]> Git Repo - linux.git/blame - fs/ext4/inode.c
Linux 4.14-rc3
[linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card ([email protected])
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * ([email protected])
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
b47820ed 75 }
05ac5aa1
DJ
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
407cd7fb 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 148 */
f348c252 149int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 150{
407cd7fb
TE
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
153}
154
ac27a0ec
DK
155/*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
fa5d1113 160int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 161 int nblocks)
ac27a0ec 162{
487caeef
JK
163 int ret;
164
165 /*
e35fd660 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
0390131b 171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 172 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 173 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 174 ret = ext4_journal_restart(handle, nblocks);
487caeef 175 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 176 ext4_discard_preallocations(inode);
487caeef
JK
177
178 return ret;
ac27a0ec
DK
179}
180
181/*
182 * Called at the last iput() if i_nlink is zero.
183 */
0930fcc1 184void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
185{
186 handle_t *handle;
bc965ab3 187 int err;
e50e5129 188 int extra_credits = 3;
0421a189 189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
2581fdc8 192
0930fcc1 193 if (inode->i_nlink) {
2d859db3
JK
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
6a7fd522
VN
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
3abb1a0f
JK
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
2d859db3
JK
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
d76a3a77 219 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
220 filemap_write_and_wait(&inode->i_data);
221 }
91b0abe3 222 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 223
0930fcc1
AV
224 goto no_delete;
225 }
226
e2bfb088
TT
227 if (is_bad_inode(inode))
228 goto no_delete;
229 dquot_initialize(inode);
907f4554 230
678aaf48
JK
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 233 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 234
8e8ad8a5
JK
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
e50e5129 240
30a7eb97
TE
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
ac27a0ec 246 if (IS_ERR(handle)) {
bc965ab3 247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
248 /*
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
251 * cleaned up.
252 */
617ba13b 253 ext4_orphan_del(NULL, inode);
8e8ad8a5 254 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
255 goto no_delete;
256 }
30a7eb97 257
ac27a0ec 258 if (IS_SYNC(inode))
0390131b 259 ext4_handle_sync(handle);
407cd7fb
TE
260
261 /*
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
267 */
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 270 inode->i_size = 0;
bc965ab3
TT
271 err = ext4_mark_inode_dirty(handle, inode);
272 if (err) {
12062ddd 273 ext4_warning(inode->i_sb,
bc965ab3
TT
274 "couldn't mark inode dirty (err %d)", err);
275 goto stop_handle;
276 }
2c98eb5e
TT
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
279 if (err) {
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
282 inode->i_ino, err);
283 goto stop_handle;
284 }
285 }
bc965ab3 286
30a7eb97
TE
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 extra_credits);
290 if (err) {
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292stop_handle:
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
297 goto no_delete;
bc965ab3
TT
298 }
299
ac27a0ec 300 /*
617ba13b 301 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 302 * AKPM: I think this can be inside the above `if'.
617ba13b 303 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 304 * deletion of a non-existent orphan - this is because we don't
617ba13b 305 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
306 * (Well, we could do this if we need to, but heck - it works)
307 */
617ba13b
MC
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
310
311 /*
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
316 * fails.
317 */
617ba13b 318 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 319 /* If that failed, just do the required in-core inode clear. */
0930fcc1 320 ext4_clear_inode(inode);
ac27a0ec 321 else
617ba13b
MC
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
8e8ad8a5 324 sb_end_intwrite(inode->i_sb);
0421a189 325 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
326 return;
327no_delete:
0930fcc1 328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
329}
330
a9e7f447
DM
331#ifdef CONFIG_QUOTA
332qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 333{
a9e7f447 334 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 335}
a9e7f447 336#endif
9d0be502 337
0637c6f4
TT
338/*
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
341 */
5f634d06
AK
342void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
12219aea
AK
344{
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 346 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
347
348 spin_lock(&ei->i_block_reservation_lock);
d8990240 349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 350 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 352 "with only %d reserved data blocks",
0637c6f4
TT
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
355 WARN_ON(1);
356 used = ei->i_reserved_data_blocks;
357 }
12219aea 358
0637c6f4
TT
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
71d4f7d0 361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 362
12219aea 363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 364
72b8ab9d
ES
365 /* Update quota subsystem for data blocks */
366 if (quota_claim)
7b415bf6 367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 368 else {
5f634d06
AK
369 /*
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
72b8ab9d 372 * not re-claim the quota for fallocated blocks.
5f634d06 373 */
7b415bf6 374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 375 }
d6014301
AK
376
377 /*
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
381 */
0637c6f4
TT
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
d6014301 384 ext4_discard_preallocations(inode);
12219aea
AK
385}
386
e29136f8 387static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
388 unsigned int line,
389 struct ext4_map_blocks *map)
6fd058f7 390{
24676da4
TT
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 map->m_len)) {
c398eda0
TT
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
396 map->m_len);
6a797d27 397 return -EFSCORRUPTED;
6fd058f7
TT
398 }
399 return 0;
400}
401
53085fac
JK
402int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 ext4_lblk_t len)
404{
405 int ret;
406
407 if (ext4_encrypted_inode(inode))
a7550b30 408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
409
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 if (ret > 0)
412 ret = 0;
413
414 return ret;
415}
416
e29136f8 417#define check_block_validity(inode, map) \
c398eda0 418 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 419
921f266b
DM
420#ifdef ES_AGGRESSIVE_TEST
421static void ext4_map_blocks_es_recheck(handle_t *handle,
422 struct inode *inode,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
425 int flags)
426{
427 int retval;
428
429 map->m_flags = 0;
430 /*
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
436 */
2dcba478 437 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
441 } else {
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
444 }
2dcba478 445 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
446
447 /*
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
450 */
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
bdafe42a 454 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
460 retval, flags);
461 }
462}
463#endif /* ES_AGGRESSIVE_TEST */
464
f5ab0d1f 465/*
e35fd660 466 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 467 * and returns if the blocks are already mapped.
f5ab0d1f 468 *
f5ab0d1f
MC
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
471 * mapped.
472 *
e35fd660
TT
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
475 * based files
476 *
facab4d9
JK
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
480 *
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
484 *
485 * It returns the error in case of allocation failure.
486 */
e35fd660
TT
487int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
0e855ac8 489{
d100eef2 490 struct extent_status es;
0e855ac8 491 int retval;
b8a86845 492 int ret = 0;
921f266b
DM
493#ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
495
496 memcpy(&orig_map, map, sizeof(*map));
497#endif
f5ab0d1f 498
e35fd660
TT
499 map->m_flags = 0;
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
d100eef2 503
e861b5e9
TT
504 /*
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 */
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
509
4adb6ab3
KM
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 512 return -EFSCORRUPTED;
4adb6ab3 513
d100eef2
ZL
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
526 map->m_pblk = 0;
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
529 retval = map->m_len;
530 map->m_len = retval;
d100eef2
ZL
531 retval = 0;
532 } else {
533 BUG_ON(1);
534 }
921f266b
DM
535#ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
537 &orig_map, flags);
538#endif
d100eef2
ZL
539 goto found;
540 }
541
4df3d265 542 /*
b920c755
TT
543 * Try to see if we can get the block without requesting a new
544 * file system block.
4df3d265 545 */
2dcba478 546 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 550 } else {
a4e5d88b
DM
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 553 }
f7fec032 554 if (retval > 0) {
3be78c73 555 unsigned int status;
f7fec032 556
44fb851d
ZL
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
562 WARN_ON(1);
921f266b 563 }
921f266b 564
f7fec032
ZL
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 568 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
2dcba478 577 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 578
d100eef2 579found:
e35fd660 580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 581 ret = check_block_validity(inode, map);
6fd058f7
TT
582 if (ret != 0)
583 return ret;
584 }
585
f5ab0d1f 586 /* If it is only a block(s) look up */
c2177057 587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
df3ab170 594 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
595 * with buffer head unmapped.
596 */
e35fd660 597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
598 /*
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
602 */
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 return retval;
4df3d265 605
2a8964d6 606 /*
a25a4e1a
ZL
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
2a8964d6 609 */
a25a4e1a 610 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 611
4df3d265 612 /*
556615dc 613 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 614 * will possibly result in updating i_data, so we take
d91bd2c1 615 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 616 * with create == 1 flag.
4df3d265 617 */
c8b459f4 618 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 619
4df3d265
AK
620 /*
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
623 */
12e9b892 624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 626 } else {
e35fd660 627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 628
e35fd660 629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
630 /*
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
634 */
19f5fb7a 635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 636 }
d2a17637 637
5f634d06
AK
638 /*
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
643 */
644 if ((retval > 0) &&
1296cc85 645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
646 ext4_da_update_reserve_space(inode, retval, 1);
647 }
2ac3b6e0 648
f7fec032 649 if (retval > 0) {
3be78c73 650 unsigned int status;
f7fec032 651
44fb851d
ZL
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
657 WARN_ON(1);
921f266b 658 }
921f266b 659
c86d8db3
JK
660 /*
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
9b623df6
JK
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
c86d8db3
JK
666 */
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 map->m_len);
c86d8db3
JK
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
674 if (ret) {
675 retval = ret;
676 goto out_sem;
677 }
678 }
679
adb23551
ZL
680 /*
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
683 */
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
c86d8db3 687 goto out_sem;
adb23551 688 }
f7fec032
ZL
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 692 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
c86d8db3 698 if (ret < 0) {
f7fec032 699 retval = ret;
c86d8db3
JK
700 goto out_sem;
701 }
5356f261
AK
702 }
703
c86d8db3 704out_sem:
4df3d265 705 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 707 ret = check_block_validity(inode, map);
6fd058f7
TT
708 if (ret != 0)
709 return ret;
06bd3c36
JK
710
711 /*
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
714 * ordered data list.
715 */
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 719 !ext4_is_quota_file(inode) &&
06bd3c36 720 ext4_should_order_data(inode)) {
ee0876bc
JK
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
723 else
724 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
725 if (ret)
726 return ret;
727 }
6fd058f7 728 }
0e855ac8
AK
729 return retval;
730}
731
ed8ad838
JK
732/*
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
735 */
736static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737{
738 unsigned long old_state;
739 unsigned long new_state;
740
741 flags &= EXT4_MAP_FLAGS;
742
743 /* Dummy buffer_head? Set non-atomically. */
744 if (!bh->b_page) {
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 return;
747 }
748 /*
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
752 */
753 do {
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 } while (unlikely(
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758}
759
2ed88685
TT
760static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
ac27a0ec 762{
2ed88685 763 struct ext4_map_blocks map;
efe70c29 764 int ret = 0;
ac27a0ec 765
46c7f254
TM
766 if (ext4_has_inline_data(inode))
767 return -ERANGE;
768
2ed88685
TT
769 map.m_lblk = iblock;
770 map.m_len = bh->b_size >> inode->i_blkbits;
771
efe70c29
JK
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 flags);
7fb5409d 774 if (ret > 0) {
2ed88685 775 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 776 ext4_update_bh_state(bh, map.m_flags);
2ed88685 777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 778 ret = 0;
547edce3
RZ
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
782 }
783 return ret;
784}
785
2ed88685
TT
786int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
788{
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
791}
792
705965bd
JK
793/*
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
797 */
798int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
800{
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
805}
806
efe70c29
JK
807/* Maximum number of blocks we map for direct IO at once. */
808#define DIO_MAX_BLOCKS 4096
809
e84dfbe2
JK
810/*
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
813 * in case of ENOSPC.
814 */
815static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
efe70c29
JK
817{
818 int dio_credits;
e84dfbe2
JK
819 handle_t *handle;
820 int retries = 0;
821 int ret;
efe70c29
JK
822
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
828retry:
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 if (IS_ERR(handle))
831 return PTR_ERR(handle);
832
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
835
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 goto retry;
838 return ret;
efe70c29
JK
839}
840
705965bd
JK
841/* Get block function for DIO reads and writes to inodes without extents */
842int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
844{
efe70c29
JK
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
847
e84dfbe2
JK
848 if (!create)
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
851}
852
853/*
109811c2 854 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
857 */
109811c2
JK
858static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 860{
efe70c29
JK
861 int ret;
862
efe70c29
JK
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
865
e84dfbe2
JK
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 868
109811c2
JK
869 /*
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
875 */
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
879
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 if (!io_end)
882 return -ENOMEM;
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
885 }
efe70c29 886 set_buffer_defer_completion(bh_result);
efe70c29
JK
887 }
888
889 return ret;
705965bd
JK
890}
891
109811c2
JK
892/*
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
1e21196c 895 * after IO is complete by ext4_direct_IO_write().
109811c2
JK
896 */
897static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
899{
109811c2
JK
900 int ret;
901
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
904
e84dfbe2
JK
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
907
908 /*
909 * Mark inode as having pending DIO writes to unwritten extents.
1e21196c 910 * ext4_direct_IO_write() checks this flag and converts extents to
109811c2
JK
911 * written.
912 */
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916 return ret;
917}
918
705965bd
JK
919static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
921{
922 int ret;
923
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
efe70c29
JK
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
928
705965bd
JK
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 /*
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 * that.
933 */
efe70c29 934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
935
936 return ret;
937}
938
939
ac27a0ec
DK
940/*
941 * `handle' can be NULL if create is zero
942 */
617ba13b 943struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 944 ext4_lblk_t block, int map_flags)
ac27a0ec 945{
2ed88685
TT
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
c5e298ae 948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 949 int err;
ac27a0ec
DK
950
951 J_ASSERT(handle != NULL || create == 0);
952
2ed88685
TT
953 map.m_lblk = block;
954 map.m_len = 1;
c5e298ae 955 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 956
10560082
TT
957 if (err == 0)
958 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 959 if (err < 0)
10560082 960 return ERR_PTR(err);
2ed88685
TT
961
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
963 if (unlikely(!bh))
964 return ERR_PTR(-ENOMEM);
2ed88685
TT
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
ac27a0ec 968
2ed88685
TT
969 /*
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
974 * problem.
975 */
976 lock_buffer(bh);
977 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
978 err = ext4_journal_get_create_access(handle, bh);
979 if (unlikely(err)) {
980 unlock_buffer(bh);
981 goto errout;
982 }
983 if (!buffer_uptodate(bh)) {
2ed88685
TT
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
ac27a0ec 986 }
2ed88685
TT
987 unlock_buffer(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
990 if (unlikely(err))
991 goto errout;
992 } else
2ed88685 993 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 994 return bh;
10560082
TT
995errout:
996 brelse(bh);
997 return ERR_PTR(err);
ac27a0ec
DK
998}
999
617ba13b 1000struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1001 ext4_lblk_t block, int map_flags)
ac27a0ec 1002{
af5bc92d 1003 struct buffer_head *bh;
ac27a0ec 1004
c5e298ae 1005 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1006 if (IS_ERR(bh))
ac27a0ec 1007 return bh;
1c215028 1008 if (!bh || buffer_uptodate(bh))
ac27a0ec 1009 return bh;
dfec8a14 1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1011 wait_on_buffer(bh);
1012 if (buffer_uptodate(bh))
1013 return bh;
1014 put_bh(bh);
1c215028 1015 return ERR_PTR(-EIO);
ac27a0ec
DK
1016}
1017
9699d4f9
TE
1018/* Read a contiguous batch of blocks. */
1019int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 bool wait, struct buffer_head **bhs)
1021{
1022 int i, err;
1023
1024 for (i = 0; i < bh_count; i++) {
1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 if (IS_ERR(bhs[i])) {
1027 err = PTR_ERR(bhs[i]);
1028 bh_count = i;
1029 goto out_brelse;
1030 }
1031 }
1032
1033 for (i = 0; i < bh_count; i++)
1034 /* Note that NULL bhs[i] is valid because of holes. */
1035 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037 &bhs[i]);
1038
1039 if (!wait)
1040 return 0;
1041
1042 for (i = 0; i < bh_count; i++)
1043 if (bhs[i])
1044 wait_on_buffer(bhs[i]);
1045
1046 for (i = 0; i < bh_count; i++) {
1047 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048 err = -EIO;
1049 goto out_brelse;
1050 }
1051 }
1052 return 0;
1053
1054out_brelse:
1055 for (i = 0; i < bh_count; i++) {
1056 brelse(bhs[i]);
1057 bhs[i] = NULL;
1058 }
1059 return err;
1060}
1061
f19d5870
TM
1062int ext4_walk_page_buffers(handle_t *handle,
1063 struct buffer_head *head,
1064 unsigned from,
1065 unsigned to,
1066 int *partial,
1067 int (*fn)(handle_t *handle,
1068 struct buffer_head *bh))
ac27a0ec
DK
1069{
1070 struct buffer_head *bh;
1071 unsigned block_start, block_end;
1072 unsigned blocksize = head->b_size;
1073 int err, ret = 0;
1074 struct buffer_head *next;
1075
af5bc92d
TT
1076 for (bh = head, block_start = 0;
1077 ret == 0 && (bh != head || !block_start);
de9a55b8 1078 block_start = block_end, bh = next) {
ac27a0ec
DK
1079 next = bh->b_this_page;
1080 block_end = block_start + blocksize;
1081 if (block_end <= from || block_start >= to) {
1082 if (partial && !buffer_uptodate(bh))
1083 *partial = 1;
1084 continue;
1085 }
1086 err = (*fn)(handle, bh);
1087 if (!ret)
1088 ret = err;
1089 }
1090 return ret;
1091}
1092
1093/*
1094 * To preserve ordering, it is essential that the hole instantiation and
1095 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1096 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1097 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1098 * prepare_write() is the right place.
1099 *
36ade451
JK
1100 * Also, this function can nest inside ext4_writepage(). In that case, we
1101 * *know* that ext4_writepage() has generated enough buffer credits to do the
1102 * whole page. So we won't block on the journal in that case, which is good,
1103 * because the caller may be PF_MEMALLOC.
ac27a0ec 1104 *
617ba13b 1105 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1106 * quota file writes. If we were to commit the transaction while thus
1107 * reentered, there can be a deadlock - we would be holding a quota
1108 * lock, and the commit would never complete if another thread had a
1109 * transaction open and was blocking on the quota lock - a ranking
1110 * violation.
1111 *
dab291af 1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1113 * will _not_ run commit under these circumstances because handle->h_ref
1114 * is elevated. We'll still have enough credits for the tiny quotafile
1115 * write.
1116 */
f19d5870
TM
1117int do_journal_get_write_access(handle_t *handle,
1118 struct buffer_head *bh)
ac27a0ec 1119{
56d35a4c
JK
1120 int dirty = buffer_dirty(bh);
1121 int ret;
1122
ac27a0ec
DK
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1124 return 0;
56d35a4c 1125 /*
ebdec241 1126 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1127 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1129 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1130 * the bit before releasing a page lock and thus writeback cannot
1131 * ever write the buffer.
1132 */
1133 if (dirty)
1134 clear_buffer_dirty(bh);
5d601255 1135 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1136 ret = ext4_journal_get_write_access(handle, bh);
1137 if (!ret && dirty)
1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139 return ret;
ac27a0ec
DK
1140}
1141
2058f83a
MH
1142#ifdef CONFIG_EXT4_FS_ENCRYPTION
1143static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 get_block_t *get_block)
1145{
09cbfeaf 1146 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1147 unsigned to = from + len;
1148 struct inode *inode = page->mapping->host;
1149 unsigned block_start, block_end;
1150 sector_t block;
1151 int err = 0;
1152 unsigned blocksize = inode->i_sb->s_blocksize;
1153 unsigned bbits;
1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 bool decrypt = false;
1156
1157 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1158 BUG_ON(from > PAGE_SIZE);
1159 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1160 BUG_ON(from > to);
1161
1162 if (!page_has_buffers(page))
1163 create_empty_buffers(page, blocksize, 0);
1164 head = page_buffers(page);
1165 bbits = ilog2(blocksize);
09cbfeaf 1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1167
1168 for (bh = head, block_start = 0; bh != head || !block_start;
1169 block++, block_start = block_end, bh = bh->b_this_page) {
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (PageUptodate(page)) {
1173 if (!buffer_uptodate(bh))
1174 set_buffer_uptodate(bh);
1175 }
1176 continue;
1177 }
1178 if (buffer_new(bh))
1179 clear_buffer_new(bh);
1180 if (!buffer_mapped(bh)) {
1181 WARN_ON(bh->b_size != blocksize);
1182 err = get_block(inode, block, bh, 1);
1183 if (err)
1184 break;
1185 if (buffer_new(bh)) {
e64855c6 1186 clean_bdev_bh_alias(bh);
2058f83a
MH
1187 if (PageUptodate(page)) {
1188 clear_buffer_new(bh);
1189 set_buffer_uptodate(bh);
1190 mark_buffer_dirty(bh);
1191 continue;
1192 }
1193 if (block_end > to || block_start < from)
1194 zero_user_segments(page, to, block_end,
1195 block_start, from);
1196 continue;
1197 }
1198 }
1199 if (PageUptodate(page)) {
1200 if (!buffer_uptodate(bh))
1201 set_buffer_uptodate(bh);
1202 continue;
1203 }
1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 !buffer_unwritten(bh) &&
1206 (block_start < from || block_end > to)) {
dfec8a14 1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1208 *wait_bh++ = bh;
1209 decrypt = ext4_encrypted_inode(inode) &&
1210 S_ISREG(inode->i_mode);
1211 }
1212 }
1213 /*
1214 * If we issued read requests, let them complete.
1215 */
1216 while (wait_bh > wait) {
1217 wait_on_buffer(*--wait_bh);
1218 if (!buffer_uptodate(*wait_bh))
1219 err = -EIO;
1220 }
1221 if (unlikely(err))
1222 page_zero_new_buffers(page, from, to);
1223 else if (decrypt)
7821d4dd 1224 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1225 PAGE_SIZE, 0, page->index);
2058f83a
MH
1226 return err;
1227}
1228#endif
1229
bfc1af65 1230static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1231 loff_t pos, unsigned len, unsigned flags,
1232 struct page **pagep, void **fsdata)
ac27a0ec 1233{
af5bc92d 1234 struct inode *inode = mapping->host;
1938a150 1235 int ret, needed_blocks;
ac27a0ec
DK
1236 handle_t *handle;
1237 int retries = 0;
af5bc92d 1238 struct page *page;
de9a55b8 1239 pgoff_t index;
af5bc92d 1240 unsigned from, to;
bfc1af65 1241
0db1ff22
TT
1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243 return -EIO;
1244
9bffad1e 1245 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1246 /*
1247 * Reserve one block more for addition to orphan list in case
1248 * we allocate blocks but write fails for some reason
1249 */
1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1251 index = pos >> PAGE_SHIFT;
1252 from = pos & (PAGE_SIZE - 1);
af5bc92d 1253 to = from + len;
ac27a0ec 1254
f19d5870
TM
1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257 flags, pagep);
1258 if (ret < 0)
47564bfb
TT
1259 return ret;
1260 if (ret == 1)
1261 return 0;
f19d5870
TM
1262 }
1263
47564bfb
TT
1264 /*
1265 * grab_cache_page_write_begin() can take a long time if the
1266 * system is thrashing due to memory pressure, or if the page
1267 * is being written back. So grab it first before we start
1268 * the transaction handle. This also allows us to allocate
1269 * the page (if needed) without using GFP_NOFS.
