]>
Commit | Line | Data |
---|---|---|
263b4a30 RF |
1 | /* |
2 | * FDT related Helper functions used by the EFI stub on multiple | |
3 | * architectures. This should be #included by the EFI stub | |
4 | * implementation files. | |
5 | * | |
6 | * Copyright 2013 Linaro Limited; author Roy Franz | |
7 | * | |
8 | * This file is part of the Linux kernel, and is made available | |
9 | * under the terms of the GNU General Public License version 2. | |
10 | * | |
11 | */ | |
12 | ||
bd669475 AB |
13 | #include <linux/efi.h> |
14 | #include <linux/libfdt.h> | |
15 | #include <asm/efi.h> | |
16 | ||
17 | efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, | |
18 | unsigned long orig_fdt_size, | |
19 | void *fdt, int new_fdt_size, char *cmdline_ptr, | |
20 | u64 initrd_addr, u64 initrd_size, | |
21 | efi_memory_desc_t *memory_map, | |
22 | unsigned long map_size, unsigned long desc_size, | |
23 | u32 desc_ver) | |
263b4a30 RF |
24 | { |
25 | int node, prev; | |
26 | int status; | |
27 | u32 fdt_val32; | |
28 | u64 fdt_val64; | |
29 | ||
263b4a30 RF |
30 | /* Do some checks on provided FDT, if it exists*/ |
31 | if (orig_fdt) { | |
32 | if (fdt_check_header(orig_fdt)) { | |
33 | pr_efi_err(sys_table, "Device Tree header not valid!\n"); | |
34 | return EFI_LOAD_ERROR; | |
35 | } | |
36 | /* | |
37 | * We don't get the size of the FDT if we get if from a | |
38 | * configuration table. | |
39 | */ | |
40 | if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { | |
41 | pr_efi_err(sys_table, "Truncated device tree! foo!\n"); | |
42 | return EFI_LOAD_ERROR; | |
43 | } | |
44 | } | |
45 | ||
46 | if (orig_fdt) | |
47 | status = fdt_open_into(orig_fdt, fdt, new_fdt_size); | |
48 | else | |
49 | status = fdt_create_empty_tree(fdt, new_fdt_size); | |
50 | ||
51 | if (status != 0) | |
52 | goto fdt_set_fail; | |
53 | ||
54 | /* | |
55 | * Delete any memory nodes present. We must delete nodes which | |
56 | * early_init_dt_scan_memory may try to use. | |
57 | */ | |
58 | prev = 0; | |
59 | for (;;) { | |
6fb8cc82 | 60 | const char *type; |
263b4a30 RF |
61 | int len; |
62 | ||
63 | node = fdt_next_node(fdt, prev, NULL); | |
64 | if (node < 0) | |
65 | break; | |
66 | ||
67 | type = fdt_getprop(fdt, node, "device_type", &len); | |
68 | if (type && strncmp(type, "memory", len) == 0) { | |
69 | fdt_del_node(fdt, node); | |
70 | continue; | |
71 | } | |
72 | ||
73 | prev = node; | |
74 | } | |
75 | ||
76 | node = fdt_subnode_offset(fdt, 0, "chosen"); | |
77 | if (node < 0) { | |
78 | node = fdt_add_subnode(fdt, 0, "chosen"); | |
79 | if (node < 0) { | |
80 | status = node; /* node is error code when negative */ | |
81 | goto fdt_set_fail; | |
82 | } | |
83 | } | |
84 | ||
85 | if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) { | |
86 | status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, | |
87 | strlen(cmdline_ptr) + 1); | |
88 | if (status) | |
89 | goto fdt_set_fail; | |
90 | } | |
91 | ||
92 | /* Set initrd address/end in device tree, if present */ | |
93 | if (initrd_size != 0) { | |
94 | u64 initrd_image_end; | |
95 | u64 initrd_image_start = cpu_to_fdt64(initrd_addr); | |
96 | ||
97 | status = fdt_setprop(fdt, node, "linux,initrd-start", | |
98 | &initrd_image_start, sizeof(u64)); | |
99 | if (status) | |
100 | goto fdt_set_fail; | |
101 | initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size); | |
102 | status = fdt_setprop(fdt, node, "linux,initrd-end", | |
103 | &initrd_image_end, sizeof(u64)); | |
104 | if (status) | |
105 | goto fdt_set_fail; | |
106 | } | |
107 | ||
108 | /* Add FDT entries for EFI runtime services in chosen node. */ | |
109 | node = fdt_subnode_offset(fdt, 0, "chosen"); | |
110 | fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table); | |
111 | status = fdt_setprop(fdt, node, "linux,uefi-system-table", | |
112 | &fdt_val64, sizeof(fdt_val64)); | |
113 | if (status) | |
114 | goto fdt_set_fail; | |
115 | ||
116 | fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map); | |
117 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-start", | |
118 | &fdt_val64, sizeof(fdt_val64)); | |
119 | if (status) | |
120 | goto fdt_set_fail; | |
121 | ||
122 | fdt_val32 = cpu_to_fdt32(map_size); | |
123 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-size", | |
124 | &fdt_val32, sizeof(fdt_val32)); | |
125 | if (status) | |
126 | goto fdt_set_fail; | |
127 | ||
128 | fdt_val32 = cpu_to_fdt32(desc_size); | |
129 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size", | |
130 | &fdt_val32, sizeof(fdt_val32)); | |
131 | if (status) | |
132 | goto fdt_set_fail; | |
133 | ||
134 | fdt_val32 = cpu_to_fdt32(desc_ver); | |
135 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver", | |
136 | &fdt_val32, sizeof(fdt_val32)); | |
137 | if (status) | |
138 | goto fdt_set_fail; | |
139 | ||
140 | /* | |
141 | * Add kernel version banner so stub/kernel match can be | |
142 | * verified. | |
143 | */ | |
144 | status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver", | |
145 | linux_banner); | |
146 | if (status) | |
147 | goto fdt_set_fail; | |
148 | ||
149 | return EFI_SUCCESS; | |
150 | ||
151 | fdt_set_fail: | |
152 | if (status == -FDT_ERR_NOSPACE) | |
153 | return EFI_BUFFER_TOO_SMALL; | |
154 | ||
155 | return EFI_LOAD_ERROR; | |
156 | } | |
157 | ||
158 | #ifndef EFI_FDT_ALIGN | |
159 | #define EFI_FDT_ALIGN EFI_PAGE_SIZE | |
160 | #endif | |
161 | ||
162 | /* | |
163 | * Allocate memory for a new FDT, then add EFI, commandline, and | |
164 | * initrd related fields to the FDT. This routine increases the | |
165 | * FDT allocation size until the allocated memory is large | |
166 | * enough. EFI allocations are in EFI_PAGE_SIZE granules, | |
167 | * which are fixed at 4K bytes, so in most cases the first | |
168 | * allocation should succeed. | |
169 | * EFI boot services are exited at the end of this function. | |
170 | * There must be no allocations between the get_memory_map() | |
171 | * call and the exit_boot_services() call, so the exiting of | |
172 | * boot services is very tightly tied to the creation of the FDT | |
173 | * with the final memory map in it. | |
174 | */ | |
175 | ||
176 | efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, | |
177 | void *handle, | |
178 | unsigned long *new_fdt_addr, | |
179 | unsigned long max_addr, | |
180 | u64 initrd_addr, u64 initrd_size, | |
181 | char *cmdline_ptr, | |
182 | unsigned long fdt_addr, | |
183 | unsigned long fdt_size) | |
184 | { | |
185 | unsigned long map_size, desc_size; | |
186 | u32 desc_ver; | |
187 | unsigned long mmap_key; | |
188 | efi_memory_desc_t *memory_map; | |
189 | unsigned long new_fdt_size; | |
190 | efi_status_t status; | |
191 | ||
192 | /* | |
193 | * Estimate size of new FDT, and allocate memory for it. We | |
194 | * will allocate a bigger buffer if this ends up being too | |
195 | * small, so a rough guess is OK here. | |
196 | */ | |
197 | new_fdt_size = fdt_size + EFI_PAGE_SIZE; | |
198 | while (1) { | |
199 | status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN, | |
200 | new_fdt_addr, max_addr); | |
201 | if (status != EFI_SUCCESS) { | |
202 | pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n"); | |
203 | goto fail; | |
204 | } | |
205 | ||
206 | /* | |
207 | * Now that we have done our final memory allocation (and free) | |
208 | * we can get the memory map key needed for | |
209 | * exit_boot_services(). | |
210 | */ | |
211 | status = efi_get_memory_map(sys_table, &memory_map, &map_size, | |
212 | &desc_size, &desc_ver, &mmap_key); | |
213 | if (status != EFI_SUCCESS) | |
214 | goto fail_free_new_fdt; | |
215 | ||
216 | status = update_fdt(sys_table, | |
217 | (void *)fdt_addr, fdt_size, | |
218 | (void *)*new_fdt_addr, new_fdt_size, | |
219 | cmdline_ptr, initrd_addr, initrd_size, | |
220 | memory_map, map_size, desc_size, desc_ver); | |
221 | ||
222 | /* Succeeding the first time is the expected case. */ | |
223 | if (status == EFI_SUCCESS) | |
224 | break; | |
225 | ||
226 | if (status == EFI_BUFFER_TOO_SMALL) { | |
227 | /* | |
228 | * We need to allocate more space for the new | |
229 | * device tree, so free existing buffer that is | |
230 | * too small. Also free memory map, as we will need | |
231 | * to get new one that reflects the free/alloc we do | |
232 | * on the device tree buffer. | |
233 | */ | |
234 | efi_free(sys_table, new_fdt_size, *new_fdt_addr); | |
235 | sys_table->boottime->free_pool(memory_map); | |
236 | new_fdt_size += EFI_PAGE_SIZE; | |
237 | } else { | |
238 | pr_efi_err(sys_table, "Unable to constuct new device tree.\n"); | |
239 | goto fail_free_mmap; | |
240 | } | |
241 | } | |
242 | ||
243 | /* Now we are ready to exit_boot_services.*/ | |
244 | status = sys_table->boottime->exit_boot_services(handle, mmap_key); | |
245 | ||
246 | ||
247 | if (status == EFI_SUCCESS) | |
248 | return status; | |
249 | ||
250 | pr_efi_err(sys_table, "Exit boot services failed.\n"); | |
251 | ||
252 | fail_free_mmap: | |
253 | sys_table->boottime->free_pool(memory_map); | |
254 | ||
255 | fail_free_new_fdt: | |
256 | efi_free(sys_table, new_fdt_size, *new_fdt_addr); | |
257 | ||
258 | fail: | |
259 | return EFI_LOAD_ERROR; | |
260 | } | |
261 | ||
bd669475 | 262 | void *get_fdt(efi_system_table_t *sys_table) |
263b4a30 RF |
263 | { |
264 | efi_guid_t fdt_guid = DEVICE_TREE_GUID; | |
265 | efi_config_table_t *tables; | |
266 | void *fdt; | |
267 | int i; | |
268 | ||
269 | tables = (efi_config_table_t *) sys_table->tables; | |
270 | fdt = NULL; | |
271 | ||
272 | for (i = 0; i < sys_table->nr_tables; i++) | |
273 | if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) { | |
274 | fdt = (void *) tables[i].table; | |
275 | break; | |
276 | } | |
277 | ||
278 | return fdt; | |
279 | } |