]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | #ifndef _LINUX_JIFFIES_H |
2 | #define _LINUX_JIFFIES_H | |
3 | ||
f8bd2258 | 4 | #include <linux/math64.h> |
1da177e4 LT |
5 | #include <linux/kernel.h> |
6 | #include <linux/types.h> | |
7 | #include <linux/time.h> | |
8 | #include <linux/timex.h> | |
9 | #include <asm/param.h> /* for HZ */ | |
1da177e4 LT |
10 | |
11 | /* | |
12 | * The following defines establish the engineering parameters of the PLL | |
13 | * model. The HZ variable establishes the timer interrupt frequency, 100 Hz | |
14 | * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the | |
15 | * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the | |
16 | * nearest power of two in order to avoid hardware multiply operations. | |
17 | */ | |
18 | #if HZ >= 12 && HZ < 24 | |
19 | # define SHIFT_HZ 4 | |
20 | #elif HZ >= 24 && HZ < 48 | |
21 | # define SHIFT_HZ 5 | |
22 | #elif HZ >= 48 && HZ < 96 | |
23 | # define SHIFT_HZ 6 | |
24 | #elif HZ >= 96 && HZ < 192 | |
25 | # define SHIFT_HZ 7 | |
26 | #elif HZ >= 192 && HZ < 384 | |
27 | # define SHIFT_HZ 8 | |
28 | #elif HZ >= 384 && HZ < 768 | |
29 | # define SHIFT_HZ 9 | |
30 | #elif HZ >= 768 && HZ < 1536 | |
31 | # define SHIFT_HZ 10 | |
e118adef PM |
32 | #elif HZ >= 1536 && HZ < 3072 |
33 | # define SHIFT_HZ 11 | |
34 | #elif HZ >= 3072 && HZ < 6144 | |
35 | # define SHIFT_HZ 12 | |
36 | #elif HZ >= 6144 && HZ < 12288 | |
37 | # define SHIFT_HZ 13 | |
1da177e4 | 38 | #else |
37679011 | 39 | # error Invalid value of HZ. |
1da177e4 LT |
40 | #endif |
41 | ||
25985edc | 42 | /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can |
1da177e4 LT |
43 | * improve accuracy by shifting LSH bits, hence calculating: |
44 | * (NOM << LSH) / DEN | |
45 | * This however means trouble for large NOM, because (NOM << LSH) may no | |
46 | * longer fit in 32 bits. The following way of calculating this gives us | |
47 | * some slack, under the following conditions: | |
48 | * - (NOM / DEN) fits in (32 - LSH) bits. | |
49 | * - (NOM % DEN) fits in (32 - LSH) bits. | |
50 | */ | |
0d94df56 UZ |
51 | #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ |
52 | + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) | |
1da177e4 | 53 | |
a7ea3bbf | 54 | /* LATCH is used in the interval timer and ftape setup. */ |
015a830d | 55 | #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ |
a7ea3bbf | 56 | |
b3c869d3 | 57 | extern int register_refined_jiffies(long clock_tick_rate); |
1da177e4 | 58 | |
02ab20ae | 59 | /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ |
b3c869d3 | 60 | #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) |
1da177e4 LT |
61 | |
62 | /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ | |
63 | #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) | |
64 | ||
1da177e4 LT |
65 | /* some arch's have a small-data section that can be accessed register-relative |
66 | * but that can only take up to, say, 4-byte variables. jiffies being part of | |
67 | * an 8-byte variable may not be correctly accessed unless we force the issue | |
68 | */ | |
69 | #define __jiffy_data __attribute__((section(".data"))) | |
70 | ||
71 | /* | |
98c4f0c3 | 72 | * The 64-bit value is not atomic - you MUST NOT read it |
d6ad4187 | 73 | * without sampling the sequence number in jiffies_lock. |
1da177e4 LT |
74 | * get_jiffies_64() will do this for you as appropriate. |
75 | */ | |
76 | extern u64 __jiffy_data jiffies_64; | |
77 | extern unsigned long volatile __jiffy_data jiffies; | |
78 | ||
79 | #if (BITS_PER_LONG < 64) | |
80 | u64 get_jiffies_64(void); | |