1270 */
1271retry_grab:
1272 page = grab_cache_page_write_begin(mapping, index, flags);
1273 if (!page)
1274 return -ENOMEM;
1275 unlock_page(page);
1276
1277retry_journal:
9924a92a 1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1279 if (IS_ERR(handle)) {
09cbfeaf 1280 put_page(page);
47564bfb 1281 return PTR_ERR(handle);
7479d2b9 1282 }
ac27a0ec 1283
47564bfb
TT
1284 lock_page(page);
1285 if (page->mapping != mapping) {
1286 /* The page got truncated from under us */
1287 unlock_page(page);
09cbfeaf 1288 put_page(page);
cf108bca 1289 ext4_journal_stop(handle);
47564bfb 1290 goto retry_grab;
cf108bca 1291 }
7afe5aa5
DM
1292 /* In case writeback began while the page was unlocked */
1293 wait_for_stable_page(page);
cf108bca 1294
2058f83a
MH
1295#ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 if (ext4_should_dioread_nolock(inode))
1297 ret = ext4_block_write_begin(page, pos, len,
705965bd 1298 ext4_get_block_unwritten);
2058f83a
MH
1299 else
1300 ret = ext4_block_write_begin(page, pos, len,
1301 ext4_get_block);
1302#else
744692dc 1303 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1304 ret = __block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
744692dc 1306 else
6e1db88d 1307 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1308#endif
bfc1af65 1309 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1310 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311 from, to, NULL,
1312 do_journal_get_write_access);
ac27a0ec 1313 }
bfc1af65
NP
1314
1315 if (ret) {
af5bc92d 1316 unlock_page(page);
ae4d5372 1317 /*
6e1db88d 1318 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1319 * outside i_size. Trim these off again. Don't need
1320 * i_size_read because we hold i_mutex.
1938a150
AK
1321 *
1322 * Add inode to orphan list in case we crash before
1323 * truncate finishes
ae4d5372 1324 */
ffacfa7a 1325 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1326 ext4_orphan_add(handle, inode);
1327
1328 ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size) {
b9a4207d 1330 ext4_truncate_failed_write(inode);
de9a55b8 1331 /*
ffacfa7a 1332 * If truncate failed early the inode might
1938a150
AK
1333 * still be on the orphan list; we need to
1334 * make sure the inode is removed from the
1335 * orphan list in that case.
1336 */
1337 if (inode->i_nlink)
1338 ext4_orphan_del(NULL, inode);
1339 }
bfc1af65 1340
47564bfb
TT
1341 if (ret == -ENOSPC &&
1342 ext4_should_retry_alloc(inode->i_sb, &retries))
1343 goto retry_journal;
09cbfeaf 1344 put_page(page);
47564bfb
TT
1345 return ret;
1346 }
1347 *pagep = page;
ac27a0ec
DK
1348 return ret;
1349}
1350
bfc1af65
NP
1351/* For write_end() in data=journal mode */
1352static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1353{
13fca323 1354 int ret;
ac27a0ec
DK
1355 if (!buffer_mapped(bh) || buffer_freed(bh))
1356 return 0;
1357 set_buffer_uptodate(bh);
13fca323
TT
1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 clear_buffer_meta(bh);
1360 clear_buffer_prio(bh);
1361 return ret;
ac27a0ec
DK
1362}
1363
eed4333f
ZL
1364/*
1365 * We need to pick up the new inode size which generic_commit_write gave us
1366 * `file' can be NULL - eg, when called from page_symlink().
1367 *
1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1369 * buffers are managed internally.
1370 */
1371static int ext4_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
f8514083 1375{
f8514083 1376 handle_t *handle = ext4_journal_current_handle();
eed4333f 1377 struct inode *inode = mapping->host;
0572639f 1378 loff_t old_size = inode->i_size;
eed4333f
ZL
1379 int ret = 0, ret2;
1380 int i_size_changed = 0;
1381
1382 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1383 if (ext4_has_inline_data(inode)) {
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1385 copied, page);
eb5efbcb
TT
1386 if (ret < 0) {
1387 unlock_page(page);
1388 put_page(page);
42c832de 1389 goto errout;
eb5efbcb 1390 }
42c832de
TT
1391 copied = ret;
1392 } else
f19d5870
TM
1393 copied = block_write_end(file, mapping, pos,
1394 len, copied, page, fsdata);
f8514083 1395 /*
4631dbf6 1396 * it's important to update i_size while still holding page lock:
f8514083
AK
1397 * page writeout could otherwise come in and zero beyond i_size.
1398 */
4631dbf6 1399 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1400 unlock_page(page);
09cbfeaf 1401 put_page(page);
f8514083 1402
0572639f
XW
1403 if (old_size < pos)
1404 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1405 /*
1406 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 * makes the holding time of page lock longer. Second, it forces lock
1408 * ordering of page lock and transaction start for journaling
1409 * filesystems.
1410 */
1411 if (i_size_changed)
1412 ext4_mark_inode_dirty(handle, inode);
1413
ffacfa7a 1414 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1415 /* if we have allocated more blocks and copied
1416 * less. We will have blocks allocated outside
1417 * inode->i_size. So truncate them
1418 */
1419 ext4_orphan_add(handle, inode);
74d553aa 1420errout:
617ba13b 1421 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1422 if (!ret)
1423 ret = ret2;
bfc1af65 1424
f8514083 1425 if (pos + len > inode->i_size) {
b9a4207d 1426 ext4_truncate_failed_write(inode);
de9a55b8 1427 /*
ffacfa7a 1428 * If truncate failed early the inode might still be
f8514083
AK
1429 * on the orphan list; we need to make sure the inode
1430 * is removed from the orphan list in that case.
1431 */
1432 if (inode->i_nlink)
1433 ext4_orphan_del(NULL, inode);
1434 }
1435
bfc1af65 1436 return ret ? ret : copied;
ac27a0ec
DK
1437}
1438
b90197b6
TT
1439/*
1440 * This is a private version of page_zero_new_buffers() which doesn't
1441 * set the buffer to be dirty, since in data=journalled mode we need
1442 * to call ext4_handle_dirty_metadata() instead.
1443 */
3b136499
JK
1444static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445 struct page *page,
1446 unsigned from, unsigned to)
b90197b6
TT
1447{
1448 unsigned int block_start = 0, block_end;
1449 struct buffer_head *head, *bh;
1450
1451 bh = head = page_buffers(page);
1452 do {
1453 block_end = block_start + bh->b_size;
1454 if (buffer_new(bh)) {
1455 if (block_end > from && block_start < to) {
1456 if (!PageUptodate(page)) {
1457 unsigned start, size;
1458
1459 start = max(from, block_start);
1460 size = min(to, block_end) - start;
1461
1462 zero_user(page, start, size);
3b136499 1463 write_end_fn(handle, bh);
b90197b6
TT
1464 }
1465 clear_buffer_new(bh);
1466 }
1467 }
1468 block_start = block_end;
1469 bh = bh->b_this_page;
1470 } while (bh != head);
1471}
1472
bfc1af65 1473static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1474 struct address_space *mapping,
1475 loff_t pos, unsigned len, unsigned copied,
1476 struct page *page, void *fsdata)
ac27a0ec 1477{
617ba13b 1478 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1479 struct inode *inode = mapping->host;
0572639f 1480 loff_t old_size = inode->i_size;
ac27a0ec
DK
1481 int ret = 0, ret2;
1482 int partial = 0;
bfc1af65 1483 unsigned from, to;
4631dbf6 1484 int size_changed = 0;
ac27a0ec 1485
9bffad1e 1486 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1487 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1488 to = from + len;
1489
441c8508
CW
1490 BUG_ON(!ext4_handle_valid(handle));
1491
eb5efbcb
TT
1492 if (ext4_has_inline_data(inode)) {
1493 ret = ext4_write_inline_data_end(inode, pos, len,
1494 copied, page);
1495 if (ret < 0) {
1496 unlock_page(page);
1497 put_page(page);
1498 goto errout;
1499 }
1500 copied = ret;
1501 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1502 copied = 0;
1503 ext4_journalled_zero_new_buffers(handle, page, from, to);
1504 } else {
1505 if (unlikely(copied < len))
1506 ext4_journalled_zero_new_buffers(handle, page,
1507 from + copied, to);
3fdcfb66 1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1509 from + copied, &partial,
1510 write_end_fn);
3fdcfb66
TM
1511 if (!partial)
1512 SetPageUptodate(page);
1513 }
4631dbf6 1514 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1517 unlock_page(page);
09cbfeaf 1518 put_page(page);
4631dbf6 1519
0572639f
XW
1520 if (old_size < pos)
1521 pagecache_isize_extended(inode, old_size, pos);
1522
4631dbf6 1523 if (size_changed) {
617ba13b 1524 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1525 if (!ret)
1526 ret = ret2;
1527 }
bfc1af65 1528
ffacfa7a 1529 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1530 /* if we have allocated more blocks and copied
1531 * less. We will have blocks allocated outside
1532 * inode->i_size. So truncate them
1533 */
1534 ext4_orphan_add(handle, inode);
1535
eb5efbcb 1536errout:
617ba13b 1537 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1538 if (!ret)
1539 ret = ret2;
f8514083 1540 if (pos + len > inode->i_size) {
b9a4207d 1541 ext4_truncate_failed_write(inode);
de9a55b8 1542 /*
ffacfa7a 1543 * If truncate failed early the inode might still be
f8514083
AK
1544 * on the orphan list; we need to make sure the inode
1545 * is removed from the orphan list in that case.
1546 */
1547 if (inode->i_nlink)
1548 ext4_orphan_del(NULL, inode);
1549 }
bfc1af65
NP
1550
1551 return ret ? ret : copied;
ac27a0ec 1552}
d2a17637 1553
9d0be502 1554/*
c27e43a1 1555 * Reserve space for a single cluster
9d0be502 1556 */
c27e43a1 1557static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1558{
60e58e0f 1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1560 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1561 int ret;
03179fe9
TT
1562
1563 /*
1564 * We will charge metadata quota at writeout time; this saves
1565 * us from metadata over-estimation, though we may go over by
1566 * a small amount in the end. Here we just reserve for data.
1567 */
1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569 if (ret)
1570 return ret;
d2a17637 1571
0637c6f4 1572 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1573 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1574 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1576 return -ENOSPC;
1577 }
9d0be502 1578 ei->i_reserved_data_blocks++;
c27e43a1 1579 trace_ext4_da_reserve_space(inode);
0637c6f4 1580 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1581
d2a17637
MC
1582 return 0; /* success */
1583}
1584
12219aea 1585static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1586{
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1588 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1589
cd213226
MC
1590 if (!to_free)
1591 return; /* Nothing to release, exit */
1592
d2a17637 1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1594
5a58ec87 1595 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1597 /*
0637c6f4
TT
1598 * if there aren't enough reserved blocks, then the
1599 * counter is messed up somewhere. Since this
1600 * function is called from invalidate page, it's
1601 * harmless to return without any action.
cd213226 1602 */
8de5c325 1603 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1604 "ino %lu, to_free %d with only %d reserved "
1084f252 1605 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1606 ei->i_reserved_data_blocks);
1607 WARN_ON(1);
1608 to_free = ei->i_reserved_data_blocks;
cd213226 1609 }
0637c6f4 1610 ei->i_reserved_data_blocks -= to_free;
cd213226 1611
72b8ab9d 1612 /* update fs dirty data blocks counter */
57042651 1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1614
d2a17637 1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1616
7b415bf6 1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1618}
1619
1620static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1621 unsigned int offset,
1622 unsigned int length)
d2a17637 1623{
9705acd6 1624 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
7b415bf6
AK
1627 struct inode *inode = page->mapping->host;
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1629 unsigned int stop = offset + length;
7b415bf6 1630 int num_clusters;
51865fda 1631 ext4_fsblk_t lblk;
d2a17637 1632
09cbfeaf 1633 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1634
d2a17637
MC
1635 head = page_buffers(page);
1636 bh = head;
1637 do {
1638 unsigned int next_off = curr_off + bh->b_size;
1639
ca99fdd2
LC
1640 if (next_off > stop)
1641 break;
1642
d2a17637
MC
1643 if ((offset <= curr_off) && (buffer_delay(bh))) {
1644 to_release++;
9705acd6 1645 contiguous_blks++;
d2a17637 1646 clear_buffer_delay(bh);
9705acd6
LC
1647 } else if (contiguous_blks) {
1648 lblk = page->index <<
09cbfeaf 1649 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1650 lblk += (curr_off >> inode->i_blkbits) -
1651 contiguous_blks;
1652 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 contiguous_blks = 0;
d2a17637
MC
1654 }
1655 curr_off = next_off;
1656 } while ((bh = bh->b_this_page) != head);
7b415bf6 1657
9705acd6 1658 if (contiguous_blks) {
09cbfeaf 1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1662 }
1663
7b415bf6
AK
1664 /* If we have released all the blocks belonging to a cluster, then we
1665 * need to release the reserved space for that cluster. */
1666 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 while (num_clusters > 0) {
09cbfeaf 1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1669 ((num_clusters - 1) << sbi->s_cluster_bits);
1670 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1671 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1672 ext4_da_release_space(inode, 1);
1673
1674 num_clusters--;
1675 }
d2a17637 1676}
ac27a0ec 1677
64769240
AT
1678/*
1679 * Delayed allocation stuff
1680 */
1681
4e7ea81d
JK
1682struct mpage_da_data {
1683 struct inode *inode;
1684 struct writeback_control *wbc;
6b523df4 1685
4e7ea81d
JK
1686 pgoff_t first_page; /* The first page to write */
1687 pgoff_t next_page; /* Current page to examine */
1688 pgoff_t last_page; /* Last page to examine */
791b7f08 1689 /*
4e7ea81d
JK
1690 * Extent to map - this can be after first_page because that can be
1691 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 * is delalloc or unwritten.
791b7f08 1693 */
4e7ea81d
JK
1694 struct ext4_map_blocks map;
1695 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1696 unsigned int do_map:1;
4e7ea81d 1697};
64769240 1698
4e7ea81d
JK
1699static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700 bool invalidate)
c4a0c46e
AK
1701{
1702 int nr_pages, i;
1703 pgoff_t index, end;
1704 struct pagevec pvec;
1705 struct inode *inode = mpd->inode;
1706 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1707
1708 /* This is necessary when next_page == 0. */
1709 if (mpd->first_page >= mpd->next_page)
1710 return;
c4a0c46e 1711
c7f5938a
CW
1712 index = mpd->first_page;
1713 end = mpd->next_page - 1;
4e7ea81d
JK
1714 if (invalidate) {
1715 ext4_lblk_t start, last;
09cbfeaf
KS
1716 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1718 ext4_es_remove_extent(inode, start, last - start + 1);
1719 }
51865fda 1720
66bea92c 1721 pagevec_init(&pvec, 0);
c4a0c46e 1722 while (index <= end) {
397162ff 1723 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1724 if (nr_pages == 0)
1725 break;
1726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
2b85a617 1728
c4a0c46e
AK
1729 BUG_ON(!PageLocked(page));
1730 BUG_ON(PageWriteback(page));
4e7ea81d 1731 if (invalidate) {
4e800c03 1732 if (page_mapped(page))
1733 clear_page_dirty_for_io(page);
09cbfeaf 1734 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1735 ClearPageUptodate(page);
1736 }
c4a0c46e
AK
1737 unlock_page(page);
1738 }
9b1d0998 1739 pagevec_release(&pvec);
c4a0c46e 1740 }
c4a0c46e
AK
1741}
1742
df22291f
AK
1743static void ext4_print_free_blocks(struct inode *inode)
1744{
1745 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1746 struct super_block *sb = inode->i_sb;
f78ee70d 1747 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1748
1749 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1750 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1751 ext4_count_free_clusters(sb)));
92b97816
TT
1752 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1753 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1754 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1755 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1756 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1757 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1758 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1759 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1760 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1761 ei->i_reserved_data_blocks);
df22291f
AK
1762 return;
1763}
1764
c364b22c 1765static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1766{
c364b22c 1767 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1768}
1769
5356f261
AK
1770/*
1771 * This function is grabs code from the very beginning of
1772 * ext4_map_blocks, but assumes that the caller is from delayed write
1773 * time. This function looks up the requested blocks and sets the
1774 * buffer delay bit under the protection of i_data_sem.
1775 */
1776static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1777 struct ext4_map_blocks *map,
1778 struct buffer_head *bh)
1779{
d100eef2 1780 struct extent_status es;
5356f261
AK
1781 int retval;
1782 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1783#ifdef ES_AGGRESSIVE_TEST
1784 struct ext4_map_blocks orig_map;
1785
1786 memcpy(&orig_map, map, sizeof(*map));
1787#endif
5356f261
AK
1788
1789 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1790 invalid_block = ~0;
1791
1792 map->m_flags = 0;
1793 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1794 "logical block %lu\n", inode->i_ino, map->m_len,
1795 (unsigned long) map->m_lblk);
d100eef2
ZL
1796
1797 /* Lookup extent status tree firstly */
1798 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1799 if (ext4_es_is_hole(&es)) {
1800 retval = 0;
c8b459f4 1801 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1802 goto add_delayed;
1803 }
1804
1805 /*
1806 * Delayed extent could be allocated by fallocate.
1807 * So we need to check it.
1808 */
1809 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1810 map_bh(bh, inode->i_sb, invalid_block);
1811 set_buffer_new(bh);
1812 set_buffer_delay(bh);
1813 return 0;
1814 }
1815
1816 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1817 retval = es.es_len - (iblock - es.es_lblk);
1818 if (retval > map->m_len)
1819 retval = map->m_len;
1820 map->m_len = retval;
1821 if (ext4_es_is_written(&es))
1822 map->m_flags |= EXT4_MAP_MAPPED;
1823 else if (ext4_es_is_unwritten(&es))
1824 map->m_flags |= EXT4_MAP_UNWRITTEN;
1825 else
1826 BUG_ON(1);
1827
921f266b
DM
1828#ifdef ES_AGGRESSIVE_TEST
1829 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1830#endif
d100eef2
ZL
1831 return retval;
1832 }
1833
5356f261
AK
1834 /*
1835 * Try to see if we can get the block without requesting a new
1836 * file system block.
1837 */
c8b459f4 1838 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1839 if (ext4_has_inline_data(inode))
9c3569b5 1840 retval = 0;
cbd7584e 1841 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1842 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1843 else
2f8e0a7c 1844 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1845
d100eef2 1846add_delayed:
5356f261 1847 if (retval == 0) {
f7fec032 1848 int ret;
5356f261
AK
1849 /*
1850 * XXX: __block_prepare_write() unmaps passed block,
1851 * is it OK?
1852 */
386ad67c
LC
1853 /*
1854 * If the block was allocated from previously allocated cluster,
1855 * then we don't need to reserve it again. However we still need
1856 * to reserve metadata for every block we're going to write.
1857 */
c27e43a1 1858 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1859 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1860 ret = ext4_da_reserve_space(inode);
f7fec032 1861 if (ret) {
5356f261 1862 /* not enough space to reserve */
f7fec032 1863 retval = ret;
5356f261 1864 goto out_unlock;
f7fec032 1865 }
5356f261
AK
1866 }
1867
f7fec032
ZL
1868 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1869 ~0, EXTENT_STATUS_DELAYED);
1870 if (ret) {
1871 retval = ret;
51865fda 1872 goto out_unlock;
f7fec032 1873 }
51865fda 1874
5356f261
AK
1875 map_bh(bh, inode->i_sb, invalid_block);
1876 set_buffer_new(bh);
1877 set_buffer_delay(bh);
f7fec032
ZL
1878 } else if (retval > 0) {
1879 int ret;
3be78c73 1880 unsigned int status;
f7fec032 1881
44fb851d
ZL
1882 if (unlikely(retval != map->m_len)) {
1883 ext4_warning(inode->i_sb,
1884 "ES len assertion failed for inode "
1885 "%lu: retval %d != map->m_len %d",
1886 inode->i_ino, retval, map->m_len);
1887 WARN_ON(1);
921f266b 1888 }
921f266b 1889
f7fec032
ZL
1890 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1891 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1892 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1893 map->m_pblk, status);
1894 if (ret != 0)
1895 retval = ret;
5356f261
AK
1896 }
1897
1898out_unlock:
1899 up_read((&EXT4_I(inode)->i_data_sem));
1900
1901 return retval;
1902}
1903
64769240 1904/*
d91bd2c1 1905 * This is a special get_block_t callback which is used by
b920c755
TT
1906 * ext4_da_write_begin(). It will either return mapped block or
1907 * reserve space for a single block.
29fa89d0
AK
1908 *
1909 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1910 * We also have b_blocknr = -1 and b_bdev initialized properly
1911 *
1912 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1913 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1914 * initialized properly.
64769240 1915 */
9c3569b5
TM
1916int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1917 struct buffer_head *bh, int create)
64769240 1918{
2ed88685 1919 struct ext4_map_blocks map;
64769240
AT
1920 int ret = 0;
1921
1922 BUG_ON(create == 0);
2ed88685
TT
1923 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1924
1925 map.m_lblk = iblock;
1926 map.m_len = 1;
64769240
AT
1927
1928 /*
1929 * first, we need to know whether the block is allocated already
1930 * preallocated blocks are unmapped but should treated
1931 * the same as allocated blocks.
1932 */
5356f261
AK
1933 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1934 if (ret <= 0)
2ed88685 1935 return ret;
64769240 1936
2ed88685 1937 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1938 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1939
1940 if (buffer_unwritten(bh)) {
1941 /* A delayed write to unwritten bh should be marked
1942 * new and mapped. Mapped ensures that we don't do
1943 * get_block multiple times when we write to the same
1944 * offset and new ensures that we do proper zero out
1945 * for partial write.
1946 */
1947 set_buffer_new(bh);
c8205636 1948 set_buffer_mapped(bh);
2ed88685
TT
1949 }
1950 return 0;
64769240 1951}
61628a3f 1952
62e086be
AK
1953static int bget_one(handle_t *handle, struct buffer_head *bh)
1954{
1955 get_bh(bh);
1956 return 0;
1957}
1958
1959static int bput_one(handle_t *handle, struct buffer_head *bh)
1960{
1961 put_bh(bh);
1962 return 0;
1963}
1964
1965static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1966 unsigned int len)
1967{
1968 struct address_space *mapping = page->mapping;
1969 struct inode *inode = mapping->host;
3fdcfb66 1970 struct buffer_head *page_bufs = NULL;
62e086be 1971 handle_t *handle = NULL;
3fdcfb66
TM
1972 int ret = 0, err = 0;
1973 int inline_data = ext4_has_inline_data(inode);
1974 struct buffer_head *inode_bh = NULL;
62e086be 1975
cb20d518 1976 ClearPageChecked(page);
3fdcfb66
TM
1977
1978 if (inline_data) {
1979 BUG_ON(page->index != 0);
1980 BUG_ON(len > ext4_get_max_inline_size(inode));
1981 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1982 if (inode_bh == NULL)
1983 goto out;
1984 } else {
1985 page_bufs = page_buffers(page);
1986 if (!page_bufs) {
1987 BUG();
1988 goto out;
1989 }
1990 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1991 NULL, bget_one);
1992 }
bdf96838
TT
1993 /*
1994 * We need to release the page lock before we start the
1995 * journal, so grab a reference so the page won't disappear
1996 * out from under us.
