]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
0fe23479 | 2 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
a27bb332 | 22 | #include <linux/uio.h> |
852c788f | 23 | #include <linux/iocontext.h> |
1da177e4 LT |
24 | #include <linux/slab.h> |
25 | #include <linux/init.h> | |
26 | #include <linux/kernel.h> | |
630d9c47 | 27 | #include <linux/export.h> |
1da177e4 LT |
28 | #include <linux/mempool.h> |
29 | #include <linux/workqueue.h> | |
852c788f | 30 | #include <linux/cgroup.h> |
1da177e4 | 31 | |
55782138 | 32 | #include <trace/events/block.h> |
9e234eea | 33 | #include "blk.h" |
0bfc2455 | 34 | |
392ddc32 JA |
35 | /* |
36 | * Test patch to inline a certain number of bi_io_vec's inside the bio | |
37 | * itself, to shrink a bio data allocation from two mempool calls to one | |
38 | */ | |
39 | #define BIO_INLINE_VECS 4 | |
40 | ||
1da177e4 LT |
41 | /* |
42 | * if you change this list, also change bvec_alloc or things will | |
43 | * break badly! cannot be bigger than what you can fit into an | |
44 | * unsigned short | |
45 | */ | |
bd5c4fac | 46 | #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } |
ed996a52 | 47 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { |
bd5c4fac | 48 | BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), |
1da177e4 LT |
49 | }; |
50 | #undef BV | |
51 | ||
1da177e4 LT |
52 | /* |
53 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
54 | * IO code that does not need private memory pools. | |
55 | */ | |
f4f8154a | 56 | struct bio_set fs_bio_set; |
3f86a82a | 57 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 58 | |
bb799ca0 JA |
59 | /* |
60 | * Our slab pool management | |
61 | */ | |
62 | struct bio_slab { | |
63 | struct kmem_cache *slab; | |
64 | unsigned int slab_ref; | |
65 | unsigned int slab_size; | |
66 | char name[8]; | |
67 | }; | |
68 | static DEFINE_MUTEX(bio_slab_lock); | |
69 | static struct bio_slab *bio_slabs; | |
70 | static unsigned int bio_slab_nr, bio_slab_max; | |
71 | ||
72 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | |
73 | { | |
74 | unsigned int sz = sizeof(struct bio) + extra_size; | |
75 | struct kmem_cache *slab = NULL; | |
389d7b26 | 76 | struct bio_slab *bslab, *new_bio_slabs; |
386bc35a | 77 | unsigned int new_bio_slab_max; |
bb799ca0 JA |
78 | unsigned int i, entry = -1; |
79 | ||
80 | mutex_lock(&bio_slab_lock); | |
81 | ||
82 | i = 0; | |
83 | while (i < bio_slab_nr) { | |
f06f135d | 84 | bslab = &bio_slabs[i]; |
bb799ca0 JA |
85 | |
86 | if (!bslab->slab && entry == -1) | |
87 | entry = i; | |
88 | else if (bslab->slab_size == sz) { | |
89 | slab = bslab->slab; | |
90 | bslab->slab_ref++; | |
91 | break; | |
92 | } | |
93 | i++; | |
94 | } | |
95 | ||
96 | if (slab) | |
97 | goto out_unlock; | |
98 | ||
99 | if (bio_slab_nr == bio_slab_max && entry == -1) { | |
386bc35a | 100 | new_bio_slab_max = bio_slab_max << 1; |
389d7b26 | 101 | new_bio_slabs = krealloc(bio_slabs, |
386bc35a | 102 | new_bio_slab_max * sizeof(struct bio_slab), |
389d7b26 AK |
103 | GFP_KERNEL); |
104 | if (!new_bio_slabs) | |
bb799ca0 | 105 | goto out_unlock; |
386bc35a | 106 | bio_slab_max = new_bio_slab_max; |
389d7b26 | 107 | bio_slabs = new_bio_slabs; |
bb799ca0 JA |
108 | } |
109 | if (entry == -1) | |
110 | entry = bio_slab_nr++; | |
111 | ||
112 | bslab = &bio_slabs[entry]; | |
113 | ||
114 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | |
6a241483 MP |
115 | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, |
116 | SLAB_HWCACHE_ALIGN, NULL); | |
bb799ca0 JA |
117 | if (!slab) |
118 | goto out_unlock; | |
119 | ||
bb799ca0 JA |
120 | bslab->slab = slab; |
121 | bslab->slab_ref = 1; | |
122 | bslab->slab_size = sz; | |
123 | out_unlock: | |
124 | mutex_unlock(&bio_slab_lock); | |
125 | return slab; | |
126 | } | |
127 | ||
128 | static void bio_put_slab(struct bio_set *bs) | |
129 | { | |
130 | struct bio_slab *bslab = NULL; | |
131 | unsigned int i; | |
132 | ||
133 | mutex_lock(&bio_slab_lock); | |
134 | ||
135 | for (i = 0; i < bio_slab_nr; i++) { | |
136 | if (bs->bio_slab == bio_slabs[i].slab) { | |
137 | bslab = &bio_slabs[i]; | |
138 | break; | |
139 | } | |
140 | } | |
141 | ||
142 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | |
143 | goto out; | |
144 | ||
145 | WARN_ON(!bslab->slab_ref); | |
146 | ||
147 | if (--bslab->slab_ref) | |
148 | goto out; | |
149 | ||
150 | kmem_cache_destroy(bslab->slab); | |
151 | bslab->slab = NULL; | |
152 | ||
153 | out: | |
154 | mutex_unlock(&bio_slab_lock); | |
155 | } | |
156 | ||
7ba1ba12 MP |
157 | unsigned int bvec_nr_vecs(unsigned short idx) |
158 | { | |
159 | return bvec_slabs[idx].nr_vecs; | |
160 | } | |
161 | ||
9f060e22 | 162 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
bb799ca0 | 163 | { |
ed996a52 CH |
164 | if (!idx) |
165 | return; | |
166 | idx--; | |
167 | ||
168 | BIO_BUG_ON(idx >= BVEC_POOL_NR); | |
bb799ca0 | 169 | |
ed996a52 | 170 | if (idx == BVEC_POOL_MAX) { |
9f060e22 | 171 | mempool_free(bv, pool); |
ed996a52 | 172 | } else { |
bb799ca0 JA |
173 | struct biovec_slab *bvs = bvec_slabs + idx; |
174 | ||
175 | kmem_cache_free(bvs->slab, bv); | |
176 | } | |
177 | } | |
178 | ||
9f060e22 KO |
179 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
180 | mempool_t *pool) | |
1da177e4 LT |
181 | { |
182 | struct bio_vec *bvl; | |
1da177e4 | 183 | |
7ff9345f JA |
184 | /* |
185 | * see comment near bvec_array define! | |
186 | */ | |
187 | switch (nr) { | |
188 | case 1: | |
189 | *idx = 0; | |
190 | break; | |
191 | case 2 ... 4: | |
192 | *idx = 1; | |
193 | break; | |
194 | case 5 ... 16: | |
195 | *idx = 2; | |
196 | break; | |
197 | case 17 ... 64: | |
198 | *idx = 3; | |
199 | break; | |
200 | case 65 ... 128: | |
201 | *idx = 4; | |
202 | break; | |
203 | case 129 ... BIO_MAX_PAGES: | |
204 | *idx = 5; | |
205 | break; | |
206 | default: | |
207 | return NULL; | |
208 | } | |
209 | ||
210 | /* | |
211 | * idx now points to the pool we want to allocate from. only the | |
212 | * 1-vec entry pool is mempool backed. | |
213 | */ | |
ed996a52 | 214 | if (*idx == BVEC_POOL_MAX) { |
7ff9345f | 215 | fallback: |
9f060e22 | 216 | bvl = mempool_alloc(pool, gfp_mask); |
7ff9345f JA |
217 | } else { |
218 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
d0164adc | 219 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); |
7ff9345f | 220 | |
0a0d96b0 | 221 | /* |
7ff9345f JA |
222 | * Make this allocation restricted and don't dump info on |
223 | * allocation failures, since we'll fallback to the mempool | |
224 | * in case of failure. | |
0a0d96b0 | 225 | */ |
7ff9345f | 226 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 227 | |
0a0d96b0 | 228 | /* |
d0164adc | 229 | * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM |
7ff9345f | 230 | * is set, retry with the 1-entry mempool |
0a0d96b0 | 231 | */ |
7ff9345f | 232 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
d0164adc | 233 | if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { |
ed996a52 | 234 | *idx = BVEC_POOL_MAX; |
7ff9345f JA |
235 | goto fallback; |
236 | } | |
237 | } | |
238 | ||
ed996a52 | 239 | (*idx)++; |
1da177e4 LT |
240 | return bvl; |
241 | } | |
242 | ||
9ae3b3f5 | 243 | void bio_uninit(struct bio *bio) |
1da177e4 | 244 | { |
4254bba1 | 245 | bio_disassociate_task(bio); |
4254bba1 | 246 | } |
9ae3b3f5 | 247 | EXPORT_SYMBOL(bio_uninit); |
7ba1ba12 | 248 | |
4254bba1 KO |
249 | static void bio_free(struct bio *bio) |
250 | { | |
251 | struct bio_set *bs = bio->bi_pool; | |
252 | void *p; | |
253 | ||
9ae3b3f5 | 254 | bio_uninit(bio); |
4254bba1 KO |
255 | |
256 | if (bs) { | |
8aa6ba2f | 257 | bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); |
4254bba1 KO |
258 | |
259 | /* | |
260 | * If we have front padding, adjust the bio pointer before freeing | |
261 | */ | |
262 | p = bio; | |
bb799ca0 JA |
263 | p -= bs->front_pad; |
264 | ||
8aa6ba2f | 265 | mempool_free(p, &bs->bio_pool); |
4254bba1 KO |
266 | } else { |
267 | /* Bio was allocated by bio_kmalloc() */ | |
268 | kfree(bio); | |
269 | } | |
3676347a PO |
270 | } |
271 | ||
9ae3b3f5 JA |
272 | /* |
273 | * Users of this function have their own bio allocation. Subsequently, | |
274 | * they must remember to pair any call to bio_init() with bio_uninit() | |
275 | * when IO has completed, or when the bio is released. | |
276 | */ | |
3a83f467 ML |
277 | void bio_init(struct bio *bio, struct bio_vec *table, |
278 | unsigned short max_vecs) | |
1da177e4 | 279 | { |
2b94de55 | 280 | memset(bio, 0, sizeof(*bio)); |
c4cf5261 | 281 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 282 | atomic_set(&bio->__bi_cnt, 1); |
3a83f467 ML |
283 | |
284 | bio->bi_io_vec = table; | |
285 | bio->bi_max_vecs = max_vecs; | |
1da177e4 | 286 | } |
a112a71d | 287 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 288 | |
f44b48c7 KO |
289 | /** |
290 | * bio_reset - reinitialize a bio | |
291 | * @bio: bio to reset | |
292 | * | |
293 | * Description: | |
294 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
295 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
296 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
297 | * comment in struct bio. | |
298 | */ | |
299 | void bio_reset(struct bio *bio) | |
300 | { | |
301 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | |
302 | ||
9ae3b3f5 | 303 | bio_uninit(bio); |
f44b48c7 KO |
304 | |
305 | memset(bio, 0, BIO_RESET_BYTES); | |
4246a0b6 | 306 | bio->bi_flags = flags; |
c4cf5261 | 307 | atomic_set(&bio->__bi_remaining, 1); |
f44b48c7 KO |
308 | } |
309 | EXPORT_SYMBOL(bio_reset); | |
310 | ||
38f8baae | 311 | static struct bio *__bio_chain_endio(struct bio *bio) |
196d38bc | 312 | { |
4246a0b6 CH |
313 | struct bio *parent = bio->bi_private; |
314 | ||
4e4cbee9 CH |
315 | if (!parent->bi_status) |
316 | parent->bi_status = bio->bi_status; | |
196d38bc | 317 | bio_put(bio); |
38f8baae CH |
318 | return parent; |
319 | } | |
320 | ||
321 | static void bio_chain_endio(struct bio *bio) | |
322 | { | |
323 | bio_endio(__bio_chain_endio(bio)); | |
196d38bc KO |
324 | } |
325 | ||
326 | /** | |
327 | * bio_chain - chain bio completions | |
1051a902 RD |
328 | * @bio: the target bio |
329 | * @parent: the @bio's parent bio | |
196d38bc KO |
330 | * |
331 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
332 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
333 | * completed; the chained bio will also be freed when it completes. | |
334 | * | |
335 | * The caller must not set bi_private or bi_end_io in @bio. | |
336 | */ | |
337 | void bio_chain(struct bio *bio, struct bio *parent) | |
338 | { | |
339 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
340 | ||
341 | bio->bi_private = parent; | |
342 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 343 | bio_inc_remaining(parent); |
196d38bc KO |
344 | } |
345 | EXPORT_SYMBOL(bio_chain); | |
346 | ||
df2cb6da KO |
347 | static void bio_alloc_rescue(struct work_struct *work) |
348 | { | |
349 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
350 | struct bio *bio; | |
351 | ||
352 | while (1) { | |
353 | spin_lock(&bs->rescue_lock); | |
354 | bio = bio_list_pop(&bs->rescue_list); | |
355 | spin_unlock(&bs->rescue_lock); | |
356 | ||
357 | if (!bio) | |
358 | break; | |
359 | ||
360 | generic_make_request(bio); | |
361 | } | |
362 | } | |
363 | ||
364 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
365 | { | |
366 | struct bio_list punt, nopunt; | |
367 | struct bio *bio; | |
368 | ||
47e0fb46 N |
369 | if (WARN_ON_ONCE(!bs->rescue_workqueue)) |
370 | return; | |
df2cb6da KO |
371 | /* |
372 | * In order to guarantee forward progress we must punt only bios that | |
373 | * were allocated from this bio_set; otherwise, if there was a bio on | |
374 | * there for a stacking driver higher up in the stack, processing it | |
375 | * could require allocating bios from this bio_set, and doing that from | |
376 | * our own rescuer would be bad. | |
377 | * | |
378 | * Since bio lists are singly linked, pop them all instead of trying to | |
379 | * remove from the middle of the list: | |
380 | */ | |
381 | ||
382 | bio_list_init(&punt); | |
383 | bio_list_init(&nopunt); | |
384 | ||
f5fe1b51 | 385 | while ((bio = bio_list_pop(¤t->bio_list[0]))) |
df2cb6da | 386 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
f5fe1b51 | 387 | current->bio_list[0] = nopunt; |
df2cb6da | 388 | |
f5fe1b51 N |
389 | bio_list_init(&nopunt); |
390 | while ((bio = bio_list_pop(¤t->bio_list[1]))) | |
391 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
392 | current->bio_list[1] = nopunt; | |
df2cb6da KO |
393 | |
394 | spin_lock(&bs->rescue_lock); | |
395 | bio_list_merge(&bs->rescue_list, &punt); | |
396 | spin_unlock(&bs->rescue_lock); | |
397 | ||
398 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
399 | } | |
400 | ||
1da177e4 LT |
401 | /** |
402 | * bio_alloc_bioset - allocate a bio for I/O | |
519c8e9f | 403 | * @gfp_mask: the GFP_* mask given to the slab allocator |
1da177e4 | 404 | * @nr_iovecs: number of iovecs to pre-allocate |
db18efac | 405 | * @bs: the bio_set to allocate from. |
1da177e4 LT |
406 | * |
407 | * Description: | |
3f86a82a KO |
408 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is |
409 | * backed by the @bs's mempool. | |
410 | * | |
d0164adc MG |
411 | * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will |
412 | * always be able to allocate a bio. This is due to the mempool guarantees. | |
413 | * To make this work, callers must never allocate more than 1 bio at a time | |
414 | * from this pool. Callers that need to allocate more than 1 bio must always | |
415 | * submit the previously allocated bio for IO before attempting to allocate | |
416 | * a new one. Failure to do so can cause deadlocks under memory pressure. | |
3f86a82a | 417 | * |
df2cb6da KO |
418 | * Note that when running under generic_make_request() (i.e. any block |
419 | * driver), bios are not submitted until after you return - see the code in | |
420 | * generic_make_request() that converts recursion into iteration, to prevent | |
421 | * stack overflows. | |
422 | * | |
423 | * This would normally mean allocating multiple bios under | |
424 | * generic_make_request() would be susceptible to deadlocks, but we have | |
425 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
426 | * thread. | |
427 | * | |
428 | * However, we do not guarantee forward progress for allocations from other | |
429 | * mempools. Doing multiple allocations from the same mempool under | |
430 | * generic_make_request() should be avoided - instead, use bio_set's front_pad | |
431 | * for per bio allocations. | |
432 | * | |
3f86a82a KO |
433 | * RETURNS: |
434 | * Pointer to new bio on success, NULL on failure. | |
435 | */ | |
7a88fa19 DC |
436 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, |
437 | struct bio_set *bs) | |
1da177e4 | 438 | { |
df2cb6da | 439 | gfp_t saved_gfp = gfp_mask; |
3f86a82a KO |
440 | unsigned front_pad; |
441 | unsigned inline_vecs; | |
34053979 | 442 | struct bio_vec *bvl = NULL; |
451a9ebf TH |
443 | struct bio *bio; |
444 | void *p; | |
445 | ||
3f86a82a KO |
446 | if (!bs) { |
447 | if (nr_iovecs > UIO_MAXIOV) | |
448 | return NULL; | |
449 | ||
450 | p = kmalloc(sizeof(struct bio) + | |
451 | nr_iovecs * sizeof(struct bio_vec), | |
452 | gfp_mask); | |
453 | front_pad = 0; | |
454 | inline_vecs = nr_iovecs; | |
455 | } else { | |
d8f429e1 | 456 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
8aa6ba2f KO |
457 | if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && |
458 | nr_iovecs > 0)) | |
d8f429e1 | 459 | return NULL; |
df2cb6da KO |
460 | /* |
461 | * generic_make_request() converts recursion to iteration; this | |
462 | * means if we're running beneath it, any bios we allocate and | |
463 | * submit will not be submitted (and thus freed) until after we | |
464 | * return. | |
465 | * | |
466 | * This exposes us to a potential deadlock if we allocate | |
467 | * multiple bios from the same bio_set() while running | |
468 | * underneath generic_make_request(). If we were to allocate | |
469 | * multiple bios (say a stacking block driver that was splitting | |
470 | * bios), we would deadlock if we exhausted the mempool's | |
471 | * reserve. | |
472 | * | |
473 | * We solve this, and guarantee forward progress, with a rescuer | |
474 | * workqueue per bio_set. If we go to allocate and there are | |
475 | * bios on current->bio_list, we first try the allocation | |
d0164adc MG |
476 | * without __GFP_DIRECT_RECLAIM; if that fails, we punt those |
477 | * bios we would be blocking to the rescuer workqueue before | |
478 | * we retry with the original gfp_flags. | |
df2cb6da KO |
479 | */ |
480 | ||
f5fe1b51 N |
481 | if (current->bio_list && |
482 | (!bio_list_empty(¤t->bio_list[0]) || | |
47e0fb46 N |
483 | !bio_list_empty(¤t->bio_list[1])) && |
484 | bs->rescue_workqueue) | |
d0164adc | 485 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; |
df2cb6da | 486 | |
8aa6ba2f | 487 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
df2cb6da KO |
488 | if (!p && gfp_mask != saved_gfp) { |
489 | punt_bios_to_rescuer(bs); | |
490 | gfp_mask = saved_gfp; | |
8aa6ba2f | 491 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
df2cb6da KO |
492 | } |
493 | ||
3f86a82a KO |
494 | front_pad = bs->front_pad; |
495 | inline_vecs = BIO_INLINE_VECS; | |
496 | } | |
497 | ||
451a9ebf TH |
498 | if (unlikely(!p)) |
499 | return NULL; | |
1da177e4 | 500 | |
3f86a82a | 501 | bio = p + front_pad; |
3a83f467 | 502 | bio_init(bio, NULL, 0); |
34053979 | 503 | |
3f86a82a | 504 | if (nr_iovecs > inline_vecs) { |
ed996a52 CH |
505 | unsigned long idx = 0; |
506 | ||
8aa6ba2f | 507 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
df2cb6da KO |
508 | if (!bvl && gfp_mask != saved_gfp) { |
509 | punt_bios_to_rescuer(bs); | |
510 | gfp_mask = saved_gfp; | |
8aa6ba2f | 511 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
df2cb6da KO |
512 | } |
513 | ||
34053979 IM |
514 | if (unlikely(!bvl)) |
515 | goto err_free; | |
a38352e0 | 516 | |
ed996a52 | 517 | bio->bi_flags |= idx << BVEC_POOL_OFFSET; |
3f86a82a KO |
518 | } else if (nr_iovecs) { |
519 | bvl = bio->bi_inline_vecs; | |
1da177e4 | 520 | } |
3f86a82a KO |
521 | |
522 | bio->bi_pool = bs; | |
34053979 | 523 | bio->bi_max_vecs = nr_iovecs; |
34053979 | 524 | bio->bi_io_vec = bvl; |
1da177e4 | 525 | return bio; |
34053979 IM |
526 | |
527 | err_free: | |
8aa6ba2f | 528 | mempool_free(p, &bs->bio_pool); |
34053979 | 529 | return NULL; |
1da177e4 | 530 | } |
a112a71d | 531 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 532 | |
38a72dac | 533 | void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) |
1da177e4 LT |
534 | { |
535 | unsigned long flags; | |
7988613b KO |
536 | struct bio_vec bv; |
537 | struct bvec_iter iter; | |
1da177e4 | 538 | |
38a72dac | 539 | __bio_for_each_segment(bv, bio, iter, start) { |
7988613b KO |
540 | char *data = bvec_kmap_irq(&bv, &flags); |
541 | memset(data, 0, bv.bv_len); | |
542 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
543 | bvec_kunmap_irq(data, &flags); |
544 | } | |
545 | } | |
