]>
Commit | Line | Data |
---|---|---|
039363f3 CL |
1 | /* |
2 | * Slab allocator functions that are independent of the allocator strategy | |
3 | * | |
4 | * (C) 2012 Christoph Lameter <[email protected]> | |
5 | */ | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #include <linux/mm.h> | |
9 | #include <linux/poison.h> | |
10 | #include <linux/interrupt.h> | |
11 | #include <linux/memory.h> | |
12 | #include <linux/compiler.h> | |
13 | #include <linux/module.h> | |
20cea968 CL |
14 | #include <linux/cpu.h> |
15 | #include <linux/uaccess.h> | |
b7454ad3 GC |
16 | #include <linux/seq_file.h> |
17 | #include <linux/proc_fs.h> | |
039363f3 CL |
18 | #include <asm/cacheflush.h> |
19 | #include <asm/tlbflush.h> | |
20 | #include <asm/page.h> | |
2633d7a0 | 21 | #include <linux/memcontrol.h> |
928cec9c AR |
22 | |
23 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 24 | #include <trace/events/kmem.h> |
039363f3 | 25 | |
97d06609 CL |
26 | #include "slab.h" |
27 | ||
28 | enum slab_state slab_state; | |
18004c5d CL |
29 | LIST_HEAD(slab_caches); |
30 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 31 | struct kmem_cache *kmem_cache; |
97d06609 | 32 | |
423c929c JK |
33 | /* |
34 | * Set of flags that will prevent slab merging | |
35 | */ | |
36 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
37 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | |
38 | SLAB_FAILSLAB) | |
39 | ||
40 | #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
41 | SLAB_CACHE_DMA | SLAB_NOTRACK) | |
42 | ||
43 | /* | |
44 | * Merge control. If this is set then no merging of slab caches will occur. | |
45 | * (Could be removed. This was introduced to pacify the merge skeptics.) | |
46 | */ | |
47 | static int slab_nomerge; | |
48 | ||
49 | static int __init setup_slab_nomerge(char *str) | |
50 | { | |
51 | slab_nomerge = 1; | |
52 | return 1; | |
53 | } | |
54 | ||
55 | #ifdef CONFIG_SLUB | |
56 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
57 | #endif | |
58 | ||
59 | __setup("slab_nomerge", setup_slab_nomerge); | |
60 | ||
07f361b2 JK |
61 | /* |
62 | * Determine the size of a slab object | |
63 | */ | |
64 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
65 | { | |
66 | return s->object_size; | |
67 | } | |
68 | EXPORT_SYMBOL(kmem_cache_size); | |
69 | ||
77be4b13 | 70 | #ifdef CONFIG_DEBUG_VM |
794b1248 | 71 | static int kmem_cache_sanity_check(const char *name, size_t size) |
039363f3 CL |
72 | { |
73 | struct kmem_cache *s = NULL; | |
74 | ||
039363f3 CL |
75 | if (!name || in_interrupt() || size < sizeof(void *) || |
76 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
77 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
78 | return -EINVAL; | |
039363f3 | 79 | } |
b920536a | 80 | |
20cea968 CL |
81 | list_for_each_entry(s, &slab_caches, list) { |
82 | char tmp; | |
83 | int res; | |
84 | ||
85 | /* | |
86 | * This happens when the module gets unloaded and doesn't | |
87 | * destroy its slab cache and no-one else reuses the vmalloc | |
88 | * area of the module. Print a warning. | |
89 | */ | |
90 | res = probe_kernel_address(s->name, tmp); | |
91 | if (res) { | |
77be4b13 | 92 | pr_err("Slab cache with size %d has lost its name\n", |
20cea968 CL |
93 | s->object_size); |
94 | continue; | |
95 | } | |
20cea968 CL |
96 | } |
97 | ||
98 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
77be4b13 SK |
99 | return 0; |
100 | } | |
101 | #else | |
794b1248 | 102 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
77be4b13 SK |
103 | { |
104 | return 0; | |
105 | } | |
20cea968 CL |
106 | #endif |
107 | ||
55007d84 | 108 | #ifdef CONFIG_MEMCG_KMEM |
f7ce3190 | 109 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 110 | { |
f7ce3190 | 111 | s->memcg_params.is_root_cache = true; |
426589f5 | 112 | INIT_LIST_HEAD(&s->memcg_params.list); |
f7ce3190 VD |
113 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
114 | } | |
115 | ||
116 | static int init_memcg_params(struct kmem_cache *s, | |
117 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
118 | { | |
119 | struct memcg_cache_array *arr; | |
33a690c4 | 120 | |
f7ce3190 VD |
121 | if (memcg) { |
122 | s->memcg_params.is_root_cache = false; | |
123 | s->memcg_params.memcg = memcg; | |
124 | s->memcg_params.root_cache = root_cache; | |
33a690c4 | 125 | return 0; |
f7ce3190 | 126 | } |
33a690c4 | 127 | |
f7ce3190 | 128 | slab_init_memcg_params(s); |
33a690c4 | 129 | |
f7ce3190 VD |
130 | if (!memcg_nr_cache_ids) |
131 | return 0; | |
33a690c4 | 132 | |
f7ce3190 VD |
133 | arr = kzalloc(sizeof(struct memcg_cache_array) + |
134 | memcg_nr_cache_ids * sizeof(void *), | |
135 | GFP_KERNEL); | |
136 | if (!arr) | |
137 | return -ENOMEM; | |
33a690c4 | 138 | |
f7ce3190 | 139 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
140 | return 0; |
141 | } | |
142 | ||
f7ce3190 | 143 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 144 | { |
f7ce3190 VD |
145 | if (is_root_cache(s)) |
146 | kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | |
33a690c4 VD |
147 | } |
148 | ||
f7ce3190 | 149 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 150 | { |