1997 */
1998 get_page(page);
62e086be
AK
1999 unlock_page(page);
2000
9924a92a
TT
2001 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2002 ext4_writepage_trans_blocks(inode));
62e086be
AK
2003 if (IS_ERR(handle)) {
2004 ret = PTR_ERR(handle);
bdf96838
TT
2005 put_page(page);
2006 goto out_no_pagelock;
62e086be 2007 }
441c8508
CW
2008 BUG_ON(!ext4_handle_valid(handle));
2009
bdf96838
TT
2010 lock_page(page);
2011 put_page(page);
2012 if (page->mapping != mapping) {
2013 /* The page got truncated from under us */
2014 ext4_journal_stop(handle);
2015 ret = 0;
2016 goto out;
2017 }
2018
3fdcfb66 2019 if (inline_data) {
5d601255 2020 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 2021 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2022
3fdcfb66
TM
2023 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2024
2025 } else {
2026 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2027 do_journal_get_write_access);
2028
2029 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2030 write_end_fn);
2031 }
62e086be
AK
2032 if (ret == 0)
2033 ret = err;
2d859db3 2034 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2035 err = ext4_journal_stop(handle);
2036 if (!ret)
2037 ret = err;
2038
3fdcfb66 2039 if (!ext4_has_inline_data(inode))
8c9367fd 2040 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2041 NULL, bput_one);
19f5fb7a 2042 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2043out:
bdf96838
TT
2044 unlock_page(page);
2045out_no_pagelock:
3fdcfb66 2046 brelse(inode_bh);
62e086be
AK
2047 return ret;
2048}
2049
61628a3f 2050/*
43ce1d23
AK
2051 * Note that we don't need to start a transaction unless we're journaling data
2052 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2053 * need to file the inode to the transaction's list in ordered mode because if
2054 * we are writing back data added by write(), the inode is already there and if
25985edc 2055 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2056 * transaction the data will hit the disk. In case we are journaling data, we
2057 * cannot start transaction directly because transaction start ranks above page
2058 * lock so we have to do some magic.
2059 *
b920c755 2060 * This function can get called via...
20970ba6 2061 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2062 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2063 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2064 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2065 *
2066 * We don't do any block allocation in this function. If we have page with
2067 * multiple blocks we need to write those buffer_heads that are mapped. This
2068 * is important for mmaped based write. So if we do with blocksize 1K
2069 * truncate(f, 1024);
2070 * a = mmap(f, 0, 4096);
2071 * a[0] = 'a';
2072 * truncate(f, 4096);
2073 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2074 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2075 * do_wp_page). So writepage should write the first block. If we modify
2076 * the mmap area beyond 1024 we will again get a page_fault and the
2077 * page_mkwrite callback will do the block allocation and mark the
2078 * buffer_heads mapped.
2079 *
2080 * We redirty the page if we have any buffer_heads that is either delay or
2081 * unwritten in the page.
2082 *
2083 * We can get recursively called as show below.
2084 *
2085 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2086 * ext4_writepage()
2087 *
2088 * But since we don't do any block allocation we should not deadlock.
2089 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2090 */
43ce1d23 2091static int ext4_writepage(struct page *page,
62e086be 2092 struct writeback_control *wbc)
64769240 2093{
f8bec370 2094 int ret = 0;
61628a3f 2095 loff_t size;
498e5f24 2096 unsigned int len;
744692dc 2097 struct buffer_head *page_bufs = NULL;
61628a3f 2098 struct inode *inode = page->mapping->host;
36ade451 2099 struct ext4_io_submit io_submit;
1c8349a1 2100 bool keep_towrite = false;
61628a3f 2101
0db1ff22
TT
2102 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2103 ext4_invalidatepage(page, 0, PAGE_SIZE);
2104 unlock_page(page);
2105 return -EIO;
2106 }
2107
a9c667f8 2108 trace_ext4_writepage(page);
f0e6c985 2109 size = i_size_read(inode);
09cbfeaf
KS
2110 if (page->index == size >> PAGE_SHIFT)
2111 len = size & ~PAGE_MASK;
f0e6c985 2112 else
09cbfeaf 2113 len = PAGE_SIZE;
64769240 2114
a42afc5f 2115 page_bufs = page_buffers(page);
a42afc5f 2116 /*
fe386132
JK
2117 * We cannot do block allocation or other extent handling in this
2118 * function. If there are buffers needing that, we have to redirty
2119 * the page. But we may reach here when we do a journal commit via
2120 * journal_submit_inode_data_buffers() and in that case we must write
2121 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2122 *
2123 * Also, if there is only one buffer per page (the fs block
2124 * size == the page size), if one buffer needs block
2125 * allocation or needs to modify the extent tree to clear the
2126 * unwritten flag, we know that the page can't be written at
2127 * all, so we might as well refuse the write immediately.
2128 * Unfortunately if the block size != page size, we can't as
2129 * easily detect this case using ext4_walk_page_buffers(), but
2130 * for the extremely common case, this is an optimization that
2131 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2132 */
f19d5870
TM
2133 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2134 ext4_bh_delay_or_unwritten)) {
f8bec370 2135 redirty_page_for_writepage(wbc, page);
cccd147a 2136 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2137 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2138 /*
2139 * For memory cleaning there's no point in writing only
2140 * some buffers. So just bail out. Warn if we came here
2141 * from direct reclaim.
2142 */
2143 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2144 == PF_MEMALLOC);
f0e6c985
AK
2145 unlock_page(page);
2146 return 0;
2147 }
1c8349a1 2148 keep_towrite = true;
a42afc5f 2149 }
64769240 2150
cb20d518 2151 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2152 /*
2153 * It's mmapped pagecache. Add buffers and journal it. There
2154 * doesn't seem much point in redirtying the page here.
2155 */
3f0ca309 2156 return __ext4_journalled_writepage(page, len);
43ce1d23 2157
97a851ed
JK
2158 ext4_io_submit_init(&io_submit, wbc);
2159 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2160 if (!io_submit.io_end) {
2161 redirty_page_for_writepage(wbc, page);
2162 unlock_page(page);
2163 return -ENOMEM;
2164 }
1c8349a1 2165 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2166 ext4_io_submit(&io_submit);
97a851ed
JK
2167 /* Drop io_end reference we got from init */
2168 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2169 return ret;
2170}
2171
5f1132b2
JK
2172static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2173{
2174 int len;
a056bdaa 2175 loff_t size;
5f1132b2
JK
2176 int err;
2177
2178 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2179 clear_page_dirty_for_io(page);
2180 /*
2181 * We have to be very careful here! Nothing protects writeback path
2182 * against i_size changes and the page can be writeably mapped into
2183 * page tables. So an application can be growing i_size and writing
2184 * data through mmap while writeback runs. clear_page_dirty_for_io()
2185 * write-protects our page in page tables and the page cannot get
2186 * written to again until we release page lock. So only after
2187 * clear_page_dirty_for_io() we are safe to sample i_size for
2188 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2189 * on the barrier provided by TestClearPageDirty in
2190 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2191 * after page tables are updated.
2192 */
2193 size = i_size_read(mpd->inode);
09cbfeaf
KS
2194 if (page->index == size >> PAGE_SHIFT)
2195 len = size & ~PAGE_MASK;
5f1132b2 2196 else
09cbfeaf 2197 len = PAGE_SIZE;
1c8349a1 2198 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2199 if (!err)
2200 mpd->wbc->nr_to_write--;
2201 mpd->first_page++;
2202
2203 return err;
2204}
2205
4e7ea81d
JK
2206#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2207
61628a3f 2208/*
fffb2739
JK
2209 * mballoc gives us at most this number of blocks...
2210 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2211 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2212 */
fffb2739 2213#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2214
4e7ea81d
JK
2215/*
2216 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2217 *
2218 * @mpd - extent of blocks
2219 * @lblk - logical number of the block in the file
09930042 2220 * @bh - buffer head we want to add to the extent
4e7ea81d 2221 *
09930042
JK
2222 * The function is used to collect contig. blocks in the same state. If the
2223 * buffer doesn't require mapping for writeback and we haven't started the
2224 * extent of buffers to map yet, the function returns 'true' immediately - the
2225 * caller can write the buffer right away. Otherwise the function returns true
2226 * if the block has been added to the extent, false if the block couldn't be
2227 * added.
4e7ea81d 2228 */
09930042
JK
2229static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2230 struct buffer_head *bh)
4e7ea81d
JK
2231{
2232 struct ext4_map_blocks *map = &mpd->map;
2233
09930042
JK
2234 /* Buffer that doesn't need mapping for writeback? */
2235 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2236 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2237 /* So far no extent to map => we write the buffer right away */
2238 if (map->m_len == 0)
2239 return true;
2240 return false;
2241 }
4e7ea81d
JK
2242
2243 /* First block in the extent? */
2244 if (map->m_len == 0) {
dddbd6ac
JK
2245 /* We cannot map unless handle is started... */
2246 if (!mpd->do_map)
2247 return false;
4e7ea81d
JK
2248 map->m_lblk = lblk;
2249 map->m_len = 1;
09930042
JK
2250 map->m_flags = bh->b_state & BH_FLAGS;
2251 return true;
4e7ea81d
JK
2252 }
2253
09930042
JK
2254 /* Don't go larger than mballoc is willing to allocate */
2255 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2256 return false;
2257
4e7ea81d
JK
2258 /* Can we merge the block to our big extent? */
2259 if (lblk == map->m_lblk + map->m_len &&
09930042 2260 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2261 map->m_len++;
09930042 2262 return true;
4e7ea81d 2263 }
09930042 2264 return false;
4e7ea81d
JK
2265}
2266
5f1132b2
JK
2267/*
2268 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2269 *
2270 * @mpd - extent of blocks for mapping
2271 * @head - the first buffer in the page
2272 * @bh - buffer we should start processing from
2273 * @lblk - logical number of the block in the file corresponding to @bh
2274 *
2275 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2276 * the page for IO if all buffers in this page were mapped and there's no
2277 * accumulated extent of buffers to map or add buffers in the page to the
2278 * extent of buffers to map. The function returns 1 if the caller can continue
2279 * by processing the next page, 0 if it should stop adding buffers to the
2280 * extent to map because we cannot extend it anymore. It can also return value
2281 * < 0 in case of error during IO submission.
2282 */
2283static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2284 struct buffer_head *head,
2285 struct buffer_head *bh,
2286 ext4_lblk_t lblk)
4e7ea81d
JK
2287{
2288 struct inode *inode = mpd->inode;
5f1132b2 2289 int err;
93407472 2290 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2291 >> inode->i_blkbits;
2292
2293 do {
2294 BUG_ON(buffer_locked(bh));
2295
09930042 2296 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2297 /* Found extent to map? */
2298 if (mpd->map.m_len)
5f1132b2 2299 return 0;
dddbd6ac
JK
2300 /* Buffer needs mapping and handle is not started? */
2301 if (!mpd->do_map)
2302 return 0;
09930042 2303 /* Everything mapped so far and we hit EOF */
5f1132b2 2304 break;
4e7ea81d 2305 }
4e7ea81d 2306 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2307 /* So far everything mapped? Submit the page for IO. */
2308 if (mpd->map.m_len == 0) {
2309 err = mpage_submit_page(mpd, head->b_page);
2310 if (err < 0)
2311 return err;
2312 }
2313 return lblk < blocks;
4e7ea81d
JK
2314}
2315
2316/*
2317 * mpage_map_buffers - update buffers corresponding to changed extent and
2318 * submit fully mapped pages for IO
2319 *
2320 * @mpd - description of extent to map, on return next extent to map
2321 *
2322 * Scan buffers corresponding to changed extent (we expect corresponding pages
2323 * to be already locked) and update buffer state according to new extent state.
2324 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2325 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2326 * and do extent conversion after IO is finished. If the last page is not fully
2327 * mapped, we update @map to the next extent in the last page that needs
2328 * mapping. Otherwise we submit the page for IO.
2329 */
2330static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2331{
2332 struct pagevec pvec;
2333 int nr_pages, i;
2334 struct inode *inode = mpd->inode;
2335 struct buffer_head *head, *bh;
09cbfeaf 2336 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2337 pgoff_t start, end;
2338 ext4_lblk_t lblk;
2339 sector_t pblock;
2340 int err;
2341
2342 start = mpd->map.m_lblk >> bpp_bits;
2343 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2344 lblk = start << bpp_bits;
2345 pblock = mpd->map.m_pblk;
2346
2347 pagevec_init(&pvec, 0);
2348 while (start <= end) {
2b85a617 2349 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2350 &start, end);
4e7ea81d
JK
2351 if (nr_pages == 0)
2352 break;
2353 for (i = 0; i < nr_pages; i++) {
2354 struct page *page = pvec.pages[i];
2355
4e7ea81d
JK
2356 bh = head = page_buffers(page);
2357 do {
2358 if (lblk < mpd->map.m_lblk)
2359 continue;
2360 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2361 /*
2362 * Buffer after end of mapped extent.
2363 * Find next buffer in the page to map.
2364 */
2365 mpd->map.m_len = 0;
2366 mpd->map.m_flags = 0;
5f1132b2
JK
2367 /*
2368 * FIXME: If dioread_nolock supports
2369 * blocksize < pagesize, we need to make
2370 * sure we add size mapped so far to
2371 * io_end->size as the following call
2372 * can submit the page for IO.
2373 */
2374 err = mpage_process_page_bufs(mpd, head,
2375 bh, lblk);
4e7ea81d 2376 pagevec_release(&pvec);
5f1132b2
JK
2377 if (err > 0)
2378 err = 0;
2379 return err;
4e7ea81d
JK
2380 }
2381 if (buffer_delay(bh)) {
2382 clear_buffer_delay(bh);
2383 bh->b_blocknr = pblock++;
2384 }
4e7ea81d 2385 clear_buffer_unwritten(bh);
5f1132b2 2386 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2387
2388 /*
2389 * FIXME: This is going to break if dioread_nolock
2390 * supports blocksize < pagesize as we will try to
2391 * convert potentially unmapped parts of inode.
2392 */
09cbfeaf 2393 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2394 /* Page fully mapped - let IO run! */
2395 err = mpage_submit_page(mpd, page);
2396 if (err < 0) {
2397 pagevec_release(&pvec);
2398 return err;
2399 }
4e7ea81d
JK
2400 }
2401 pagevec_release(&pvec);
2402 }
2403 /* Extent fully mapped and matches with page boundary. We are done. */
2404 mpd->map.m_len = 0;
2405 mpd->map.m_flags = 0;
2406 return 0;
2407}
2408
2409static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2410{
2411 struct inode *inode = mpd->inode;
2412 struct ext4_map_blocks *map = &mpd->map;
2413 int get_blocks_flags;
090f32ee 2414 int err, dioread_nolock;
4e7ea81d
JK
2415
2416 trace_ext4_da_write_pages_extent(inode, map);
2417 /*
2418 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2419 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2420 * where we have written into one or more preallocated blocks). It is
2421 * possible that we're going to need more metadata blocks than
2422 * previously reserved. However we must not fail because we're in
2423 * writeback and there is nothing we can do about it so it might result
2424 * in data loss. So use reserved blocks to allocate metadata if
2425 * possible.
2426 *
754cfed6
TT
2427 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2428 * the blocks in question are delalloc blocks. This indicates
2429 * that the blocks and quotas has already been checked when
2430 * the data was copied into the page cache.
4e7ea81d
JK
2431 */
2432 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2433 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2434 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2435 dioread_nolock = ext4_should_dioread_nolock(inode);
2436 if (dioread_nolock)
4e7ea81d
JK
2437 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2438 if (map->m_flags & (1 << BH_Delay))
2439 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2440
2441 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2442 if (err < 0)
2443 return err;
090f32ee 2444 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2445 if (!mpd->io_submit.io_end->handle &&
2446 ext4_handle_valid(handle)) {
2447 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2448 handle->h_rsv_handle = NULL;
2449 }
3613d228 2450 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2451 }
4e7ea81d
JK
2452
2453 BUG_ON(map->m_len == 0);
2454 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2455 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2456 map->m_len);
4e7ea81d
JK
2457 }
2458 return 0;
2459}
2460
2461/*
2462 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2463 * mpd->len and submit pages underlying it for IO
2464 *
2465 * @handle - handle for journal operations
2466 * @mpd - extent to map
7534e854
JK
2467 * @give_up_on_write - we set this to true iff there is a fatal error and there
2468 * is no hope of writing the data. The caller should discard
2469 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2470 *
2471 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2472 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2473 * them to initialized or split the described range from larger unwritten
2474 * extent. Note that we need not map all the described range since allocation
2475 * can return less blocks or the range is covered by more unwritten extents. We
2476 * cannot map more because we are limited by reserved transaction credits. On
2477 * the other hand we always make sure that the last touched page is fully
2478 * mapped so that it can be written out (and thus forward progress is
2479 * guaranteed). After mapping we submit all mapped pages for IO.
2480 */
2481static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2482 struct mpage_da_data *mpd,
2483 bool *give_up_on_write)
4e7ea81d
JK
2484{
2485 struct inode *inode = mpd->inode;
2486 struct ext4_map_blocks *map = &mpd->map;
2487 int err;
2488 loff_t disksize;
6603120e 2489 int progress = 0;
4e7ea81d
JK
2490
2491 mpd->io_submit.io_end->offset =
2492 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2493 do {
4e7ea81d
JK
2494 err = mpage_map_one_extent(handle, mpd);
2495 if (err < 0) {
2496 struct super_block *sb = inode->i_sb;
2497
0db1ff22
TT
2498 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2499 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2500 goto invalidate_dirty_pages;
4e7ea81d 2501 /*
cb530541
TT
2502 * Let the uper layers retry transient errors.
2503 * In the case of ENOSPC, if ext4_count_free_blocks()
2504 * is non-zero, a commit should free up blocks.
4e7ea81d 2505 */
cb530541 2506 if ((err == -ENOMEM) ||
6603120e
DM
2507 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2508 if (progress)
2509 goto update_disksize;
cb530541 2510 return err;
6603120e 2511 }
cb530541
TT
2512 ext4_msg(sb, KERN_CRIT,
2513 "Delayed block allocation failed for "
2514 "inode %lu at logical offset %llu with"
2515 " max blocks %u with error %d",
2516 inode->i_ino,
2517 (unsigned long long)map->m_lblk,
2518 (unsigned)map->m_len, -err);
2519 ext4_msg(sb, KERN_CRIT,
2520 "This should not happen!! Data will "
2521 "be lost\n");
2522 if (err == -ENOSPC)
2523 ext4_print_free_blocks(inode);
2524 invalidate_dirty_pages:
2525 *give_up_on_write = true;
4e7ea81d
JK
2526 return err;
2527 }
6603120e 2528 progress = 1;
4e7ea81d
JK
2529 /*
2530 * Update buffer state, submit mapped pages, and get us new
2531 * extent to map
2532 */
2533 err = mpage_map_and_submit_buffers(mpd);
2534 if (err < 0)
6603120e 2535 goto update_disksize;
27d7c4ed 2536 } while (map->m_len);
4e7ea81d 2537
6603120e 2538update_disksize:
622cad13
TT
2539 /*
2540 * Update on-disk size after IO is submitted. Races with
2541 * truncate are avoided by checking i_size under i_data_sem.
2542 */
09cbfeaf 2543 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2544 if (disksize > EXT4_I(inode)->i_disksize) {
2545 int err2;
622cad13
TT
2546 loff_t i_size;
2547
2548 down_write(&EXT4_I(inode)->i_data_sem);
2549 i_size = i_size_read(inode);
2550 if (disksize > i_size)
2551 disksize = i_size;
2552 if (disksize > EXT4_I(inode)->i_disksize)
2553 EXT4_I(inode)->i_disksize = disksize;
622cad13 2554 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2555 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2556 if (err2)
2557 ext4_error(inode->i_sb,
2558 "Failed to mark inode %lu dirty",
2559 inode->i_ino);
2560 if (!err)
2561 err = err2;
2562 }
2563 return err;
2564}
2565
fffb2739
JK
2566/*
2567 * Calculate the total number of credits to reserve for one writepages
20970ba6 2568 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2569 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2570 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2571 * bpp - 1 blocks in bpp different extents.
2572 */
525f4ed8
MC
2573static int ext4_da_writepages_trans_blocks(struct inode *inode)
2574{
fffb2739 2575 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2576
fffb2739
JK
2577 return ext4_meta_trans_blocks(inode,
2578 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2579}
61628a3f 2580
8e48dcfb 2581/*
4e7ea81d
JK
2582 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2583 * and underlying extent to map
2584 *
2585 * @mpd - where to look for pages
2586 *
2587 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2588 * IO immediately. When we find a page which isn't mapped we start accumulating
2589 * extent of buffers underlying these pages that needs mapping (formed by
2590 * either delayed or unwritten buffers). We also lock the pages containing
2591 * these buffers. The extent found is returned in @mpd structure (starting at
2592 * mpd->lblk with length mpd->len blocks).
2593 *
2594 * Note that this function can attach bios to one io_end structure which are
2595 * neither logically nor physically contiguous. Although it may seem as an
2596 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2597 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2598 */
4e7ea81d 2599static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2600{
4e7ea81d
JK
2601 struct address_space *mapping = mpd->inode->i_mapping;
2602 struct pagevec pvec;
2603 unsigned int nr_pages;
aeac589a 2604 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2605 pgoff_t index = mpd->first_page;
2606 pgoff_t end = mpd->last_page;
2607 int tag;
2608 int i, err = 0;
2609 int blkbits = mpd->inode->i_blkbits;
2610 ext4_lblk_t lblk;
2611 struct buffer_head *head;
8e48dcfb 2612
4e7ea81d 2613 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2614 tag = PAGECACHE_TAG_TOWRITE;
2615 else
2616 tag = PAGECACHE_TAG_DIRTY;
2617
4e7ea81d
JK
2618 pagevec_init(&pvec, 0);
2619 mpd->map.m_len = 0;
2620 mpd->next_page = index;
4f01b02c 2621 while (index <= end) {
5b41d924 2622 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2623 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2624 if (nr_pages == 0)
4e7ea81d 2625 goto out;
8e48dcfb
TT
2626
2627 for (i = 0; i < nr_pages; i++) {
2628 struct page *page = pvec.pages[i];
2629
2630 /*
2631 * At this point, the page may be truncated or
2632 * invalidated (changing page->mapping to NULL), or
2633 * even swizzled back from swapper_space to tmpfs file
2634 * mapping. However, page->index will not change
2635 * because we have a reference on the page.
2636 */
4f01b02c
TT
2637 if (page->index > end)
2638 goto out;
8e48dcfb 2639
aeac589a
ML
2640 /*
2641 * Accumulated enough dirty pages? This doesn't apply
2642 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 * keep going because someone may be concurrently
2644 * dirtying pages, and we might have synced a lot of
2645 * newly appeared dirty pages, but have not synced all
2646 * of the old dirty pages.