38a72dac | 546 | EXPORT_SYMBOL(zero_fill_bio_iter); |
1da177e4 LT |
547 | |
548 | /** | |
549 | * bio_put - release a reference to a bio | |
550 | * @bio: bio to release reference to | |
551 | * | |
552 | * Description: | |
553 | * Put a reference to a &struct bio, either one you have gotten with | |
9b10f6a9 | 554 | * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. |
1da177e4 LT |
555 | **/ |
556 | void bio_put(struct bio *bio) | |
557 | { | |
dac56212 | 558 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 559 | bio_free(bio); |
dac56212 JA |
560 | else { |
561 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
562 | ||
563 | /* | |
564 | * last put frees it | |
565 | */ | |
566 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
567 | bio_free(bio); | |
568 | } | |
1da177e4 | 569 | } |
a112a71d | 570 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 571 | |
165125e1 | 572 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
573 | { |
574 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
575 | blk_recount_segments(q, bio); | |
576 | ||
577 | return bio->bi_phys_segments; | |
578 | } | |
a112a71d | 579 | EXPORT_SYMBOL(bio_phys_segments); |
1da177e4 | 580 | |
59d276fe KO |
581 | /** |
582 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
583 | * @bio: destination bio | |
584 | * @bio_src: bio to clone | |
585 | * | |
586 | * Clone a &bio. Caller will own the returned bio, but not | |
587 | * the actual data it points to. Reference count of returned | |
588 | * bio will be one. | |
589 | * | |
590 | * Caller must ensure that @bio_src is not freed before @bio. | |
591 | */ | |
592 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
593 | { | |
ed996a52 | 594 | BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); |
59d276fe KO |
595 | |
596 | /* | |
74d46992 | 597 | * most users will be overriding ->bi_disk with a new target, |
59d276fe KO |
598 | * so we don't set nor calculate new physical/hw segment counts here |
599 | */ | |
74d46992 | 600 | bio->bi_disk = bio_src->bi_disk; |
62530ed8 | 601 | bio->bi_partno = bio_src->bi_partno; |
b7c44ed9 | 602 | bio_set_flag(bio, BIO_CLONED); |
111be883 SL |
603 | if (bio_flagged(bio_src, BIO_THROTTLED)) |
604 | bio_set_flag(bio, BIO_THROTTLED); | |
1eff9d32 | 605 | bio->bi_opf = bio_src->bi_opf; |
cb6934f8 | 606 | bio->bi_write_hint = bio_src->bi_write_hint; |
59d276fe KO |
607 | bio->bi_iter = bio_src->bi_iter; |
608 | bio->bi_io_vec = bio_src->bi_io_vec; | |
20bd723e PV |
609 | |
610 | bio_clone_blkcg_association(bio, bio_src); | |
59d276fe KO |
611 | } |
612 | EXPORT_SYMBOL(__bio_clone_fast); | |
613 | ||
614 | /** | |
615 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
616 | * @bio: bio to clone | |
617 | * @gfp_mask: allocation priority | |
618 | * @bs: bio_set to allocate from | |
619 | * | |
620 | * Like __bio_clone_fast, only also allocates the returned bio | |
621 | */ | |
622 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
623 | { | |
624 | struct bio *b; | |
625 | ||
626 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
627 | if (!b) | |
628 | return NULL; | |
629 | ||
630 | __bio_clone_fast(b, bio); | |
631 | ||
632 | if (bio_integrity(bio)) { | |
633 | int ret; | |
634 | ||
635 | ret = bio_integrity_clone(b, bio, gfp_mask); | |
636 | ||
637 | if (ret < 0) { | |
638 | bio_put(b); | |
639 | return NULL; | |
640 | } | |
641 | } | |
642 | ||
643 | return b; | |
644 | } | |
645 | EXPORT_SYMBOL(bio_clone_fast); | |
646 | ||
f4595875 SL |
647 | /** |
648 | * bio_clone_bioset - clone a bio | |
649 | * @bio_src: bio to clone | |
650 | * @gfp_mask: allocation priority | |
651 | * @bs: bio_set to allocate from | |
652 | * | |
653 | * Clone bio. Caller will own the returned bio, but not the actual data it | |
654 | * points to. Reference count of returned bio will be one. | |
655 | */ | |
656 | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, | |
657 | struct bio_set *bs) | |
1da177e4 | 658 | { |
bdb53207 KO |
659 | struct bvec_iter iter; |
660 | struct bio_vec bv; | |
661 | struct bio *bio; | |
1da177e4 | 662 | |
bdb53207 KO |
663 | /* |
664 | * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | |
665 | * bio_src->bi_io_vec to bio->bi_io_vec. | |
666 | * | |
667 | * We can't do that anymore, because: | |
668 | * | |
669 | * - The point of cloning the biovec is to produce a bio with a biovec | |
670 | * the caller can modify: bi_idx and bi_bvec_done should be 0. | |
671 | * | |
672 | * - The original bio could've had more than BIO_MAX_PAGES biovecs; if | |
673 | * we tried to clone the whole thing bio_alloc_bioset() would fail. | |
674 | * But the clone should succeed as long as the number of biovecs we | |
675 | * actually need to allocate is fewer than BIO_MAX_PAGES. | |
676 | * | |
677 | * - Lastly, bi_vcnt should not be looked at or relied upon by code | |
678 | * that does not own the bio - reason being drivers don't use it for | |
679 | * iterating over the biovec anymore, so expecting it to be kept up | |
680 | * to date (i.e. for clones that share the parent biovec) is just | |
681 | * asking for trouble and would force extra work on | |
682 | * __bio_clone_fast() anyways. | |
683 | */ | |
684 | ||
f4595875 | 685 | bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); |
bdb53207 | 686 | if (!bio) |
7ba1ba12 | 687 | return NULL; |
74d46992 | 688 | bio->bi_disk = bio_src->bi_disk; |
1eff9d32 | 689 | bio->bi_opf = bio_src->bi_opf; |
cb6934f8 | 690 | bio->bi_write_hint = bio_src->bi_write_hint; |
bdb53207 KO |
691 | bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; |
692 | bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; | |
7ba1ba12 | 693 | |
7afafc8a AH |
694 | switch (bio_op(bio)) { |
695 | case REQ_OP_DISCARD: | |
696 | case REQ_OP_SECURE_ERASE: | |
a6f0788e | 697 | case REQ_OP_WRITE_ZEROES: |
7afafc8a AH |
698 | break; |
699 | case REQ_OP_WRITE_SAME: | |
8423ae3d | 700 | bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; |
7afafc8a AH |
701 | break; |
702 | default: | |
f4595875 | 703 | bio_for_each_segment(bv, bio_src, iter) |
7afafc8a AH |
704 | bio->bi_io_vec[bio->bi_vcnt++] = bv; |
705 | break; | |
8423ae3d KO |
706 | } |
707 | ||
bdb53207 KO |
708 | if (bio_integrity(bio_src)) { |
709 | int ret; | |
7ba1ba12 | 710 | |
bdb53207 | 711 | ret = bio_integrity_clone(bio, bio_src, gfp_mask); |
059ea331 | 712 | if (ret < 0) { |
bdb53207 | 713 | bio_put(bio); |
7ba1ba12 | 714 | return NULL; |
059ea331 | 715 | } |
3676347a | 716 | } |
1da177e4 | 717 | |
20bd723e PV |
718 | bio_clone_blkcg_association(bio, bio_src); |
719 | ||
bdb53207 | 720 | return bio; |
1da177e4 | 721 | } |
bf800ef1 | 722 | EXPORT_SYMBOL(bio_clone_bioset); |
1da177e4 LT |
723 | |
724 | /** | |
c66a14d0 KO |
725 | * bio_add_pc_page - attempt to add page to bio |
726 | * @q: the target queue | |
727 | * @bio: destination bio | |
728 | * @page: page to add | |
729 | * @len: vec entry length | |
730 | * @offset: vec entry offset | |
1da177e4 | 731 | * |
c66a14d0 KO |
732 | * Attempt to add a page to the bio_vec maplist. This can fail for a |
733 | * number of reasons, such as the bio being full or target block device | |
734 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
735 | * so it is always possible to add a single page to an empty bio. | |
736 | * | |
737 | * This should only be used by REQ_PC bios. | |
1da177e4 | 738 | */ |
c66a14d0 KO |
739 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page |
740 | *page, unsigned int len, unsigned int offset) | |
1da177e4 LT |
741 | { |
742 | int retried_segments = 0; | |
743 | struct bio_vec *bvec; | |
744 | ||
745 | /* | |
746 | * cloned bio must not modify vec list | |
747 | */ | |
748 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
749 | return 0; | |
750 | ||
c66a14d0 | 751 | if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) |
1da177e4 LT |
752 | return 0; |
753 | ||
80cfd548 JA |
754 | /* |
755 | * For filesystems with a blocksize smaller than the pagesize | |
756 | * we will often be called with the same page as last time and | |
757 | * a consecutive offset. Optimize this special case. | |
758 | */ | |
759 | if (bio->bi_vcnt > 0) { | |
760 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
761 | ||
762 | if (page == prev->bv_page && | |
763 | offset == prev->bv_offset + prev->bv_len) { | |
764 | prev->bv_len += len; | |
fcbf6a08 | 765 | bio->bi_iter.bi_size += len; |
80cfd548 JA |
766 | goto done; |
767 | } | |
66cb45aa JA |
768 | |
769 | /* | |
770 | * If the queue doesn't support SG gaps and adding this | |
771 | * offset would create a gap, disallow it. | |
772 | */ | |
03100aad | 773 | if (bvec_gap_to_prev(q, prev, offset)) |
66cb45aa | 774 | return 0; |
80cfd548 JA |
775 | } |
776 | ||
0aa69fd3 | 777 | if (bio_full(bio)) |
1da177e4 LT |
778 | return 0; |
779 | ||
780 | /* | |
fcbf6a08 ML |
781 | * setup the new entry, we might clear it again later if we |
782 | * cannot add the page | |
783 | */ | |
784 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
785 | bvec->bv_page = page; | |
786 | bvec->bv_len = len; | |
787 | bvec->bv_offset = offset; | |
788 | bio->bi_vcnt++; | |
789 | bio->bi_phys_segments++; | |
790 | bio->bi_iter.bi_size += len; | |
791 | ||
792 | /* | |
793 | * Perform a recount if the number of segments is greater | |
794 | * than queue_max_segments(q). | |
1da177e4 LT |
795 | */ |
796 | ||
fcbf6a08 | 797 | while (bio->bi_phys_segments > queue_max_segments(q)) { |
1da177e4 LT |
798 | |
799 | if (retried_segments) | |
fcbf6a08 | 800 | goto failed; |
1da177e4 LT |
801 | |
802 | retried_segments = 1; | |