f7ce3190 | 151 | struct memcg_cache_array *old, *new; |
6f817f4c | 152 | |
f7ce3190 VD |
153 | if (!is_root_cache(s)) |
154 | return 0; | |
6f817f4c | 155 | |
f7ce3190 VD |
156 | new = kzalloc(sizeof(struct memcg_cache_array) + |
157 | new_array_size * sizeof(void *), GFP_KERNEL); | |
158 | if (!new) | |
6f817f4c VD |
159 | return -ENOMEM; |
160 | ||
f7ce3190 VD |
161 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
162 | lockdep_is_held(&slab_mutex)); | |
163 | if (old) | |
164 | memcpy(new->entries, old->entries, | |
165 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 166 | |
f7ce3190 VD |
167 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
168 | if (old) | |
169 | kfree_rcu(old, rcu); | |
6f817f4c VD |
170 | return 0; |
171 | } | |
172 | ||
55007d84 GC |
173 | int memcg_update_all_caches(int num_memcgs) |
174 | { | |
175 | struct kmem_cache *s; | |
176 | int ret = 0; | |
55007d84 | 177 | |
05257a1a | 178 | mutex_lock(&slab_mutex); |
55007d84 | 179 | list_for_each_entry(s, &slab_caches, list) { |
f7ce3190 | 180 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 181 | /* |
55007d84 GC |
182 | * Instead of freeing the memory, we'll just leave the caches |
183 | * up to this point in an updated state. | |
184 | */ | |
185 | if (ret) | |
05257a1a | 186 | break; |
55007d84 | 187 | } |
55007d84 GC |
188 | mutex_unlock(&slab_mutex); |
189 | return ret; | |
190 | } | |
33a690c4 | 191 | #else |
f7ce3190 VD |
192 | static inline int init_memcg_params(struct kmem_cache *s, |
193 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
194 | { |
195 | return 0; | |
196 | } | |
197 | ||
f7ce3190 | 198 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
199 | { |
200 | } | |
201 | #endif /* CONFIG_MEMCG_KMEM */ | |
55007d84 | 202 | |
423c929c JK |
203 | /* |
204 | * Find a mergeable slab cache | |
205 | */ | |
206 | int slab_unmergeable(struct kmem_cache *s) | |
207 | { | |
208 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
209 | return 1; | |
210 | ||
211 | if (!is_root_cache(s)) | |
212 | return 1; | |
213 | ||
214 | if (s->ctor) | |
215 | return 1; | |
216 | ||
217 | /* | |
218 | * We may have set a slab to be unmergeable during bootstrap. | |
219 | */ | |
220 | if (s->refcount < 0) | |
221 | return 1; | |
222 | ||
223 | return 0; | |
224 | } | |
225 | ||
226 | struct kmem_cache *find_mergeable(size_t size, size_t align, | |
227 | unsigned long flags, const char *name, void (*ctor)(void *)) | |
228 | { | |
229 | struct kmem_cache *s; | |
230 | ||
231 | if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) | |
232 | return NULL; | |
233 | ||
234 | if (ctor) | |
235 | return NULL; | |
236 | ||
237 | size = ALIGN(size, sizeof(void *)); | |
238 | align = calculate_alignment(flags, align, size); | |
239 | size = ALIGN(size, align); | |
240 | flags = kmem_cache_flags(size, flags, name, NULL); | |
241 | ||
54362057 | 242 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
243 | if (slab_unmergeable(s)) |
244 | continue; | |
245 | ||
246 | if (size > s->size) | |
247 | continue; | |
248 | ||
249 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
250 | continue; | |
251 | /* | |
252 | * Check if alignment is compatible. | |
253 | * Courtesy of Adrian Drzewiecki | |
254 | */ | |
255 | if ((s->size & ~(align - 1)) != s->size) | |
256 | continue; | |
257 | ||
258 | if (s->size - size >= sizeof(void *)) | |
259 | continue; | |
260 | ||
95069ac8 JK |
261 | if (IS_ENABLED(CONFIG_SLAB) && align && |
262 | (align > s->align || s->align % align)) | |
263 | continue; | |
264 | ||
423c929c JK |
265 | return s; |
266 | } | |
267 | return NULL; | |
268 | } | |
269 | ||
45906855 CL |
270 | /* |
271 | * Figure out what the alignment of the objects will be given a set of | |
272 | * flags, a user specified alignment and the size of the objects. | |
273 | */ | |
274 | unsigned long calculate_alignment(unsigned long flags, | |
275 | unsigned long align, unsigned long size) | |
276 | { | |
277 | /* | |
278 | * If the user wants hardware cache aligned objects then follow that | |
279 | * suggestion if the object is sufficiently large. | |
280 | * | |
281 | * The hardware cache alignment cannot override the specified | |
282 | * alignment though. If that is greater then use it. | |
283 | */ | |
284 | if (flags & SLAB_HWCACHE_ALIGN) { | |
285 | unsigned long ralign = cache_line_size(); | |
286 | while (size <= ralign / 2) | |
287 | ralign /= 2; | |
288 | align = max(align, ralign); | |
289 | } | |
290 | ||
291 | if (align < ARCH_SLAB_MINALIGN) | |
292 | align = ARCH_SLAB_MINALIGN; | |
293 | ||
294 | return ALIGN(align, sizeof(void *)); | |
295 | } | |
296 | ||
794b1248 | 297 | static struct kmem_cache * |
3dec16ea AH |
298 | do_kmem_cache_create(const char *name, size_t object_size, size_t size, |
299 | size_t align, unsigned long flags, void (*ctor)(void *), | |
794b1248 VD |
300 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
301 | { | |
302 | struct kmem_cache *s; | |
303 | int err; | |
304 | ||
305 | err = -ENOMEM; | |
306 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
307 | if (!s) | |