2647 */
2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649 goto out;
2650
4e7ea81d
JK
2651 /* If we can't merge this page, we are done. */
2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653 goto out;
78aaced3 2654
8e48dcfb 2655 lock_page(page);
8e48dcfb 2656 /*
4e7ea81d
JK
2657 * If the page is no longer dirty, or its mapping no
2658 * longer corresponds to inode we are writing (which
2659 * means it has been truncated or invalidated), or the
2660 * page is already under writeback and we are not doing
2661 * a data integrity writeback, skip the page
8e48dcfb 2662 */
4f01b02c
TT
2663 if (!PageDirty(page) ||
2664 (PageWriteback(page) &&
4e7ea81d 2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2666 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2667 unlock_page(page);
2668 continue;
2669 }
2670
7cb1a535 2671 wait_on_page_writeback(page);
8e48dcfb 2672 BUG_ON(PageWriteback(page));
8e48dcfb 2673
4e7ea81d 2674 if (mpd->map.m_len == 0)
8eb9e5ce 2675 mpd->first_page = page->index;
8eb9e5ce 2676 mpd->next_page = page->index + 1;
f8bec370 2677 /* Add all dirty buffers to mpd */
4e7ea81d 2678 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2679 (PAGE_SHIFT - blkbits);
f8bec370 2680 head = page_buffers(page);
5f1132b2
JK
2681 err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 if (err <= 0)
4e7ea81d 2683 goto out;
5f1132b2 2684 err = 0;
aeac589a 2685 left--;
8e48dcfb
TT
2686 }
2687 pagevec_release(&pvec);
2688 cond_resched();
2689 }
4f01b02c 2690 return 0;
8eb9e5ce
TT
2691out:
2692 pagevec_release(&pvec);
4e7ea81d 2693 return err;
8e48dcfb
TT
2694}
2695
20970ba6
TT
2696static int __writepage(struct page *page, struct writeback_control *wbc,
2697 void *data)
2698{
2699 struct address_space *mapping = data;
2700 int ret = ext4_writepage(page, wbc);
2701 mapping_set_error(mapping, ret);
2702 return ret;
2703}
2704
2705static int ext4_writepages(struct address_space *mapping,
2706 struct writeback_control *wbc)
64769240 2707{
4e7ea81d
JK
2708 pgoff_t writeback_index = 0;
2709 long nr_to_write = wbc->nr_to_write;
22208ded 2710 int range_whole = 0;
4e7ea81d 2711 int cycled = 1;
61628a3f 2712 handle_t *handle = NULL;
df22291f 2713 struct mpage_da_data mpd;
5e745b04 2714 struct inode *inode = mapping->host;
6b523df4 2715 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2717 bool done;
1bce63d1 2718 struct blk_plug plug;
cb530541 2719 bool give_up_on_write = false;
61628a3f 2720
0db1ff22
TT
2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722 return -EIO;
2723
c8585c6f 2724 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2725 trace_ext4_writepages(inode, wbc);
ba80b101 2726
c8585c6f
DJ
2727 if (dax_mapping(mapping)) {
2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729 wbc);
2730 goto out_writepages;
2731 }
7f6d5b52 2732
61628a3f
MC
2733 /*
2734 * No pages to write? This is mainly a kludge to avoid starting
2735 * a transaction for special inodes like journal inode on last iput()
2736 * because that could violate lock ordering on umount
2737 */
a1d6cc56 2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2739 goto out_writepages;
2a21e37e 2740
20970ba6
TT
2741 if (ext4_should_journal_data(inode)) {
2742 struct blk_plug plug;
20970ba6
TT
2743
2744 blk_start_plug(&plug);
2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 blk_finish_plug(&plug);
bbf023c7 2747 goto out_writepages;
20970ba6
TT
2748 }
2749
2a21e37e
TT
2750 /*
2751 * If the filesystem has aborted, it is read-only, so return
2752 * right away instead of dumping stack traces later on that
2753 * will obscure the real source of the problem. We test
4ab2f15b 2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2755 * the latter could be true if the filesystem is mounted
20970ba6 2756 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2757 * *never* be called, so if that ever happens, we would want
2758 * the stack trace.
2759 */
0db1ff22
TT
2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2762 ret = -EROFS;
2763 goto out_writepages;
2764 }
2a21e37e 2765
6b523df4
JK
2766 if (ext4_should_dioread_nolock(inode)) {
2767 /*
70261f56 2768 * We may need to convert up to one extent per block in
6b523df4
JK
2769 * the page and we may dirty the inode.
2770 */
09cbfeaf 2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2772 }
2773
4e7ea81d
JK
2774 /*
2775 * If we have inline data and arrive here, it means that
2776 * we will soon create the block for the 1st page, so
2777 * we'd better clear the inline data here.
2778 */
2779 if (ext4_has_inline_data(inode)) {
2780 /* Just inode will be modified... */
2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 if (IS_ERR(handle)) {
2783 ret = PTR_ERR(handle);
2784 goto out_writepages;
2785 }
2786 BUG_ON(ext4_test_inode_state(inode,
2787 EXT4_STATE_MAY_INLINE_DATA));
2788 ext4_destroy_inline_data(handle, inode);
2789 ext4_journal_stop(handle);
2790 }
2791
22208ded
AK
2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 range_whole = 1;
61628a3f 2794
2acf2c26 2795 if (wbc->range_cyclic) {
4e7ea81d
JK
2796 writeback_index = mapping->writeback_index;
2797 if (writeback_index)
2acf2c26 2798 cycled = 0;
4e7ea81d
JK
2799 mpd.first_page = writeback_index;
2800 mpd.last_page = -1;
5b41d924 2801 } else {
09cbfeaf
KS
2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2804 }
a1d6cc56 2805
4e7ea81d
JK
2806 mpd.inode = inode;
2807 mpd.wbc = wbc;
2808 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2809retry:
6e6938b6 2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 done = false;
1bce63d1 2813 blk_start_plug(&plug);
dddbd6ac
JK
2814
2815 /*
2816 * First writeback pages that don't need mapping - we can avoid
2817 * starting a transaction unnecessarily and also avoid being blocked
2818 * in the block layer on device congestion while having transaction
2819 * started.
2820 */
2821 mpd.do_map = 0;
2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 if (!mpd.io_submit.io_end) {
2824 ret = -ENOMEM;
2825 goto unplug;
2826 }
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 /* Submit prepared bio */
2829 ext4_io_submit(&mpd.io_submit);
2830 ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 mpd.io_submit.io_end = NULL;
2832 /* Unlock pages we didn't use */
2833 mpage_release_unused_pages(&mpd, false);
2834 if (ret < 0)
2835 goto unplug;
2836
4e7ea81d
JK
2837 while (!done && mpd.first_page <= mpd.last_page) {
2838 /* For each extent of pages we use new io_end */
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2841 ret = -ENOMEM;
2842 break;
2843 }
a1d6cc56
AK
2844
2845 /*
4e7ea81d
JK
2846 * We have two constraints: We find one extent to map and we
2847 * must always write out whole page (makes a difference when
2848 * blocksize < pagesize) so that we don't block on IO when we
2849 * try to write out the rest of the page. Journalled mode is
2850 * not supported by delalloc.
a1d6cc56
AK
2851 */
2852 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2853 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2854
4e7ea81d 2855 /* start a new transaction */
6b523df4
JK
2856 handle = ext4_journal_start_with_reserve(inode,
2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2858 if (IS_ERR(handle)) {
2859 ret = PTR_ERR(handle);
1693918e 2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2861 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2862 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2863 /* Release allocated io_end */
2864 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2865 mpd.io_submit.io_end = NULL;
4e7ea81d 2866 break;
61628a3f 2867 }
dddbd6ac 2868 mpd.do_map = 1;
f63e6005 2869
4e7ea81d
JK
2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 ret = mpage_prepare_extent_to_map(&mpd);
2872 if (!ret) {
2873 if (mpd.map.m_len)
cb530541
TT
2874 ret = mpage_map_and_submit_extent(handle, &mpd,
2875 &give_up_on_write);
4e7ea81d
JK
2876 else {
2877 /*
2878 * We scanned the whole range (or exhausted
2879 * nr_to_write), submitted what was mapped and
2880 * didn't find anything needing mapping. We are
2881 * done.
2882 */
2883 done = true;
2884 }
f63e6005 2885 }
646caa9c
JK
2886 /*
2887 * Caution: If the handle is synchronous,
2888 * ext4_journal_stop() can wait for transaction commit
2889 * to finish which may depend on writeback of pages to
2890 * complete or on page lock to be released. In that
2891 * case, we have to wait until after after we have
2892 * submitted all the IO, released page locks we hold,
2893 * and dropped io_end reference (for extent conversion
2894 * to be able to complete) before stopping the handle.
2895 */
2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 ext4_journal_stop(handle);
2898 handle = NULL;
dddbd6ac 2899 mpd.do_map = 0;
646caa9c 2900 }
4e7ea81d
JK
2901 /* Submit prepared bio */
2902 ext4_io_submit(&mpd.io_submit);
2903 /* Unlock pages we didn't use */
cb530541 2904 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2905 /*
2906 * Drop our io_end reference we got from init. We have
2907 * to be careful and use deferred io_end finishing if
2908 * we are still holding the transaction as we can
2909 * release the last reference to io_end which may end
2910 * up doing unwritten extent conversion.
2911 */
2912 if (handle) {
2913 ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 ext4_journal_stop(handle);
2915 } else
2916 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2917 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2918
2919 if (ret == -ENOSPC && sbi->s_journal) {
2920 /*
2921 * Commit the transaction which would
22208ded
AK
2922 * free blocks released in the transaction
2923 * and try again
2924 */
df22291f 2925 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2926 ret = 0;
4e7ea81d
JK
2927 continue;
2928 }
2929 /* Fatal error - ENOMEM, EIO... */
2930 if (ret)
61628a3f 2931 break;
a1d6cc56 2932 }
dddbd6ac 2933unplug:
1bce63d1 2934 blk_finish_plug(&plug);
9c12a831 2935 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2936 cycled = 1;
4e7ea81d
JK
2937 mpd.last_page = writeback_index - 1;
2938 mpd.first_page = 0;
2acf2c26
AK
2939 goto retry;
2940 }
22208ded
AK
2941
2942 /* Update index */
22208ded
AK
2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 /*
4e7ea81d 2945 * Set the writeback_index so that range_cyclic
22208ded
AK
2946 * mode will write it back later
2947 */
4e7ea81d 2948 mapping->writeback_index = mpd.first_page;
a1d6cc56 2949
61628a3f 2950out_writepages:
20970ba6
TT
2951 trace_ext4_writepages_result(inode, wbc, ret,
2952 nr_to_write - wbc->nr_to_write);
c8585c6f 2953 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2954 return ret;
64769240
AT
2955}
2956
79f0be8d
AK
2957static int ext4_nonda_switch(struct super_block *sb)
2958{
5c1ff336 2959 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2961
2962 /*
2963 * switch to non delalloc mode if we are running low
2964 * on free block. The free block accounting via percpu
179f7ebf 2965 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2966 * accumulated on each CPU without updating global counters
2967 * Delalloc need an accurate free block accounting. So switch
2968 * to non delalloc when we are near to error range.
2969 */
5c1ff336
EW
2970 free_clusters =
2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972 dirty_clusters =
2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2974 /*
2975 * Start pushing delalloc when 1/2 of free blocks are dirty.
2976 */
5c1ff336 2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2979
5c1ff336
EW
2980 if (2 * free_clusters < 3 * dirty_clusters ||
2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2982 /*
c8afb446
ES
2983 * free block count is less than 150% of dirty blocks
2984 * or free blocks is less than watermark
79f0be8d
AK
2985 */
2986 return 1;
2987 }
2988 return 0;
2989}
2990
0ff8947f
ES
2991/* We always reserve for an inode update; the superblock could be there too */
2992static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993{
e2b911c5 2994 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2995 return 1;
2996
2997 if (pos + len <= 0x7fffffffULL)
2998 return 1;
2999
3000 /* We might need to update the superblock to set LARGE_FILE */
3001 return 2;
3002}
3003
64769240 3004static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3005 loff_t pos, unsigned len, unsigned flags,
3006 struct page **pagep, void **fsdata)
64769240 3007{
72b8ab9d 3008 int ret, retries = 0;
64769240
AT
3009 struct page *page;
3010 pgoff_t index;
64769240
AT
3011 struct inode *inode = mapping->host;
3012 handle_t *handle;
3013
0db1ff22
TT
3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015 return -EIO;
3016
09cbfeaf 3017 index = pos >> PAGE_SHIFT;
79f0be8d 3018
4db0d88e
TT
3019 if (ext4_nonda_switch(inode->i_sb) ||
3020 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 return ext4_write_begin(file, mapping, pos,
3023 len, flags, pagep, fsdata);
3024 }
3025 *fsdata = (void *)0;
9bffad1e 3026 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3027
3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 ret = ext4_da_write_inline_data_begin(mapping, inode,
3030 pos, len, flags,
3031 pagep, fsdata);
3032 if (ret < 0)
47564bfb
TT
3033 return ret;
3034 if (ret == 1)
3035 return 0;
9c3569b5
TM
3036 }
3037
47564bfb
TT
3038 /*
3039 * grab_cache_page_write_begin() can take a long time if the
3040 * system is thrashing due to memory pressure, or if the page
3041 * is being written back. So grab it first before we start
3042 * the transaction handle. This also allows us to allocate
3043 * the page (if needed) without using GFP_NOFS.
3044 */
3045retry_grab:
3046 page = grab_cache_page_write_begin(mapping, index, flags);
3047 if (!page)
3048 return -ENOMEM;
3049 unlock_page(page);
3050
64769240
AT
3051 /*
3052 * With delayed allocation, we don't log the i_disksize update
3053 * if there is delayed block allocation. But we still need
3054 * to journalling the i_disksize update if writes to the end
3055 * of file which has an already mapped buffer.
3056 */
47564bfb 3057retry_journal:
0ff8947f
ES
3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 ext4_da_write_credits(inode, pos, len));
64769240 3060 if (IS_ERR(handle)) {
09cbfeaf 3061 put_page(page);
47564bfb 3062 return PTR_ERR(handle);
64769240
AT
3063 }
3064
47564bfb
TT
3065 lock_page(page);
3066 if (page->mapping != mapping) {
3067 /* The page got truncated from under us */
3068 unlock_page(page);
09cbfeaf 3069 put_page(page);
d5a0d4f7 3070 ext4_journal_stop(handle);
47564bfb 3071 goto retry_grab;
d5a0d4f7 3072 }
47564bfb 3073 /* In case writeback began while the page was unlocked */
7afe5aa5 3074 wait_for_stable_page(page);
64769240 3075
2058f83a
MH
3076#ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 ret = ext4_block_write_begin(page, pos, len,
3078 ext4_da_get_block_prep);
3079#else
6e1db88d 3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3081#endif
64769240
AT
3082 if (ret < 0) {
3083 unlock_page(page);
3084 ext4_journal_stop(handle);
ae4d5372
AK
3085 /*
3086 * block_write_begin may have instantiated a few blocks
3087 * outside i_size. Trim these off again. Don't need
3088 * i_size_read because we hold i_mutex.
3089 */
3090 if (pos + len > inode->i_size)
b9a4207d 3091 ext4_truncate_failed_write(inode);
47564bfb
TT
3092
3093 if (ret == -ENOSPC &&
3094 ext4_should_retry_alloc(inode->i_sb, &retries))
3095 goto retry_journal;
3096
09cbfeaf 3097 put_page(page);
47564bfb 3098 return ret;
64769240
AT
3099 }
3100
47564bfb 3101 *pagep = page;
64769240
AT
3102 return ret;
3103}
3104
632eaeab
MC
3105/*
3106 * Check if we should update i_disksize
3107 * when write to the end of file but not require block allocation
3108 */
3109static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3110 unsigned long offset)
632eaeab
MC
3111{
3112 struct buffer_head *bh;
3113 struct inode *inode = page->mapping->host;
3114 unsigned int idx;
3115 int i;
3116
3117 bh = page_buffers(page);
3118 idx = offset >> inode->i_blkbits;
3119
af5bc92d 3120 for (i = 0; i < idx; i++)
632eaeab
MC
3121 bh = bh->b_this_page;
3122
29fa89d0 3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3124 return 0;
3125 return 1;
3126}
3127
64769240 3128static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3129 struct address_space *mapping,
3130 loff_t pos, unsigned len, unsigned copied,
3131 struct page *page, void *fsdata)
64769240
AT
3132{
3133 struct inode *inode = mapping->host;
3134 int ret = 0, ret2;
3135 handle_t *handle = ext4_journal_current_handle();
3136 loff_t new_i_size;
632eaeab 3137 unsigned long start, end;
79f0be8d
AK
3138 int write_mode = (int)(unsigned long)fsdata;
3139
74d553aa
TT
3140 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 return ext4_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
632eaeab 3143
9bffad1e 3144 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3145 start = pos & (PAGE_SIZE - 1);
af5bc92d 3146 end = start + copied - 1;
64769240
AT
3147
3148 /*
3149 * generic_write_end() will run mark_inode_dirty() if i_size
3150 * changes. So let's piggyback the i_disksize mark_inode_dirty
3151 * into that.
3152 */
64769240 3153 new_i_size = pos + copied;
ea51d132 3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3155 if (ext4_has_inline_data(inode) ||
3156 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3157 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3158 /* We need to mark inode dirty even if
3159 * new_i_size is less that inode->i_size
3160 * bu greater than i_disksize.(hint delalloc)
3161 */
3162 ext4_mark_inode_dirty(handle, inode);
64769240 3163 }
632eaeab 3164 }
9c3569b5
TM
3165
3166 if (write_mode != CONVERT_INLINE_DATA &&
3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 ext4_has_inline_data(inode))
3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170 page);
3171 else
3172 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3173 page, fsdata);
9c3569b5 3174
64769240
AT
3175 copied = ret2;
3176 if (ret2 < 0)
3177 ret = ret2;
3178 ret2 = ext4_journal_stop(handle);
3179 if (!ret)
3180 ret = ret2;
3181
3182 return ret ? ret : copied;
3183}
3184
d47992f8
LC
3185static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 unsigned int length)
64769240 3187{
64769240
AT
3188 /*
3189 * Drop reserved blocks
3190 */
3191 BUG_ON(!PageLocked(page));
3192 if (!page_has_buffers(page))
3193 goto out;
3194
ca99fdd2 3195 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3196
3197out:
d47992f8 3198 ext4_invalidatepage(page, offset, length);
64769240
AT
3199
3200 return;
3201}
3202
ccd2506b
TT
3203/*
3204 * Force all delayed allocation blocks to be allocated for a given inode.
3205 */
3206int ext4_alloc_da_blocks(struct inode *inode)
3207{
fb40ba0d
TT
3208 trace_ext4_alloc_da_blocks(inode);
3209
71d4f7d0 3210 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3211 return 0;
3212
3213 /*
3214 * We do something simple for now. The filemap_flush() will
3215 * also start triggering a write of the data blocks, which is
3216 * not strictly speaking necessary (and for users of
3217 * laptop_mode, not even desirable). However, to do otherwise
3218 * would require replicating code paths in:
de9a55b8 3219 *
20970ba6 3220 * ext4_writepages() ->
ccd2506b
TT
3221 * write_cache_pages() ---> (via passed in callback function)
3222 * __mpage_da_writepage() -->
3223 * mpage_add_bh_to_extent()
3224 * mpage_da_map_blocks()
3225 *
3226 * The problem is that write_cache_pages(), located in
3227 * mm/page-writeback.c, marks pages clean in preparation for
3228 * doing I/O, which is not desirable if we're not planning on
3229 * doing I/O at all.
3230 *
3231 * We could call write_cache_pages(), and then redirty all of
380cf090 3232 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3233 * would be ugly in the extreme. So instead we would need to
3234 * replicate parts of the code in the above functions,
25985edc 3235 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3236 * write out the pages, but rather only collect contiguous
3237 * logical block extents, call the multi-block allocator, and
3238 * then update the buffer heads with the block allocations.
de9a55b8 3239 *
ccd2506b
TT
3240 * For now, though, we'll cheat by calling filemap_flush(),
3241 * which will map the blocks, and start the I/O, but not
3242 * actually wait for the I/O to complete.
3243 */
3244 return filemap_flush(inode->i_mapping);
3245}
64769240 3246
ac27a0ec
DK
3247/*
3248 * bmap() is special. It gets used by applications such as lilo and by
3249 * the swapper to find the on-disk block of a specific piece of data.
3250 *
3251 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3252 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3253 * filesystem and enables swap, then they may get a nasty shock when the
3254 * data getting swapped to that swapfile suddenly gets overwritten by
3255 * the original zero's written out previously to the journal and
3256 * awaiting writeback in the kernel's buffer cache.
3257 *
3258 * So, if we see any bmap calls here on a modified, data-journaled file,
3259 * take extra steps to flush any blocks which might be in the cache.
3260 */
617ba13b 3261static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3262{
3263 struct inode *inode = mapping->host;
3264 journal_t *journal;
3265 int err;
3266
46c7f254
TM
3267 /*
3268 * We can get here for an inline file via the FIBMAP ioctl
3269 */
3270 if (ext4_has_inline_data(inode))
3271 return 0;
3272
64769240
AT
3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 test_opt(inode->i_sb, DELALLOC)) {
3275 /*
3276 * With delalloc we want to sync the file
3277 * so that we can make sure we allocate
3278 * blocks for file
3279 */
3280 filemap_write_and_wait(mapping);
3281 }
3282
19f5fb7a
TT
3283 if (EXT4_JOURNAL(inode) &&
3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3285 /*
3286 * This is a REALLY heavyweight approach, but the use of
3287 * bmap on dirty files is expected to be extremely rare:
3288 * only if we run lilo or swapon on a freshly made file
3289 * do we expect this to happen.
3290 *
3291 * (bmap requires CAP_SYS_RAWIO so this does not
3292 * represent an unprivileged user DOS attack --- we'd be
3293 * in trouble if mortal users could trigger this path at
3294 * will.)
3295 *
617ba13b 3296 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3297 * regular files. If somebody wants to bmap a directory
3298 * or symlink and gets confused because the buffer
3299 * hasn't yet been flushed to disk, they deserve
3300 * everything they get.