81 | #else | |
82 | static inline u64 get_jiffies_64(void) | |
83 | { | |
84 | return (u64)jiffies; | |
85 | } | |
86 | #endif | |
87 | ||
88 | /* | |
89 | * These inlines deal with timer wrapping correctly. You are | |
90 | * strongly encouraged to use them | |
91 | * 1. Because people otherwise forget | |
92 | * 2. Because if the timer wrap changes in future you won't have to | |
93 | * alter your driver code. | |
94 | * | |
95 | * time_after(a,b) returns true if the time a is after time b. | |
96 | * | |
97 | * Do this with "<0" and ">=0" to only test the sign of the result. A | |
98 | * good compiler would generate better code (and a really good compiler | |
99 | * wouldn't care). Gcc is currently neither. | |
100 | */ | |
101 | #define time_after(a,b) \ | |
102 | (typecheck(unsigned long, a) && \ | |
103 | typecheck(unsigned long, b) && \ | |
5a581b36 | 104 | ((long)((b) - (a)) < 0)) |
1da177e4 LT |
105 | #define time_before(a,b) time_after(b,a) |
106 | ||
107 | #define time_after_eq(a,b) \ | |
108 | (typecheck(unsigned long, a) && \ | |
109 | typecheck(unsigned long, b) && \ | |
5a581b36 | 110 | ((long)((a) - (b)) >= 0)) |
1da177e4 LT |
111 | #define time_before_eq(a,b) time_after_eq(b,a) |
112 | ||
64672d55 PS |
113 | /* |
114 | * Calculate whether a is in the range of [b, c]. | |
115 | */ | |
c7e15961 FOL |
116 | #define time_in_range(a,b,c) \ |
117 | (time_after_eq(a,b) && \ | |
118 | time_before_eq(a,c)) | |
119 | ||
64672d55 PS |
120 | /* |
121 | * Calculate whether a is in the range of [b, c). | |
122 | */ | |
123 | #define time_in_range_open(a,b,c) \ | |
124 | (time_after_eq(a,b) && \ | |
125 | time_before(a,c)) | |
126 | ||
3b171672 DZ |
127 | /* Same as above, but does so with platform independent 64bit types. |
128 | * These must be used when utilizing jiffies_64 (i.e. return value of | |
129 | * get_jiffies_64() */ | |
130 | #define time_after64(a,b) \ | |
131 | (typecheck(__u64, a) && \ | |
132 | typecheck(__u64, b) && \ | |
5a581b36 | 133 | ((__s64)((b) - (a)) < 0)) |
3b171672 DZ |
134 | #define time_before64(a,b) time_after64(b,a) |
135 | ||
136 | #define time_after_eq64(a,b) \ | |
137 | (typecheck(__u64, a) && \ | |
138 | typecheck(__u64, b) && \ | |
5a581b36 | 139 | ((__s64)((a) - (b)) >= 0)) |
3b171672 DZ |
140 | #define time_before_eq64(a,b) time_after_eq64(b,a) |
141 | ||
1bc2774d ET |
142 | #define time_in_range64(a, b, c) \ |
143 | (time_after_eq64(a, b) && \ | |
144 | time_before_eq64(a, c)) | |
145 | ||
3f34d024 DY |
146 | /* |
147 | * These four macros compare jiffies and 'a' for convenience. | |
148 | */ | |
149 | ||
150 | /* time_is_before_jiffies(a) return true if a is before jiffies */ | |
151 | #define time_is_before_jiffies(a) time_after(jiffies, a) | |
152 | ||
153 | /* time_is_after_jiffies(a) return true if a is after jiffies */ | |
154 | #define time_is_after_jiffies(a) time_before(jiffies, a) | |
155 | ||
156 | /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ | |
157 | #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) | |
158 | ||
159 | /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ | |
160 | #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) | |
161 | ||
1da177e4 LT |
162 | /* |
163 | * Have the 32 bit jiffies value wrap 5 minutes after boot | |
164 | * so jiffies wrap bugs show up earlier. | |
165 | */ | |
166 | #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) | |
167 | ||
168 | /* | |
169 | * Change timeval to jiffies, trying to avoid the | |
170 | * most obvious overflows.. | |
171 | * | |
172 | * And some not so obvious. | |