308 | goto out; | |
309 | ||
310 | s->name = name; | |
311 | s->object_size = object_size; | |
312 | s->size = size; | |
313 | s->align = align; | |
314 | s->ctor = ctor; | |
315 | ||
f7ce3190 | 316 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
317 | if (err) |
318 | goto out_free_cache; | |
319 | ||
320 | err = __kmem_cache_create(s, flags); | |
321 | if (err) | |
322 | goto out_free_cache; | |
323 | ||
324 | s->refcount = 1; | |
325 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
326 | out: |
327 | if (err) | |
328 | return ERR_PTR(err); | |
329 | return s; | |
330 | ||
331 | out_free_cache: | |
f7ce3190 | 332 | destroy_memcg_params(s); |
7c4da061 | 333 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
334 | goto out; |
335 | } | |
45906855 | 336 | |
77be4b13 SK |
337 | /* |
338 | * kmem_cache_create - Create a cache. | |
339 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
340 | * @size: The size of objects to be created in this cache. | |
341 | * @align: The required alignment for the objects. | |
342 | * @flags: SLAB flags | |
343 | * @ctor: A constructor for the objects. | |
344 | * | |
345 | * Returns a ptr to the cache on success, NULL on failure. | |
346 | * Cannot be called within a interrupt, but can be interrupted. | |
347 | * The @ctor is run when new pages are allocated by the cache. | |
348 | * | |
349 | * The flags are | |
350 | * | |
351 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
352 | * to catch references to uninitialised memory. | |
353 | * | |
354 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
355 | * for buffer overruns. | |
356 | * | |
357 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
358 | * cacheline. This can be beneficial if you're counting cycles as closely | |
359 | * as davem. | |
360 | */ | |
2633d7a0 | 361 | struct kmem_cache * |
794b1248 VD |
362 | kmem_cache_create(const char *name, size_t size, size_t align, |
363 | unsigned long flags, void (*ctor)(void *)) | |
77be4b13 | 364 | { |
794b1248 | 365 | struct kmem_cache *s; |
3dec16ea | 366 | const char *cache_name; |
3965fc36 | 367 | int err; |
039363f3 | 368 | |
77be4b13 | 369 | get_online_cpus(); |
03afc0e2 | 370 | get_online_mems(); |
05257a1a | 371 | memcg_get_cache_ids(); |
03afc0e2 | 372 | |
77be4b13 | 373 | mutex_lock(&slab_mutex); |
686d550d | 374 | |
794b1248 | 375 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 AM |
376 | if (err) { |
377 | s = NULL; /* suppress uninit var warning */ | |
3965fc36 | 378 | goto out_unlock; |
3aa24f51 | 379 | } |
686d550d | 380 | |
d8843922 GC |
381 | /* |
382 | * Some allocators will constraint the set of valid flags to a subset | |
383 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
384 | * case, and we'll just provide them with a sanitized version of the | |
385 | * passed flags. | |
386 | */ | |
387 | flags &= CACHE_CREATE_MASK; | |
686d550d | 388 | |
794b1248 VD |
389 | s = __kmem_cache_alias(name, size, align, flags, ctor); |
390 | if (s) | |
3965fc36 | 391 | goto out_unlock; |
2633d7a0 | 392 | |
3dec16ea | 393 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
394 | if (!cache_name) { |
395 | err = -ENOMEM; | |
396 | goto out_unlock; | |
397 | } | |
7c9adf5a | 398 | |
794b1248 VD |
399 | s = do_kmem_cache_create(cache_name, size, size, |
400 | calculate_alignment(flags, align, size), | |
401 | flags, ctor, NULL, NULL); | |
402 | if (IS_ERR(s)) { | |
403 | err = PTR_ERR(s); | |
3dec16ea | 404 | kfree_const(cache_name); |
794b1248 | 405 | } |
3965fc36 VD |
406 | |
407 | out_unlock: | |
20cea968 | 408 | mutex_unlock(&slab_mutex); |
03afc0e2 | 409 | |
05257a1a | 410 | memcg_put_cache_ids(); |
03afc0e2 | 411 | put_online_mems(); |
20cea968 CL |
412 | put_online_cpus(); |
413 | ||
ba3253c7 | 414 | if (err) { |
686d550d CL |
415 | if (flags & SLAB_PANIC) |
416 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
417 | name, err); | |
418 | else { | |
419 | printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", | |
420 | name, err); | |
421 | dump_stack(); | |
422 | } | |
686d550d CL |
423 | return NULL; |
424 | } | |
039363f3 CL |
425 | return s; |
426 | } | |
794b1248 | 427 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 428 | |
d5b3cf71 VD |
429 | static int do_kmem_cache_shutdown(struct kmem_cache *s, |
430 | struct list_head *release, bool *need_rcu_barrier) | |
431 | { | |
432 | if (__kmem_cache_shutdown(s) != 0) { | |
433 | printk(KERN_ERR "kmem_cache_destroy %s: " | |
434 | "Slab cache still has objects\n", s->name); | |
435 | dump_stack(); | |
436 | return -EBUSY; | |
437 | } | |
438 | ||
439 | if (s->flags & SLAB_DESTROY_BY_RCU) | |
440 | *need_rcu_barrier = true; | |
441 | ||
442 | #ifdef CONFIG_MEMCG_KMEM | |
2a4db7eb | 443 | if (!is_root_cache(s)) |
426589f5 | 444 | list_del(&s->memcg_params.list); |
d5b3cf71 VD |
445 | #endif |
446 | list_move(&s->list, release); | |
447 | return 0; | |
448 | } | |
449 | ||
450 | static void do_kmem_cache_release(struct list_head *release, | |
451 | bool need_rcu_barrier) | |
452 | { | |
453 | struct kmem_cache *s, *s2; | |
454 | ||
455 | if (need_rcu_barrier) | |