3301 */
3302
19f5fb7a 3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3304 journal = EXT4_JOURNAL(inode);
dab291af
MC
3305 jbd2_journal_lock_updates(journal);
3306 err = jbd2_journal_flush(journal);
3307 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3308
3309 if (err)
3310 return 0;
3311 }
3312
af5bc92d 3313 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3314}
3315
617ba13b 3316static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3317{
46c7f254
TM
3318 int ret = -EAGAIN;
3319 struct inode *inode = page->mapping->host;
3320
0562e0ba 3321 trace_ext4_readpage(page);
46c7f254
TM
3322
3323 if (ext4_has_inline_data(inode))
3324 ret = ext4_readpage_inline(inode, page);
3325
3326 if (ret == -EAGAIN)
f64e02fe 3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3328
3329 return ret;
ac27a0ec
DK
3330}
3331
3332static int
617ba13b 3333ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3334 struct list_head *pages, unsigned nr_pages)
3335{
46c7f254
TM
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
f64e02fe 3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3343}
3344
d47992f8
LC
3345static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
ac27a0ec 3347{
ca99fdd2 3348 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3349
4520fb3c
JK
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
ca99fdd2 3353 block_invalidatepage(page, offset, length);
4520fb3c
JK
3354}
3355
53e87268 3356static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3357 unsigned int offset,
3358 unsigned int length)
4520fb3c
JK
3359{
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
ca99fdd2 3362 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3363
ac27a0ec
DK
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
09cbfeaf 3367 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3368 ClearPageChecked(page);
3369
ca99fdd2 3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3371}
3372
3373/* Wrapper for aops... */
3374static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3375 unsigned int offset,
3376 unsigned int length)
53e87268 3377{
ca99fdd2 3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3379}
3380
617ba13b 3381static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3382{
617ba13b 3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3384
0562e0ba
JZ
3385 trace_ext4_releasepage(page);
3386
e1c36595
JK
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
ac27a0ec 3389 return 0;
0390131b
FM
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
ac27a0ec
DK
3394}
3395
ba5843f5 3396#ifdef CONFIG_FS_DAX
364443cb
JK
3397static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398 unsigned flags, struct iomap *iomap)
3399{
5e405595 3400 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364443cb
JK
3401 unsigned int blkbits = inode->i_blkbits;
3402 unsigned long first_block = offset >> blkbits;
3403 unsigned long last_block = (offset + length - 1) >> blkbits;
3404 struct ext4_map_blocks map;
3405 int ret;
3406
364443cb
JK
3407 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408 return -ERANGE;
3409
3410 map.m_lblk = first_block;
3411 map.m_len = last_block - first_block + 1;
3412
776722e8
JK
3413 if (!(flags & IOMAP_WRITE)) {
3414 ret = ext4_map_blocks(NULL, inode, &map, 0);
3415 } else {
3416 int dio_credits;
3417 handle_t *handle;
3418 int retries = 0;
3419
3420 /* Trim mapping request to maximum we can map at once for DIO */
3421 if (map.m_len > DIO_MAX_BLOCKS)
3422 map.m_len = DIO_MAX_BLOCKS;
3423 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3424retry:
3425 /*
3426 * Either we allocate blocks and then we don't get unwritten
3427 * extent so we have reserved enough credits, or the blocks
3428 * are already allocated and unwritten and in that case
3429 * extent conversion fits in the credits as well.
3430 */
3431 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3432 dio_credits);
3433 if (IS_ERR(handle))
3434 return PTR_ERR(handle);
3435
3436 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3437 EXT4_GET_BLOCKS_CREATE_ZERO);
3438 if (ret < 0) {
3439 ext4_journal_stop(handle);
3440 if (ret == -ENOSPC &&
3441 ext4_should_retry_alloc(inode->i_sb, &retries))
3442 goto retry;
3443 return ret;
3444 }
776722e8
JK
3445
3446 /*
e2ae766c 3447 * If we added blocks beyond i_size, we need to make sure they
776722e8 3448 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3449 * ext4_iomap_end(). For faults we don't need to do that (and
3450 * even cannot because for orphan list operations inode_lock is
3451 * required) - if we happen to instantiate block beyond i_size,
3452 * it is because we race with truncate which has already added
3453 * the inode to the orphan list.
776722e8 3454 */
e2ae766c
JK
3455 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3456 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3457 int err;
3458
3459 err = ext4_orphan_add(handle, inode);
3460 if (err < 0) {
3461 ext4_journal_stop(handle);
3462 return err;
3463 }
3464 }
3465 ext4_journal_stop(handle);
3466 }
364443cb
JK
3467
3468 iomap->flags = 0;
5e405595
DW
3469 iomap->bdev = inode->i_sb->s_bdev;
3470 iomap->dax_dev = sbi->s_daxdev;
364443cb
JK
3471 iomap->offset = first_block << blkbits;
3472
3473 if (ret == 0) {
3474 iomap->type = IOMAP_HOLE;
3475 iomap->blkno = IOMAP_NULL_BLOCK;
3476 iomap->length = (u64)map.m_len << blkbits;
3477 } else {
3478 if (map.m_flags & EXT4_MAP_MAPPED) {
3479 iomap->type = IOMAP_MAPPED;
3480 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3481 iomap->type = IOMAP_UNWRITTEN;
3482 } else {
3483 WARN_ON_ONCE(1);
3484 return -EIO;
3485 }
3486 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3487 iomap->length = (u64)map.m_len << blkbits;
3488 }
3489
3490 if (map.m_flags & EXT4_MAP_NEW)
3491 iomap->flags |= IOMAP_F_NEW;
3492 return 0;
3493}
3494
776722e8
JK
3495static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3496 ssize_t written, unsigned flags, struct iomap *iomap)
3497{
3498 int ret = 0;
3499 handle_t *handle;
3500 int blkbits = inode->i_blkbits;
3501 bool truncate = false;
3502
e2ae766c 3503 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3504 return 0;
3505
3506 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3507 if (IS_ERR(handle)) {
3508 ret = PTR_ERR(handle);
3509 goto orphan_del;
3510 }
3511 if (ext4_update_inode_size(inode, offset + written))
3512 ext4_mark_inode_dirty(handle, inode);
3513 /*
3514 * We may need to truncate allocated but not written blocks beyond EOF.
3515 */
3516 if (iomap->offset + iomap->length >
3517 ALIGN(inode->i_size, 1 << blkbits)) {
3518 ext4_lblk_t written_blk, end_blk;
3519
3520 written_blk = (offset + written) >> blkbits;
3521 end_blk = (offset + length) >> blkbits;
3522 if (written_blk < end_blk && ext4_can_truncate(inode))
3523 truncate = true;
3524 }
3525 /*
3526 * Remove inode from orphan list if we were extending a inode and
3527 * everything went fine.
3528 */
3529 if (!truncate && inode->i_nlink &&
3530 !list_empty(&EXT4_I(inode)->i_orphan))
3531 ext4_orphan_del(handle, inode);
3532 ext4_journal_stop(handle);
3533 if (truncate) {
3534 ext4_truncate_failed_write(inode);
3535orphan_del:
3536 /*
3537 * If truncate failed early the inode might still be on the
3538 * orphan list; we need to make sure the inode is removed from
3539 * the orphan list in that case.
3540 */
3541 if (inode->i_nlink)
3542 ext4_orphan_del(NULL, inode);
3543 }
3544 return ret;
3545}
3546
8ff6daa1 3547const struct iomap_ops ext4_iomap_ops = {
364443cb 3548 .iomap_begin = ext4_iomap_begin,
776722e8 3549 .iomap_end = ext4_iomap_end,
364443cb
JK
3550};
3551
ba5843f5 3552#endif
ed923b57 3553
187372a3 3554static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3555 ssize_t size, void *private)
4c0425ff 3556{
109811c2 3557 ext4_io_end_t *io_end = private;
4c0425ff 3558
97a851ed 3559 /* if not async direct IO just return */
7b7a8665 3560 if (!io_end)
187372a3 3561 return 0;
4b70df18 3562
88635ca2 3563 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3564 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3565 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3566
74c66bcb
JK
3567 /*
3568 * Error during AIO DIO. We cannot convert unwritten extents as the
3569 * data was not written. Just clear the unwritten flag and drop io_end.
3570 */
3571 if (size <= 0) {
3572 ext4_clear_io_unwritten_flag(io_end);
3573 size = 0;
3574 }
4c0425ff
MC
3575 io_end->offset = offset;
3576 io_end->size = size;
7b7a8665 3577 ext4_put_io_end(io_end);
187372a3
CH
3578
3579 return 0;
4c0425ff 3580}
c7064ef1 3581
4c0425ff 3582/*
914f82a3
JK
3583 * Handling of direct IO writes.
3584 *
3585 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3586 * preallocated extents, and those write extend the file, no need to
3587 * fall back to buffered IO.
3588 *
556615dc 3589 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3590 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3591 * still keep the range to write as unwritten.
4c0425ff 3592 *
69c499d1 3593 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3594 * For async direct IO, since the IO may still pending when return, we
25985edc 3595 * set up an end_io call back function, which will do the conversion
8d5d02e6 3596 * when async direct IO completed.
4c0425ff
MC
3597 *
3598 * If the O_DIRECT write will extend the file then add this inode to the
3599 * orphan list. So recovery will truncate it back to the original size
3600 * if the machine crashes during the write.
3601 *
3602 */
0e01df10 3603static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3604{
3605 struct file *file = iocb->ki_filp;
3606 struct inode *inode = file->f_mapping->host;
914f82a3 3607 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3608 ssize_t ret;
c8b8e32d 3609 loff_t offset = iocb->ki_pos;
a6cbcd4a 3610 size_t count = iov_iter_count(iter);
69c499d1
TT
3611 int overwrite = 0;
3612 get_block_t *get_block_func = NULL;
3613 int dio_flags = 0;
4c0425ff 3614 loff_t final_size = offset + count;
914f82a3
JK
3615 int orphan = 0;
3616 handle_t *handle;
729f52c6 3617
914f82a3
JK
3618 if (final_size > inode->i_size) {
3619 /* Credits for sb + inode write */
3620 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3621 if (IS_ERR(handle)) {
3622 ret = PTR_ERR(handle);
3623 goto out;
3624 }
3625 ret = ext4_orphan_add(handle, inode);
3626 if (ret) {
3627 ext4_journal_stop(handle);
3628 goto out;
3629 }
3630 orphan = 1;
3631 ei->i_disksize = inode->i_size;
3632 ext4_journal_stop(handle);
3633 }
4bd809db 3634
69c499d1 3635 BUG_ON(iocb->private == NULL);
4bd809db 3636
e8340395
JK
3637 /*
3638 * Make all waiters for direct IO properly wait also for extent
3639 * conversion. This also disallows race between truncate() and
3640 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3641 */
914f82a3 3642 inode_dio_begin(inode);
e8340395 3643
69c499d1
TT
3644 /* If we do a overwrite dio, i_mutex locking can be released */
3645 overwrite = *((int *)iocb->private);
4bd809db 3646
2dcba478 3647 if (overwrite)
5955102c 3648 inode_unlock(inode);
8d5d02e6 3649
69c499d1 3650 /*
914f82a3 3651 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3652 *
109811c2
JK
3653 * Allocated blocks to fill the hole are marked as unwritten to prevent
3654 * parallel buffered read to expose the stale data before DIO complete
3655 * the data IO.
69c499d1 3656 *
109811c2
JK
3657 * As to previously fallocated extents, ext4 get_block will just simply
3658 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3659 *
109811c2
JK
3660 * For non AIO case, we will convert those unwritten extents to written
3661 * after return back from blockdev_direct_IO. That way we save us from
3662 * allocating io_end structure and also the overhead of offloading
3663 * the extent convertion to a workqueue.
69c499d1
TT
3664 *
3665 * For async DIO, the conversion needs to be deferred when the
3666 * IO is completed. The ext4 end_io callback function will be
3667 * called to take care of the conversion work. Here for async
3668 * case, we allocate an io_end structure to hook to the iocb.
3669 */
3670 iocb->private = NULL;
109811c2 3671 if (overwrite)
705965bd 3672 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3673 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3674 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3675 get_block_func = ext4_dio_get_block;
3676 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3677 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3678 get_block_func = ext4_dio_get_block_unwritten_sync;
3679 dio_flags = DIO_LOCKING;
69c499d1 3680 } else {
109811c2 3681 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3682 dio_flags = DIO_LOCKING;
3683 }
0bd2d5ec
JK
3684 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3685 get_block_func, ext4_end_io_dio, NULL,
3686 dio_flags);
69c499d1 3687
97a851ed 3688 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3689 EXT4_STATE_DIO_UNWRITTEN)) {
3690 int err;
3691 /*
3692 * for non AIO case, since the IO is already
3693 * completed, we could do the conversion right here
3694 */
6b523df4 3695 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3696 offset, ret);
3697 if (err < 0)
3698 ret = err;
3699 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3700 }
4bd809db 3701
914f82a3 3702 inode_dio_end(inode);
69c499d1 3703 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3704 if (overwrite)
5955102c 3705 inode_lock(inode);
8d5d02e6 3706
914f82a3
JK
3707 if (ret < 0 && final_size > inode->i_size)
3708 ext4_truncate_failed_write(inode);
3709
3710 /* Handle extending of i_size after direct IO write */
3711 if (orphan) {
3712 int err;
3713
3714 /* Credits for sb + inode write */
3715 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3716 if (IS_ERR(handle)) {
3717 /* This is really bad luck. We've written the data
3718 * but cannot extend i_size. Bail out and pretend
3719 * the write failed... */
3720 ret = PTR_ERR(handle);
3721 if (inode->i_nlink)
3722 ext4_orphan_del(NULL, inode);
3723
3724 goto out;
3725 }
3726 if (inode->i_nlink)
3727 ext4_orphan_del(handle, inode);
3728 if (ret > 0) {
3729 loff_t end = offset + ret;
3730 if (end > inode->i_size) {
3731 ei->i_disksize = end;
3732 i_size_write(inode, end);
3733 /*
3734 * We're going to return a positive `ret'
3735 * here due to non-zero-length I/O, so there's
3736 * no way of reporting error returns from
3737 * ext4_mark_inode_dirty() to userspace. So
3738 * ignore it.
3739 */
3740 ext4_mark_inode_dirty(handle, inode);
3741 }
3742 }
3743 err = ext4_journal_stop(handle);
3744 if (ret == 0)
3745 ret = err;
3746 }
3747out:
3748 return ret;
3749}
3750
0e01df10 3751static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3752{
16c54688
JK
3753 struct address_space *mapping = iocb->ki_filp->f_mapping;
3754 struct inode *inode = mapping->host;
0bd2d5ec 3755 size_t count = iov_iter_count(iter);
914f82a3
JK
3756 ssize_t ret;
3757
16c54688
JK
3758 /*
3759 * Shared inode_lock is enough for us - it protects against concurrent
3760 * writes & truncates and since we take care of writing back page cache,
3761 * we are protected against page writeback as well.
3762 */
3763 inode_lock_shared(inode);
0bd2d5ec 3764 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3765 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3766 if (ret)
3767 goto out_unlock;
3768 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3769 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3770out_unlock:
3771 inode_unlock_shared(inode);
69c499d1 3772 return ret;
4c0425ff
MC
3773}
3774
c8b8e32d 3775static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3776{
3777 struct file *file = iocb->ki_filp;
3778 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3779 size_t count = iov_iter_count(iter);
c8b8e32d 3780 loff_t offset = iocb->ki_pos;
0562e0ba 3781 ssize_t ret;
4c0425ff 3782
2058f83a
MH
3783#ifdef CONFIG_EXT4_FS_ENCRYPTION
3784 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3785 return 0;
3786#endif
3787
84ebd795
TT
3788 /*
3789 * If we are doing data journalling we don't support O_DIRECT
3790 */
3791 if (ext4_should_journal_data(inode))
3792 return 0;
3793
46c7f254
TM
3794 /* Let buffer I/O handle the inline data case. */
3795 if (ext4_has_inline_data(inode))
3796 return 0;
3797
0bd2d5ec
JK
3798 /* DAX uses iomap path now */
3799 if (WARN_ON_ONCE(IS_DAX(inode)))
3800 return 0;
3801
6f673763 3802 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3803 if (iov_iter_rw(iter) == READ)
0e01df10 3804 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3805 else
0e01df10 3806 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3807 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3808 return ret;
4c0425ff
MC
3809}
3810
ac27a0ec 3811/*
617ba13b 3812 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3813 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3814 * much here because ->set_page_dirty is called under VFS locks. The page is
3815 * not necessarily locked.
3816 *
3817 * We cannot just dirty the page and leave attached buffers clean, because the
3818 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3819 * or jbddirty because all the journalling code will explode.
3820 *
3821 * So what we do is to mark the page "pending dirty" and next time writepage
3822 * is called, propagate that into the buffers appropriately.
3823 */
617ba13b 3824static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3825{
3826 SetPageChecked(page);
3827 return __set_page_dirty_nobuffers(page);
3828}
3829
6dcc693b
JK
3830static int ext4_set_page_dirty(struct page *page)
3831{
3832 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3833 WARN_ON_ONCE(!page_has_buffers(page));
3834 return __set_page_dirty_buffers(page);
3835}
3836
74d553aa 3837static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3838 .readpage = ext4_readpage,
3839 .readpages = ext4_readpages,
43ce1d23 3840 .writepage = ext4_writepage,
20970ba6 3841 .writepages = ext4_writepages,
8ab22b9a 3842 .write_begin = ext4_write_begin,
74d553aa 3843 .write_end = ext4_write_end,
6dcc693b 3844 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3845 .bmap = ext4_bmap,
3846 .invalidatepage = ext4_invalidatepage,
3847 .releasepage = ext4_releasepage,
3848 .direct_IO = ext4_direct_IO,
3849 .migratepage = buffer_migrate_page,
3850 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3851 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3852};
3853
617ba13b 3854static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3855 .readpage = ext4_readpage,
3856 .readpages = ext4_readpages,
43ce1d23 3857 .writepage = ext4_writepage,
20970ba6 3858 .writepages = ext4_writepages,
8ab22b9a
HH
3859 .write_begin = ext4_write_begin,
3860 .write_end = ext4_journalled_write_end,
3861 .set_page_dirty = ext4_journalled_set_page_dirty,
3862 .bmap = ext4_bmap,
4520fb3c 3863 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3864 .releasepage = ext4_releasepage,
84ebd795 3865 .direct_IO = ext4_direct_IO,
8ab22b9a 3866 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3867 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3868};
3869
64769240 3870static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3871 .readpage = ext4_readpage,
3872 .readpages = ext4_readpages,
43ce1d23 3873 .writepage = ext4_writepage,
20970ba6 3874 .writepages = ext4_writepages,
8ab22b9a
HH
3875 .write_begin = ext4_da_write_begin,
3876 .write_end = ext4_da_write_end,
6dcc693b 3877 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3878 .bmap = ext4_bmap,
3879 .invalidatepage = ext4_da_invalidatepage,
3880 .releasepage = ext4_releasepage,
3881 .direct_IO = ext4_direct_IO,
3882 .migratepage = buffer_migrate_page,
3883 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3884 .error_remove_page = generic_error_remove_page,
64769240
AT
3885};
3886
617ba13b 3887void ext4_set_aops(struct inode *inode)
ac27a0ec 3888{
3d2b1582
LC
3889 switch (ext4_inode_journal_mode(inode)) {
3890 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3891 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3892 break;
3893 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3894 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3895 return;
3d2b1582
LC
3896 default:
3897 BUG();
3898 }
74d553aa
TT
3899 if (test_opt(inode->i_sb, DELALLOC))
3900 inode->i_mapping->a_ops = &ext4_da_aops;
3901 else
3902 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3903}
3904
923ae0ff 3905static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3906 struct address_space *mapping, loff_t from, loff_t length)
3907{
09cbfeaf
KS
3908 ext4_fsblk_t index = from >> PAGE_SHIFT;
3909 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3910 unsigned blocksize, pos;
d863dc36
LC
3911 ext4_lblk_t iblock;
3912 struct inode *inode = mapping->host;
3913 struct buffer_head *bh;
3914 struct page *page;
3915 int err = 0;
3916
09cbfeaf 3917 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3918 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3919 if (!page)
3920 return -ENOMEM;
3921
3922 blocksize = inode->i_sb->s_blocksize;
d863dc36 3923
09cbfeaf 3924 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3925
3926 if (!page_has_buffers(page))
3927 create_empty_buffers(page, blocksize, 0);
3928
3929 /* Find the buffer that contains "offset" */
3930 bh = page_buffers(page);
3931 pos = blocksize;
3932 while (offset >= pos) {
3933 bh = bh->b_this_page;
3934 iblock++;
3935 pos += blocksize;
3936 }
d863dc36
LC
3937 if (buffer_freed(bh)) {
3938 BUFFER_TRACE(bh, "freed: skip");
3939 goto unlock;
3940 }
d863dc36
LC
3941 if (!buffer_mapped(bh)) {
3942 BUFFER_TRACE(bh, "unmapped");
3943 ext4_get_block(inode, iblock, bh, 0);
3944 /* unmapped? It's a hole - nothing to do */
3945 if (!buffer_mapped(bh)) {
3946 BUFFER_TRACE(bh, "still unmapped");
3947 goto unlock;
3948 }
3949 }
3950
3951 /* Ok, it's mapped. Make sure it's up-to-date */
3952 if (PageUptodate(page))
3953 set_buffer_uptodate(bh);
3954
3955 if (!buffer_uptodate(bh)) {
3956 err = -EIO;
dfec8a14 3957 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3958 wait_on_buffer(bh);
3959 /* Uhhuh. Read error. Complain and punt. */
3960 if (!buffer_uptodate(bh))
3961 goto unlock;
c9c7429c
MH
3962 if (S_ISREG(inode->i_mode) &&
3963 ext4_encrypted_inode(inode)) {
3964 /* We expect the key to be set. */
a7550b30 3965 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3966 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3967 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3968 page, PAGE_SIZE, 0, page->index));
c9c7429c 3969 }
d863dc36 3970 }
d863dc36
LC
3971 if (ext4_should_journal_data(inode)) {
3972 BUFFER_TRACE(bh, "get write access");
3973 err = ext4_journal_get_write_access(handle, bh);
3974 if (err)
3975 goto unlock;
3976 }
d863dc36 3977 zero_user(page, offset, length);
d863dc36
LC
3978 BUFFER_TRACE(bh, "zeroed end of block");
3979
d863dc36
LC
3980 if (ext4_should_journal_data(inode)) {
3981 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3982 } else {
353eefd3 3983 err = 0;
d863dc36 3984 mark_buffer_dirty(bh);
3957ef53 3985 if (ext4_should_order_data(inode))
ee0876bc 3986 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3987 }
d863dc36
LC
3988
3989unlock:
3990 unlock_page(page);
09cbfeaf 3991 put_page(page);
d863dc36
LC
3992 return err;
3993}
3994
923ae0ff
RZ
3995/*
3996 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3997 * starting from file offset 'from'. The range to be zero'd must
3998 * be contained with in one block. If the specified range exceeds
3999 * the end of the block it will be shortened to end of the block
4000 * that cooresponds to 'from'
4001 */
4002static int ext4_block_zero_page_range(handle_t *handle,
4003 struct address_space *mapping, loff_t from, loff_t length)
4004{
4005 struct inode *inode = mapping->host;
09cbfeaf 4006 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
4007 unsigned blocksize = inode->i_sb->s_blocksize;
4008 unsigned max = blocksize - (offset & (blocksize - 1));
4009
4010 /*
4011 * correct length if it does not fall between
4012 * 'from' and the end of the block
4013 */
4014 if (length > max || length < 0)
4015 length = max;
4016
47e69351
JK
4017 if (IS_DAX(inode)) {
4018 return iomap_zero_range(inode, from, length, NULL,
4019 &ext4_iomap_ops);
4020 }
923ae0ff
RZ
4021 return __ext4_block_zero_page_range(handle, mapping, from, length);
4022}
4023
94350ab5
MW
4024/*
4025 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4026 * up to the end of the block which corresponds to `from'.
4027 * This required during truncate. We need to physically zero the tail end
4028 * of that block so it doesn't yield old data if the file is later grown.
