 | if (!radix_tree_exceptional_entry(page)) | |
1086 | pvec->pages[j++] = page; | |
1087 | } | |
1088 | pvec->nr = j; | |
1089 | } | |
1090 | ||
1da177e4 LT |
1091 | /** |
1092 | * pagevec_lookup - gang pagecache lookup | |
1093 | * @pvec: Where the resulting pages are placed | |
1094 | * @mapping: The address_space to search | |
1095 | * @start: The starting page index | |
1096 | * @nr_pages: The maximum number of pages | |
1097 | * | |
1098 | * pagevec_lookup() will search for and return a group of up to @nr_pages pages | |
1099 | * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a | |
1100 | * reference against the pages in @pvec. | |
1101 | * | |
1102 | * The search returns a group of mapping-contiguous pages with ascending | |
1103 | * indexes. There may be holes in the indices due to not-present pages. | |
1104 | * | |
1105 | * pagevec_lookup() returns the number of pages which were found. | |
1106 | */ | |
1107 | unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, | |
1108 | pgoff_t start, unsigned nr_pages) | |
1109 | { | |
1110 | pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); | |
1111 | return pagevec_count(pvec); | |
1112 | } | |
78539fdf CH |
1113 | EXPORT_SYMBOL(pagevec_lookup); |
1114 | ||
1da177e4 LT |
1115 | unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, |
1116 | pgoff_t *index, int tag, unsigned nr_pages) | |
1117 | { | |
1118 | pvec->nr = find_get_pages_tag(mapping, index, tag, | |
1119 | nr_pages, pvec->pages); | |
1120 | return pagevec_count(pvec); | |
1121 | } | |
7f285701 | 1122 | EXPORT_SYMBOL(pagevec_lookup_tag); |
1da177e4 | 1123 | |
1da177e4 LT |
1124 | /* |
1125 | * Perform any setup for the swap system | |
1126 | */ | |
1127 | void __init swap_setup(void) | |
1128 | { | |
4481374c | 1129 | unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); |
e0bf68dd | 1130 | #ifdef CONFIG_SWAP |
33806f06 SL |
1131 | int i; |
1132 | ||
8077c0d9 MP |
1133 | if (bdi_init(swapper_spaces[0].backing_dev_info)) |
1134 | panic("Failed to init swap bdi"); | |
33806f06 SL |
1135 | for (i = 0; i < MAX_SWAPFILES; i++) { |
1136 | spin_lock_init(&swapper_spaces[i].tree_lock); | |
1137 | INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear); | |
1138 | } | |
e0bf68dd PZ |
1139 | #endif |
1140 | ||
1da177e4 LT |
1141 | /* Use a smaller cluster for small-memory machines */ |
1142 | if (megs < 16) | |
1143 | page_cluster = 2; | |
1144 | else | |
1145 | page_cluster = 3; | |
1146 | /* | |
1147 | * Right now other parts of the system means that we | |
1148 | * _really_ don't want to cluster much more | |
1149 | */ | |
1da177e4 | 1150 | } |