173 | * | |
9f907c01 | 174 | * Note that we don't want to return LONG_MAX, because |
1da177e4 LT |
175 | * for various timeout reasons we often end up having |
176 | * to wait "jiffies+1" in order to guarantee that we wait | |
177 | * at _least_ "jiffies" - so "jiffies+1" had better still | |
178 | * be positive. | |
179 | */ | |
9f907c01 | 180 | #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) |
1da177e4 | 181 | |
bfe8df3d RD |
182 | extern unsigned long preset_lpj; |
183 | ||
1da177e4 LT |
184 | /* |
185 | * We want to do realistic conversions of time so we need to use the same | |
186 | * values the update wall clock code uses as the jiffies size. This value | |
187 | * is: TICK_NSEC (which is defined in timex.h). This | |
3eb05676 | 188 | * is a constant and is in nanoseconds. We will use scaled math |
1da177e4 LT |
189 | * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and |
190 | * NSEC_JIFFIE_SC. Note that these defines contain nothing but | |
191 | * constants and so are computed at compile time. SHIFT_HZ (computed in | |
192 | * timex.h) adjusts the scaling for different HZ values. | |
193 | ||
194 | * Scaled math??? What is that? | |
195 | * | |
196 | * Scaled math is a way to do integer math on values that would, | |
197 | * otherwise, either overflow, underflow, or cause undesired div | |
198 | * instructions to appear in the execution path. In short, we "scale" | |
199 | * up the operands so they take more bits (more precision, less | |
200 | * underflow), do the desired operation and then "scale" the result back | |
201 | * by the same amount. If we do the scaling by shifting we avoid the | |
202 | * costly mpy and the dastardly div instructions. | |
203 | ||
204 | * Suppose, for example, we want to convert from seconds to jiffies | |
205 | * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The | |
206 | * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We | |
207 | * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we | |
208 | * might calculate at compile time, however, the result will only have | |
209 | * about 3-4 bits of precision (less for smaller values of HZ). | |
210 | * | |
211 | * So, we scale as follows: | |
212 | * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); | |
213 | * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; | |
214 | * Then we make SCALE a power of two so: | |
215 | * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; | |
216 | * Now we define: | |
217 | * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) | |
218 | * jiff = (sec * SEC_CONV) >> SCALE; | |
219 | * | |
220 | * Often the math we use will expand beyond 32-bits so we tell C how to | |
221 | * do this and pass the 64-bit result of the mpy through the ">> SCALE" | |
222 | * which should take the result back to 32-bits. We want this expansion | |
223 | * to capture as much precision as possible. At the same time we don't | |
224 | * want to overflow so we pick the SCALE to avoid this. In this file, | |
225 | * that means using a different scale for each range of HZ values (as | |
226 | * defined in timex.h). | |
227 | * | |
228 | * For those who want to know, gcc will give a 64-bit result from a "*" | |
229 | * operator if the result is a long long AND at least one of the | |
230 | * operands is cast to long long (usually just prior to the "*" so as | |
231 | * not to confuse it into thinking it really has a 64-bit operand, | |
3eb05676 | 232 | * which, buy the way, it can do, but it takes more code and at least 2 |
1da177e4 LT |
233 | * mpys). |
234 | ||
235 | * We also need to be aware that one second in nanoseconds is only a | |
236 | * couple of bits away from overflowing a 32-bit word, so we MUST use | |
237 | * 64-bits to get the full range time in nanoseconds. | |
238 | ||
239 | */ | |
240 | ||
241 | /* | |
242 | * Here are the scales we will use. One for seconds, nanoseconds and | |
243 | * microseconds. | |
244 | * | |
245 | * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and | |
246 | * check if the sign bit is set. If not, we bump the shift count by 1. | |
247 | * (Gets an extra bit of precision where we can use it.) | |
248 | * We know it is set for HZ = 1024 and HZ = 100 not for 1000. | |
249 | * Haven't tested others. | |
250 | ||
251 | * Limits of cpp (for #if expressions) only long (no long long), but | |
252 | * then we only need the most signicant bit. | |
253 | */ | |
254 | ||
255 | #define SEC_JIFFIE_SC (31 - SHIFT_HZ) | |
256 | #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) | |
257 | #undef SEC_JIFFIE_SC | |
258 | #define SEC_JIFFIE_SC (32 - SHIFT_HZ) | |
259 | #endif | |
260 | #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) | |
1da177e4 LT |
261 | #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ |
262 | TICK_NSEC -1) / (u64)TICK_NSEC)) | |
263 | ||
264 | #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ | |
265 | TICK_NSEC -1) / (u64)TICK_NSEC)) | |
1da177e4 LT |
266 | /* |
267 | * The maximum jiffie value is (MAX_INT >> 1). Here we translate that | |
268 | * into seconds. The 64-bit case will overflow if we are not careful, | |
269 | * so use the messy SH_DIV macro to do it. Still all constants. | |
270 | */ | |
271 | #if BITS_PER_LONG < 64 | |
272 | # define MAX_SEC_IN_JIFFIES \ | |
273 | (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) | |
274 | #else /* take care of overflow on 64 bits machines */ | |
275 | # define MAX_SEC_IN_JIFFIES \ | |
276 | (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) | |
277 | ||
278 | #endif | |
279 | ||
280 | /* | |
8b9365d7 | 281 | * Convert various time units to each other: |
1da177e4 | 282 | */ |
8b9365d7 IM |
283 | extern unsigned int jiffies_to_msecs(const unsigned long j); |
284 | extern unsigned int jiffies_to_usecs(const unsigned long j); | |
8fe8ff09 KH |
285 | |
286 | static inline u64 jiffies_to_nsecs(const unsigned long j) | |
287 | { | |
288 | return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; | |
289 | } | |
290 | ||
8b9365d7 IM |
291 | extern unsigned long msecs_to_jiffies(const unsigned int m); |
292 | extern unsigned long usecs_to_jiffies(const unsigned int u); | |
293 | extern unsigned long timespec_to_jiffies(const struct timespec *value); | |
294 | extern void jiffies_to_timespec(const unsigned long jiffies, | |
295 | struct timespec *value); | |
296 | extern unsigned long timeval_to_jiffies(const struct timeval *value); | |
297 | extern void jiffies_to_timeval(const unsigned long jiffies, | |
298 | struct timeval *value); | |
a399a805 | 299 | |
cbbc719f | 300 | extern clock_t jiffies_to_clock_t(unsigned long x); |
a399a805 ED |
301 | static inline clock_t jiffies_delta_to_clock_t(long delta) |
302 | { | |
303 | return jiffies_to_clock_t(max(0L, delta)); | |
304 | } | |
305 | ||
8b9365d7 IM |
306 | extern unsigned long clock_t_to_jiffies(unsigned long x); |
307 | extern u64 jiffies_64_to_clock_t(u64 x); | |
308 | extern u64 nsec_to_clock_t(u64 x); | |
a1dabb6b | 309 | extern u64 nsecs_to_jiffies64(u64 n); |
b7b20df9 | 310 | extern unsigned long nsecs_to_jiffies(u64 n); |
8b9365d7 IM |
311 | |
312 | #define TIMESTAMP_SIZE 30 | |
1da177e4 LT |
313 | |
314 | #endif |