4029 */
c197855e 4030static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4031 struct address_space *mapping, loff_t from)
4032{
09cbfeaf 4033 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4034 unsigned length;
4035 unsigned blocksize;
4036 struct inode *inode = mapping->host;
4037
0d06863f
TT
4038 /* If we are processing an encrypted inode during orphan list handling */
4039 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4040 return 0;
4041
94350ab5
MW
4042 blocksize = inode->i_sb->s_blocksize;
4043 length = blocksize - (offset & (blocksize - 1));
4044
4045 return ext4_block_zero_page_range(handle, mapping, from, length);
4046}
4047
a87dd18c
LC
4048int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4049 loff_t lstart, loff_t length)
4050{
4051 struct super_block *sb = inode->i_sb;
4052 struct address_space *mapping = inode->i_mapping;
e1be3a92 4053 unsigned partial_start, partial_end;
a87dd18c
LC
4054 ext4_fsblk_t start, end;
4055 loff_t byte_end = (lstart + length - 1);
4056 int err = 0;
4057
e1be3a92
LC
4058 partial_start = lstart & (sb->s_blocksize - 1);
4059 partial_end = byte_end & (sb->s_blocksize - 1);
4060
a87dd18c
LC
4061 start = lstart >> sb->s_blocksize_bits;
4062 end = byte_end >> sb->s_blocksize_bits;
4063
4064 /* Handle partial zero within the single block */
e1be3a92
LC
4065 if (start == end &&
4066 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4067 err = ext4_block_zero_page_range(handle, mapping,
4068 lstart, length);
4069 return err;
4070 }
4071 /* Handle partial zero out on the start of the range */
e1be3a92 4072 if (partial_start) {
a87dd18c
LC
4073 err = ext4_block_zero_page_range(handle, mapping,
4074 lstart, sb->s_blocksize);
4075 if (err)
4076 return err;
4077 }
4078 /* Handle partial zero out on the end of the range */
e1be3a92 4079 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4080 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4081 byte_end - partial_end,
4082 partial_end + 1);
a87dd18c
LC
4083 return err;
4084}
4085
91ef4caf
DG
4086int ext4_can_truncate(struct inode *inode)
4087{
91ef4caf
DG
4088 if (S_ISREG(inode->i_mode))
4089 return 1;
4090 if (S_ISDIR(inode->i_mode))
4091 return 1;
4092 if (S_ISLNK(inode->i_mode))
4093 return !ext4_inode_is_fast_symlink(inode);
4094 return 0;
4095}
4096
01127848
JK
4097/*
4098 * We have to make sure i_disksize gets properly updated before we truncate
4099 * page cache due to hole punching or zero range. Otherwise i_disksize update
4100 * can get lost as it may have been postponed to submission of writeback but
4101 * that will never happen after we truncate page cache.
4102 */
4103int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4104 loff_t len)
4105{
4106 handle_t *handle;
4107 loff_t size = i_size_read(inode);
4108
5955102c 4109 WARN_ON(!inode_is_locked(inode));
01127848
JK
4110 if (offset > size || offset + len < size)
4111 return 0;
4112
4113 if (EXT4_I(inode)->i_disksize >= size)
4114 return 0;
4115
4116 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4117 if (IS_ERR(handle))
4118 return PTR_ERR(handle);
4119 ext4_update_i_disksize(inode, size);
4120 ext4_mark_inode_dirty(handle, inode);
4121 ext4_journal_stop(handle);
4122
4123 return 0;
4124}
4125
a4bb6b64 4126/*
cca32b7e 4127 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4128 * associated with the given offset and length
4129 *
4130 * @inode: File inode
4131 * @offset: The offset where the hole will begin
4132 * @len: The length of the hole
4133 *
4907cb7b 4134 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4135 */
4136
aeb2817a 4137int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4138{
26a4c0c6
TT
4139 struct super_block *sb = inode->i_sb;
4140 ext4_lblk_t first_block, stop_block;
4141 struct address_space *mapping = inode->i_mapping;
a87dd18c 4142 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4143 handle_t *handle;
4144 unsigned int credits;
4145 int ret = 0;
4146
a4bb6b64 4147 if (!S_ISREG(inode->i_mode))
73355192 4148 return -EOPNOTSUPP;
a4bb6b64 4149
b8a86845 4150 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4151
26a4c0c6
TT
4152 /*
4153 * Write out all dirty pages to avoid race conditions
4154 * Then release them.
4155 */
cca32b7e 4156 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4157 ret = filemap_write_and_wait_range(mapping, offset,
4158 offset + length - 1);
4159 if (ret)
4160 return ret;
4161 }
4162
5955102c 4163 inode_lock(inode);
9ef06cec 4164
26a4c0c6
TT
4165 /* No need to punch hole beyond i_size */
4166 if (offset >= inode->i_size)
4167 goto out_mutex;
4168
4169 /*
4170 * If the hole extends beyond i_size, set the hole
4171 * to end after the page that contains i_size
4172 */
4173 if (offset + length > inode->i_size) {
4174 length = inode->i_size +
09cbfeaf 4175 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4176 offset;
4177 }
4178
a361293f
JK
4179 if (offset & (sb->s_blocksize - 1) ||
4180 (offset + length) & (sb->s_blocksize - 1)) {
4181 /*
4182 * Attach jinode to inode for jbd2 if we do any zeroing of
4183 * partial block
4184 */
4185 ret = ext4_inode_attach_jinode(inode);
4186 if (ret < 0)
4187 goto out_mutex;
4188
4189 }
4190
ea3d7209
JK
4191 /* Wait all existing dio workers, newcomers will block on i_mutex */
4192 ext4_inode_block_unlocked_dio(inode);
4193 inode_dio_wait(inode);
4194
4195 /*
4196 * Prevent page faults from reinstantiating pages we have released from
4197 * page cache.
4198 */
4199 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4200 first_block_offset = round_up(offset, sb->s_blocksize);
4201 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4202
a87dd18c 4203 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4204 if (last_block_offset > first_block_offset) {
4205 ret = ext4_update_disksize_before_punch(inode, offset, length);
4206 if (ret)
4207 goto out_dio;
a87dd18c
LC
4208 truncate_pagecache_range(inode, first_block_offset,
4209 last_block_offset);
01127848 4210 }
26a4c0c6
TT
4211
4212 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4213 credits = ext4_writepage_trans_blocks(inode);
4214 else
4215 credits = ext4_blocks_for_truncate(inode);
4216 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4217 if (IS_ERR(handle)) {
4218 ret = PTR_ERR(handle);
4219 ext4_std_error(sb, ret);
4220 goto out_dio;
4221 }
4222
a87dd18c
LC
4223 ret = ext4_zero_partial_blocks(handle, inode, offset,
4224 length);
4225 if (ret)
4226 goto out_stop;
26a4c0c6
TT
4227
4228 first_block = (offset + sb->s_blocksize - 1) >>
4229 EXT4_BLOCK_SIZE_BITS(sb);
4230 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4231
4232 /* If there are no blocks to remove, return now */
4233 if (first_block >= stop_block)
4234 goto out_stop;
4235
4236 down_write(&EXT4_I(inode)->i_data_sem);
4237 ext4_discard_preallocations(inode);
4238
4239 ret = ext4_es_remove_extent(inode, first_block,
4240 stop_block - first_block);
4241 if (ret) {
4242 up_write(&EXT4_I(inode)->i_data_sem);
4243 goto out_stop;
4244 }
4245
4246 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4247 ret = ext4_ext_remove_space(inode, first_block,
4248 stop_block - 1);
4249 else
4f579ae7 4250 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4251 stop_block);
4252
819c4920 4253 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4254 if (IS_SYNC(inode))
4255 ext4_handle_sync(handle);
e251f9bc 4256
eeca7ea1 4257 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4258 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4259 if (ret >= 0)
4260 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4261out_stop:
4262 ext4_journal_stop(handle);
4263out_dio:
ea3d7209 4264 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4265 ext4_inode_resume_unlocked_dio(inode);
4266out_mutex:
5955102c 4267 inode_unlock(inode);
26a4c0c6 4268 return ret;
a4bb6b64
AH
4269}
4270
a361293f
JK
4271int ext4_inode_attach_jinode(struct inode *inode)
4272{
4273 struct ext4_inode_info *ei = EXT4_I(inode);
4274 struct jbd2_inode *jinode;
4275
4276 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4277 return 0;
4278
4279 jinode = jbd2_alloc_inode(GFP_KERNEL);
4280 spin_lock(&inode->i_lock);
4281 if (!ei->jinode) {
4282 if (!jinode) {
4283 spin_unlock(&inode->i_lock);
4284 return -ENOMEM;
4285 }
4286 ei->jinode = jinode;
4287 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4288 jinode = NULL;
4289 }
4290 spin_unlock(&inode->i_lock);
4291 if (unlikely(jinode != NULL))
4292 jbd2_free_inode(jinode);
4293 return 0;
4294}
4295
ac27a0ec 4296/*
617ba13b 4297 * ext4_truncate()
ac27a0ec 4298 *
617ba13b
MC
4299 * We block out ext4_get_block() block instantiations across the entire
4300 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4301 * simultaneously on behalf of the same inode.
4302 *
42b2aa86 4303 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4304 * is one core, guiding principle: the file's tree must always be consistent on
4305 * disk. We must be able to restart the truncate after a crash.
4306 *
4307 * The file's tree may be transiently inconsistent in memory (although it
4308 * probably isn't), but whenever we close off and commit a journal transaction,
4309 * the contents of (the filesystem + the journal) must be consistent and
4310 * restartable. It's pretty simple, really: bottom up, right to left (although
4311 * left-to-right works OK too).
4312 *
4313 * Note that at recovery time, journal replay occurs *before* the restart of
4314 * truncate against the orphan inode list.
4315 *
4316 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4317 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4318 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4319 * ext4_truncate() to have another go. So there will be instantiated blocks
4320 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4321 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4322 * ext4_truncate() run will find them and release them.
ac27a0ec 4323 */
2c98eb5e 4324int ext4_truncate(struct inode *inode)
ac27a0ec 4325{
819c4920
TT
4326 struct ext4_inode_info *ei = EXT4_I(inode);
4327 unsigned int credits;
2c98eb5e 4328 int err = 0;
819c4920
TT
4329 handle_t *handle;
4330 struct address_space *mapping = inode->i_mapping;
819c4920 4331
19b5ef61
TT
4332 /*
4333 * There is a possibility that we're either freeing the inode
e04027e8 4334 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4335 * have i_mutex locked because it's not necessary.
4336 */
4337 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4338 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4339 trace_ext4_truncate_enter(inode);
4340
91ef4caf 4341 if (!ext4_can_truncate(inode))
2c98eb5e 4342 return 0;
ac27a0ec 4343
12e9b892 4344 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4345
5534fb5b 4346 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4347 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4348
aef1c851
TM
4349 if (ext4_has_inline_data(inode)) {
4350 int has_inline = 1;
4351
01daf945
TT
4352 err = ext4_inline_data_truncate(inode, &has_inline);
4353 if (err)
4354 return err;
aef1c851 4355 if (has_inline)
2c98eb5e 4356 return 0;
aef1c851
TM
4357 }
4358
a361293f
JK
4359 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4360 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4361 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4362 return 0;
a361293f
JK
4363 }
4364
819c4920
TT
4365 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4366 credits = ext4_writepage_trans_blocks(inode);
4367 else
4368 credits = ext4_blocks_for_truncate(inode);
4369
4370 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4371 if (IS_ERR(handle))
4372 return PTR_ERR(handle);
819c4920 4373
eb3544c6
LC
4374 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4375 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4376
4377 /*
4378 * We add the inode to the orphan list, so that if this
4379 * truncate spans multiple transactions, and we crash, we will
4380 * resume the truncate when the filesystem recovers. It also
4381 * marks the inode dirty, to catch the new size.
4382 *
4383 * Implication: the file must always be in a sane, consistent
4384 * truncatable state while each transaction commits.
4385 */
2c98eb5e
TT
4386 err = ext4_orphan_add(handle, inode);
4387 if (err)
819c4920
TT
4388 goto out_stop;
4389
4390 down_write(&EXT4_I(inode)->i_data_sem);
4391
4392 ext4_discard_preallocations(inode);
4393
ff9893dc 4394 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4395 err = ext4_ext_truncate(handle, inode);
ff9893dc 4396 else
819c4920
TT
4397 ext4_ind_truncate(handle, inode);
4398
4399 up_write(&ei->i_data_sem);
d0abb36d
TT
4400 if (err)
4401 goto out_stop;
819c4920
TT
4402
4403 if (IS_SYNC(inode))
4404 ext4_handle_sync(handle);
4405
4406out_stop:
4407 /*
4408 * If this was a simple ftruncate() and the file will remain alive,
4409 * then we need to clear up the orphan record which we created above.
4410 * However, if this was a real unlink then we were called by
58d86a50 4411 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4412 * orphan info for us.
4413 */
4414 if (inode->i_nlink)
4415 ext4_orphan_del(handle, inode);
4416
eeca7ea1 4417 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4418 ext4_mark_inode_dirty(handle, inode);
4419 ext4_journal_stop(handle);
ac27a0ec 4420
0562e0ba 4421 trace_ext4_truncate_exit(inode);
2c98eb5e 4422 return err;
ac27a0ec
DK
4423}
4424
ac27a0ec 4425/*
617ba13b 4426 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4427 * underlying buffer_head on success. If 'in_mem' is true, we have all
4428 * data in memory that is needed to recreate the on-disk version of this
4429 * inode.
4430 */
617ba13b
MC
4431static int __ext4_get_inode_loc(struct inode *inode,
4432 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4433{
240799cd
TT
4434 struct ext4_group_desc *gdp;
4435 struct buffer_head *bh;
4436 struct super_block *sb = inode->i_sb;
4437 ext4_fsblk_t block;
4438 int inodes_per_block, inode_offset;
4439
3a06d778 4440 iloc->bh = NULL;
240799cd 4441 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4442 return -EFSCORRUPTED;
ac27a0ec 4443
240799cd
TT
4444 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4445 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4446 if (!gdp)
ac27a0ec
DK
4447 return -EIO;
4448
240799cd
TT
4449 /*
4450 * Figure out the offset within the block group inode table
4451 */
00d09882 4452 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4453 inode_offset = ((inode->i_ino - 1) %
4454 EXT4_INODES_PER_GROUP(sb));
4455 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4456 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4457
4458 bh = sb_getblk(sb, block);
aebf0243 4459 if (unlikely(!bh))
860d21e2 4460 return -ENOMEM;
ac27a0ec
DK
4461 if (!buffer_uptodate(bh)) {
4462 lock_buffer(bh);
9c83a923
HK
4463
4464 /*
4465 * If the buffer has the write error flag, we have failed
4466 * to write out another inode in the same block. In this
4467 * case, we don't have to read the block because we may
4468 * read the old inode data successfully.
4469 */
4470 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4471 set_buffer_uptodate(bh);
4472
ac27a0ec
DK
4473 if (buffer_uptodate(bh)) {
4474 /* someone brought it uptodate while we waited */
4475 unlock_buffer(bh);
4476 goto has_buffer;
4477 }
4478
4479 /*
4480 * If we have all information of the inode in memory and this
4481 * is the only valid inode in the block, we need not read the
4482 * block.
4483 */
4484 if (in_mem) {
4485 struct buffer_head *bitmap_bh;
240799cd 4486 int i, start;
ac27a0ec 4487
240799cd 4488 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4489
240799cd
TT
4490 /* Is the inode bitmap in cache? */
4491 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4492 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4493 goto make_io;
4494
4495 /*
4496 * If the inode bitmap isn't in cache then the
4497 * optimisation may end up performing two reads instead
4498 * of one, so skip it.
4499 */
4500 if (!buffer_uptodate(bitmap_bh)) {
4501 brelse(bitmap_bh);
4502 goto make_io;
4503 }
240799cd 4504 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4505 if (i == inode_offset)
4506 continue;
617ba13b 4507 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4508 break;
4509 }
4510 brelse(bitmap_bh);
240799cd 4511 if (i == start + inodes_per_block) {
ac27a0ec
DK
4512 /* all other inodes are free, so skip I/O */
4513 memset(bh->b_data, 0, bh->b_size);
4514 set_buffer_uptodate(bh);
4515 unlock_buffer(bh);
4516 goto has_buffer;
4517 }
4518 }
4519
4520make_io:
240799cd
TT
4521 /*
4522 * If we need to do any I/O, try to pre-readahead extra
4523 * blocks from the inode table.
4524 */
4525 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4526 ext4_fsblk_t b, end, table;
4527 unsigned num;
0d606e2c 4528 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4529
4530 table = ext4_inode_table(sb, gdp);
b713a5ec 4531 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4532 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4533 if (table > b)
4534 b = table;
0d606e2c 4535 end = b + ra_blks;
240799cd 4536 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4537 if (ext4_has_group_desc_csum(sb))
560671a0 4538 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4539 table += num / inodes_per_block;
4540 if (end > table)
4541 end = table;
4542 while (b <= end)
4543 sb_breadahead(sb, b++);
4544 }
4545
ac27a0ec
DK
4546 /*
4547 * There are other valid inodes in the buffer, this inode
4548 * has in-inode xattrs, or we don't have this inode in memory.
4549 * Read the block from disk.
4550 */
0562e0ba 4551 trace_ext4_load_inode(inode);
ac27a0ec
DK
4552 get_bh(bh);
4553 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4554 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4555 wait_on_buffer(bh);
4556 if (!buffer_uptodate(bh)) {
c398eda0
TT
4557 EXT4_ERROR_INODE_BLOCK(inode, block,
4558 "unable to read itable block");
ac27a0ec
DK
4559 brelse(bh);
4560 return -EIO;
4561 }
4562 }
4563has_buffer:
4564 iloc->bh = bh;
4565 return 0;
4566}
4567
617ba13b 4568int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4569{
4570 /* We have all inode data except xattrs in memory here. */
617ba13b 4571 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4572 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4573}
4574
617ba13b 4575void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4576{
617ba13b 4577 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4578 unsigned int new_fl = 0;
ac27a0ec 4579
617ba13b 4580 if (flags & EXT4_SYNC_FL)
00a1a053 4581 new_fl |= S_SYNC;
617ba13b 4582 if (flags & EXT4_APPEND_FL)
00a1a053 4583 new_fl |= S_APPEND;
617ba13b 4584 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4585 new_fl |= S_IMMUTABLE;
617ba13b 4586 if (flags & EXT4_NOATIME_FL)
00a1a053 4587 new_fl |= S_NOATIME;
617ba13b 4588 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4589 new_fl |= S_DIRSYNC;
a3caa24b
JK
4590 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4591 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4592 !ext4_encrypted_inode(inode))
923ae0ff 4593 new_fl |= S_DAX;
5f16f322 4594 inode_set_flags(inode, new_fl,
923ae0ff 4595 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4596}
4597
0fc1b451 4598static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4599 struct ext4_inode_info *ei)
0fc1b451
AK
4600{
4601 blkcnt_t i_blocks ;
8180a562
AK
4602 struct inode *inode = &(ei->vfs_inode);
4603 struct super_block *sb = inode->i_sb;
0fc1b451 4604
e2b911c5 4605 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4606 /* we are using combined 48 bit field */
4607 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4608 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4609 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4610 /* i_blocks represent file system block size */
4611 return i_blocks << (inode->i_blkbits - 9);
4612 } else {
4613 return i_blocks;
4614 }
0fc1b451
AK
4615 } else {
4616 return le32_to_cpu(raw_inode->i_blocks_lo);
4617 }
4618}
ff9ddf7e 4619
152a7b0a
TM
4620static inline void ext4_iget_extra_inode(struct inode *inode,
4621 struct ext4_inode *raw_inode,
4622 struct ext4_inode_info *ei)
4623{
4624 __le32 *magic = (void *)raw_inode +
4625 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4626 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4627 EXT4_INODE_SIZE(inode->i_sb) &&
4628 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4629 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4630 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4631 } else
4632 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4633}
4634
040cb378
LX
4635int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4636{
0b7b7779 4637 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4638 return -EOPNOTSUPP;
4639 *projid = EXT4_I(inode)->i_projid;
4640 return 0;
4641}
4642
1d1fe1ee 4643struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4644{
617ba13b
MC
4645 struct ext4_iloc iloc;
4646 struct ext4_inode *raw_inode;
1d1fe1ee 4647 struct ext4_inode_info *ei;
1d1fe1ee 4648 struct inode *inode;
b436b9be 4649 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4650 long ret;
7e6e1ef4 4651 loff_t size;
ac27a0ec 4652 int block;
08cefc7a
EB
4653 uid_t i_uid;
4654 gid_t i_gid;
040cb378 4655 projid_t i_projid;
ac27a0ec 4656
1d1fe1ee
DH
4657 inode = iget_locked(sb, ino);
4658 if (!inode)
4659 return ERR_PTR(-ENOMEM);
4660 if (!(inode->i_state & I_NEW))
4661 return inode;
4662
4663 ei = EXT4_I(inode);
7dc57615 4664 iloc.bh = NULL;
ac27a0ec 4665
1d1fe1ee
DH
4666 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4667 if (ret < 0)
ac27a0ec 4668 goto bad_inode;
617ba13b 4669 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4670
4671 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4672 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4673 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4674 EXT4_INODE_SIZE(inode->i_sb) ||
4675 (ei->i_extra_isize & 3)) {
4676 EXT4_ERROR_INODE(inode,
4677 "bad extra_isize %u (inode size %u)",
4678 ei->i_extra_isize,
4679 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4680 ret = -EFSCORRUPTED;
814525f4
DW
4681 goto bad_inode;
4682 }
4683 } else
4684 ei->i_extra_isize = 0;
4685
4686 /* Precompute checksum seed for inode metadata */
9aa5d32b 4687 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4688 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689 __u32 csum;
4690 __le32 inum = cpu_to_le32(inode->i_ino);
4691 __le32 gen = raw_inode->i_generation;
4692 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4693 sizeof(inum));
4694 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4695 sizeof(gen));
4696 }
4697
4698 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4699 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4700 ret = -EFSBADCRC;
814525f4
DW
4701 goto bad_inode;
4702 }
4703
ac27a0ec 4704 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4705 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4706 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4707 if (ext4_has_feature_project(sb) &&
040cb378
LX
4708 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4709 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4710 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4711 else
4712 i_projid = EXT4_DEF_PROJID;
4713
af5bc92d 4714 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4715 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4716 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4717 }
08cefc7a
EB
4718 i_uid_write(inode, i_uid);
4719 i_gid_write(inode, i_gid);
040cb378 4720 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4721 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4722
353eb83c 4723 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4724 ei->i_inline_off = 0;
ac27a0ec
DK
4725 ei->i_dir_start_lookup = 0;
4726 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4727 /* We now have enough fields to check if the inode was active or not.
4728 * This is needed because nfsd might try to access dead inodes
4729 * the test is that same one that e2fsck uses
4730 * NeilBrown 1999oct15
4731 */
4732 if (inode->i_nlink == 0) {
393d1d1d
DTB
4733 if ((inode->i_mode == 0 ||
4734 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4735 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4736 /* this inode is deleted */
1d1fe1ee 4737 ret = -ESTALE;
ac27a0ec
DK
4738 goto bad_inode;
4739 }
4740 /* The only unlinked inodes we let through here have
4741 * valid i_mode and are being read by the orphan
4742 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4743 * the process of deleting those.