456 | rcu_barrier(); | |
457 | ||
458 | list_for_each_entry_safe(s, s2, release, list) { | |
459 | #ifdef SLAB_SUPPORTS_SYSFS | |
460 | sysfs_slab_remove(s); | |
461 | #else | |
462 | slab_kmem_cache_release(s); | |
463 | #endif | |
464 | } | |
465 | } | |
466 | ||
794b1248 VD |
467 | #ifdef CONFIG_MEMCG_KMEM |
468 | /* | |
776ed0f0 | 469 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
470 | * @memcg: The memory cgroup the new cache is for. |
471 | * @root_cache: The parent of the new cache. | |
472 | * | |
473 | * This function attempts to create a kmem cache that will serve allocation | |
474 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
475 | * from its parent. | |
476 | */ | |
d5b3cf71 VD |
477 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
478 | struct kmem_cache *root_cache) | |
2633d7a0 | 479 | { |
3e0350a3 | 480 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
f1008365 | 481 | struct cgroup_subsys_state *css = mem_cgroup_css(memcg); |
f7ce3190 | 482 | struct memcg_cache_array *arr; |
bd673145 | 483 | struct kmem_cache *s = NULL; |
794b1248 | 484 | char *cache_name; |
f7ce3190 | 485 | int idx; |
794b1248 VD |
486 | |
487 | get_online_cpus(); | |
03afc0e2 VD |
488 | get_online_mems(); |
489 | ||
794b1248 VD |
490 | mutex_lock(&slab_mutex); |
491 | ||
2a4db7eb VD |
492 | /* |
493 | * The memory cgroup could have been deactivated while the cache | |
494 | * creation work was pending. | |
495 | */ | |
496 | if (!memcg_kmem_is_active(memcg)) | |
497 | goto out_unlock; | |
498 | ||
f7ce3190 VD |
499 | idx = memcg_cache_id(memcg); |
500 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
501 | lockdep_is_held(&slab_mutex)); | |
502 | ||
d5b3cf71 VD |
503 | /* |
504 | * Since per-memcg caches are created asynchronously on first | |
505 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
506 | * create the same cache, but only one of them may succeed. | |
507 | */ | |
f7ce3190 | 508 | if (arr->entries[idx]) |
d5b3cf71 VD |
509 | goto out_unlock; |
510 | ||
f1008365 | 511 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
073ee1c6 | 512 | cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, |
f1008365 | 513 | css->id, memcg_name_buf); |
794b1248 VD |
514 | if (!cache_name) |
515 | goto out_unlock; | |
516 | ||
517 | s = do_kmem_cache_create(cache_name, root_cache->object_size, | |
518 | root_cache->size, root_cache->align, | |
519 | root_cache->flags, root_cache->ctor, | |
520 | memcg, root_cache); | |
d5b3cf71 VD |
521 | /* |
522 | * If we could not create a memcg cache, do not complain, because | |
523 | * that's not critical at all as we can always proceed with the root | |
524 | * cache. | |
525 | */ | |
bd673145 | 526 | if (IS_ERR(s)) { |
794b1248 | 527 | kfree(cache_name); |
d5b3cf71 | 528 | goto out_unlock; |
bd673145 | 529 | } |
794b1248 | 530 | |
426589f5 VD |
531 | list_add(&s->memcg_params.list, &root_cache->memcg_params.list); |
532 | ||
d5b3cf71 VD |
533 | /* |
534 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
535 | * barrier here to ensure nobody will see the kmem_cache partially | |
536 | * initialized. | |
537 | */ | |
538 | smp_wmb(); | |
f7ce3190 | 539 | arr->entries[idx] = s; |
d5b3cf71 | 540 | |
794b1248 VD |
541 | out_unlock: |
542 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
543 | |
544 | put_online_mems(); | |
794b1248 | 545 | put_online_cpus(); |
2633d7a0 | 546 | } |
b8529907 | 547 | |
2a4db7eb VD |
548 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
549 | { | |
550 | int idx; | |
551 | struct memcg_cache_array *arr; | |
d6e0b7fa | 552 | struct kmem_cache *s, *c; |
2a4db7eb VD |
553 | |
554 | idx = memcg_cache_id(memcg); | |
555 | ||
d6e0b7fa VD |
556 | get_online_cpus(); |
557 | get_online_mems(); | |
558 | ||
2a4db7eb VD |
559 | mutex_lock(&slab_mutex); |
560 | list_for_each_entry(s, &slab_caches, list) { | |
561 | if (!is_root_cache(s)) | |
562 | continue; | |
563 | ||
564 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
565 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
566 | c = arr->entries[idx]; |
567 | if (!c) | |
568 | continue; | |
569 | ||
570 | __kmem_cache_shrink(c, true); | |
2a4db7eb VD |
571 | arr->entries[idx] = NULL; |
572 | } | |
573 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
574 | |
575 | put_online_mems(); | |
576 | put_online_cpus(); | |
2a4db7eb VD |
577 | } |
578 | ||
d5b3cf71 | 579 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 580 | { |
d5b3cf71 VD |
581 | LIST_HEAD(release); |
582 | bool need_rcu_barrier = false; | |
583 | struct kmem_cache *s, *s2; | |
b8529907 | 584 | |
d5b3cf71 VD |
585 | get_online_cpus(); |
586 | get_online_mems(); | |
b8529907 | 587 | |
b8529907 | 588 | mutex_lock(&slab_mutex); |
d5b3cf71 | 589 | list_for_each_entry_safe(s, s2, &slab_caches, list) { |
f7ce3190 | 590 | if (is_root_cache(s) || s->memcg_params.memcg != memcg) |
d5b3cf71 VD |
591 | continue; |
592 | /* | |
593 | * The cgroup is about to be freed and therefore has no charges | |
594 | * left. Hence, all its caches must be empty by now. | |
595 | */ | |
596 | BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier)); | |
