]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | // ------------------------------------------------------------------------- |
2 | // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. | |
3 | // All rights reserved. | |
4 | // | |
5 | // LICENSE TERMS | |
6 | // | |
7 | // The free distribution and use of this software in both source and binary | |
8 | // form is allowed (with or without changes) provided that: | |
9 | // | |
10 | // 1. distributions of this source code include the above copyright | |
11 | // notice, this list of conditions and the following disclaimer// | |
12 | // | |
13 | // 2. distributions in binary form include the above copyright | |
14 | // notice, this list of conditions and the following disclaimer | |
15 | // in the documentation and/or other associated materials// | |
16 | // | |
17 | // 3. the copyright holder's name is not used to endorse products | |
18 | // built using this software without specific written permission. | |
19 | // | |
20 | // | |
21 | // ALTERNATIVELY, provided that this notice is retained in full, this product | |
22 | // may be distributed under the terms of the GNU General Public License (GPL), | |
23 | // in which case the provisions of the GPL apply INSTEAD OF those given above. | |
24 | // | |
25 | // Copyright (c) 2004 Linus Torvalds <[email protected]> | |
26 | // Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]> | |
27 | ||
28 | // DISCLAIMER | |
29 | // | |
30 | // This software is provided 'as is' with no explicit or implied warranties | |
31 | // in respect of its properties including, but not limited to, correctness | |
32 | // and fitness for purpose. | |
33 | // ------------------------------------------------------------------------- | |
34 | // Issue Date: 29/07/2002 | |
35 | ||
36 | .file "aes-i586-asm.S" | |
37 | .text | |
38 | ||
6c2bb98b | 39 | #include <asm/asm-offsets.h> |
1da177e4 | 40 | |
6c2bb98b | 41 | #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) |
1da177e4 | 42 | |
6c2bb98b | 43 | /* offsets to parameters with one register pushed onto stack */ |
07bf44f8 | 44 | #define ctx 8 |
6c2bb98b HX |
45 | #define out_blk 12 |
46 | #define in_blk 16 | |
1da177e4 | 47 | |
07bf44f8 YH |
48 | /* offsets in crypto_aes_ctx structure */ |
49 | #define klen (480) | |
50 | #define ekey (0) | |
51 | #define dkey (240) | |
1da177e4 LT |
52 | |
53 | // register mapping for encrypt and decrypt subroutines | |
54 | ||
55 | #define r0 eax | |
56 | #define r1 ebx | |
57 | #define r2 ecx | |
58 | #define r3 edx | |
59 | #define r4 esi | |
60 | #define r5 edi | |
61 | ||
62 | #define eaxl al | |
63 | #define eaxh ah | |
64 | #define ebxl bl | |
65 | #define ebxh bh | |
66 | #define ecxl cl | |
67 | #define ecxh ch | |
68 | #define edxl dl | |
69 | #define edxh dh | |
70 | ||
71 | #define _h(reg) reg##h | |
72 | #define h(reg) _h(reg) | |
73 | ||
74 | #define _l(reg) reg##l | |
75 | #define l(reg) _l(reg) | |
76 | ||
77 | // This macro takes a 32-bit word representing a column and uses | |
78 | // each of its four bytes to index into four tables of 256 32-bit | |
79 | // words to obtain values that are then xored into the appropriate | |
80 | // output registers r0, r1, r4 or r5. | |
81 | ||
82 | // Parameters: | |
83 | // table table base address | |
84 | // %1 out_state[0] | |
85 | // %2 out_state[1] | |
86 | // %3 out_state[2] | |
87 | // %4 out_state[3] | |