4744 * OR it is the EXT4_BOOT_LOADER_INO which is
4745 * not initialized on a new filesystem. */
ac27a0ec 4746 }
ac27a0ec 4747 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4748 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4749 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4750 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4751 ei->i_file_acl |=
4752 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4753 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4
DW
4754 if ((size = i_size_read(inode)) < 0) {
4755 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4756 ret = -EFSCORRUPTED;
4757 goto bad_inode;
4758 }
ac27a0ec 4759 ei->i_disksize = inode->i_size;
a9e7f447
DM
4760#ifdef CONFIG_QUOTA
4761 ei->i_reserved_quota = 0;
4762#endif
ac27a0ec
DK
4763 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4764 ei->i_block_group = iloc.block_group;
a4912123 4765 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4766 /*
4767 * NOTE! The in-memory inode i_data array is in little-endian order
4768 * even on big-endian machines: we do NOT byteswap the block numbers!
4769 */
617ba13b 4770 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4771 ei->i_data[block] = raw_inode->i_block[block];
4772 INIT_LIST_HEAD(&ei->i_orphan);
4773
b436b9be
JK
4774 /*
4775 * Set transaction id's of transactions that have to be committed
4776 * to finish f[data]sync. We set them to currently running transaction
4777 * as we cannot be sure that the inode or some of its metadata isn't
4778 * part of the transaction - the inode could have been reclaimed and
4779 * now it is reread from disk.
4780 */
4781 if (journal) {
4782 transaction_t *transaction;
4783 tid_t tid;
4784
a931da6a 4785 read_lock(&journal->j_state_lock);
b436b9be
JK
4786 if (journal->j_running_transaction)
4787 transaction = journal->j_running_transaction;
4788 else
4789 transaction = journal->j_committing_transaction;
4790 if (transaction)
4791 tid = transaction->t_tid;
4792 else
4793 tid = journal->j_commit_sequence;
a931da6a 4794 read_unlock(&journal->j_state_lock);
b436b9be
JK
4795 ei->i_sync_tid = tid;
4796 ei->i_datasync_tid = tid;
4797 }
4798
0040d987 4799 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4800 if (ei->i_extra_isize == 0) {
4801 /* The extra space is currently unused. Use it. */
2dc8d9e1 4802 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4803 ei->i_extra_isize = sizeof(struct ext4_inode) -
4804 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4805 } else {
152a7b0a 4806 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4807 }
814525f4 4808 }
ac27a0ec 4809
ef7f3835
KS
4810 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4811 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4812 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4813 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4814
ed3654eb 4815 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4816 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4817 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4819 inode->i_version |=
4820 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4821 }
25ec56b5
JNC
4822 }
4823
c4b5a614 4824 ret = 0;
485c26ec 4825 if (ei->i_file_acl &&
1032988c 4826 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4827 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4828 ei->i_file_acl);
6a797d27 4829 ret = -EFSCORRUPTED;
485c26ec 4830 goto bad_inode;
f19d5870
TM
4831 } else if (!ext4_has_inline_data(inode)) {
4832 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4833 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4834 (S_ISLNK(inode->i_mode) &&
4835 !ext4_inode_is_fast_symlink(inode))))
4836 /* Validate extent which is part of inode */
4837 ret = ext4_ext_check_inode(inode);
4838 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4839 (S_ISLNK(inode->i_mode) &&
4840 !ext4_inode_is_fast_symlink(inode))) {
4841 /* Validate block references which are part of inode */
4842 ret = ext4_ind_check_inode(inode);
4843 }
fe2c8191 4844 }
567f3e9a 4845 if (ret)
de9a55b8 4846 goto bad_inode;
7a262f7c 4847
ac27a0ec 4848 if (S_ISREG(inode->i_mode)) {
617ba13b 4849 inode->i_op = &ext4_file_inode_operations;
be64f884 4850 inode->i_fop = &ext4_file_operations;
617ba13b 4851 ext4_set_aops(inode);
ac27a0ec 4852 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4853 inode->i_op = &ext4_dir_inode_operations;
4854 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4855 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4856 if (ext4_encrypted_inode(inode)) {
4857 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4858 ext4_set_aops(inode);
4859 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4860 inode->i_link = (char *)ei->i_data;
617ba13b 4861 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4862 nd_terminate_link(ei->i_data, inode->i_size,
4863 sizeof(ei->i_data) - 1);
4864 } else {
617ba13b
MC
4865 inode->i_op = &ext4_symlink_inode_operations;
4866 ext4_set_aops(inode);
ac27a0ec 4867 }
21fc61c7 4868 inode_nohighmem(inode);
563bdd61
TT
4869 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4870 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4871 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4872 if (raw_inode->i_block[0])
4873 init_special_inode(inode, inode->i_mode,
4874 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4875 else
4876 init_special_inode(inode, inode->i_mode,
4877 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4878 } else if (ino == EXT4_BOOT_LOADER_INO) {
4879 make_bad_inode(inode);
563bdd61 4880 } else {
6a797d27 4881 ret = -EFSCORRUPTED;
24676da4 4882 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4883 goto bad_inode;
ac27a0ec 4884 }
af5bc92d 4885 brelse(iloc.bh);
617ba13b 4886 ext4_set_inode_flags(inode);
dec214d0 4887
1d1fe1ee
DH
4888 unlock_new_inode(inode);
4889 return inode;
ac27a0ec
DK
4890
4891bad_inode:
567f3e9a 4892 brelse(iloc.bh);
1d1fe1ee
DH
4893 iget_failed(inode);
4894 return ERR_PTR(ret);
ac27a0ec
DK
4895}
4896
f4bb2981
TT
4897struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4898{
4899 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4900 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4901 return ext4_iget(sb, ino);
4902}
4903
0fc1b451
AK
4904static int ext4_inode_blocks_set(handle_t *handle,
4905 struct ext4_inode *raw_inode,
4906 struct ext4_inode_info *ei)
4907{
4908 struct inode *inode = &(ei->vfs_inode);
4909 u64 i_blocks = inode->i_blocks;
4910 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4911
4912 if (i_blocks <= ~0U) {
4913 /*
4907cb7b 4914 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4915 * as multiple of 512 bytes
4916 */
8180a562 4917 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4918 raw_inode->i_blocks_high = 0;
84a8dce2 4919 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4920 return 0;
4921 }
e2b911c5 4922 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4923 return -EFBIG;
4924
4925 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4926 /*
4927 * i_blocks can be represented in a 48 bit variable
4928 * as multiple of 512 bytes
4929 */
8180a562 4930 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4931 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4932 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4933 } else {
84a8dce2 4934 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4935 /* i_block is stored in file system block size */
4936 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4937 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4938 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4939 }
f287a1a5 4940 return 0;
0fc1b451
AK
4941}
4942
a26f4992
TT
4943struct other_inode {
4944 unsigned long orig_ino;
4945 struct ext4_inode *raw_inode;
4946};
4947
4948static int other_inode_match(struct inode * inode, unsigned long ino,
4949 void *data)
4950{
4951 struct other_inode *oi = (struct other_inode *) data;
4952
4953 if ((inode->i_ino != ino) ||
4954 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4955 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4956 ((inode->i_state & I_DIRTY_TIME) == 0))
4957 return 0;
4958 spin_lock(&inode->i_lock);
4959 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4960 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4961 (inode->i_state & I_DIRTY_TIME)) {
4962 struct ext4_inode_info *ei = EXT4_I(inode);
4963
4964 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4965 spin_unlock(&inode->i_lock);
4966
4967 spin_lock(&ei->i_raw_lock);
4968 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4969 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4970 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4971 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4972 spin_unlock(&ei->i_raw_lock);
4973 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4974 return -1;
4975 }
4976 spin_unlock(&inode->i_lock);
4977 return -1;
4978}
4979
4980/*
4981 * Opportunistically update the other time fields for other inodes in
4982 * the same inode table block.
4983 */
4984static void ext4_update_other_inodes_time(struct super_block *sb,
4985 unsigned long orig_ino, char *buf)
4986{
4987 struct other_inode oi;
4988 unsigned long ino;
4989 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4990 int inode_size = EXT4_INODE_SIZE(sb);
4991
4992 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4993 /*
4994 * Calculate the first inode in the inode table block. Inode
4995 * numbers are one-based. That is, the first inode in a block
4996 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4997 */
4998 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4999 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5000 if (ino == orig_ino)
5001 continue;
5002 oi.raw_inode = (struct ext4_inode *) buf;
5003 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5004 }
5005}
5006
ac27a0ec
DK
5007/*
5008 * Post the struct inode info into an on-disk inode location in the
5009 * buffer-cache. This gobbles the caller's reference to the
5010 * buffer_head in the inode location struct.
5011 *
5012 * The caller must have write access to iloc->bh.
5013 */
617ba13b 5014static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5015 struct inode *inode,
830156c7 5016 struct ext4_iloc *iloc)
ac27a0ec 5017{
617ba13b
MC
5018 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5019 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5020 struct buffer_head *bh = iloc->bh;
202ee5df 5021 struct super_block *sb = inode->i_sb;
ac27a0ec 5022 int err = 0, rc, block;
202ee5df 5023 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5024 uid_t i_uid;
5025 gid_t i_gid;
040cb378 5026 projid_t i_projid;
ac27a0ec 5027
202ee5df
TT
5028 spin_lock(&ei->i_raw_lock);
5029
5030 /* For fields not tracked in the in-memory inode,
ac27a0ec 5031 * initialise them to zero for new inodes. */
19f5fb7a 5032 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5033 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5034
5035 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5036 i_uid = i_uid_read(inode);
5037 i_gid = i_gid_read(inode);
040cb378 5038 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5039 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5040 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5041 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5042/*
5043 * Fix up interoperability with old kernels. Otherwise, old inodes get
5044 * re-used with the upper 16 bits of the uid/gid intact
5045 */
93e3b4e6
DJ
5046 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5047 raw_inode->i_uid_high = 0;
5048 raw_inode->i_gid_high = 0;
5049 } else {
ac27a0ec 5050 raw_inode->i_uid_high =
08cefc7a 5051 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5052 raw_inode->i_gid_high =
08cefc7a 5053 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5054 }
5055 } else {
08cefc7a
EB
5056 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5057 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5058 raw_inode->i_uid_high = 0;
5059 raw_inode->i_gid_high = 0;
5060 }
5061 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5062
5063 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5064 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5065 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5066 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5067
bce92d56
LX
5068 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5069 if (err) {
202ee5df 5070 spin_unlock(&ei->i_raw_lock);
0fc1b451 5071 goto out_brelse;
202ee5df 5072 }
ac27a0ec 5073 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5074 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5075 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5076 raw_inode->i_file_acl_high =
5077 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5078 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5079 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5080 ext4_isize_set(raw_inode, ei->i_disksize);
5081 need_datasync = 1;
5082 }
a48380f7 5083 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5084 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5085 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5086 cpu_to_le32(EXT4_GOOD_OLD_REV))
5087 set_large_file = 1;
ac27a0ec
DK
5088 }
5089 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5090 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5091 if (old_valid_dev(inode->i_rdev)) {
5092 raw_inode->i_block[0] =
5093 cpu_to_le32(old_encode_dev(inode->i_rdev));
5094 raw_inode->i_block[1] = 0;
5095 } else {
5096 raw_inode->i_block[0] = 0;
5097 raw_inode->i_block[1] =
5098 cpu_to_le32(new_encode_dev(inode->i_rdev));
5099 raw_inode->i_block[2] = 0;
5100 }
f19d5870 5101 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5102 for (block = 0; block < EXT4_N_BLOCKS; block++)
5103 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5104 }
ac27a0ec 5105
ed3654eb 5106 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5107 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5108 if (ei->i_extra_isize) {
5109 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5110 raw_inode->i_version_hi =
5111 cpu_to_le32(inode->i_version >> 32);
5112 raw_inode->i_extra_isize =
5113 cpu_to_le16(ei->i_extra_isize);
5114 }
25ec56b5 5115 }
040cb378 5116
0b7b7779 5117 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5118 i_projid != EXT4_DEF_PROJID);
5119
5120 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5121 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5122 raw_inode->i_projid = cpu_to_le32(i_projid);
5123
814525f4 5124 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5125 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5126 if (inode->i_sb->s_flags & MS_LAZYTIME)
5127 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5128 bh->b_data);
202ee5df 5129
830156c7 5130 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5131 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5132 if (!err)
5133 err = rc;
19f5fb7a 5134 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5135 if (set_large_file) {
5d601255 5136 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5137 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5138 if (err)
5139 goto out_brelse;
5140 ext4_update_dynamic_rev(sb);
e2b911c5 5141 ext4_set_feature_large_file(sb);
202ee5df
TT
5142 ext4_handle_sync(handle);
5143 err = ext4_handle_dirty_super(handle, sb);
5144 }
b71fc079 5145 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5146out_brelse:
af5bc92d 5147 brelse(bh);
617ba13b 5148 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5149 return err;
5150}
5151
5152/*
617ba13b 5153 * ext4_write_inode()
ac27a0ec
DK
5154 *
5155 * We are called from a few places:
5156 *
87f7e416 5157 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5158 * Here, there will be no transaction running. We wait for any running
4907cb7b 5159 * transaction to commit.
ac27a0ec 5160 *
87f7e416
TT
5161 * - Within flush work (sys_sync(), kupdate and such).
5162 * We wait on commit, if told to.
ac27a0ec 5163 *
87f7e416
TT
5164 * - Within iput_final() -> write_inode_now()
5165 * We wait on commit, if told to.
ac27a0ec
DK
5166 *
5167 * In all cases it is actually safe for us to return without doing anything,
5168 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5169 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5170 * writeback.
ac27a0ec
DK
5171 *
5172 * Note that we are absolutely dependent upon all inode dirtiers doing the
5173 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5174 * which we are interested.
5175 *
5176 * It would be a bug for them to not do this. The code:
5177 *
5178 * mark_inode_dirty(inode)
5179 * stuff();
5180 * inode->i_size = expr;
5181 *
87f7e416
TT
5182 * is in error because write_inode() could occur while `stuff()' is running,
5183 * and the new i_size will be lost. Plus the inode will no longer be on the
5184 * superblock's dirty inode list.
ac27a0ec 5185 */
a9185b41 5186int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5187{
91ac6f43
FM
5188 int err;
5189
87f7e416 5190 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5191 return 0;
5192
91ac6f43
FM
5193 if (EXT4_SB(inode->i_sb)->s_journal) {
5194 if (ext4_journal_current_handle()) {
5195 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5196 dump_stack();
5197 return -EIO;
5198 }
ac27a0ec 5199
10542c22
JK
5200 /*
5201 * No need to force transaction in WB_SYNC_NONE mode. Also
5202 * ext4_sync_fs() will force the commit after everything is
5203 * written.
5204 */
5205 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5206 return 0;
5207
5208 err = ext4_force_commit(inode->i_sb);
5209 } else {
5210 struct ext4_iloc iloc;
ac27a0ec 5211
8b472d73 5212 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5213 if (err)
5214 return err;
10542c22
JK
5215 /*
5216 * sync(2) will flush the whole buffer cache. No need to do
5217 * it here separately for each inode.
5218 */
5219 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5220 sync_dirty_buffer(iloc.bh);
5221 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5222 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5223 "IO error syncing inode");
830156c7
FM
5224 err = -EIO;
5225 }
fd2dd9fb 5226 brelse(iloc.bh);
91ac6f43
FM
5227 }
5228 return err;
ac27a0ec
DK
5229}
5230
53e87268
JK
5231/*
5232 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5233 * buffers that are attached to a page stradding i_size and are undergoing
5234 * commit. In that case we have to wait for commit to finish and try again.
5235 */
5236static void ext4_wait_for_tail_page_commit(struct inode *inode)
5237{
5238 struct page *page;
5239 unsigned offset;
5240 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5241 tid_t commit_tid = 0;
5242 int ret;
5243
09cbfeaf 5244 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5245 /*
5246 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5247 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5248 * blocksize case
5249 */
93407472 5250 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5251 return;
5252 while (1) {
5253 page = find_lock_page(inode->i_mapping,
09cbfeaf 5254 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5255 if (!page)
5256 return;
ca99fdd2 5257 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5258 PAGE_SIZE - offset);
53e87268 5259 unlock_page(page);
09cbfeaf 5260 put_page(page);
53e87268
JK
5261 if (ret != -EBUSY)
5262 return;
5263 commit_tid = 0;
5264 read_lock(&journal->j_state_lock);
5265 if (journal->j_committing_transaction)
5266 commit_tid = journal->j_committing_transaction->t_tid;
5267 read_unlock(&journal->j_state_lock);
5268 if (commit_tid)
5269 jbd2_log_wait_commit(journal, commit_tid);
5270 }
5271}
5272
ac27a0ec 5273/*
617ba13b 5274 * ext4_setattr()
ac27a0ec
DK
5275 *
5276 * Called from notify_change.
5277 *
5278 * We want to trap VFS attempts to truncate the file as soon as
5279 * possible. In particular, we want to make sure that when the VFS
5280 * shrinks i_size, we put the inode on the orphan list and modify
5281 * i_disksize immediately, so that during the subsequent flushing of
5282 * dirty pages and freeing of disk blocks, we can guarantee that any
5283 * commit will leave the blocks being flushed in an unused state on
5284 * disk. (On recovery, the inode will get truncated and the blocks will
5285 * be freed, so we have a strong guarantee that no future commit will
5286 * leave these blocks visible to the user.)
5287 *
678aaf48
JK
5288 * Another thing we have to assure is that if we are in ordered mode
5289 * and inode is still attached to the committing transaction, we must
5290 * we start writeout of all the dirty pages which are being truncated.
5291 * This way we are sure that all the data written in the previous
5292 * transaction are already on disk (truncate waits for pages under
5293 * writeback).
5294 *
5295 * Called with inode->i_mutex down.
ac27a0ec 5296 */
617ba13b 5297int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5298{
2b0143b5 5299 struct inode *inode = d_inode(dentry);
ac27a0ec 5300 int error, rc = 0;
3d287de3 5301 int orphan = 0;
ac27a0ec
DK
5302 const unsigned int ia_valid = attr->ia_valid;
5303
0db1ff22
TT
5304 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5305 return -EIO;
5306
31051c85 5307 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5308 if (error)
5309 return error;
5310
a7cdadee
JK
5311 if (is_quota_modification(inode, attr)) {
5312 error = dquot_initialize(inode);
5313 if (error)
5314 return error;
5315 }
08cefc7a
EB
5316 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5317 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5318 handle_t *handle;
5319
5320 /* (user+group)*(old+new) structure, inode write (sb,
5321 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5322 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5323 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5324 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5325 if (IS_ERR(handle)) {
5326 error = PTR_ERR(handle);
5327 goto err_out;
5328 }
7a9ca53a
TE
5329
5330 /* dquot_transfer() calls back ext4_get_inode_usage() which
5331 * counts xattr inode references.
5332 */
5333 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5334 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5335 up_read(&EXT4_I(inode)->xattr_sem);
5336
ac27a0ec 5337 if (error) {
617ba13b 5338 ext4_journal_stop(handle);
ac27a0ec
DK
5339 return error;
5340 }
5341 /* Update corresponding info in inode so that everything is in
5342 * one transaction */
5343 if (attr->ia_valid & ATTR_UID)
5344 inode->i_uid = attr->ia_uid;
5345 if (attr->ia_valid & ATTR_GID)
5346 inode->i_gid = attr->ia_gid;
617ba13b
MC
5347 error = ext4_mark_inode_dirty(handle, inode);
5348 ext4_journal_stop(handle);
ac27a0ec
DK
5349 }
5350
3da40c7b 5351 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5352 handle_t *handle;
3da40c7b
JB
5353 loff_t oldsize = inode->i_size;
5354 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5355
63136858
EB
5356 if (ext4_encrypted_inode(inode)) {
5357 error = fscrypt_get_encryption_info(inode);
5358 if (error)
5359 return error;
5360 if (!fscrypt_has_encryption_key(inode))
5361 return -ENOKEY;
5362 }
5363
12e9b892 5364 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5366
0c095c7f
TT
5367 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5368 return -EFBIG;
e2b46574 5369 }
3da40c7b
JB
5370 if (!S_ISREG(inode->i_mode))
5371 return -EINVAL;
dff6efc3
CH
5372
5373 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5374 inode_inc_iversion(inode);
5375
3da40c7b 5376 if (ext4_should_order_data(inode) &&
5208386c 5377 (attr->ia_size < inode->i_size)) {
3da40c7b 5378 error = ext4_begin_ordered_truncate(inode,
678aaf48 5379 attr->ia_size);
3da40c7b
JB
5380 if (error)
5381 goto err_out;
5382 }
5383 if (attr->ia_size != inode->i_size) {
5208386c
JK
5384 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5385 if (IS_ERR(handle)) {
5386 error = PTR_ERR(handle);
5387 goto err_out;
5388 }
3da40c7b 5389 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5390 error = ext4_orphan_add(handle, inode);
5391 orphan = 1;
5392 }
911af577
EG
5393 /*
5394 * Update c/mtime on truncate up, ext4_truncate() will
5395 * update c/mtime in shrink case below
5396 */
5397 if (!shrink) {
eeca7ea1 5398 inode->i_mtime = current_time(inode);
911af577
EG
5399 inode->i_ctime = inode->i_mtime;
5400 }
90e775b7 5401 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5402 EXT4_I(inode)->i_disksize = attr->ia_size;
5403 rc = ext4_mark_inode_dirty(handle, inode);
5404 if (!error)
5405 error = rc;
90e775b7
JK
5406 /*
5407 * We have to update i_size under i_data_sem together
5408 * with i_disksize to avoid races with writeback code
5409 * running ext4_wb_update_i_disksize().
5410 */
5411 if (!error)
5412 i_size_write(inode, attr->ia_size);
5413 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5414 ext4_journal_stop(handle);
5415 if (error) {
3da40c7b
JB
5416 if (orphan)
5417 ext4_orphan_del(NULL, inode);
678aaf48
JK
5418 goto err_out;
5419 }
d6320cbf 5420 }
3da40c7b
JB
5421 if (!shrink)
5422 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5423
5208386c
JK
5424 /*
5425 * Blocks are going to be removed from the inode. Wait
5426 * for dio in flight. Temporarily disable
5427 * dioread_nolock to prevent livelock.
5428 */
5429 if (orphan) {
5430 if (!ext4_should_journal_data(inode)) {
5431 ext4_inode_block_unlocked_dio(inode);
5432 inode_dio_wait(inode);
5433 ext4_inode_resume_unlocked_dio(inode);
5434 } else
5435 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5436 }
ea3d7209 5437 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5438 /*
5439 * Truncate pagecache after we've waited for commit
5440 * in data=journal mode to make pages freeable.
5441 */
923ae0ff 5442 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5443 if (shrink) {
5444 rc = ext4_truncate(inode);
5445 if (rc)
5446 error = rc;
5447 }
ea3d7209 5448 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5449 }
ac27a0ec 5450
2c98eb5e 5451 if (!error) {
1025774c
CH
5452 setattr_copy(inode, attr);
5453 mark_inode_dirty(inode);
5454 }
5455
5456 /*
5457 * If the call to ext4_truncate failed to get a transaction handle at
5458 * all, we need to clean up the in-core orphan list manually.