597 | } | |
598 | mutex_unlock(&slab_mutex); | |
b8529907 | 599 | |
d5b3cf71 VD |
600 | put_online_mems(); |
601 | put_online_cpus(); | |
602 | ||
603 | do_kmem_cache_release(&release, need_rcu_barrier); | |
b8529907 | 604 | } |
794b1248 | 605 | #endif /* CONFIG_MEMCG_KMEM */ |
97d06609 | 606 | |
41a21285 CL |
607 | void slab_kmem_cache_release(struct kmem_cache *s) |
608 | { | |
f7ce3190 | 609 | destroy_memcg_params(s); |
3dec16ea | 610 | kfree_const(s->name); |
41a21285 CL |
611 | kmem_cache_free(kmem_cache, s); |
612 | } | |
613 | ||
945cf2b6 CL |
614 | void kmem_cache_destroy(struct kmem_cache *s) |
615 | { | |
426589f5 | 616 | struct kmem_cache *c, *c2; |
d5b3cf71 VD |
617 | LIST_HEAD(release); |
618 | bool need_rcu_barrier = false; | |
619 | bool busy = false; | |
620 | ||
426589f5 VD |
621 | BUG_ON(!is_root_cache(s)); |
622 | ||
945cf2b6 | 623 | get_online_cpus(); |
03afc0e2 VD |
624 | get_online_mems(); |
625 | ||
945cf2b6 | 626 | mutex_lock(&slab_mutex); |
b8529907 | 627 | |
945cf2b6 | 628 | s->refcount--; |
b8529907 VD |
629 | if (s->refcount) |
630 | goto out_unlock; | |
631 | ||
426589f5 VD |
632 | for_each_memcg_cache_safe(c, c2, s) { |
633 | if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier)) | |
d5b3cf71 | 634 | busy = true; |
945cf2b6 | 635 | } |
b8529907 | 636 | |
d5b3cf71 VD |
637 | if (!busy) |
638 | do_kmem_cache_shutdown(s, &release, &need_rcu_barrier); | |
b8529907 VD |
639 | |
640 | out_unlock: | |
641 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 642 | |
03afc0e2 | 643 | put_online_mems(); |
945cf2b6 | 644 | put_online_cpus(); |
d5b3cf71 VD |
645 | |
646 | do_kmem_cache_release(&release, need_rcu_barrier); | |
945cf2b6 CL |
647 | } |
648 | EXPORT_SYMBOL(kmem_cache_destroy); | |
649 | ||
03afc0e2 VD |
650 | /** |
651 | * kmem_cache_shrink - Shrink a cache. | |
652 | * @cachep: The cache to shrink. | |
653 | * | |
654 | * Releases as many slabs as possible for a cache. | |
655 | * To help debugging, a zero exit status indicates all slabs were released. | |
656 | */ | |
657 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
658 | { | |
659 | int ret; | |
660 | ||
661 | get_online_cpus(); | |
662 | get_online_mems(); | |
d6e0b7fa | 663 | ret = __kmem_cache_shrink(cachep, false); |
03afc0e2 VD |
664 | put_online_mems(); |
665 | put_online_cpus(); | |
666 | return ret; | |
667 | } | |
668 | EXPORT_SYMBOL(kmem_cache_shrink); | |
669 | ||
97d06609 CL |
670 | int slab_is_available(void) |
671 | { | |
672 | return slab_state >= UP; | |
673 | } | |
b7454ad3 | 674 | |
45530c44 CL |
675 | #ifndef CONFIG_SLOB |
676 | /* Create a cache during boot when no slab services are available yet */ | |
677 | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | |
678 | unsigned long flags) | |
679 | { | |
680 | int err; | |
681 | ||
682 | s->name = name; | |
683 | s->size = s->object_size = size; | |
45906855 | 684 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
f7ce3190 VD |
685 | |
686 | slab_init_memcg_params(s); | |
687 | ||
45530c44 CL |
688 | err = __kmem_cache_create(s, flags); |
689 | ||
690 | if (err) | |
31ba7346 | 691 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
45530c44 CL |
692 | name, size, err); |
693 | ||
694 | s->refcount = -1; /* Exempt from merging for now */ | |
695 | } | |
696 | ||
697 | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | |
698 | unsigned long flags) | |
699 | { | |
700 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
701 | ||
702 | if (!s) | |
703 | panic("Out of memory when creating slab %s\n", name); | |
704 | ||
705 | create_boot_cache(s, name, size, flags); | |
706 | list_add(&s->list, &slab_caches); | |
707 | s->refcount = 1; | |
708 | return s; | |
709 | } | |
710 | ||
9425c58e CL |
711 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
712 | EXPORT_SYMBOL(kmalloc_caches); | |
713 | ||
714 | #ifdef CONFIG_ZONE_DMA | |
715 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | |
716 | EXPORT_SYMBOL(kmalloc_dma_caches); | |
717 | #endif | |
718 | ||
2c59dd65 CL |
719 | /* |
720 | * Conversion table for small slabs sizes / 8 to the index in the | |
721 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
722 | * of two cache sizes there. The size of larger slabs can be determined using | |
723 | * fls. | |
724 | */ | |
725 | static s8 size_index[24] = { | |
726 | 3, /* 8 */ | |
727 | 4, /* 16 */ | |
728 | 5, /* 24 */ | |
729 | 5, /* 32 */ | |
730 | 6, /* 40 */ | |
731 | 6, /* 48 */ | |
732 | 6, /* 56 */ | |
733 | 6, /* 64 */ | |
734 | 1, /* 72 */ | |
735 | 1, /* 80 */ | |
736 | 1, /* 88 */ | |
737 | 1, /* 96 */ | |
738 | 7, /* 104 */ | |
739 | 7, /* 112 */ | |
740 | 7, /* 120 */ | |
741 | 7, /* 128 */ | |
742 | 2, /* 136 */ | |
743 | 2, /* 144 */ | |
744 | 2, /* 152 */ | |
745 | 2, /* 160 */ | |
746 | 2, /* 168 */ | |
747 | 2, /* 176 */ | |
748 | 2, /* 184 */ | |
749 | 2 /* 192 */ | |
750 | }; | |
751 | ||
752 | static inline int size_index_elem(size_t bytes) | |
753 | { | |
754 | return (bytes - 1) / 8; | |
755 | } | |
756 | ||
757 | /* | |
758 | * Find the kmem_cache structure that serves a given size of | |