88 | // idx input register for the round (destroyed) | |
89 | // tmp scratch register for the round | |
90 | // sched key schedule | |
91 | ||
92 | #define do_col(table, a1,a2,a3,a4, idx, tmp) \ | |
93 | movzx %l(idx),%tmp; \ | |
94 | xor table(,%tmp,4),%a1; \ | |
95 | movzx %h(idx),%tmp; \ | |
96 | shr $16,%idx; \ | |
97 | xor table+tlen(,%tmp,4),%a2; \ | |
98 | movzx %l(idx),%tmp; \ | |
99 | movzx %h(idx),%idx; \ | |
100 | xor table+2*tlen(,%tmp,4),%a3; \ | |
101 | xor table+3*tlen(,%idx,4),%a4; | |
102 | ||
103 | // initialise output registers from the key schedule | |
104 | // NB1: original value of a3 is in idx on exit | |
105 | // NB2: original values of a1,a2,a4 aren't used | |
106 | #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ | |
107 | mov 0 sched,%a1; \ | |
108 | movzx %l(idx),%tmp; \ | |
109 | mov 12 sched,%a2; \ | |
110 | xor table(,%tmp,4),%a1; \ | |
111 | mov 4 sched,%a4; \ | |
112 | movzx %h(idx),%tmp; \ | |
113 | shr $16,%idx; \ | |
114 | xor table+tlen(,%tmp,4),%a2; \ | |
115 | movzx %l(idx),%tmp; \ | |
116 | movzx %h(idx),%idx; \ | |
117 | xor table+3*tlen(,%idx,4),%a4; \ | |
118 | mov %a3,%idx; \ | |
119 | mov 8 sched,%a3; \ | |
120 | xor table+2*tlen(,%tmp,4),%a3; | |
121 | ||
122 | // initialise output registers from the key schedule | |
123 | // NB1: original value of a3 is in idx on exit | |
124 | // NB2: original values of a1,a2,a4 aren't used | |
125 | #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ | |
126 | mov 0 sched,%a1; \ | |
127 | movzx %l(idx),%tmp; \ | |
128 | mov 4 sched,%a2; \ | |
129 | xor table(,%tmp,4),%a1; \ | |
130 | mov 12 sched,%a4; \ | |
131 | movzx %h(idx),%tmp; \ | |
132 | shr $16,%idx; \ | |
133 | xor table+tlen(,%tmp,4),%a2; \ | |
134 | movzx %l(idx),%tmp; \ | |
135 | movzx %h(idx),%idx; \ | |
136 | xor table+3*tlen(,%idx,4),%a4; \ | |
137 | mov %a3,%idx; \ | |
138 | mov 8 sched,%a3; \ | |
139 | xor table+2*tlen(,%tmp,4),%a3; | |
140 | ||
141 | ||
142 | // original Gladman had conditional saves to MMX regs. | |
143 | #define save(a1, a2) \ | |
144 | mov %a2,4*a1(%esp) | |
145 | ||
146 | #define restore(a1, a2) \ | |
147 | mov 4*a2(%esp),%a1 | |
148 | ||
149 | // These macros perform a forward encryption cycle. They are entered with | |
150 | // the first previous round column values in r0,r1,r4,r5 and | |
151 | // exit with the final values in the same registers, using stack | |
152 | // for temporary storage. | |
153 | ||
154 | // round column values | |
155 | // on entry: r0,r1,r4,r5 | |
156 | // on exit: r2,r1,r4,r5 | |
157 | #define fwd_rnd1(arg, table) \ | |
158 | save (0,r1); \ | |
159 | save (1,r5); \ | |
160 | \ | |
161 | /* compute new column values */ \ | |
162 | do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ | |
163 | do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ | |
164 | restore(r0,0); \ | |
165 | do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ | |
166 | restore(r0,1); \ | |
167 | do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ | |
168 | ||
169 | // round column values | |
170 | // on entry: r2,r1,r4,r5 | |
171 | // on exit: r0,r1,r4,r5 | |
172 | #define fwd_rnd2(arg, table) \ | |
173 | save (0,r1); \ | |
174 | save (1,r5); \ | |
175 | \ | |
176 | /* compute new column values */ \ | |
177 | do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ | |
178 | do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ | |
179 | restore(r2,0); \ | |
180 | do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ | |
181 | restore(r2,1); \ | |
182 | do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ | |
183 | ||
184 | // These macros performs an inverse encryption cycle. They are entered with | |
185 | // the first previous round column values in r0,r1,r4,r5 and | |
186 | // exit with the final values in the same registers, using stack | |
187 | // for temporary storage | |
188 | ||
189 | // round column values | |
190 | // on entry: r0,r1,r4,r5 | |
191 | // on exit: r2,r1,r4,r5 | |
192 | #define inv_rnd1(arg, table) \ | |
193 | save (0,r1); \ | |
194 | save (1,r5); \ | |
195 | \ | |
196 | /* compute new column values */ \ | |
197 | do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ | |
198 | do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ | |
199 | restore(r0,0); \ | |
200 | do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ | |
201 | restore(r0,1); \ | |
202 | do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ | |
203 | ||
204 | // round column values | |
205 | // on entry: r2,r1,r4,r5 | |
206 | // on exit: r0,r1,r4,r5 | |
207 | #define inv_rnd2(arg, table) \ | |
208 | save (0,r1); \ | |
209 | save (1,r5); \ | |
210 | \ | |
211 | /* compute new column values */ \ | |
212 | do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ | |
213 | do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ | |
214 | restore(r2,0); \ | |
215 | do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ | |
216 | restore(r2,1); \ | |
217 | do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ | |
218 | ||
219 | // AES (Rijndael) Encryption Subroutine | |
07bf44f8 | 220 | /* void aes_enc_blk(struct crypto_aes_ctx *ctx, u8 *out_blk, const u8 *in_blk) */ |
1da177e4 LT |
221 | |
222 | .global aes_enc_blk | |
223 | ||
5157dea8 SS |
224 | .extern crypto_ft_tab |
225 | .extern crypto_fl_tab | |
1da177e4 LT |
226 | |
227 | .align 4 | |
228 | ||
229 | aes_enc_blk: | |
230 | push %ebp | |
07bf44f8 | 231 | mov ctx(%esp),%ebp |
1da177e4 LT |
232 | |
233 | // CAUTION: the order and the values used in these assigns | |
234 | // rely on the register mappings | |
235 | ||
236 | 1: push %ebx | |
237 | mov in_blk+4(%esp),%r2 | |
238 | push %esi | |
5157dea8 | 239 | mov klen(%ebp),%r3 // key size |
1da177e4 LT |
240 | push %edi |
241 | #if ekey != 0 | |
242 | lea ekey(%ebp),%ebp // key pointer | |
243 | #endif | |
244 | ||
245 | // input four columns and xor in first round key | |
246 | ||
247 | mov (%r2),%r0 | |
248 | mov 4(%r2),%r1 | |
249 | mov 8(%r2),%r4 | |
250 | mov 12(%r2),%r5 | |
251 | xor (%ebp),%r0 | |
252 | xor 4(%ebp),%r1 | |
253 | xor 8(%ebp),%r4 | |
254 | xor 12(%ebp),%r5 | |
255 | ||
e6a3a925 DV |
256 | sub $8,%esp // space for register saves on stack |
257 | add $16,%ebp // increment to next round key | |
5157dea8 | 258 | cmp $24,%r3 |
e6a3a925 DV |
259 | jb 4f // 10 rounds for 128-bit key |
260 | lea 32(%ebp),%ebp | |
261 | je 3f // 12 rounds for 192-bit key | |
262 | lea 32(%ebp),%ebp | |
263 | ||
5157dea8 SS |
264 | 2: fwd_rnd1( -64(%ebp), crypto_ft_tab) // 14 rounds for 256-bit key |
265 | fwd_rnd2( -48(%ebp), crypto_ft_tab) | |
266 | 3: fwd_rnd1( -32(%ebp), crypto_ft_tab) // 12 rounds for 192-bit key | |
267 | fwd_rnd2( -16(%ebp), crypto_ft_tab) | |
268 | 4: fwd_rnd1( (%ebp), crypto_ft_tab) // 10 rounds for 128-bit key | |
269 | fwd_rnd2( +16(%ebp), crypto_ft_tab) | |
270 | fwd_rnd1( +32(%ebp), crypto_ft_tab) | |
271 | fwd_rnd2( +48(%ebp), crypto_ft_tab) | |
272 | fwd_rnd1( +64(%ebp), crypto_ft_tab) | |
273 | fwd_rnd2( +80(%ebp), crypto_ft_tab) | |
274 | fwd_rnd1( +96(%ebp), crypto_ft_tab) | |
275 | fwd_rnd2(+112(%ebp), crypto_ft_tab) | |
276 | fwd_rnd1(+128(%ebp), crypto_ft_tab) | |
277 | fwd_rnd2(+144(%ebp), crypto_fl_tab) // last round uses a different table | |
1da177e4 LT |
278 | |
279 | // move final values to the output array. CAUTION: the | |
280 | // order of these assigns rely on the register mappings | |
281 | ||
282 | add $8,%esp | |
283 | mov out_blk+12(%esp),%ebp | |
284 | mov %r5,12(%ebp) | |
285 | pop %edi | |
286 | mov %r4,8(%ebp) | |
287 | pop %esi | |
288 | mov %r1,4(%ebp) | |
289 | pop %ebx | |
290 | mov %r0,(%ebp) | |
291 | pop %ebp | |
1da177e4 LT |
292 | ret |
293 | ||
294 | // AES (Rijndael) Decryption Subroutine | |
07bf44f8 | 295 | /* void aes_dec_blk(struct crypto_aes_ctx *ctx, u8 *out_blk, const u8 *in_blk) */ |
1da177e4 LT |
296 | |
297 | .global aes_dec_blk | |
298 | ||
5157dea8 SS |
299 | .extern crypto_it_tab |
300 | .extern crypto_il_tab | |
1da177e4 LT |
301 | |
302 | .align 4 | |
303 | ||
304 | aes_dec_blk: | |
305 | push %ebp | |
07bf44f8 | 306 | mov ctx(%esp),%ebp |
1da177e4 LT |
307 | |
308 | // CAUTION: the order and the values used in these assigns | |
309 | // rely on the register mappings | |
310 | ||
311 | 1: push %ebx | |
312 | mov in_blk+4(%esp),%r2 | |
313 | push %esi | |
5157dea8 | 314 | mov klen(%ebp),%r3 // key size |
1da177e4 LT |
315 | push %edi |
316 | #if dkey != 0 | |
317 | lea dkey(%ebp),%ebp // key pointer | |
318 | #endif | |
1da177e4 LT |
319 | |
320 | // input four columns and xor in first round key | |
321 | ||
322 | mov (%r2),%r0 | |
323 | mov 4(%r2),%r1 | |
324 | mov 8(%r2),%r4 | |
325 | mov 12(%r2),%r5 | |
326 | xor (%ebp),%r0 | |
327 | xor 4(%ebp),%r1 | |
328 | xor 8(%ebp),%r4 | |
329 | xor 12(%ebp),%r5 | |
330 | ||
e6a3a925 | 331 | sub $8,%esp // space for register saves on stack |
5157dea8 SS |
332 | add $16,%ebp // increment to next round key |
333 | cmp $24,%r3 | |
e6a3a925 | 334 | jb 4f // 10 rounds for 128-bit key |
5157dea8 | 335 | lea 32(%ebp),%ebp |
e6a3a925 | 336 | je 3f // 12 rounds for 192-bit key |
5157dea8 SS |
337 | lea 32(%ebp),%ebp |
338 | ||
339 | 2: inv_rnd1( -64(%ebp), crypto_it_tab) // 14 rounds for 256-bit key | |
340 | inv_rnd2( -48(%ebp), crypto_it_tab) | |
341 | 3: inv_rnd1( -32(%ebp), crypto_it_tab) // 12 rounds for 192-bit key | |
342 | inv_rnd2( -16(%ebp), crypto_it_tab) | |
343 | 4: inv_rnd1( (%ebp), crypto_it_tab) // 10 rounds for 128-bit key | |
344 | inv_rnd2( +16(%ebp), crypto_it_tab) | |
345 | inv_rnd1( +32(%ebp), crypto_it_tab) | |
346 | inv_rnd2( +48(%ebp), crypto_it_tab) | |
347 | inv_rnd1( +64(%ebp), crypto_it_tab) | |
348 | inv_rnd2( +80(%ebp), crypto_it_tab) | |
349 | inv_rnd1( +96(%ebp), crypto_it_tab) | |
350 | inv_rnd2(+112(%ebp), crypto_it_tab) | |
351 | inv_rnd1(+128(%ebp), crypto_it_tab) | |
352 | inv_rnd2(+144(%ebp), crypto_il_tab) // last round uses a different table | |
1da177e4 LT |
353 | |
354 | // move final values to the output array. CAUTION: the | |
355 | // order of these assigns rely on the register mappings | |
356 | ||
357 | add $8,%esp | |
358 | mov out_blk+12(%esp),%ebp | |
359 | mov %r5,12(%ebp) | |
360 | pop %edi | |
361 | mov %r4,8(%ebp) | |
362 | pop %esi | |
363 | mov %r1,4(%ebp) | |
364 | pop %ebx | |
365 | mov %r0,(%ebp) | |
366 | pop %ebp | |
1da177e4 | 367 | ret |