803 | blk_recount_segments(q, bio); | |
804 | } | |
805 | ||
1da177e4 | 806 | /* If we may be able to merge these biovecs, force a recount */ |
fcbf6a08 | 807 | if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
b7c44ed9 | 808 | bio_clear_flag(bio, BIO_SEG_VALID); |
1da177e4 | 809 | |
80cfd548 | 810 | done: |
1da177e4 | 811 | return len; |
fcbf6a08 ML |
812 | |
813 | failed: | |
814 | bvec->bv_page = NULL; | |
815 | bvec->bv_len = 0; | |
816 | bvec->bv_offset = 0; | |
817 | bio->bi_vcnt--; | |
818 | bio->bi_iter.bi_size -= len; | |
819 | blk_recount_segments(q, bio); | |
820 | return 0; | |
1da177e4 | 821 | } |
a112a71d | 822 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 823 | |
1da177e4 | 824 | /** |
0aa69fd3 CH |
825 | * __bio_try_merge_page - try appending data to an existing bvec. |
826 | * @bio: destination bio | |
827 | * @page: page to add | |
828 | * @len: length of the data to add | |
829 | * @off: offset of the data in @page | |
1da177e4 | 830 | * |
0aa69fd3 CH |
831 | * Try to add the data at @page + @off to the last bvec of @bio. This is a |
832 | * a useful optimisation for file systems with a block size smaller than the | |
833 | * page size. | |
834 | * | |
835 | * Return %true on success or %false on failure. | |
1da177e4 | 836 | */ |
0aa69fd3 CH |
837 | bool __bio_try_merge_page(struct bio *bio, struct page *page, |
838 | unsigned int len, unsigned int off) | |
1da177e4 | 839 | { |
c66a14d0 | 840 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
0aa69fd3 | 841 | return false; |
762380ad | 842 | |
c66a14d0 | 843 | if (bio->bi_vcnt > 0) { |
0aa69fd3 | 844 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
58a4915a | 845 | |
0aa69fd3 | 846 | if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) { |
c66a14d0 | 847 | bv->bv_len += len; |
0aa69fd3 CH |
848 | bio->bi_iter.bi_size += len; |
849 | return true; | |
c66a14d0 KO |
850 | } |
851 | } | |
0aa69fd3 CH |
852 | return false; |
853 | } | |
854 | EXPORT_SYMBOL_GPL(__bio_try_merge_page); | |
c66a14d0 | 855 | |
0aa69fd3 CH |
856 | /** |
857 | * __bio_add_page - add page to a bio in a new segment | |
858 | * @bio: destination bio | |
859 | * @page: page to add | |
860 | * @len: length of the data to add | |
861 | * @off: offset of the data in @page | |
862 | * | |
863 | * Add the data at @page + @off to @bio as a new bvec. The caller must ensure | |
864 | * that @bio has space for another bvec. | |
865 | */ | |
866 | void __bio_add_page(struct bio *bio, struct page *page, | |
867 | unsigned int len, unsigned int off) | |
868 | { | |
869 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; | |
c66a14d0 | 870 | |
0aa69fd3 CH |
871 | WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); |
872 | WARN_ON_ONCE(bio_full(bio)); | |
873 | ||
874 | bv->bv_page = page; | |
875 | bv->bv_offset = off; | |
876 | bv->bv_len = len; | |
c66a14d0 | 877 | |
c66a14d0 | 878 | bio->bi_iter.bi_size += len; |
0aa69fd3 CH |
879 | bio->bi_vcnt++; |
880 | } | |
881 | EXPORT_SYMBOL_GPL(__bio_add_page); | |
882 | ||
883 | /** | |
884 | * bio_add_page - attempt to add page to bio | |
885 | * @bio: destination bio | |
886 | * @page: page to add | |
887 | * @len: vec entry length | |
888 | * @offset: vec entry offset | |
889 | * | |
890 | * Attempt to add a page to the bio_vec maplist. This will only fail | |
891 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. | |
892 | */ | |
893 | int bio_add_page(struct bio *bio, struct page *page, | |
894 | unsigned int len, unsigned int offset) | |
895 | { | |
896 | if (!__bio_try_merge_page(bio, page, len, offset)) { | |
897 | if (bio_full(bio)) | |
898 | return 0; | |
899 | __bio_add_page(bio, page, len, offset); | |
900 | } | |
c66a14d0 | 901 | return len; |
1da177e4 | 902 | } |
a112a71d | 903 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 904 | |
2cefe4db KO |
905 | /** |
906 | * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio | |
907 | * @bio: bio to add pages to | |
908 | * @iter: iov iterator describing the region to be mapped | |
909 | * | |
910 | * Pins as many pages from *iter and appends them to @bio's bvec array. The | |
911 | * pages will have to be released using put_page() when done. | |
912 | */ | |
913 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | |
914 | { | |
915 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; | |
916 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; | |
917 | struct page **pages = (struct page **)bv; | |
918 | size_t offset, diff; | |
919 | ssize_t size; | |
920 | ||
921 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
922 | if (unlikely(size <= 0)) | |
923 | return size ? size : -EFAULT; | |
924 | nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; | |
925 | ||
926 | /* | |
927 | * Deep magic below: We need to walk the pinned pages backwards | |
928 | * because we are abusing the space allocated for the bio_vecs | |
929 | * for the page array. Because the bio_vecs are larger than the | |
930 | * page pointers by definition this will always work. But it also | |
931 | * means we can't use bio_add_page, so any changes to it's semantics | |
932 | * need to be reflected here as well. | |
933 | */ | |
934 | bio->bi_iter.bi_size += size; | |
935 | bio->bi_vcnt += nr_pages; | |
936 | ||
937 | diff = (nr_pages * PAGE_SIZE - offset) - size; | |
938 | while (nr_pages--) { | |
939 | bv[nr_pages].bv_page = pages[nr_pages]; | |
940 | bv[nr_pages].bv_len = PAGE_SIZE; | |
941 | bv[nr_pages].bv_offset = 0; | |
942 | } | |
943 | ||
944 | bv[0].bv_offset += offset; | |
945 | bv[0].bv_len -= offset; | |
946 | if (diff) | |
947 | bv[bio->bi_vcnt - 1].bv_len -= diff; | |
948 | ||
949 | iov_iter_advance(iter, size); | |
950 | return 0; | |
951 | } | |
952 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); | |
953 | ||
4246a0b6 | 954 | static void submit_bio_wait_endio(struct bio *bio) |
9e882242 | 955 | { |
65e53aab | 956 | complete(bio->bi_private); |
9e882242 KO |
957 | } |
958 | ||
959 | /** | |
960 | * submit_bio_wait - submit a bio, and wait until it completes | |
9e882242 KO |
961 | * @bio: The &struct bio which describes the I/O |
962 | * | |
963 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
964 | * bio_endio() on failure. | |
3d289d68 JK |
965 | * |
966 | * WARNING: Unlike to how submit_bio() is usually used, this function does not | |
967 | * result in bio reference to be consumed. The caller must drop the reference | |
968 | * on his own. | |
9e882242 | 969 | */ |
4e49ea4a | 970 | int submit_bio_wait(struct bio *bio) |
9e882242 | 971 | { |
e319e1fb | 972 | DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); |
9e882242 | 973 | |
65e53aab | 974 | bio->bi_private = &done; |
9e882242 | 975 | bio->bi_end_io = submit_bio_wait_endio; |
1eff9d32 | 976 | bio->bi_opf |= REQ_SYNC; |
4e49ea4a | 977 | submit_bio(bio); |
65e53aab | 978 | wait_for_completion_io(&done); |
9e882242 | 979 | |
65e53aab | 980 | return blk_status_to_errno(bio->bi_status); |
9e882242 KO |
981 | } |
982 | EXPORT_SYMBOL(submit_bio_wait); | |
983 | ||
054bdf64 KO |
984 | /** |
985 | * bio_advance - increment/complete a bio by some number of bytes | |
986 | * @bio: bio to advance | |
987 | * @bytes: number of bytes to complete | |
988 | * | |
989 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
990 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
991 | * be updated on the last bvec as well. | |
992 | * | |
993 | * @bio will then represent the remaining, uncompleted portion of the io. | |
994 | */ | |
995 | void bio_advance(struct bio *bio, unsigned bytes) | |
996 | { | |
997 | if (bio_integrity(bio)) | |
998 | bio_integrity_advance(bio, bytes); | |
999 | ||
4550dd6c | 1000 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
1001 | } |
1002 | EXPORT_SYMBOL(bio_advance); | |
1003 | ||
45db54d5 KO |
1004 | void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, |
1005 | struct bio *src, struct bvec_iter *src_iter) | |
16ac3d63 | 1006 | { |
1cb9dda4 | 1007 | struct bio_vec src_bv, dst_bv; |
16ac3d63 | 1008 | void *src_p, *dst_p; |
1cb9dda4 | 1009 | unsigned bytes; |
16ac3d63 | 1010 | |
45db54d5 KO |
1011 | while (src_iter->bi_size && dst_iter->bi_size) { |
1012 | src_bv = bio_iter_iovec(src, *src_iter); | |
1013 | dst_bv = bio_iter_iovec(dst, *dst_iter); | |
1cb9dda4 KO |
1014 | |
1015 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1016 | |
1cb9dda4 KO |
1017 | src_p = kmap_atomic(src_bv.bv_page); |
1018 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1019 | |
1cb9dda4 KO |
1020 | memcpy(dst_p + dst_bv.bv_offset, |
1021 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1022 | bytes); |
1023 | ||
1024 | kunmap_atomic(dst_p); | |
1025 | kunmap_atomic(src_p); | |
1026 | ||
6e6e811d KO |
1027 | flush_dcache_page(dst_bv.bv_page); |
1028 | ||
45db54d5 KO |
1029 | bio_advance_iter(src, src_iter, bytes); |
1030 | bio_advance_iter(dst, dst_iter, bytes); | |
16ac3d63 KO |
1031 | } |
1032 | } | |
38a72dac KO |
1033 | EXPORT_SYMBOL(bio_copy_data_iter); |
1034 | ||
1035 | /** | |
45db54d5 KO |
1036 | * bio_copy_data - copy contents of data buffers from one bio to another |
1037 | * @src: source bio | |
1038 | * @dst: destination bio | |
38a72dac KO |
1039 | * |
1040 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
1041 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
1042 | */ | |
1043 | void bio_copy_data(struct bio *dst, struct bio *src) | |
1044 | { | |
45db54d5 KO |
1045 | struct bvec_iter src_iter = src->bi_iter; |
1046 | struct bvec_iter dst_iter = dst->bi_iter; | |
1047 | ||
1048 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
38a72dac | 1049 | } |
16ac3d63 KO |
1050 | EXPORT_SYMBOL(bio_copy_data); |
1051 | ||
45db54d5 KO |
1052 | /** |
1053 | * bio_list_copy_data - copy contents of data buffers from one chain of bios to | |
1054 | * another | |
1055 | * @src: source bio list | |
1056 | * @dst: destination bio list | |
1057 | * | |
1058 | * Stops when it reaches the end of either the @src list or @dst list - that is, | |
1059 | * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of | |
1060 | * bios). | |
1061 | */ | |
1062 | void bio_list_copy_data(struct bio *dst, struct bio *src) | |
1063 | { | |
1064 | struct bvec_iter src_iter = src->bi_iter; | |
1065 | struct bvec_iter dst_iter = dst->bi_iter; | |
1066 | ||
1067 | while (1) { | |
1068 | if (!src_iter.bi_size) { | |
1069 | src = src->bi_next; | |
1070 | if (!src) | |
1071 | break; | |
1072 | ||
1073 | src_iter = src->bi_iter; | |
1074 | } | |
1075 | ||
1076 | if (!dst_iter.bi_size) { | |
1077 | dst = dst->bi_next; | |
1078 | if (!dst) | |
1079 | break; | |
1080 | ||
1081 | dst_iter = dst->bi_iter; | |
1082 | } | |
1083 | ||
1084 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
1085 | } | |
1086 | } | |
1087 | EXPORT_SYMBOL(bio_list_copy_data); | |
1088 | ||
1da177e4 | 1089 | struct bio_map_data { |
152e283f | 1090 | int is_our_pages; |
26e49cfc KO |
1091 | struct iov_iter iter; |
1092 | struct iovec iov[]; | |
1da177e4 LT |
1093 | }; |
1094 | ||
0e5b935d | 1095 | static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, |
76029ff3 | 1096 | gfp_t gfp_mask) |
1da177e4 | 1097 | { |
0e5b935d AV |
1098 | struct bio_map_data *bmd; |
1099 | if (data->nr_segs > UIO_MAXIOV) | |
f3f63c1c | 1100 | return NULL; |
1da177e4 | 1101 | |
0e5b935d AV |
1102 | bmd = kmalloc(sizeof(struct bio_map_data) + |
1103 | sizeof(struct iovec) * data->nr_segs, gfp_mask); | |
1104 | if (!bmd) | |
1105 | return NULL; | |
1106 | memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); | |
1107 | bmd->iter = *data; | |
1108 | bmd->iter.iov = bmd->iov; | |
1109 | return bmd; | |
1da177e4 LT |
1110 | } |
1111 | ||
9124d3fe DP |
1112 | /** |
1113 | * bio_copy_from_iter - copy all pages from iov_iter to bio | |
1114 | * @bio: The &struct bio which describes the I/O as destination | |
1115 | * @iter: iov_iter as source | |
1116 | * | |
1117 | * Copy all pages from iov_iter to bio. | |
1118 | * Returns 0 on success, or error on failure. | |
1119 | */ | |
98a09d61 | 1120 | static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) |
c5dec1c3 | 1121 | { |
9124d3fe | 1122 | int i; |
c5dec1c3 | 1123 | struct bio_vec *bvec; |
c5dec1c3 | 1124 | |
d74c6d51 | 1125 | bio_for_each_segment_all(bvec, bio, i) { |
9124d3fe | 1126 | ssize_t ret; |
c5dec1c3 | 1127 | |
9124d3fe DP |
1128 | ret = copy_page_from_iter(bvec->bv_page, |
1129 | bvec->bv_offset, | |
1130 | bvec->bv_len, | |
98a09d61 | 1131 | iter); |
9124d3fe | 1132 | |
98a09d61 | 1133 | if (!iov_iter_count(iter)) |
9124d3fe DP |
1134 | break; |
1135 | ||
1136 | if (ret < bvec->bv_len) | |
1137 | return -EFAULT; | |
c5dec1c3 FT |
1138 | } |
1139 | ||
9124d3fe DP |
1140 | return 0; |
1141 | } | |
1142 | ||
1143 | /** | |
1144 | * bio_copy_to_iter - copy all pages from bio to iov_iter | |
1145 | * @bio: The &struct bio which describes the I/O as source | |
1146 | * @iter: iov_iter as destination | |
1147 | * | |
1148 | * Copy all pages from bio to iov_iter. | |
1149 | * Returns 0 on success, or error on failure. | |
1150 | */ | |
1151 | static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) | |
1152 | { | |
1153 | int i; | |
1154 | struct bio_vec *bvec; | |
1155 | ||
1156 | bio_for_each_segment_all(bvec, bio, i) { | |
1157 | ssize_t ret; | |
1158 | ||
1159 | ret = copy_page_to_iter(bvec->bv_page, | |
1160 | bvec->bv_offset, | |
1161 | bvec->bv_len, | |
1162 | &iter); | |
1163 | ||
1164 | if (!iov_iter_count(&iter)) | |
1165 | break; | |
1166 | ||
1167 | if (ret < bvec->bv_len) | |
1168 | return -EFAULT; | |
1169 | } | |
1170 | ||
1171 | return 0; | |
c5dec1c3 FT |
1172 | } |
1173 | ||
491221f8 | 1174 | void bio_free_pages(struct bio *bio) |
1dfa0f68 CH |
1175 | { |
1176 | struct bio_vec *bvec; | |
1177 | int i; | |
1178 | ||
1179 | bio_for_each_segment_all(bvec, bio, i) | |
1180 | __free_page(bvec->bv_page); | |
1181 | } | |
491221f8 | 1182 | EXPORT_SYMBOL(bio_free_pages); |
1dfa0f68 | 1183 | |
1da177e4 LT |
1184 | /** |
1185 | * bio_uncopy_user - finish previously mapped bio | |
1186 | * @bio: bio being terminated | |
1187 | * | |
ddad8dd0 | 1188 | * Free pages allocated from bio_copy_user_iov() and write back data |
1da177e4 LT |
1189 | * to user space in case of a read. |
1190 | */ | |
1191 | int bio_uncopy_user(struct bio *bio) | |
1192 | { | |
1193 | struct bio_map_data *bmd = bio->bi_private; | |
1dfa0f68 | 1194 | int ret = 0; |
1da177e4 | 1195 | |
35dc2483 RD |
1196 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) { |
1197 | /* | |
1198 | * if we're in a workqueue, the request is orphaned, so | |
2d99b55d HR |
1199 | * don't copy into a random user address space, just free |
1200 | * and return -EINTR so user space doesn't expect any data. | |
35dc2483 | 1201 | */ |
2d99b55d HR |
1202 | if (!current->mm) |
1203 | ret = -EINTR; | |
1204 | else if (bio_data_dir(bio) == READ) | |
9124d3fe | 1205 | ret = bio_copy_to_iter(bio, bmd->iter); |
1dfa0f68 CH |
1206 | if (bmd->is_our_pages) |
1207 | bio_free_pages(bio); | |
35dc2483 | 1208 | } |
c8db4448 | 1209 | kfree(bmd); |
1da177e4 LT |
1210 | bio_put(bio); |
1211 | return ret; | |
1212 | } | |
1213 | ||
1214 | /** | |
c5dec1c3 | 1215 | * bio_copy_user_iov - copy user data to bio |
26e49cfc KO |
1216 | * @q: destination block queue |
1217 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | |
1218 | * @iter: iovec iterator | |
1219 | * @gfp_mask: memory allocation flags | |
1da177e4 LT |
1220 | * |
1221 | * Prepares and returns a bio for indirect user io, bouncing data | |
1222 | * to/from kernel pages as necessary. Must be paired with | |
1223 | * call bio_uncopy_user() on io completion. | |
1224 | */ | |
152e283f FT |
1225 | struct bio *bio_copy_user_iov(struct request_queue *q, |
1226 | struct rq_map_data *map_data, | |
e81cef5d | 1227 | struct iov_iter *iter, |
26e49cfc | 1228 | gfp_t gfp_mask) |
1da177e4 | 1229 | { |
1da177e4 | 1230 | struct bio_map_data *bmd; |
1da177e4 LT |
1231 | struct page *page; |
1232 | struct bio *bio; | |
d16d44eb AV |
1233 | int i = 0, ret; |
1234 | int nr_pages; | |
26e49cfc | 1235 | unsigned int len = iter->count; |
bd5cecea | 1236 | unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; |
1da177e4 | 1237 | |
0e5b935d | 1238 | bmd = bio_alloc_map_data(iter, gfp_mask); |
1da177e4 LT |
1239 | if (!bmd) |
1240 | return ERR_PTR(-ENOMEM); | |
1241 | ||
26e49cfc KO |
1242 | /* |
1243 | * We need to do a deep copy of the iov_iter including the iovecs. | |
1244 | * The caller provided iov might point to an on-stack or otherwise | |
1245 | * shortlived one. | |
1246 | */ | |
1247 | bmd->is_our_pages = map_data ? 0 : 1; | |
26e49cfc | 1248 | |
d16d44eb AV |
1249 | nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); |
1250 | if (nr_pages > BIO_MAX_PAGES) | |
1251 | nr_pages = BIO_MAX_PAGES; | |
26e49cfc | 1252 | |
1da177e4 | 1253 | ret = -ENOMEM; |
a9e9dc24 | 1254 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1255 | if (!bio) |
1256 | goto out_bmd; | |
1257 | ||
1da177e4 | 1258 | ret = 0; |
56c451f4 FT |
1259 | |
1260 | if (map_data) { | |
e623ddb4 | 1261 | nr_pages = 1 << map_data->page_order; |
56c451f4 FT |
1262 | i = map_data->offset / PAGE_SIZE; |
1263 | } | |
1da177e4 | 1264 | while (len) { |
e623ddb4 | 1265 | unsigned int bytes = PAGE_SIZE; |
1da177e4 | 1266 | |
56c451f4 FT |
1267 | bytes -= offset; |
1268 | ||
1da177e4 LT |
1269 | if (bytes > len) |
1270 | bytes = len; | |
1271 | ||
152e283f | 1272 | if (map_data) { |
e623ddb4 | 1273 | if (i == map_data->nr_entries * nr_pages) { |
152e283f FT |
1274 | ret = -ENOMEM; |
1275 | break; | |
1276 | } | |
e623ddb4 FT |
1277 | |
1278 | page = map_data->pages[i / nr_pages]; | |
1279 | page += (i % nr_pages); | |
1280 | ||
1281 | i++; | |
1282 | } else { | |
152e283f | 1283 | page = alloc_page(q->bounce_gfp | gfp_mask); |
e623ddb4 FT |
1284 | if (!page) { |
1285 | ret = -ENOMEM; | |
1286 | break; | |
1287 | } | |
1da177e4 LT |
1288 | } |
1289 | ||
56c451f4 | 1290 | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) |
1da177e4 | 1291 | break; |
1da177e4 LT |
1292 | |
1293 | len -= bytes; | |
56c451f4 | 1294 | offset = 0; |
1da177e4 LT |
1295 | } |
1296 | ||
1297 | if (ret) | |
1298 | goto cleanup; | |
1299 | ||
2884d0be AV |
1300 | if (map_data) |
1301 | map_data->offset += bio->bi_iter.bi_size; | |
1302 | ||
1da177e4 LT |
1303 | /* |
1304 | * success | |
1305 | */ | |
26e49cfc | 1306 | if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || |
ecb554a8 | 1307 | (map_data && map_data->from_user)) { |
98a09d61 | 1308 | ret = bio_copy_from_iter(bio, iter); |
c5dec1c3 FT |
1309 | if (ret) |
1310 | goto cleanup; | |
98a09d61 AV |
1311 | } else { |
1312 | iov_iter_advance(iter, bio->bi_iter.bi_size); | |
1da177e4 LT |
1313 | } |
1314 | ||
26e49cfc | 1315 | bio->bi_private = bmd; |
2884d0be AV |
1316 | if (map_data && map_data->null_mapped) |
1317 | bio_set_flag(bio, BIO_NULL_MAPPED); | |
1da177e4 LT |
1318 | return bio; |
1319 | cleanup: | |
152e283f | 1320 | if (!map_data) |
1dfa0f68 | 1321 | bio_free_pages(bio); |
1da177e4 LT |
1322 | bio_put(bio); |
1323 | out_bmd: | |
c8db4448 | 1324 | kfree(bmd); |
1da177e4 LT |
1325 | return ERR_PTR(ret); |
1326 | } | |
1327 | ||
37f19e57 CH |
1328 | /** |
1329 | * bio_map_user_iov - map user iovec into bio | |
1330 | * @q: the struct request_queue for the bio | |
1331 | * @iter: iovec iterator | |
1332 | * @gfp_mask: memory allocation flags | |
1333 | * | |
1334 | * Map the user space address into a bio suitable for io to a block | |
1335 | * device. Returns an error pointer in case of error. | |
1336 | */ | |
1337 | struct bio *bio_map_user_iov(struct request_queue *q, | |
e81cef5d | 1338 | struct iov_iter *iter, |
37f19e57 | 1339 | gfp_t gfp_mask) |
1da177e4 | 1340 | { |
26e49cfc | 1341 | int j; |
1da177e4 | 1342 | struct bio *bio; |
076098e5 | 1343 | int ret; |
2b04e8f6 | 1344 | struct bio_vec *bvec; |
1da177e4 | 1345 | |
b282cc76 | 1346 | if (!iov_iter_count(iter)) |
1da177e4 LT |
1347 | return ERR_PTR(-EINVAL); |
1348 | ||
b282cc76 | 1349 | bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); |
1da177e4 LT |
1350 | if (!bio) |
1351 | return ERR_PTR(-ENOMEM); | |
1352 | ||
0a0f1513 | 1353 | while (iov_iter_count(iter)) { |
629e42bc | 1354 | struct page **pages; |
076098e5 AV |
1355 | ssize_t bytes; |
1356 | size_t offs, added = 0; | |
1357 | int npages; | |
1da177e4 | 1358 | |
0a0f1513 | 1359 | bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); |
076098e5 AV |
1360 | if (unlikely(bytes <= 0)) { |
1361 | ret = bytes ? bytes : -EFAULT; | |
f1970baf | 1362 | goto out_unmap; |
99172157 | 1363 | } |
f1970baf | 1364 | |
076098e5 | 1365 | npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); |
f1970baf | 1366 | |
98f0bc99 AV |
1367 | if (unlikely(offs & queue_dma_alignment(q))) { |
1368 | ret = -EINVAL; | |
1369 | j = 0; | |
1370 | } else { | |
1371 | for (j = 0; j < npages; j++) { | |
1372 | struct page *page = pages[j]; | |
1373 | unsigned int n = PAGE_SIZE - offs; | |
1374 | unsigned short prev_bi_vcnt = bio->bi_vcnt; | |
f1970baf | 1375 | |
98f0bc99 AV |
1376 | if (n > bytes) |
1377 | n = bytes; | |
95d78c28 | 1378 | |
98f0bc99 AV |
1379 | if (!bio_add_pc_page(q, bio, page, n, offs)) |
1380 | break; | |
1da177e4 | 1381 | |
98f0bc99 AV |
1382 | /* |
1383 | * check if vector was merged with previous | |
1384 | * drop page reference if needed | |
1385 | */ | |
1386 | if (bio->bi_vcnt == prev_bi_vcnt) | |
1387 | put_page(page); | |
1388 | ||
1389 | added += n; | |
1390 | bytes -= n; | |
1391 | offs = 0; | |
1392 | } | |
0a0f1513 | 1393 | iov_iter_advance(iter, added); |
f1970baf | 1394 | } |
1da177e4 | 1395 | /* |
f1970baf | 1396 | * release the pages we didn't map into the bio, if any |
1da177e4 | 1397 | */ |
629e42bc | 1398 | while (j < npages) |
09cbfeaf | 1399 | put_page(pages[j++]); |
629e42bc | 1400 | kvfree(pages); |
e2e115d1 AV |
1401 | /* couldn't stuff something into bio? */ |
1402 | if (bytes) | |
1403 | break; | |
1da177e4 LT |
1404 | } |
1405 | ||
b7c44ed9 | 1406 | bio_set_flag(bio, BIO_USER_MAPPED); |
37f19e57 CH |
1407 | |
1408 | /* | |
5fad1b64 | 1409 | * subtle -- if bio_map_user_iov() ended up bouncing a bio, |
37f19e57 CH |
1410 | * it would normally disappear when its bi_end_io is run. |
1411 | * however, we need it for the unmap, so grab an extra | |
1412 | * reference to it | |
1413 | */ | |
1414 | bio_get(bio); | |
1da177e4 | 1415 | return bio; |
f1970baf JB |
1416 | |
1417 | out_unmap: | |
2b04e8f6 AV |
1418 | bio_for_each_segment_all(bvec, bio, j) { |
1419 | put_page(bvec->bv_page); | |
f1970baf | 1420 | } |
1da177e4 LT |
1421 | bio_put(bio); |
1422 | return ERR_PTR(ret); | |
1423 | } | |
1424 | ||
1da177e4 LT |
1425 | static void __bio_unmap_user(struct bio *bio) |
1426 | { | |
1427 | struct bio_vec *bvec; | |
1428 | int i; | |
1429 | ||
1430 | /* | |
1431 | * make sure we dirty pages we wrote to | |
1432 | */ | |
d74c6d51 | 1433 | bio_for_each_segment_all(bvec, bio, i) { |
1da177e4 LT |
1434 | if (bio_data_dir(bio) == READ) |
1435 | set_page_dirty_lock(bvec->bv_page); | |
1436 | ||
09cbfeaf | 1437 | put_page(bvec->bv_page); |
1da177e4 LT |
1438 | } |
1439 | ||
1440 | bio_put(bio); | |
1441 | } | |
1442 | ||
1443 | /** | |
1444 | * bio_unmap_user - unmap a bio | |
1445 | * @bio: the bio being unmapped | |
1446 | * | |
5fad1b64 BVA |
1447 | * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from |
1448 | * process context. | |
1da177e4 LT |
1449 | * |
1450 | * bio_unmap_user() may sleep. | |
1451 | */ | |
1452 | void bio_unmap_user(struct bio *bio) | |
1453 | { | |
1454 | __bio_unmap_user(bio); | |
1455 | bio_put(bio); | |
1456 | } | |
1457 | ||
4246a0b6 | 1458 | static void bio_map_kern_endio(struct bio *bio) |
b823825e | 1459 | { |
b823825e | 1460 | bio_put(bio); |
b823825e JA |
1461 | } |
1462 | ||
75c72b83 CH |
1463 | /** |
1464 | * bio_map_kern - map kernel address into bio | |
1465 | * @q: the struct request_queue for the bio | |
1466 | * @data: pointer to buffer to map | |
1467 | * @len: length in bytes | |
1468 | * @gfp_mask: allocation flags for bio allocation | |
1469 | * | |
1470 | * Map the kernel address into a bio suitable for io to a block | |
1471 | * device. Returns an error pointer in case of error. | |
1472 | */ | |
1473 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | |
1474 | gfp_t gfp_mask) | |
df46b9a4 MC |
1475 | { |
1476 | unsigned long kaddr = (unsigned long)data; | |
1477 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1478 | unsigned long start = kaddr >> PAGE_SHIFT; | |
1479 | const int nr_pages = end - start; | |
1480 | int offset, i; | |
1481 | struct bio *bio; | |
1482 | ||
a9e9dc24 | 1483 | bio = bio_kmalloc(gfp_mask, nr_pages); |
df46b9a4 MC |
1484 | if (!bio) |
1485 | return ERR_PTR(-ENOMEM); | |
1486 | ||
1487 | offset = offset_in_page(kaddr); | |
1488 | for (i = 0; i < nr_pages; i++) { | |
1489 | unsigned int bytes = PAGE_SIZE - offset; | |
1490 | ||
1491 | if (len <= 0) | |
1492 | break; | |
1493 | ||
1494 | if (bytes > len) | |
1495 | bytes = len; | |
1496 | ||
defd94b7 | 1497 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
75c72b83 CH |
1498 | offset) < bytes) { |
1499 | /* we don't support partial mappings */ | |
1500 | bio_put(bio); | |
1501 | return ERR_PTR(-EINVAL); | |
1502 | } | |
df46b9a4 MC |
1503 | |
1504 | data += bytes; | |
1505 | len -= bytes; | |
1506 | offset = 0; | |
1507 | } | |
1508 | ||
b823825e | 1509 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
1510 | return bio; |
1511 | } | |
a112a71d | 1512 | EXPORT_SYMBOL(bio_map_kern); |
df46b9a4 | 1513 | |
4246a0b6 | 1514 | static void bio_copy_kern_endio(struct bio *bio) |
68154e90 | 1515 | { |
1dfa0f68 CH |
1516 | bio_free_pages(bio); |
1517 | bio_put(bio); | |
1518 | } | |
1519 | ||
4246a0b6 | 1520 | static void bio_copy_kern_endio_read(struct bio *bio) |
1dfa0f68 | 1521 | { |
42d2683a | 1522 | char *p = bio->bi_private; |
1dfa0f68 | 1523 | struct bio_vec *bvec; |
68154e90 FT |
1524 | int i; |
1525 | ||
d74c6d51 | 1526 | bio_for_each_segment_all(bvec, bio, i) { |
1dfa0f68 | 1527 | memcpy(p, page_address(bvec->bv_page), bvec->bv_len); |
c8db4448 | 1528 | p += bvec->bv_len; |
68154e90 FT |
1529 | } |
1530 | ||
4246a0b6 | 1531 | bio_copy_kern_endio(bio); |
68154e90 FT |
1532 | } |
1533 | ||
1534 | /** | |
1535 | * bio_copy_kern - copy kernel address into bio | |
1536 | * @q: the struct request_queue for the bio | |
1537 | * @data: pointer to buffer to copy | |
1538 | * @len: length in bytes | |
1539 | * @gfp_mask: allocation flags for bio and page allocation | |
ffee0259 | 1540 | * @reading: data direction is READ |
68154e90 FT |
1541 | * |
1542 | * copy the kernel address into a bio suitable for io to a block | |
1543 | * device. Returns an error pointer in case of error. | |
1544 | */ | |
1545 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | |
1546 | gfp_t gfp_mask, int reading) | |
1547 | { | |
42d2683a CH |
1548 | unsigned long kaddr = (unsigned long)data; |
1549 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1550 | unsigned long start = kaddr >> PAGE_SHIFT; | |
42d2683a CH |
1551 | struct bio *bio; |
1552 | void *p = data; | |
1dfa0f68 | 1553 | int nr_pages = 0; |
68154e90 | 1554 | |
42d2683a CH |
1555 | /* |
1556 | * Overflow, abort | |
1557 | */ | |
1558 | if (end < start) | |
1559 | return ERR_PTR(-EINVAL); | |
68154e90 | 1560 | |
42d2683a CH |
1561 | nr_pages = end - start; |
1562 | bio = bio_kmalloc(gfp_mask, nr_pages); | |
1563 | if (!bio) | |
1564 | return ERR_PTR(-ENOMEM); | |
68154e90 | 1565 | |
42d2683a CH |
1566 | while (len) { |
1567 | struct page *page; | |
1568 | unsigned int bytes = PAGE_SIZE; | |
68154e90 | 1569 | |
42d2683a CH |
1570 | if (bytes > len) |
1571 | bytes = len; | |
1572 | ||
1573 | page = alloc_page(q->bounce_gfp | gfp_mask); | |
1574 | if (!page) | |
1575 | goto cleanup; | |
1576 | ||
1577 | if (!reading) | |
1578 | memcpy(page_address(page), p, bytes); | |
1579 | ||
1580 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | |
1581 | break; | |
1582 | ||
1583 | len -= bytes; | |
1584 | p += bytes; | |
68154e90 FT |
1585 | } |
1586 | ||
1dfa0f68 CH |
1587 | if (reading) { |
1588 | bio->bi_end_io = bio_copy_kern_endio_read; | |
1589 | bio->bi_private = data; | |
1590 | } else { | |
1591 | bio->bi_end_io = bio_copy_kern_endio; | |
1dfa0f68 | 1592 | } |
76029ff3 | 1593 | |
68154e90 | 1594 | return bio; |
42d2683a CH |
1595 | |
1596 | cleanup: | |
1dfa0f68 | 1597 | bio_free_pages(bio); |
42d2683a CH |
1598 | bio_put(bio); |
1599 | return ERR_PTR(-ENOMEM); | |
68154e90 FT |
1600 | } |
1601 | ||
1da177e4 LT |
1602 | /* |
1603 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1604 | * for performing direct-IO in BIOs. | |
1605 | * | |
1606 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1607 | * because the required locks are not interrupt-safe. So what we can do is to | |
1608 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1609 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1610 | * in process context. | |
1611 | * | |
1612 | * We special-case compound pages here: normally this means reads into hugetlb | |
1613 | * pages. The logic in here doesn't really work right for compound pages | |
1614 | * because the VM does not uniformly chase down the head page in all cases. | |
1615 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1616 | * handle them at all. So we skip compound pages here at an early stage. | |
1617 | * | |
1618 | * Note that this code is very hard to test under normal circumstances because | |
1619 | * direct-io pins the pages with get_user_pages(). This makes | |
1620 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1621 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1622 | * pagecache. |
1623 | * | |
1624 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1625 | * deferred bio dirtying paths. | |
1626 | */ | |
1627 | ||
1628 | /* | |
1629 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1630 | */ | |
1631 | void bio_set_pages_dirty(struct bio *bio) | |
1632 | { | |
cb34e057 | 1633 | struct bio_vec *bvec; |
1da177e4 LT |
1634 | int i; |
1635 | ||
cb34e057 KO |
1636 | bio_for_each_segment_all(bvec, bio, i) { |
1637 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1638 | |
1639 | if (page && !PageCompound(page)) | |
1640 | set_page_dirty_lock(page); | |
1641 | } | |
1642 | } | |
1900fcc4 | 1643 | EXPORT_SYMBOL_GPL(bio_set_pages_dirty); |
1da177e4 | 1644 | |
86b6c7a7 | 1645 | static void bio_release_pages(struct bio *bio) |
1da177e4 | 1646 | { |
cb34e057 | 1647 | struct bio_vec *bvec; |
1da177e4 LT |
1648 | int i; |
1649 | ||
cb34e057 KO |
1650 | bio_for_each_segment_all(bvec, bio, i) { |
1651 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1652 | |
1653 | if (page) | |
1654 | put_page(page); | |
1655 | } | |
1656 | } | |
1657 | ||
1658 | /* | |
1659 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1660 | * If they are, then fine. If, however, some pages are clean then they must | |
1661 | * have been written out during the direct-IO read. So we take another ref on | |
1662 | * the BIO and the offending pages and re-dirty the pages in process context. | |
1663 | * | |
1664 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
ea1754a0 KS |
1665 | * here on. It will run one put_page() against each page and will run one |
1666 | * bio_put() against the BIO. | |
1da177e4 LT |
1667 | */ |
1668 | ||
65f27f38 | 1669 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1670 | |
65f27f38 | 1671 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1672 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1673 | static struct bio *bio_dirty_list; | |
1674 | ||
1675 | /* | |
1676 | * This runs in process context | |
1677 | */ | |
65f27f38 | 1678 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 LT |
1679 | { |
1680 | unsigned long flags; | |
1681 | struct bio *bio; | |
1682 | ||
1683 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1684 | bio = bio_dirty_list; | |
1685 | bio_dirty_list = NULL; | |
1686 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1687 | ||
1688 | while (bio) { | |
1689 | struct bio *next = bio->bi_private; | |
1690 | ||
1691 | bio_set_pages_dirty(bio); | |
1692 | bio_release_pages(bio); | |
1693 | bio_put(bio); | |
1694 | bio = next; | |
1695 | } | |
1696 | } | |
1697 | ||
1698 | void bio_check_pages_dirty(struct bio *bio) | |
1699 | { | |
cb34e057 | 1700 | struct bio_vec *bvec; |
1da177e4 LT |
1701 | int nr_clean_pages = 0; |
1702 | int i; | |
1703 | ||
cb34e057 KO |
1704 | bio_for_each_segment_all(bvec, bio, i) { |
1705 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1706 | |
1707 | if (PageDirty(page) || PageCompound(page)) { | |
09cbfeaf | 1708 | put_page(page); |
cb34e057 | 1709 | bvec->bv_page = NULL; |
1da177e4 LT |
1710 | } else { |
1711 | nr_clean_pages++; | |
1712 | } | |
1713 | } | |
1714 | ||
1715 | if (nr_clean_pages) { | |
1716 | unsigned long flags; | |
1717 | ||
1718 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1719 | bio->bi_private = bio_dirty_list; | |
1720 | bio_dirty_list = bio; | |
1721 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1722 | schedule_work(&bio_dirty_work); | |
1723 | } else { | |
1724 | bio_put(bio); | |
1725 | } | |
1726 | } | |
1900fcc4 | 1727 | EXPORT_SYMBOL_GPL(bio_check_pages_dirty); |
1da177e4 | 1728 | |
d62e26b3 JA |
1729 | void generic_start_io_acct(struct request_queue *q, int rw, |
1730 | unsigned long sectors, struct hd_struct *part) | |
394ffa50 GZ |
1731 | { |
1732 | int cpu = part_stat_lock(); | |
1733 | ||
d62e26b3 | 1734 | part_round_stats(q, cpu, part); |
394ffa50 GZ |
1735 | part_stat_inc(cpu, part, ios[rw]); |
1736 | part_stat_add(cpu, part, sectors[rw], sectors); | |
d62e26b3 | 1737 | part_inc_in_flight(q, part, rw); |
394ffa50 GZ |
1738 | |
1739 | part_stat_unlock(); | |
1740 | } | |
1741 | EXPORT_SYMBOL(generic_start_io_acct); | |
1742 | ||
d62e26b3 JA |
1743 | void generic_end_io_acct(struct request_queue *q, int rw, |
1744 | struct hd_struct *part, unsigned long start_time) | |
394ffa50 GZ |
1745 | { |
1746 | unsigned long duration = jiffies - start_time; | |
1747 | int cpu = part_stat_lock(); | |
1748 | ||
1749 | part_stat_add(cpu, part, ticks[rw], duration); | |
d62e26b3 JA |
1750 | part_round_stats(q, cpu, part); |
1751 | part_dec_in_flight(q, part, rw); | |
394ffa50 GZ |
1752 | |
1753 | part_stat_unlock(); | |
1754 | } | |
1755 | EXPORT_SYMBOL(generic_end_io_acct); | |
1756 | ||
2d4dc890 IL |
1757 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE |
1758 | void bio_flush_dcache_pages(struct bio *bi) | |
1759 | { | |
7988613b KO |
1760 | struct bio_vec bvec; |
1761 | struct bvec_iter iter; | |
2d4dc890 | 1762 | |
7988613b KO |
1763 | bio_for_each_segment(bvec, bi, iter) |
1764 | flush_dcache_page(bvec.bv_page); | |
2d4dc890 IL |
1765 | } |
1766 | EXPORT_SYMBOL(bio_flush_dcache_pages); | |
1767 | #endif | |
1768 | ||
c4cf5261 JA |
1769 | static inline bool bio_remaining_done(struct bio *bio) |
1770 | { | |
1771 | /* | |
1772 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1773 | * we always end io on the first invocation. | |
1774 | */ | |
1775 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1776 | return true; | |
1777 | ||
1778 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1779 | ||
326e1dbb | 1780 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
b7c44ed9 | 1781 | bio_clear_flag(bio, BIO_CHAIN); |
c4cf5261 | 1782 | return true; |
326e1dbb | 1783 | } |
c4cf5261 JA |
1784 | |
1785 | return false; | |
1786 | } | |
1787 | ||
1da177e4 LT |
1788 | /** |
1789 | * bio_endio - end I/O on a bio | |
1790 | * @bio: bio | |
1da177e4 LT |
1791 | * |
1792 | * Description: | |
4246a0b6 CH |
1793 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
1794 | * way to end I/O on a bio. No one should call bi_end_io() directly on a | |
1795 | * bio unless they own it and thus know that it has an end_io function. | |
fbbaf700 N |
1796 | * |
1797 | * bio_endio() can be called several times on a bio that has been chained | |
1798 | * using bio_chain(). The ->bi_end_io() function will only be called the | |
1799 | * last time. At this point the BLK_TA_COMPLETE tracing event will be | |
1800 | * generated if BIO_TRACE_COMPLETION is set. | |
1da177e4 | 1801 | **/ |
4246a0b6 | 1802 | void bio_endio(struct bio *bio) |
1da177e4 | 1803 | { |
ba8c6967 | 1804 | again: |
2b885517 | 1805 | if (!bio_remaining_done(bio)) |
ba8c6967 | 1806 | return; |
7c20f116 CH |
1807 | if (!bio_integrity_endio(bio)) |
1808 | return; | |
1da177e4 | 1809 | |
ba8c6967 CH |
1810 | /* |
1811 | * Need to have a real endio function for chained bios, otherwise | |
1812 | * various corner cases will break (like stacking block devices that | |
1813 | * save/restore bi_end_io) - however, we want to avoid unbounded | |
1814 | * recursion and blowing the stack. Tail call optimization would | |
1815 | * handle this, but compiling with frame pointers also disables | |
1816 | * gcc's sibling call optimization. | |
1817 | */ | |
1818 | if (bio->bi_end_io == bio_chain_endio) { | |
1819 | bio = __bio_chain_endio(bio); | |
1820 | goto again; | |
196d38bc | 1821 | } |
ba8c6967 | 1822 | |
74d46992 CH |
1823 | if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { |
1824 | trace_block_bio_complete(bio->bi_disk->queue, bio, | |
a462b950 | 1825 | blk_status_to_errno(bio->bi_status)); |
fbbaf700 N |
1826 | bio_clear_flag(bio, BIO_TRACE_COMPLETION); |
1827 | } | |
1828 | ||
9e234eea | 1829 | blk_throtl_bio_endio(bio); |
b222dd2f SL |
1830 | /* release cgroup info */ |
1831 | bio_uninit(bio); | |
ba8c6967 CH |
1832 | if (bio->bi_end_io) |
1833 | bio->bi_end_io(bio); | |
1da177e4 | 1834 | } |
a112a71d | 1835 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1836 | |
20d0189b KO |
1837 | /** |
1838 | * bio_split - split a bio | |
1839 | * @bio: bio to split | |
1840 | * @sectors: number of sectors to split from the front of @bio | |
1841 | * @gfp: gfp mask | |
1842 | * @bs: bio set to allocate from | |
1843 | * | |
1844 | * Allocates and returns a new bio which represents @sectors from the start of | |
1845 | * @bio, and updates @bio to represent the remaining sectors. | |
1846 | * | |
f3f5da62 MP |
1847 | * Unless this is a discard request the newly allocated bio will point |
1848 | * to @bio's bi_io_vec; it is the caller's responsibility to ensure that | |
1849 | * @bio is not freed before the split. | |
20d0189b KO |
1850 | */ |
1851 | struct bio *bio_split(struct bio *bio, int sectors, | |
1852 | gfp_t gfp, struct bio_set *bs) | |
1853 | { | |
f341a4d3 | 1854 | struct bio *split; |
20d0189b KO |
1855 | |
1856 | BUG_ON(sectors <= 0); | |
1857 | BUG_ON(sectors >= bio_sectors(bio)); | |
1858 | ||
f9d03f96 | 1859 | split = bio_clone_fast(bio, gfp, bs); |
20d0189b KO |
1860 | if (!split) |
1861 | return NULL; | |
1862 | ||
1863 | split->bi_iter.bi_size = sectors << 9; | |
1864 | ||
1865 | if (bio_integrity(split)) | |
fbd08e76 | 1866 | bio_integrity_trim(split); |
20d0189b KO |
1867 | |
1868 | bio_advance(bio, split->bi_iter.bi_size); | |
1869 | ||
fbbaf700 | 1870 | if (bio_flagged(bio, BIO_TRACE_COMPLETION)) |
20d59023 | 1871 | bio_set_flag(split, BIO_TRACE_COMPLETION); |
fbbaf700 | 1872 | |
20d0189b KO |
1873 | return split; |
1874 | } | |
1875 | EXPORT_SYMBOL(bio_split); | |
1876 | ||
6678d83f KO |
1877 | /** |
1878 | * bio_trim - trim a bio | |
1879 | * @bio: bio to trim | |
1880 | * @offset: number of sectors to trim from the front of @bio | |
1881 | * @size: size we want to trim @bio to, in sectors | |
1882 | */ | |
1883 | void bio_trim(struct bio *bio, int offset, int size) | |
1884 | { | |
1885 | /* 'bio' is a cloned bio which we need to trim to match | |
1886 | * the given offset and size. | |
6678d83f | 1887 | */ |
6678d83f KO |
1888 | |
1889 | size <<= 9; | |
4f024f37 | 1890 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1891 | return; |
1892 | ||
b7c44ed9 | 1893 | bio_clear_flag(bio, BIO_SEG_VALID); |
6678d83f KO |
1894 | |
1895 | bio_advance(bio, offset << 9); | |
1896 | ||
4f024f37 | 1897 | bio->bi_iter.bi_size = size; |
376a78ab DM |
1898 | |
1899 | if (bio_integrity(bio)) | |
fbd08e76 | 1900 | bio_integrity_trim(bio); |
376a78ab | 1901 | |
6678d83f KO |
1902 | } |
1903 | EXPORT_SYMBOL_GPL(bio_trim); | |
1904 | ||
1da177e4 LT |
1905 | /* |
1906 | * create memory pools for biovec's in a bio_set. | |
1907 | * use the global biovec slabs created for general use. | |
1908 | */ | |
8aa6ba2f | 1909 | int biovec_init_pool(mempool_t *pool, int pool_entries) |
1da177e4 | 1910 | { |
ed996a52 | 1911 | struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; |
1da177e4 | 1912 | |
8aa6ba2f | 1913 | return mempool_init_slab_pool(pool, pool_entries, bp->slab); |
1da177e4 LT |
1914 | } |
1915 | ||
917a38c7 KO |
1916 | /* |
1917 | * bioset_exit - exit a bioset initialized with bioset_init() | |
1918 | * | |
1919 | * May be called on a zeroed but uninitialized bioset (i.e. allocated with | |
1920 | * kzalloc()). | |
1921 | */ | |
1922 | void bioset_exit(struct bio_set *bs) | |
1da177e4 | 1923 | { |
df2cb6da KO |
1924 | if (bs->rescue_workqueue) |
1925 | destroy_workqueue(bs->rescue_workqueue); | |
917a38c7 | 1926 | bs->rescue_workqueue = NULL; |
df2cb6da | 1927 | |
8aa6ba2f KO |
1928 | mempool_exit(&bs->bio_pool); |
1929 | mempool_exit(&bs->bvec_pool); | |
9f060e22 | 1930 | |
7878cba9 | 1931 | bioset_integrity_free(bs); |
917a38c7 KO |
1932 | if (bs->bio_slab) |
1933 | bio_put_slab(bs); | |
1934 | bs->bio_slab = NULL; | |
1935 | } | |
1936 | EXPORT_SYMBOL(bioset_exit); | |
1da177e4 | 1937 | |
917a38c7 KO |
1938 | /** |
1939 | * bioset_init - Initialize a bio_set | |
dad08527 | 1940 | * @bs: pool to initialize |
917a38c7 KO |
1941 | * @pool_size: Number of bio and bio_vecs to cache in the mempool |
1942 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1943 | * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS | |
1944 | * and %BIOSET_NEED_RESCUER | |
1945 | * | |
dad08527 KO |
1946 | * Description: |
1947 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1948 | * to ask for a number of bytes to be allocated in front of the bio. | |
1949 | * Front pad allocation is useful for embedding the bio inside | |
1950 | * another structure, to avoid allocating extra data to go with the bio. | |
1951 | * Note that the bio must be embedded at the END of that structure always, | |
1952 | * or things will break badly. | |
1953 | * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated | |
1954 | * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). | |
1955 | * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to | |
1956 | * dispatch queued requests when the mempool runs out of space. | |
1957 | * | |
917a38c7 KO |
1958 | */ |
1959 | int bioset_init(struct bio_set *bs, | |
1960 | unsigned int pool_size, | |
1961 | unsigned int front_pad, | |
1962 | int flags) | |
1963 | { | |
1964 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | |
1965 | ||
1966 | bs->front_pad = front_pad; | |
1967 | ||
1968 | spin_lock_init(&bs->rescue_lock); | |
1969 | bio_list_init(&bs->rescue_list); | |
1970 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1971 | ||
1972 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); | |
1973 | if (!bs->bio_slab) | |
1974 | return -ENOMEM; | |
1975 | ||
1976 | if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) | |
1977 | goto bad; | |
1978 | ||
1979 | if ((flags & BIOSET_NEED_BVECS) && | |
1980 | biovec_init_pool(&bs->bvec_pool, pool_size)) | |
1981 | goto bad; | |
1982 | ||
1983 | if (!(flags & BIOSET_NEED_RESCUER)) | |
1984 | return 0; | |
1985 | ||
1986 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1987 | if (!bs->rescue_workqueue) | |
1988 | goto bad; | |
1989 | ||
1990 | return 0; | |
1991 | bad: | |
1992 | bioset_exit(bs); | |
1993 | return -ENOMEM; | |
1994 | } | |
1995 | EXPORT_SYMBOL(bioset_init); | |
1996 | ||
28e89fd9 JA |
1997 | /* |
1998 | * Initialize and setup a new bio_set, based on the settings from | |
1999 | * another bio_set. | |
2000 | */ | |
2001 | int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) | |
2002 | { | |
2003 | int flags; | |
2004 | ||
2005 | flags = 0; | |
2006 | if (src->bvec_pool.min_nr) | |
2007 | flags |= BIOSET_NEED_BVECS; | |
2008 | if (src->rescue_workqueue) | |
2009 | flags |= BIOSET_NEED_RESCUER; | |
2010 | ||
2011 | return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); | |
2012 | } | |
2013 | EXPORT_SYMBOL(bioset_init_from_src); | |
2014 | ||
852c788f | 2015 | #ifdef CONFIG_BLK_CGROUP |
1d933cf0 TH |
2016 | |
2017 | /** | |
2018 | * bio_associate_blkcg - associate a bio with the specified blkcg | |
2019 | * @bio: target bio | |
2020 | * @blkcg_css: css of the blkcg to associate | |
2021 | * | |
2022 | * Associate @bio with the blkcg specified by @blkcg_css. Block layer will | |
2023 | * treat @bio as if it were issued by a task which belongs to the blkcg. | |
2024 | * | |
2025 | * This function takes an extra reference of @blkcg_css which will be put | |
2026 | * when @bio is released. The caller must own @bio and is responsible for | |
2027 | * synchronizing calls to this function. | |
2028 | */ | |
2029 | int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) | |
2030 | { | |
2031 | if (unlikely(bio->bi_css)) | |
2032 | return -EBUSY; | |
2033 | css_get(blkcg_css); | |
2034 | bio->bi_css = blkcg_css; | |
2035 | return 0; | |
2036 | } | |
5aa2a96b | 2037 | EXPORT_SYMBOL_GPL(bio_associate_blkcg); |
1d933cf0 | 2038 | |
852c788f TH |
2039 | /** |
2040 | * bio_disassociate_task - undo bio_associate_current() | |
2041 | * @bio: target bio | |
2042 | */ | |
2043 | void bio_disassociate_task(struct bio *bio) | |
2044 | { | |
2045 | if (bio->bi_ioc) { | |
2046 | put_io_context(bio->bi_ioc); | |
2047 | bio->bi_ioc = NULL; | |
2048 | } | |
2049 | if (bio->bi_css) { | |
2050 | css_put(bio->bi_css); | |
2051 | bio->bi_css = NULL; | |
2052 | } | |
2053 | } | |
2054 | ||
20bd723e PV |
2055 | /** |
2056 | * bio_clone_blkcg_association - clone blkcg association from src to dst bio | |
2057 | * @dst: destination bio | |
2058 | * @src: source bio | |
2059 | */ | |
2060 | void bio_clone_blkcg_association(struct bio *dst, struct bio *src) | |
2061 | { | |
2062 | if (src->bi_css) | |
2063 | WARN_ON(bio_associate_blkcg(dst, src->bi_css)); | |
2064 | } | |
8a8e6f84 | 2065 | EXPORT_SYMBOL_GPL(bio_clone_blkcg_association); |
852c788f TH |
2066 | #endif /* CONFIG_BLK_CGROUP */ |
2067 | ||
1da177e4 LT |
2068 | static void __init biovec_init_slabs(void) |
2069 | { | |
2070 | int i; | |
2071 | ||
ed996a52 | 2072 | for (i = 0; i < BVEC_POOL_NR; i++) { |
1da177e4 LT |
2073 | int size; |
2074 | struct biovec_slab *bvs = bvec_slabs + i; | |
2075 | ||
a7fcd37c JA |
2076 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
2077 | bvs->slab = NULL; | |
2078 | continue; | |
2079 | } | |
a7fcd37c | 2080 | |
1da177e4 LT |
2081 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
2082 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 2083 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
2084 | } |
2085 | } | |
2086 | ||
2087 | static int __init init_bio(void) | |
2088 | { | |
bb799ca0 JA |
2089 | bio_slab_max = 2; |
2090 | bio_slab_nr = 0; | |
6396bb22 KC |
2091 | bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), |
2092 | GFP_KERNEL); | |
bb799ca0 JA |
2093 | if (!bio_slabs) |
2094 | panic("bio: can't allocate bios\n"); | |
1da177e4 | 2095 | |
7878cba9 | 2096 | bio_integrity_init(); |
1da177e4 LT |
2097 | biovec_init_slabs(); |
2098 | ||
f4f8154a | 2099 | if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) |
1da177e4 LT |
2100 | panic("bio: can't allocate bios\n"); |
2101 | ||
f4f8154a | 2102 | if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) |
a91a2785 MP |
2103 | panic("bio: can't create integrity pool\n"); |
2104 | ||
1da177e4 LT |
2105 | return 0; |
2106 | } | |
1da177e4 | 2107 | subsys_initcall(init_bio); |