759 | * allocation | |
760 | */ | |
761 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
762 | { | |
763 | int index; | |
764 | ||
9de1bc87 | 765 | if (unlikely(size > KMALLOC_MAX_SIZE)) { |
907985f4 | 766 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); |
6286ae97 | 767 | return NULL; |
907985f4 | 768 | } |
6286ae97 | 769 | |
2c59dd65 CL |
770 | if (size <= 192) { |
771 | if (!size) | |
772 | return ZERO_SIZE_PTR; | |
773 | ||
774 | index = size_index[size_index_elem(size)]; | |
775 | } else | |
776 | index = fls(size - 1); | |
777 | ||
778 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 779 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
780 | return kmalloc_dma_caches[index]; |
781 | ||
782 | #endif | |
783 | return kmalloc_caches[index]; | |
784 | } | |
785 | ||
4066c33d GG |
786 | /* |
787 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
788 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
789 | * kmalloc-67108864. | |
790 | */ | |
791 | static struct { | |
792 | const char *name; | |
793 | unsigned long size; | |
794 | } const kmalloc_info[] __initconst = { | |
795 | {NULL, 0}, {"kmalloc-96", 96}, | |
796 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
797 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
798 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
799 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
800 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
801 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
802 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
803 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
804 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
805 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
806 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
807 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
808 | {"kmalloc-67108864", 67108864} | |
809 | }; | |
810 | ||
f97d5f63 | 811 | /* |
34cc6990 DS |
812 | * Patch up the size_index table if we have strange large alignment |
813 | * requirements for the kmalloc array. This is only the case for | |
814 | * MIPS it seems. The standard arches will not generate any code here. | |
815 | * | |
816 | * Largest permitted alignment is 256 bytes due to the way we | |
817 | * handle the index determination for the smaller caches. | |
818 | * | |
819 | * Make sure that nothing crazy happens if someone starts tinkering | |
820 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 821 | */ |
34cc6990 | 822 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 CL |
823 | { |
824 | int i; | |
825 | ||
2c59dd65 CL |
826 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
827 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
828 | ||
829 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
830 | int elem = size_index_elem(i); | |
831 | ||
832 | if (elem >= ARRAY_SIZE(size_index)) | |
833 | break; | |
834 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
835 | } | |
836 | ||
837 | if (KMALLOC_MIN_SIZE >= 64) { | |
838 | /* | |
839 | * The 96 byte size cache is not used if the alignment | |
840 | * is 64 byte. | |
841 | */ | |
842 | for (i = 64 + 8; i <= 96; i += 8) | |
843 | size_index[size_index_elem(i)] = 7; | |
844 | ||
845 | } | |
846 | ||
847 | if (KMALLOC_MIN_SIZE >= 128) { | |
848 | /* | |
849 | * The 192 byte sized cache is not used if the alignment | |
850 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
851 | * instead. | |
852 | */ | |
853 | for (i = 128 + 8; i <= 192; i += 8) | |
854 | size_index[size_index_elem(i)] = 8; | |
855 | } | |
34cc6990 DS |
856 | } |
857 | ||
ae6f2462 | 858 | static void __init new_kmalloc_cache(int idx, unsigned long flags) |
a9730fca CL |
859 | { |
860 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
861 | kmalloc_info[idx].size, flags); | |
862 | } | |
863 | ||
34cc6990 DS |
864 | /* |
865 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
866 | * may already have been created because they were needed to | |
867 | * enable allocations for slab creation. | |
868 | */ | |
869 | void __init create_kmalloc_caches(unsigned long flags) | |
870 | { | |
871 | int i; | |
872 | ||
a9730fca CL |
873 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
874 | if (!kmalloc_caches[i]) | |
875 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 876 | |
956e46ef | 877 | /* |
a9730fca CL |
878 | * Caches that are not of the two-to-the-power-of size. |
879 | * These have to be created immediately after the | |
880 | * earlier power of two caches | |
956e46ef | 881 | */ |
a9730fca CL |
882 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
883 | new_kmalloc_cache(1, flags); | |
884 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
885 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
886 | } |
887 | ||
f97d5f63 CL |
888 | /* Kmalloc array is now usable */ |
889 | slab_state = UP; | |
890 | ||
f97d5f63 CL |
891 | #ifdef CONFIG_ZONE_DMA |
892 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
893 | struct kmem_cache *s = kmalloc_caches[i]; | |
894 | ||
895 | if (s) { | |