5459 */
3d287de3 5460 if (orphan && inode->i_nlink)
617ba13b 5461 ext4_orphan_del(NULL, inode);
ac27a0ec 5462
2c98eb5e 5463 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5464 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5465
5466err_out:
617ba13b 5467 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5468 if (!error)
5469 error = rc;
5470 return error;
5471}
5472
a528d35e
DH
5473int ext4_getattr(const struct path *path, struct kstat *stat,
5474 u32 request_mask, unsigned int query_flags)
3e3398a0 5475{
99652ea5
DH
5476 struct inode *inode = d_inode(path->dentry);
5477 struct ext4_inode *raw_inode;
5478 struct ext4_inode_info *ei = EXT4_I(inode);
5479 unsigned int flags;
5480
5481 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5482 stat->result_mask |= STATX_BTIME;
5483 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5484 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5485 }
5486
5487 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5488 if (flags & EXT4_APPEND_FL)
5489 stat->attributes |= STATX_ATTR_APPEND;
5490 if (flags & EXT4_COMPR_FL)
5491 stat->attributes |= STATX_ATTR_COMPRESSED;
5492 if (flags & EXT4_ENCRYPT_FL)
5493 stat->attributes |= STATX_ATTR_ENCRYPTED;
5494 if (flags & EXT4_IMMUTABLE_FL)
5495 stat->attributes |= STATX_ATTR_IMMUTABLE;
5496 if (flags & EXT4_NODUMP_FL)
5497 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5498
3209f68b
DH
5499 stat->attributes_mask |= (STATX_ATTR_APPEND |
5500 STATX_ATTR_COMPRESSED |
5501 STATX_ATTR_ENCRYPTED |
5502 STATX_ATTR_IMMUTABLE |
5503 STATX_ATTR_NODUMP);
5504
3e3398a0 5505 generic_fillattr(inode, stat);
99652ea5
DH
5506 return 0;
5507}
5508
5509int ext4_file_getattr(const struct path *path, struct kstat *stat,
5510 u32 request_mask, unsigned int query_flags)
5511{
5512 struct inode *inode = d_inode(path->dentry);
5513 u64 delalloc_blocks;
5514
5515 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5516
9206c561
AD
5517 /*
5518 * If there is inline data in the inode, the inode will normally not
5519 * have data blocks allocated (it may have an external xattr block).
5520 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5521 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5522 */
5523 if (unlikely(ext4_has_inline_data(inode)))
5524 stat->blocks += (stat->size + 511) >> 9;
5525
3e3398a0
MC
5526 /*
5527 * We can't update i_blocks if the block allocation is delayed
5528 * otherwise in the case of system crash before the real block
5529 * allocation is done, we will have i_blocks inconsistent with
5530 * on-disk file blocks.
5531 * We always keep i_blocks updated together with real
5532 * allocation. But to not confuse with user, stat
5533 * will return the blocks that include the delayed allocation
5534 * blocks for this file.
5535 */
96607551 5536 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5537 EXT4_I(inode)->i_reserved_data_blocks);
5538 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5539 return 0;
5540}
ac27a0ec 5541
fffb2739
JK
5542static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5543 int pextents)
a02908f1 5544{
12e9b892 5545 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5546 return ext4_ind_trans_blocks(inode, lblocks);
5547 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5548}
ac51d837 5549
ac27a0ec 5550/*
a02908f1
MC
5551 * Account for index blocks, block groups bitmaps and block group
5552 * descriptor blocks if modify datablocks and index blocks
5553 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5554 *
a02908f1 5555 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5556 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5557 * they could still across block group boundary.
ac27a0ec 5558 *
a02908f1
MC
5559 * Also account for superblock, inode, quota and xattr blocks
5560 */
dec214d0 5561static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5562 int pextents)
a02908f1 5563{
8df9675f
TT
5564 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5565 int gdpblocks;
a02908f1
MC
5566 int idxblocks;
5567 int ret = 0;
5568
5569 /*
fffb2739
JK
5570 * How many index blocks need to touch to map @lblocks logical blocks
5571 * to @pextents physical extents?
a02908f1 5572 */
fffb2739 5573 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5574
5575 ret = idxblocks;
5576
5577 /*
5578 * Now let's see how many group bitmaps and group descriptors need
5579 * to account
5580 */
fffb2739 5581 groups = idxblocks + pextents;
a02908f1 5582 gdpblocks = groups;
8df9675f
TT
5583 if (groups > ngroups)
5584 groups = ngroups;
a02908f1
MC
5585 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5586 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5587
5588 /* bitmaps and block group descriptor blocks */
5589 ret += groups + gdpblocks;
5590
5591 /* Blocks for super block, inode, quota and xattr blocks */
5592 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5593
5594 return ret;
5595}
5596
5597/*
25985edc 5598 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5599 * the modification of a single pages into a single transaction,
5600 * which may include multiple chunks of block allocations.
ac27a0ec 5601 *
525f4ed8 5602 * This could be called via ext4_write_begin()
ac27a0ec 5603 *
525f4ed8 5604 * We need to consider the worse case, when
a02908f1 5605 * one new block per extent.
ac27a0ec 5606 */
a86c6181 5607int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5608{
617ba13b 5609 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5610 int ret;
5611
fffb2739 5612 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5613
a02908f1 5614 /* Account for data blocks for journalled mode */
617ba13b 5615 if (ext4_should_journal_data(inode))
a02908f1 5616 ret += bpp;
ac27a0ec
DK
5617 return ret;
5618}
f3bd1f3f
MC
5619
5620/*
5621 * Calculate the journal credits for a chunk of data modification.
5622 *
5623 * This is called from DIO, fallocate or whoever calling
79e83036 5624 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5625 *
5626 * journal buffers for data blocks are not included here, as DIO
5627 * and fallocate do no need to journal data buffers.
5628 */
5629int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5630{
5631 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5632}
5633
ac27a0ec 5634/*
617ba13b 5635 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5636 * Give this, we know that the caller already has write access to iloc->bh.
5637 */
617ba13b 5638int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5639 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5640{
5641 int err = 0;
5642
0db1ff22
TT
5643 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5644 return -EIO;
5645
c64db50e 5646 if (IS_I_VERSION(inode))
25ec56b5
JNC
5647 inode_inc_iversion(inode);
5648
ac27a0ec
DK
5649 /* the do_update_inode consumes one bh->b_count */
5650 get_bh(iloc->bh);
5651
dab291af 5652 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5653 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5654 put_bh(iloc->bh);
5655 return err;
5656}
5657
5658/*
5659 * On success, We end up with an outstanding reference count against
5660 * iloc->bh. This _must_ be cleaned up later.
5661 */
5662
5663int
617ba13b
MC
5664ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5665 struct ext4_iloc *iloc)
ac27a0ec 5666{
0390131b
FM
5667 int err;
5668
0db1ff22
TT
5669 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5670 return -EIO;
5671
0390131b
FM
5672 err = ext4_get_inode_loc(inode, iloc);
5673 if (!err) {
5674 BUFFER_TRACE(iloc->bh, "get_write_access");
5675 err = ext4_journal_get_write_access(handle, iloc->bh);
5676 if (err) {
5677 brelse(iloc->bh);
5678 iloc->bh = NULL;
ac27a0ec
DK
5679 }
5680 }
617ba13b 5681 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5682 return err;
5683}
5684
c03b45b8
MX
5685static int __ext4_expand_extra_isize(struct inode *inode,
5686 unsigned int new_extra_isize,
5687 struct ext4_iloc *iloc,
5688 handle_t *handle, int *no_expand)
5689{
5690 struct ext4_inode *raw_inode;
5691 struct ext4_xattr_ibody_header *header;
5692 int error;
5693
5694 raw_inode = ext4_raw_inode(iloc);
5695
5696 header = IHDR(inode, raw_inode);
5697
5698 /* No extended attributes present */
5699 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5700 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5701 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5702 EXT4_I(inode)->i_extra_isize, 0,
5703 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5704 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5705 return 0;
5706 }
5707
5708 /* try to expand with EAs present */
5709 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5710 raw_inode, handle);
5711 if (error) {
5712 /*
5713 * Inode size expansion failed; don't try again
5714 */
5715 *no_expand = 1;
5716 }
5717
5718 return error;
5719}
5720
6dd4ee7c
KS
5721/*
5722 * Expand an inode by new_extra_isize bytes.
5723 * Returns 0 on success or negative error number on failure.
5724 */
cf0a5e81
MX
5725static int ext4_try_to_expand_extra_isize(struct inode *inode,
5726 unsigned int new_extra_isize,
5727 struct ext4_iloc iloc,
5728 handle_t *handle)
6dd4ee7c 5729{
3b10fdc6
MX
5730 int no_expand;
5731 int error;
6dd4ee7c 5732
cf0a5e81
MX
5733 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5734 return -EOVERFLOW;
5735
5736 /*
5737 * In nojournal mode, we can immediately attempt to expand
5738 * the inode. When journaled, we first need to obtain extra
5739 * buffer credits since we may write into the EA block
5740 * with this same handle. If journal_extend fails, then it will
5741 * only result in a minor loss of functionality for that inode.
5742 * If this is felt to be critical, then e2fsck should be run to
5743 * force a large enough s_min_extra_isize.
5744 */
5745 if (ext4_handle_valid(handle) &&
5746 jbd2_journal_extend(handle,
5747 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5748 return -ENOSPC;
6dd4ee7c 5749
3b10fdc6 5750 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5751 return -EBUSY;
3b10fdc6 5752
c03b45b8
MX
5753 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5754 handle, &no_expand);
5755 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5756
c03b45b8
MX
5757 return error;
5758}
6dd4ee7c 5759
c03b45b8
MX
5760int ext4_expand_extra_isize(struct inode *inode,
5761 unsigned int new_extra_isize,
5762 struct ext4_iloc *iloc)
5763{
5764 handle_t *handle;
5765 int no_expand;
5766 int error, rc;
5767
5768 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5769 brelse(iloc->bh);
5770 return -EOVERFLOW;
6dd4ee7c
KS
5771 }
5772
c03b45b8
MX
5773 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5774 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5775 if (IS_ERR(handle)) {
5776 error = PTR_ERR(handle);
5777 brelse(iloc->bh);
5778 return error;
5779 }
5780
5781 ext4_write_lock_xattr(inode, &no_expand);
5782
5783 BUFFER_TRACE(iloc.bh, "get_write_access");
5784 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 5785 if (error) {
c03b45b8
MX
5786 brelse(iloc->bh);
5787 goto out_stop;
3b10fdc6 5788 }
cf0a5e81 5789
c03b45b8
MX
5790 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5791 handle, &no_expand);
5792
5793 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5794 if (!error)
5795 error = rc;
5796
5797 ext4_write_unlock_xattr(inode, &no_expand);
5798out_stop:
5799 ext4_journal_stop(handle);
3b10fdc6 5800 return error;
6dd4ee7c
KS
5801}
5802
ac27a0ec
DK
5803/*
5804 * What we do here is to mark the in-core inode as clean with respect to inode
5805 * dirtiness (it may still be data-dirty).
5806 * This means that the in-core inode may be reaped by prune_icache
5807 * without having to perform any I/O. This is a very good thing,
5808 * because *any* task may call prune_icache - even ones which
5809 * have a transaction open against a different journal.
5810 *
5811 * Is this cheating? Not really. Sure, we haven't written the
5812 * inode out, but prune_icache isn't a user-visible syncing function.
5813 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5814 * we start and wait on commits.
ac27a0ec 5815 */
617ba13b 5816int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5817{
617ba13b 5818 struct ext4_iloc iloc;
6dd4ee7c 5819 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5820 int err;
ac27a0ec
DK
5821
5822 might_sleep();
7ff9c073 5823 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5824 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5825 if (err)
5826 return err;
cf0a5e81
MX
5827
5828 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5829 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5830 iloc, handle);
5831
5e1021f2 5832 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5833}
5834
5835/*
617ba13b 5836 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5837 *
5838 * We're really interested in the case where a file is being extended.
5839 * i_size has been changed by generic_commit_write() and we thus need
5840 * to include the updated inode in the current transaction.
5841 *
5dd4056d 5842 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5843 * are allocated to the file.
5844 *
5845 * If the inode is marked synchronous, we don't honour that here - doing
5846 * so would cause a commit on atime updates, which we don't bother doing.
5847 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5848 *
5849 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5850 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5851 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5852 */
aa385729 5853void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5854{
ac27a0ec
DK
5855 handle_t *handle;
5856
0ae45f63
TT
5857 if (flags == I_DIRTY_TIME)
5858 return;
9924a92a 5859 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5860 if (IS_ERR(handle))
5861 goto out;
f3dc272f 5862
f3dc272f
CW
5863 ext4_mark_inode_dirty(handle, inode);
5864
617ba13b 5865 ext4_journal_stop(handle);
ac27a0ec
DK
5866out:
5867 return;
5868}
5869
5870#if 0
5871/*
5872 * Bind an inode's backing buffer_head into this transaction, to prevent
5873 * it from being flushed to disk early. Unlike
617ba13b 5874 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5875 * returns no iloc structure, so the caller needs to repeat the iloc
5876 * lookup to mark the inode dirty later.
5877 */
617ba13b 5878static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5879{
617ba13b 5880 struct ext4_iloc iloc;
ac27a0ec
DK
5881
5882 int err = 0;
5883 if (handle) {
617ba13b 5884 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5885 if (!err) {
5886 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5887 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5888 if (!err)
0390131b 5889 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5890 NULL,
0390131b 5891 iloc.bh);
ac27a0ec
DK
5892 brelse(iloc.bh);
5893 }
5894 }
617ba13b 5895 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5896 return err;
5897}
5898#endif
5899
617ba13b 5900int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5901{
5902 journal_t *journal;
5903 handle_t *handle;
5904 int err;
c8585c6f 5905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5906
5907 /*
5908 * We have to be very careful here: changing a data block's
5909 * journaling status dynamically is dangerous. If we write a
5910 * data block to the journal, change the status and then delete
5911 * that block, we risk forgetting to revoke the old log record
5912 * from the journal and so a subsequent replay can corrupt data.
5913 * So, first we make sure that the journal is empty and that
5914 * nobody is changing anything.
5915 */
5916
617ba13b 5917 journal = EXT4_JOURNAL(inode);
0390131b
FM
5918 if (!journal)
5919 return 0;
d699594d 5920 if (is_journal_aborted(journal))
ac27a0ec
DK
5921 return -EROFS;
5922
17335dcc
DM
5923 /* Wait for all existing dio workers */
5924 ext4_inode_block_unlocked_dio(inode);
5925 inode_dio_wait(inode);
5926
4c546592
DJ
5927 /*
5928 * Before flushing the journal and switching inode's aops, we have
5929 * to flush all dirty data the inode has. There can be outstanding
5930 * delayed allocations, there can be unwritten extents created by
5931 * fallocate or buffered writes in dioread_nolock mode covered by
5932 * dirty data which can be converted only after flushing the dirty
5933 * data (and journalled aops don't know how to handle these cases).
5934 */
5935 if (val) {
5936 down_write(&EXT4_I(inode)->i_mmap_sem);
5937 err = filemap_write_and_wait(inode->i_mapping);
5938 if (err < 0) {
5939 up_write(&EXT4_I(inode)->i_mmap_sem);
5940 ext4_inode_resume_unlocked_dio(inode);
5941 return err;
5942 }
5943 }
5944
c8585c6f 5945 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5946 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5947
5948 /*
5949 * OK, there are no updates running now, and all cached data is
5950 * synced to disk. We are now in a completely consistent state
5951 * which doesn't have anything in the journal, and we know that
5952 * no filesystem updates are running, so it is safe to modify
5953 * the inode's in-core data-journaling state flag now.
5954 */
5955
5956 if (val)
12e9b892 5957 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5958 else {
4f879ca6
JK
5959 err = jbd2_journal_flush(journal);
5960 if (err < 0) {
5961 jbd2_journal_unlock_updates(journal);
c8585c6f 5962 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5963 ext4_inode_resume_unlocked_dio(inode);
5964 return err;
5965 }
12e9b892 5966 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5967 }
617ba13b 5968 ext4_set_aops(inode);
a3caa24b
JK
5969 /*
5970 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5971 * E.g. S_DAX may get cleared / set.
5972 */
5973 ext4_set_inode_flags(inode);
ac27a0ec 5974
dab291af 5975 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5976 percpu_up_write(&sbi->s_journal_flag_rwsem);
5977
4c546592
DJ
5978 if (val)
5979 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5980 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5981
5982 /* Finally we can mark the inode as dirty. */
5983
9924a92a 5984 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5985 if (IS_ERR(handle))
5986 return PTR_ERR(handle);
5987
617ba13b 5988 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5989 ext4_handle_sync(handle);
617ba13b
MC
5990 ext4_journal_stop(handle);
5991 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5992
5993 return err;
5994}
2e9ee850
AK
5995
5996static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5997{
5998 return !buffer_mapped(bh);
5999}
6000
11bac800 6001int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6002{
11bac800 6003 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6004 struct page *page = vmf->page;
2e9ee850
AK
6005 loff_t size;
6006 unsigned long len;
9ea7df53 6007 int ret;
2e9ee850 6008 struct file *file = vma->vm_file;
496ad9aa 6009 struct inode *inode = file_inode(file);
2e9ee850 6010 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6011 handle_t *handle;
6012 get_block_t *get_block;
6013 int retries = 0;
2e9ee850 6014
8e8ad8a5 6015 sb_start_pagefault(inode->i_sb);
041bbb6d 6016 file_update_time(vma->vm_file);
ea3d7209
JK
6017
6018 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978
EB
6019
6020 ret = ext4_convert_inline_data(inode);
6021 if (ret)
6022 goto out_ret;
6023
9ea7df53
JK
6024 /* Delalloc case is easy... */
6025 if (test_opt(inode->i_sb, DELALLOC) &&
6026 !ext4_should_journal_data(inode) &&
6027 !ext4_nonda_switch(inode->i_sb)) {
6028 do {
5c500029 6029 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
6030 ext4_da_get_block_prep);
6031 } while (ret == -ENOSPC &&
6032 ext4_should_retry_alloc(inode->i_sb, &retries));
6033 goto out_ret;
2e9ee850 6034 }
0e499890
DW
6035
6036 lock_page(page);
9ea7df53
JK
6037 size = i_size_read(inode);
6038 /* Page got truncated from under us? */
6039 if (page->mapping != mapping || page_offset(page) > size) {
6040 unlock_page(page);
6041 ret = VM_FAULT_NOPAGE;
6042 goto out;
0e499890 6043 }
2e9ee850 6044
09cbfeaf
KS
6045 if (page->index == size >> PAGE_SHIFT)
6046 len = size & ~PAGE_MASK;
2e9ee850 6047 else
09cbfeaf 6048 len = PAGE_SIZE;
a827eaff 6049 /*
9ea7df53
JK
6050 * Return if we have all the buffers mapped. This avoids the need to do
6051 * journal_start/journal_stop which can block and take a long time
a827eaff 6052 */
2e9ee850 6053 if (page_has_buffers(page)) {
f19d5870
TM
6054 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6055 0, len, NULL,
6056 ext4_bh_unmapped)) {
9ea7df53 6057 /* Wait so that we don't change page under IO */
1d1d1a76 6058 wait_for_stable_page(page);
9ea7df53
JK
6059 ret = VM_FAULT_LOCKED;
6060 goto out;
a827eaff 6061 }
2e9ee850 6062 }
a827eaff 6063 unlock_page(page);
9ea7df53
JK
6064 /* OK, we need to fill the hole... */
6065 if (ext4_should_dioread_nolock(inode))
705965bd 6066 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6067 else
6068 get_block = ext4_get_block;
6069retry_alloc:
9924a92a
TT
6070 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6071 ext4_writepage_trans_blocks(inode));
9ea7df53 6072 if (IS_ERR(handle)) {
c2ec175c 6073 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6074 goto out;
6075 }
5c500029 6076 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 6077 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 6078 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 6079 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
6080 unlock_page(page);
6081 ret = VM_FAULT_SIGBUS;
fcbb5515 6082 ext4_journal_stop(handle);
9ea7df53
JK
6083 goto out;
6084 }
6085 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6086 }
6087 ext4_journal_stop(handle);
6088 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6089 goto retry_alloc;
6090out_ret:
6091 ret = block_page_mkwrite_return(ret);
6092out:
ea3d7209 6093 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6094 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6095 return ret;
6096}
ea3d7209 6097
11bac800 6098int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6099{
11bac800 6100 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
6101 int err;
6102
6103 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 6104 err = filemap_fault(vmf);
ea3d7209
JK
6105 up_read(&EXT4_I(inode)->i_mmap_sem);
6106
6107 return err;
6108}
2d90c160
JK
6109
6110/*
6111 * Find the first extent at or after @lblk in an inode that is not a hole.
6112 * Search for @map_len blocks at most. The extent is returned in @result.
6113 *
6114 * The function returns 1 if we found an extent. The function returns 0 in
6115 * case there is no extent at or after @lblk and in that case also sets
6116 * @result->es_len to 0. In case of error, the error code is returned.
6117 */
6118int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6119 unsigned int map_len, struct extent_status *result)
6120{
6121 struct ext4_map_blocks map;
6122 struct extent_status es = {};
6123 int ret;
6124
6125 map.m_lblk = lblk;
6126 map.m_len = map_len;
6127
6128 /*
6129 * For non-extent based files this loop may iterate several times since
6130 * we do not determine full hole size.
6131 */
6132 while (map.m_len > 0) {
6133 ret = ext4_map_blocks(NULL, inode, &map, 0);
6134 if (ret < 0)
6135 return ret;
6136 /* There's extent covering m_lblk? Just return it. */
6137 if (ret > 0) {
6138 int status;
6139
6140 ext4_es_store_pblock(result, map.m_pblk);
6141 result->es_lblk = map.m_lblk;
6142 result->es_len = map.m_len;
6143 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6144 status = EXTENT_STATUS_UNWRITTEN;
6145 else
6146 status = EXTENT_STATUS_WRITTEN;
6147 ext4_es_store_status(result, status);
6148 return 1;
6149 }
6150 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6151 map.m_lblk + map.m_len - 1,
6152 &es);
6153 /* Is delalloc data before next block in extent tree? */
6154 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6155 ext4_lblk_t offset = 0;
6156
6157 if (es.es_lblk < lblk)
6158 offset = lblk - es.es_lblk;
6159 result->es_lblk = es.es_lblk + offset;
6160 ext4_es_store_pblock(result,
6161 ext4_es_pblock(&es) + offset);
6162 result->es_len = es.es_len - offset;
6163 ext4_es_store_status(result, ext4_es_status(&es));
6164
6165 return 1;
6166 }
6167 /* There's a hole at m_lblk, advance us after it */
6168 map.m_lblk += map.m_len;
6169 map_len -= map.m_len;
6170 map.m_len = map_len;
6171 cond_resched();
6172 }
6173 result->es_len = 0;
6174 return 0;
6175}
This page took 2.379447 seconds and 4 git commands to generate.