896 | int size = kmalloc_size(i); | |
897 | char *n = kasprintf(GFP_NOWAIT, | |
898 | "dma-kmalloc-%d", size); | |
899 | ||
900 | BUG_ON(!n); | |
901 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
902 | size, SLAB_CACHE_DMA | flags); | |
903 | } | |
904 | } | |
905 | #endif | |
906 | } | |
45530c44 CL |
907 | #endif /* !CONFIG_SLOB */ |
908 | ||
cea371f4 VD |
909 | /* |
910 | * To avoid unnecessary overhead, we pass through large allocation requests | |
911 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
912 | * know the allocation order to free the pages properly in kfree. | |
913 | */ | |
52383431 VD |
914 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
915 | { | |
916 | void *ret; | |
917 | struct page *page; | |
918 | ||
919 | flags |= __GFP_COMP; | |
920 | page = alloc_kmem_pages(flags, order); | |
921 | ret = page ? page_address(page) : NULL; | |
922 | kmemleak_alloc(ret, size, 1, flags); | |
0316bec2 | 923 | kasan_kmalloc_large(ret, size); |
52383431 VD |
924 | return ret; |
925 | } | |
926 | EXPORT_SYMBOL(kmalloc_order); | |
927 | ||
f1b6eb6e CL |
928 | #ifdef CONFIG_TRACING |
929 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
930 | { | |
931 | void *ret = kmalloc_order(size, flags, order); | |
932 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
933 | return ret; | |
934 | } | |
935 | EXPORT_SYMBOL(kmalloc_order_trace); | |
936 | #endif | |
45530c44 | 937 | |
b7454ad3 | 938 | #ifdef CONFIG_SLABINFO |
e9b4db2b WL |
939 | |
940 | #ifdef CONFIG_SLAB | |
941 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | |
942 | #else | |
943 | #define SLABINFO_RIGHTS S_IRUSR | |
944 | #endif | |
945 | ||
b047501c | 946 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
947 | { |
948 | /* | |
949 | * Output format version, so at least we can change it | |
950 | * without _too_ many complaints. | |
951 | */ | |
952 | #ifdef CONFIG_DEBUG_SLAB | |
953 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
954 | #else | |
955 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
956 | #endif | |
957 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
958 | "<objperslab> <pagesperslab>"); | |
959 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
960 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
961 | #ifdef CONFIG_DEBUG_SLAB | |
962 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " | |
963 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | |
964 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | |
965 | #endif | |
966 | seq_putc(m, '\n'); | |
967 | } | |
968 | ||
1df3b26f | 969 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 970 | { |
b7454ad3 | 971 | mutex_lock(&slab_mutex); |
b7454ad3 GC |
972 | return seq_list_start(&slab_caches, *pos); |
973 | } | |
974 | ||
276a2439 | 975 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 GC |
976 | { |
977 | return seq_list_next(p, &slab_caches, pos); | |
978 | } | |
979 | ||
276a2439 | 980 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
981 | { |
982 | mutex_unlock(&slab_mutex); | |
983 | } | |
984 | ||
749c5415 GC |
985 | static void |
986 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
987 | { | |
988 | struct kmem_cache *c; | |
989 | struct slabinfo sinfo; | |
749c5415 GC |
990 | |
991 | if (!is_root_cache(s)) | |
992 | return; | |
993 | ||
426589f5 | 994 | for_each_memcg_cache(c, s) { |
749c5415 GC |
995 | memset(&sinfo, 0, sizeof(sinfo)); |
996 | get_slabinfo(c, &sinfo); | |
997 | ||
998 | info->active_slabs += sinfo.active_slabs; | |
999 | info->num_slabs += sinfo.num_slabs; | |
1000 | info->shared_avail += sinfo.shared_avail; | |
1001 | info->active_objs += sinfo.active_objs; | |
1002 | info->num_objs += sinfo.num_objs; | |
1003 | } | |
1004 | } | |
1005 | ||
b047501c | 1006 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1007 | { |
0d7561c6 GC |
1008 | struct slabinfo sinfo; |
1009 | ||
1010 | memset(&sinfo, 0, sizeof(sinfo)); | |
1011 | get_slabinfo(s, &sinfo); | |
1012 | ||
749c5415 GC |
1013 | memcg_accumulate_slabinfo(s, &sinfo); |
1014 | ||
0d7561c6 | 1015 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1016 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1017 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1018 | ||
1019 | seq_printf(m, " : tunables %4u %4u %4u", | |
1020 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1021 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1022 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1023 | slabinfo_show_stats(m, s); | |
1024 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1025 | } |
1026 | ||
1df3b26f | 1027 | static int slab_show(struct seq_file *m, void *p) |
749c5415 GC |
1028 | { |
1029 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1030 | ||
1df3b26f VD |
1031 | if (p == slab_caches.next) |
1032 | print_slabinfo_header(m); | |
b047501c VD |
1033 | if (is_root_cache(s)) |
1034 | cache_show(s, m); | |
1035 | return 0; | |
1036 | } | |
1037 | ||
1038 | #ifdef CONFIG_MEMCG_KMEM | |
1039 | int memcg_slab_show(struct seq_file *m, void *p) | |
1040 | { | |
1041 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1042 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1043 | ||
1044 | if (p == slab_caches.next) | |
1045 | print_slabinfo_header(m); | |
f7ce3190 | 1046 | if (!is_root_cache(s) && s->memcg_params.memcg == memcg) |
b047501c VD |
1047 | cache_show(s, m); |
1048 | return 0; | |
749c5415 | 1049 | } |
b047501c | 1050 | #endif |
749c5415 | 1051 | |
b7454ad3 GC |
1052 | /* |
1053 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1054 | * | |
1055 | * Output layout: | |
1056 | * cache-name | |
1057 | * num-active-objs | |
1058 | * total-objs | |
1059 | * object size | |
1060 | * num-active-slabs | |
1061 | * total-slabs | |
1062 | * num-pages-per-slab | |
1063 | * + further values on SMP and with statistics enabled | |
1064 | */ | |
1065 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1066 | .start = slab_start, |
276a2439 WL |
1067 | .next = slab_next, |
1068 | .stop = slab_stop, | |
1df3b26f | 1069 | .show = slab_show, |
b7454ad3 GC |
1070 | }; |
1071 | ||
1072 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1073 | { | |
1074 | return seq_open(file, &slabinfo_op); | |
1075 | } | |
1076 | ||
1077 | static const struct file_operations proc_slabinfo_operations = { | |
1078 | .open = slabinfo_open, | |
1079 | .read = seq_read, | |
1080 | .write = slabinfo_write, | |
1081 | .llseek = seq_lseek, | |
1082 | .release = seq_release, | |
1083 | }; | |
1084 | ||
1085 | static int __init slab_proc_init(void) | |
1086 | { | |
e9b4db2b WL |
1087 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1088 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1089 | return 0; |
1090 | } | |
1091 | module_init(slab_proc_init); | |
1092 | #endif /* CONFIG_SLABINFO */ | |
928cec9c AR |
1093 | |
1094 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1095 | gfp_t flags) | |
1096 | { | |
1097 | void *ret; | |
1098 | size_t ks = 0; | |
1099 | ||
1100 | if (p) | |
1101 | ks = ksize(p); | |
1102 | ||
0316bec2 AR |
1103 | if (ks >= new_size) { |
1104 | kasan_krealloc((void *)p, new_size); | |
928cec9c | 1105 | return (void *)p; |
0316bec2 | 1106 | } |
928cec9c AR |
1107 | |
1108 | ret = kmalloc_track_caller(new_size, flags); | |
1109 | if (ret && p) | |
1110 | memcpy(ret, p, ks); | |
1111 | ||
1112 | return ret; | |
1113 | } | |
1114 | ||
1115 | /** | |
1116 | * __krealloc - like krealloc() but don't free @p. | |
1117 | * @p: object to reallocate memory for. | |
1118 | * @new_size: how many bytes of memory are required. | |
1119 | * @flags: the type of memory to allocate. | |
1120 | * | |
1121 | * This function is like krealloc() except it never frees the originally | |
1122 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1123 | * like, for example, with RCU. | |
1124 | */ | |
1125 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1126 | { | |
1127 | if (unlikely(!new_size)) | |
1128 | return ZERO_SIZE_PTR; | |
1129 | ||
1130 | return __do_krealloc(p, new_size, flags); | |
1131 | ||
1132 | } | |
1133 | EXPORT_SYMBOL(__krealloc); | |
1134 | ||
1135 | /** | |
1136 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1137 | * @p: object to reallocate memory for. | |
1138 | * @new_size: how many bytes of memory are required. | |
1139 | * @flags: the type of memory to allocate. | |
1140 | * | |
1141 | * The contents of the object pointed to are preserved up to the | |
1142 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1143 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1144 | * %NULL pointer, the object pointed to is freed. | |
1145 | */ | |
1146 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1147 | { | |
1148 | void *ret; | |
1149 | ||
1150 | if (unlikely(!new_size)) { | |
1151 | kfree(p); | |
1152 | return ZERO_SIZE_PTR; | |
1153 | } | |
1154 | ||
1155 | ret = __do_krealloc(p, new_size, flags); | |
1156 | if (ret && p != ret) | |
1157 | kfree(p); | |
1158 | ||
1159 | return ret; | |
1160 | } | |
1161 | EXPORT_SYMBOL(krealloc); | |
1162 | ||
1163 | /** | |
1164 | * kzfree - like kfree but zero memory | |
1165 | * @p: object to free memory of | |
1166 | * | |
1167 | * The memory of the object @p points to is zeroed before freed. | |
1168 | * If @p is %NULL, kzfree() does nothing. | |
1169 | * | |
1170 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1171 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1172 | * careful when using this function in performance sensitive code. | |
1173 | */ | |
1174 | void kzfree(const void *p) | |
1175 | { | |
1176 | size_t ks; | |
1177 | void *mem = (void *)p; | |
1178 | ||
1179 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1180 | return; | |
1181 | ks = ksize(mem); | |
1182 | memset(mem, 0, ks); | |
1183 | kfree(mem); | |
1184 | } | |
1185 | EXPORT_SYMBOL(kzfree); | |
1186 | ||
1187 | /* Tracepoints definitions. */ | |
1188 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1189 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1190 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1191 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1192 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1193 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |