]>
Commit | Line | Data |
---|---|---|
fbf59bc9 TH |
1 | /* |
2 | * linux/mm/percpu.c - percpu memory allocator | |
3 | * | |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2009 Tejun Heo <[email protected]> | |
6 | * | |
7 | * This file is released under the GPLv2. | |
8 | * | |
9 | * This is percpu allocator which can handle both static and dynamic | |
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | |
11 | * chunk is consisted of num_possible_cpus() units and the first chunk | |
12 | * is used for static percpu variables in the kernel image (special | |
13 | * boot time alloc/init handling necessary as these areas need to be | |
14 | * brought up before allocation services are running). Unit grows as | |
15 | * necessary and all units grow or shrink in unison. When a chunk is | |
16 | * filled up, another chunk is allocated. ie. in vmalloc area | |
17 | * | |
18 | * c0 c1 c2 | |
19 | * ------------------- ------------------- ------------ | |
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
21 | * ------------------- ...... ------------------- .... ------------ | |
22 | * | |
23 | * Allocation is done in offset-size areas of single unit space. Ie, | |
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | |
25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | |
e1b9aa3f | 26 | * percpu base registers pcpu_unit_size apart. |
fbf59bc9 TH |
27 | * |
28 | * There are usually many small percpu allocations many of them as | |
29 | * small as 4 bytes. The allocator organizes chunks into lists | |
30 | * according to free size and tries to allocate from the fullest one. | |
31 | * Each chunk keeps the maximum contiguous area size hint which is | |
32 | * guaranteed to be eqaul to or larger than the maximum contiguous | |
33 | * area in the chunk. This helps the allocator not to iterate the | |
34 | * chunk maps unnecessarily. | |
35 | * | |
36 | * Allocation state in each chunk is kept using an array of integers | |
37 | * on chunk->map. A positive value in the map represents a free | |
38 | * region and negative allocated. Allocation inside a chunk is done | |
39 | * by scanning this map sequentially and serving the first matching | |
40 | * entry. This is mostly copied from the percpu_modalloc() allocator. | |
e1b9aa3f CL |
41 | * Chunks can be determined from the address using the index field |
42 | * in the page struct. The index field contains a pointer to the chunk. | |
fbf59bc9 TH |
43 | * |
44 | * To use this allocator, arch code should do the followings. | |
45 | * | |
46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | |
47 | * | |
48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | |
e0100983 TH |
49 | * regular address to percpu pointer and back if they need to be |
50 | * different from the default | |
fbf59bc9 | 51 | * |
8d408b4b TH |
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
53 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
54 | */ |
55 | ||
56 | #include <linux/bitmap.h> | |
57 | #include <linux/bootmem.h> | |
58 | #include <linux/list.h> | |
59 | #include <linux/mm.h> | |
60 | #include <linux/module.h> | |
61 | #include <linux/mutex.h> | |
62 | #include <linux/percpu.h> | |
63 | #include <linux/pfn.h> | |
fbf59bc9 | 64 | #include <linux/slab.h> |
ccea34b5 | 65 | #include <linux/spinlock.h> |
fbf59bc9 | 66 | #include <linux/vmalloc.h> |
a56dbddf | 67 | #include <linux/workqueue.h> |
fbf59bc9 TH |
68 | |
69 | #include <asm/cacheflush.h> | |
e0100983 | 70 | #include <asm/sections.h> |
fbf59bc9 TH |
71 | #include <asm/tlbflush.h> |
72 | ||
fbf59bc9 TH |
73 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ |
74 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | |
75 | ||
e0100983 TH |
76 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
77 | #ifndef __addr_to_pcpu_ptr | |
78 | #define __addr_to_pcpu_ptr(addr) \ | |
79 | (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ | |
80 | + (unsigned long)__per_cpu_start) | |
81 | #endif | |
82 | #ifndef __pcpu_ptr_to_addr | |
83 | #define __pcpu_ptr_to_addr(ptr) \ | |
84 | (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ | |
85 | - (unsigned long)__per_cpu_start) | |
86 | #endif | |
87 | ||
fbf59bc9 TH |
88 | struct pcpu_chunk { |
89 | struct list_head list; /* linked to pcpu_slot lists */ | |
fbf59bc9 TH |
90 | int free_size; /* free bytes in the chunk */ |
91 | int contig_hint; /* max contiguous size hint */ | |
92 | struct vm_struct *vm; /* mapped vmalloc region */ | |
93 | int map_used; /* # of map entries used */ | |
94 | int map_alloc; /* # of map entries allocated */ | |
95 | int *map; /* allocation map */ | |
8d408b4b | 96 | bool immutable; /* no [de]population allowed */ |
3e24aa58 TH |
97 | struct page **page; /* points to page array */ |
98 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | |
fbf59bc9 TH |
99 | }; |
100 | ||
40150d37 TH |
101 | static int pcpu_unit_pages __read_mostly; |
102 | static int pcpu_unit_size __read_mostly; | |
103 | static int pcpu_chunk_size __read_mostly; | |
104 | static int pcpu_nr_slots __read_mostly; | |
105 | static size_t pcpu_chunk_struct_size __read_mostly; | |
fbf59bc9 TH |
106 | |
107 | /* the address of the first chunk which starts with the kernel static area */ | |
40150d37 | 108 | void *pcpu_base_addr __read_mostly; |
fbf59bc9 TH |
109 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
110 | ||
ae9e6bc9 TH |
111 | /* |
112 | * The first chunk which always exists. Note that unlike other | |
113 | * chunks, this one can be allocated and mapped in several different | |
114 | * ways and thus often doesn't live in the vmalloc area. | |
115 | */ | |
116 | static struct pcpu_chunk *pcpu_first_chunk; | |
117 | ||
118 | /* | |
119 | * Optional reserved chunk. This chunk reserves part of the first | |
120 | * chunk and serves it for reserved allocations. The amount of | |
121 | * reserved offset is in pcpu_reserved_chunk_limit. When reserved | |
122 | * area doesn't exist, the following variables contain NULL and 0 | |
123 | * respectively. | |
124 | */ | |
edcb4639 | 125 | static struct pcpu_chunk *pcpu_reserved_chunk; |
edcb4639 TH |
126 | static int pcpu_reserved_chunk_limit; |
127 | ||
fbf59bc9 | 128 | /* |
ccea34b5 TH |
129 | * Synchronization rules. |
130 | * | |
131 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | |
132 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | |
133 | * The latter is a spinlock and protects the index data structures - | |
e1b9aa3f | 134 | * chunk slots, chunks and area maps in chunks. |
ccea34b5 TH |
135 | * |
136 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | |
137 | * pcpu_lock is grabbed and released as necessary. All actual memory | |
138 | * allocations are done using GFP_KERNEL with pcpu_lock released. | |
139 | * | |
140 | * Free path accesses and alters only the index data structures, so it | |
141 | * can be safely called from atomic context. When memory needs to be | |
142 | * returned to the system, free path schedules reclaim_work which | |
143 | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | |
144 | * reclaimed, release both locks and frees the chunks. Note that it's | |
145 | * necessary to grab both locks to remove a chunk from circulation as | |
146 | * allocation path might be referencing the chunk with only | |
147 | * pcpu_alloc_mutex locked. | |
fbf59bc9 | 148 | */ |
ccea34b5 TH |
149 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ |
150 | static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ | |
fbf59bc9 | 151 | |
40150d37 | 152 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ |
fbf59bc9 | 153 | |
a56dbddf TH |
154 | /* reclaim work to release fully free chunks, scheduled from free path */ |
155 | static void pcpu_reclaim(struct work_struct *work); | |
156 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | |
157 | ||
d9b55eeb | 158 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 159 | { |
cae3aeb8 | 160 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
161 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
162 | } | |
163 | ||
d9b55eeb TH |
164 | static int pcpu_size_to_slot(int size) |
165 | { | |
166 | if (size == pcpu_unit_size) | |
167 | return pcpu_nr_slots - 1; | |
168 | return __pcpu_size_to_slot(size); | |
169 | } | |
170 | ||
fbf59bc9 TH |
171 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
172 | { | |
173 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | |
174 | return 0; | |
175 | ||
176 | return pcpu_size_to_slot(chunk->free_size); | |
177 | } | |
178 | ||
179 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | |
180 | { | |
d9b55eeb | 181 | return cpu * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
182 | } |
183 | ||
184 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | |
185 | unsigned int cpu, int page_idx) | |
186 | { | |
187 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | |
188 | } | |
189 | ||
190 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | |
191 | unsigned int cpu, int page_idx) | |
192 | { | |
193 | return (unsigned long)chunk->vm->addr + | |
194 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | |
195 | } | |
196 | ||
197 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | |
198 | int page_idx) | |
199 | { | |
200 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | |
201 | } | |
202 | ||
e1b9aa3f CL |
203 | /* set the pointer to a chunk in a page struct */ |
204 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
205 | { | |
206 | page->index = (unsigned long)pcpu; | |
207 | } | |
208 | ||
209 | /* obtain pointer to a chunk from a page struct */ | |
210 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
211 | { | |
212 | return (struct pcpu_chunk *)page->index; | |
213 | } | |
214 | ||
fbf59bc9 | 215 | /** |
1880d93b TH |
216 | * pcpu_mem_alloc - allocate memory |
217 | * @size: bytes to allocate | |
fbf59bc9 | 218 | * |
1880d93b TH |
219 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
220 | * kzalloc() is used; otherwise, vmalloc() is used. The returned | |
221 | * memory is always zeroed. | |
fbf59bc9 | 222 | * |
ccea34b5 TH |
223 | * CONTEXT: |
224 | * Does GFP_KERNEL allocation. | |
225 | * | |
fbf59bc9 | 226 | * RETURNS: |
1880d93b | 227 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 228 | */ |
1880d93b | 229 | static void *pcpu_mem_alloc(size_t size) |
fbf59bc9 | 230 | { |
1880d93b TH |
231 | if (size <= PAGE_SIZE) |
232 | return kzalloc(size, GFP_KERNEL); | |
233 | else { | |
234 | void *ptr = vmalloc(size); | |
235 | if (ptr) | |
236 | memset(ptr, 0, size); | |
237 | return ptr; | |
238 | } | |
239 | } | |
fbf59bc9 | 240 | |
1880d93b TH |
241 | /** |
242 | * pcpu_mem_free - free memory | |
243 | * @ptr: memory to free | |
244 | * @size: size of the area | |
245 | * | |
246 | * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). | |
247 | */ | |
248 | static void pcpu_mem_free(void *ptr, size_t size) | |
249 | { | |
fbf59bc9 | 250 | if (size <= PAGE_SIZE) |
1880d93b | 251 | kfree(ptr); |
fbf59bc9 | 252 | else |
1880d93b | 253 | vfree(ptr); |
fbf59bc9 TH |
254 | } |
255 | ||
256 | /** | |
257 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
258 | * @chunk: chunk of interest | |
259 | * @oslot: the previous slot it was on | |
260 | * | |
261 | * This function is called after an allocation or free changed @chunk. | |
262 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
263 | * moved to the slot. Note that the reserved chunk is never put on |
264 | * chunk slots. | |
ccea34b5 TH |
265 | * |
266 | * CONTEXT: | |
267 | * pcpu_lock. | |
fbf59bc9 TH |
268 | */ |
269 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
270 | { | |
271 | int nslot = pcpu_chunk_slot(chunk); | |
272 | ||
edcb4639 | 273 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { |
fbf59bc9 TH |
274 | if (oslot < nslot) |
275 | list_move(&chunk->list, &pcpu_slot[nslot]); | |
276 | else | |
277 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | |
278 | } | |
279 | } | |
280 | ||
fbf59bc9 | 281 | /** |
e1b9aa3f CL |
282 | * pcpu_chunk_addr_search - determine chunk containing specified address |
283 | * @addr: address for which the chunk needs to be determined. | |
ccea34b5 | 284 | * |
fbf59bc9 TH |
285 | * RETURNS: |
286 | * The address of the found chunk. | |
287 | */ | |
288 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
289 | { | |
ae9e6bc9 | 290 | void *first_start = pcpu_first_chunk->vm->addr; |
fbf59bc9 | 291 | |
ae9e6bc9 TH |
292 | /* is it in the first chunk? */ |
293 | if (addr >= first_start && addr < first_start + pcpu_chunk_size) { | |
294 | /* is it in the reserved area? */ | |
295 | if (addr < first_start + pcpu_reserved_chunk_limit) | |
edcb4639 | 296 | return pcpu_reserved_chunk; |
ae9e6bc9 | 297 | return pcpu_first_chunk; |
edcb4639 TH |
298 | } |
299 | ||
e1b9aa3f | 300 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); |
fbf59bc9 TH |
301 | } |
302 | ||
9f7dcf22 TH |
303 | /** |
304 | * pcpu_extend_area_map - extend area map for allocation | |
305 | * @chunk: target chunk | |
306 | * | |
307 | * Extend area map of @chunk so that it can accomodate an allocation. | |
308 | * A single allocation can split an area into three areas, so this | |
309 | * function makes sure that @chunk->map has at least two extra slots. | |
310 | * | |
ccea34b5 TH |
311 | * CONTEXT: |
312 | * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired | |
313 | * if area map is extended. | |
314 | * | |
9f7dcf22 TH |
315 | * RETURNS: |
316 | * 0 if noop, 1 if successfully extended, -errno on failure. | |
317 | */ | |
318 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk) | |
319 | { | |
320 | int new_alloc; | |
321 | int *new; | |
322 | size_t size; | |
323 | ||
324 | /* has enough? */ | |
325 | if (chunk->map_alloc >= chunk->map_used + 2) | |
326 | return 0; | |
327 | ||
ccea34b5 TH |
328 | spin_unlock_irq(&pcpu_lock); |
329 | ||
9f7dcf22 TH |
330 | new_alloc = PCPU_DFL_MAP_ALLOC; |
331 | while (new_alloc < chunk->map_used + 2) | |
332 | new_alloc *= 2; | |
333 | ||
334 | new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); | |
ccea34b5 TH |
335 | if (!new) { |
336 | spin_lock_irq(&pcpu_lock); | |
9f7dcf22 | 337 | return -ENOMEM; |
ccea34b5 TH |
338 | } |
339 | ||
340 | /* | |
341 | * Acquire pcpu_lock and switch to new area map. Only free | |
342 | * could have happened inbetween, so map_used couldn't have | |
343 | * grown. | |
344 | */ | |
345 | spin_lock_irq(&pcpu_lock); | |
346 | BUG_ON(new_alloc < chunk->map_used + 2); | |
9f7dcf22 TH |
347 | |
348 | size = chunk->map_alloc * sizeof(chunk->map[0]); | |
349 | memcpy(new, chunk->map, size); | |
350 | ||
351 | /* | |
352 | * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | |
353 | * one of the first chunks and still using static map. | |
354 | */ | |
355 | if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | |
356 | pcpu_mem_free(chunk->map, size); | |
357 | ||
358 | chunk->map_alloc = new_alloc; | |
359 | chunk->map = new; | |
360 | return 0; | |
361 | } | |
362 | ||
fbf59bc9 TH |
363 | /** |
364 | * pcpu_split_block - split a map block | |
365 | * @chunk: chunk of interest | |
366 | * @i: index of map block to split | |
cae3aeb8 TH |
367 | * @head: head size in bytes (can be 0) |
368 | * @tail: tail size in bytes (can be 0) | |
fbf59bc9 TH |
369 | * |
370 | * Split the @i'th map block into two or three blocks. If @head is | |
371 | * non-zero, @head bytes block is inserted before block @i moving it | |
372 | * to @i+1 and reducing its size by @head bytes. | |
373 | * | |
374 | * If @tail is non-zero, the target block, which can be @i or @i+1 | |
375 | * depending on @head, is reduced by @tail bytes and @tail byte block | |
376 | * is inserted after the target block. | |
377 | * | |
9f7dcf22 | 378 | * @chunk->map must have enough free slots to accomodate the split. |
ccea34b5 TH |
379 | * |
380 | * CONTEXT: | |
381 | * pcpu_lock. | |
fbf59bc9 | 382 | */ |
9f7dcf22 TH |
383 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, |
384 | int head, int tail) | |
fbf59bc9 TH |
385 | { |
386 | int nr_extra = !!head + !!tail; | |
1880d93b | 387 | |
9f7dcf22 | 388 | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); |
fbf59bc9 | 389 | |
9f7dcf22 | 390 | /* insert new subblocks */ |
fbf59bc9 TH |
391 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], |
392 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | |
393 | chunk->map_used += nr_extra; | |
394 | ||
395 | if (head) { | |
396 | chunk->map[i + 1] = chunk->map[i] - head; | |
397 | chunk->map[i++] = head; | |
398 | } | |
399 | if (tail) { | |
400 | chunk->map[i++] -= tail; | |
401 | chunk->map[i] = tail; | |
402 | } | |
fbf59bc9 TH |
403 | } |
404 | ||
405 | /** | |
406 | * pcpu_alloc_area - allocate area from a pcpu_chunk | |
407 | * @chunk: chunk of interest | |
cae3aeb8 | 408 | * @size: wanted size in bytes |
fbf59bc9 TH |
409 | * @align: wanted align |
410 | * | |
411 | * Try to allocate @size bytes area aligned at @align from @chunk. | |
412 | * Note that this function only allocates the offset. It doesn't | |
413 | * populate or map the area. | |
414 | * | |
9f7dcf22 TH |
415 | * @chunk->map must have at least two free slots. |
416 | * | |
ccea34b5 TH |
417 | * CONTEXT: |
418 | * pcpu_lock. | |
419 | * | |
fbf59bc9 | 420 | * RETURNS: |
9f7dcf22 TH |
421 | * Allocated offset in @chunk on success, -1 if no matching area is |
422 | * found. | |
fbf59bc9 TH |
423 | */ |
424 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | |
425 | { | |
426 | int oslot = pcpu_chunk_slot(chunk); | |
427 | int max_contig = 0; | |
428 | int i, off; | |
429 | ||
fbf59bc9 TH |
430 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { |
431 | bool is_last = i + 1 == chunk->map_used; | |
432 | int head, tail; | |
433 | ||
434 | /* extra for alignment requirement */ | |
435 | head = ALIGN(off, align) - off; | |
436 | BUG_ON(i == 0 && head != 0); | |
437 | ||
438 | if (chunk->map[i] < 0) | |
439 | continue; | |
440 | if (chunk->map[i] < head + size) { | |
441 | max_contig = max(chunk->map[i], max_contig); | |
442 | continue; | |
443 | } | |
444 | ||
445 | /* | |
446 | * If head is small or the previous block is free, | |
447 | * merge'em. Note that 'small' is defined as smaller | |
448 | * than sizeof(int), which is very small but isn't too | |
449 | * uncommon for percpu allocations. | |
450 | */ | |
451 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | |
452 | if (chunk->map[i - 1] > 0) | |
453 | chunk->map[i - 1] += head; | |
454 | else { | |
455 | chunk->map[i - 1] -= head; | |
456 | chunk->free_size -= head; | |
457 | } | |
458 | chunk->map[i] -= head; | |
459 | off += head; | |
460 | head = 0; | |
461 | } | |
462 | ||
463 | /* if tail is small, just keep it around */ | |
464 | tail = chunk->map[i] - head - size; | |
465 | if (tail < sizeof(int)) | |
466 | tail = 0; | |
467 | ||
468 | /* split if warranted */ | |
469 | if (head || tail) { | |
9f7dcf22 | 470 | pcpu_split_block(chunk, i, head, tail); |
fbf59bc9 TH |
471 | if (head) { |
472 | i++; | |
473 | off += head; | |
474 | max_contig = max(chunk->map[i - 1], max_contig); | |
475 | } | |
476 | if (tail) | |
477 | max_contig = max(chunk->map[i + 1], max_contig); | |
478 | } | |
479 | ||
480 | /* update hint and mark allocated */ | |
481 | if (is_last) | |
482 | chunk->contig_hint = max_contig; /* fully scanned */ | |
483 | else | |
484 | chunk->contig_hint = max(chunk->contig_hint, | |
485 | max_contig); | |
486 | ||
487 | chunk->free_size -= chunk->map[i]; | |
488 | chunk->map[i] = -chunk->map[i]; | |
489 | ||
490 | pcpu_chunk_relocate(chunk, oslot); | |
491 | return off; | |
492 | } | |
493 | ||
494 | chunk->contig_hint = max_contig; /* fully scanned */ | |
495 | pcpu_chunk_relocate(chunk, oslot); | |
496 | ||
9f7dcf22 TH |
497 | /* tell the upper layer that this chunk has no matching area */ |
498 | return -1; | |
fbf59bc9 TH |
499 | } |
500 | ||
501 | /** | |
502 | * pcpu_free_area - free area to a pcpu_chunk | |
503 | * @chunk: chunk of interest | |
504 | * @freeme: offset of area to free | |
505 | * | |
506 | * Free area starting from @freeme to @chunk. Note that this function | |
507 | * only modifies the allocation map. It doesn't depopulate or unmap | |
508 | * the area. | |
ccea34b5 TH |
509 | * |
510 | * CONTEXT: | |
511 | * pcpu_lock. | |
fbf59bc9 TH |
512 | */ |
513 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |
514 | { | |
515 | int oslot = pcpu_chunk_slot(chunk); | |
516 | int i, off; | |
517 | ||
518 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | |
519 | if (off == freeme) | |
520 | break; | |
521 | BUG_ON(off != freeme); | |
522 | BUG_ON(chunk->map[i] > 0); | |
523 | ||
524 | chunk->map[i] = -chunk->map[i]; | |
525 | chunk->free_size += chunk->map[i]; | |
526 | ||
527 | /* merge with previous? */ | |
528 | if (i > 0 && chunk->map[i - 1] >= 0) { | |
529 | chunk->map[i - 1] += chunk->map[i]; | |
530 | chunk->map_used--; | |
531 | memmove(&chunk->map[i], &chunk->map[i + 1], | |
532 | (chunk->map_used - i) * sizeof(chunk->map[0])); | |
533 | i--; | |
534 | } | |
535 | /* merge with next? */ | |
536 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | |
537 | chunk->map[i] += chunk->map[i + 1]; | |
538 | chunk->map_used--; | |
539 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | |
540 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | |
541 | } | |
542 | ||
543 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | |
544 | pcpu_chunk_relocate(chunk, oslot); | |
545 | } | |
546 | ||
547 | /** | |
548 | * pcpu_unmap - unmap pages out of a pcpu_chunk | |
549 | * @chunk: chunk of interest | |
550 | * @page_start: page index of the first page to unmap | |
551 | * @page_end: page index of the last page to unmap + 1 | |
552 | * @flush: whether to flush cache and tlb or not | |
553 | * | |
554 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | |
555 | * If @flush is true, vcache is flushed before unmapping and tlb | |
556 | * after. | |
557 | */ | |
558 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | |
559 | bool flush) | |
560 | { | |
561 | unsigned int last = num_possible_cpus() - 1; | |
562 | unsigned int cpu; | |
563 | ||
8d408b4b TH |
564 | /* unmap must not be done on immutable chunk */ |
565 | WARN_ON(chunk->immutable); | |
566 | ||
fbf59bc9 TH |
567 | /* |
568 | * Each flushing trial can be very expensive, issue flush on | |
569 | * the whole region at once rather than doing it for each cpu. | |
570 | * This could be an overkill but is more scalable. | |
571 | */ | |
572 | if (flush) | |
573 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | |
574 | pcpu_chunk_addr(chunk, last, page_end)); | |
575 | ||
576 | for_each_possible_cpu(cpu) | |
577 | unmap_kernel_range_noflush( | |
578 | pcpu_chunk_addr(chunk, cpu, page_start), | |
579 | (page_end - page_start) << PAGE_SHIFT); | |
580 | ||
581 | /* ditto as flush_cache_vunmap() */ | |
582 | if (flush) | |
583 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | |
584 | pcpu_chunk_addr(chunk, last, page_end)); | |
585 | } | |
586 | ||
587 | /** | |
588 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | |
589 | * @chunk: chunk to depopulate | |
590 | * @off: offset to the area to depopulate | |
cae3aeb8 | 591 | * @size: size of the area to depopulate in bytes |
fbf59bc9 TH |
592 | * @flush: whether to flush cache and tlb or not |
593 | * | |
594 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | |
595 | * from @chunk. If @flush is true, vcache is flushed before unmapping | |
596 | * and tlb after. | |
ccea34b5 TH |
597 | * |
598 | * CONTEXT: | |
599 | * pcpu_alloc_mutex. | |
fbf59bc9 | 600 | */ |
cae3aeb8 TH |
601 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, |
602 | bool flush) | |
fbf59bc9 TH |
603 | { |
604 | int page_start = PFN_DOWN(off); | |
605 | int page_end = PFN_UP(off + size); | |
606 | int unmap_start = -1; | |
607 | int uninitialized_var(unmap_end); | |
608 | unsigned int cpu; | |
609 | int i; | |
610 | ||
611 | for (i = page_start; i < page_end; i++) { | |
612 | for_each_possible_cpu(cpu) { | |
613 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | |
614 | ||
615 | if (!*pagep) | |
616 | continue; | |
617 | ||
618 | __free_page(*pagep); | |
619 | ||
620 | /* | |
621 | * If it's partial depopulation, it might get | |
622 | * populated or depopulated again. Mark the | |
623 | * page gone. | |
624 | */ | |
625 | *pagep = NULL; | |
626 | ||
627 | unmap_start = unmap_start < 0 ? i : unmap_start; | |
628 | unmap_end = i + 1; | |
629 | } | |
630 | } | |
631 | ||
632 | if (unmap_start >= 0) | |
633 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | |
634 | } | |
635 | ||
636 | /** | |
637 | * pcpu_map - map pages into a pcpu_chunk | |
638 | * @chunk: chunk of interest | |
639 | * @page_start: page index of the first page to map | |
640 | * @page_end: page index of the last page to map + 1 | |
641 | * | |
642 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | |
643 | * vcache is flushed afterwards. | |
644 | */ | |
645 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | |
646 | { | |
647 | unsigned int last = num_possible_cpus() - 1; | |
648 | unsigned int cpu; | |
649 | int err; | |
650 | ||
8d408b4b TH |
651 | /* map must not be done on immutable chunk */ |
652 | WARN_ON(chunk->immutable); | |
653 | ||
fbf59bc9 TH |
654 | for_each_possible_cpu(cpu) { |
655 | err = map_kernel_range_noflush( | |
656 | pcpu_chunk_addr(chunk, cpu, page_start), | |
657 | (page_end - page_start) << PAGE_SHIFT, | |
658 | PAGE_KERNEL, | |
659 | pcpu_chunk_pagep(chunk, cpu, page_start)); | |
660 | if (err < 0) | |
661 | return err; | |
662 | } | |
663 | ||
664 | /* flush at once, please read comments in pcpu_unmap() */ | |
665 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | |
666 | pcpu_chunk_addr(chunk, last, page_end)); | |
667 | return 0; | |
668 | } | |
669 | ||
670 | /** | |
671 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | |
672 | * @chunk: chunk of interest | |
673 | * @off: offset to the area to populate | |
cae3aeb8 | 674 | * @size: size of the area to populate in bytes |
fbf59bc9 TH |
675 | * |
676 | * For each cpu, populate and map pages [@page_start,@page_end) into | |
677 | * @chunk. The area is cleared on return. | |
ccea34b5 TH |
678 | * |
679 | * CONTEXT: | |
680 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | |
fbf59bc9 TH |
681 | */ |
682 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | |
683 | { | |
684 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | |
685 | int page_start = PFN_DOWN(off); | |
686 | int page_end = PFN_UP(off + size); | |
687 | int map_start = -1; | |
02d51fdf | 688 | int uninitialized_var(map_end); |
fbf59bc9 TH |
689 | unsigned int cpu; |
690 | int i; | |
691 | ||
692 | for (i = page_start; i < page_end; i++) { | |
693 | if (pcpu_chunk_page_occupied(chunk, i)) { | |
694 | if (map_start >= 0) { | |
695 | if (pcpu_map(chunk, map_start, map_end)) | |
696 | goto err; | |
697 | map_start = -1; | |
698 | } | |
699 | continue; | |
700 | } | |
701 | ||
702 | map_start = map_start < 0 ? i : map_start; | |
703 | map_end = i + 1; | |
704 | ||
705 | for_each_possible_cpu(cpu) { | |
706 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | |
707 | ||
708 | *pagep = alloc_pages_node(cpu_to_node(cpu), | |
709 | alloc_mask, 0); | |
710 | if (!*pagep) | |
711 | goto err; | |
e1b9aa3f | 712 | pcpu_set_page_chunk(*pagep, chunk); |
fbf59bc9 TH |
713 | } |
714 | } | |
715 | ||
716 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | |
717 | goto err; | |
718 | ||
719 | for_each_possible_cpu(cpu) | |
d9b55eeb | 720 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, |
fbf59bc9 TH |
721 | size); |
722 | ||
723 | return 0; | |
724 | err: | |
725 | /* likely under heavy memory pressure, give memory back */ | |
726 | pcpu_depopulate_chunk(chunk, off, size, true); | |
727 | return -ENOMEM; | |
728 | } | |
729 | ||
730 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | |
731 | { | |
732 | if (!chunk) | |
733 | return; | |
734 | if (chunk->vm) | |
735 | free_vm_area(chunk->vm); | |
1880d93b | 736 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); |
fbf59bc9 TH |
737 | kfree(chunk); |
738 | } | |
739 | ||
740 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | |
741 | { | |
742 | struct pcpu_chunk *chunk; | |
743 | ||
744 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | |
745 | if (!chunk) | |
746 | return NULL; | |
747 | ||
1880d93b | 748 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
fbf59bc9 TH |
749 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
750 | chunk->map[chunk->map_used++] = pcpu_unit_size; | |
3e24aa58 | 751 | chunk->page = chunk->page_ar; |
fbf59bc9 TH |
752 | |
753 | chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | |
754 | if (!chunk->vm) { | |
755 | free_pcpu_chunk(chunk); | |
756 | return NULL; | |
757 | } | |
758 | ||
759 | INIT_LIST_HEAD(&chunk->list); | |
760 | chunk->free_size = pcpu_unit_size; | |
761 | chunk->contig_hint = pcpu_unit_size; | |
762 | ||
763 | return chunk; | |
764 | } | |
765 | ||
766 | /** | |
edcb4639 | 767 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 768 | * @size: size of area to allocate in bytes |
fbf59bc9 | 769 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 770 | * @reserved: allocate from the reserved chunk if available |
fbf59bc9 | 771 | * |
ccea34b5 TH |
772 | * Allocate percpu area of @size bytes aligned at @align. |
773 | * | |
774 | * CONTEXT: | |
775 | * Does GFP_KERNEL allocation. | |
fbf59bc9 TH |
776 | * |
777 | * RETURNS: | |
778 | * Percpu pointer to the allocated area on success, NULL on failure. | |
779 | */ | |
edcb4639 | 780 | static void *pcpu_alloc(size_t size, size_t align, bool reserved) |
fbf59bc9 | 781 | { |
fbf59bc9 TH |
782 | struct pcpu_chunk *chunk; |
783 | int slot, off; | |
784 | ||
8d408b4b | 785 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { |
fbf59bc9 TH |
786 | WARN(true, "illegal size (%zu) or align (%zu) for " |
787 | "percpu allocation\n", size, align); | |
788 | return NULL; | |
789 | } | |
790 | ||
ccea34b5 TH |
791 | mutex_lock(&pcpu_alloc_mutex); |
792 | spin_lock_irq(&pcpu_lock); | |
fbf59bc9 | 793 | |
edcb4639 TH |
794 | /* serve reserved allocations from the reserved chunk if available */ |
795 | if (reserved && pcpu_reserved_chunk) { | |
796 | chunk = pcpu_reserved_chunk; | |
9f7dcf22 TH |
797 | if (size > chunk->contig_hint || |
798 | pcpu_extend_area_map(chunk) < 0) | |
ccea34b5 | 799 | goto fail_unlock; |
edcb4639 TH |
800 | off = pcpu_alloc_area(chunk, size, align); |
801 | if (off >= 0) | |
802 | goto area_found; | |
ccea34b5 | 803 | goto fail_unlock; |
edcb4639 TH |
804 | } |
805 | ||
ccea34b5 | 806 | restart: |
edcb4639 | 807 | /* search through normal chunks */ |
fbf59bc9 TH |
808 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { |
809 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
810 | if (size > chunk->contig_hint) | |
811 | continue; | |
ccea34b5 TH |
812 | |
813 | switch (pcpu_extend_area_map(chunk)) { | |
814 | case 0: | |
815 | break; | |
816 | case 1: | |
817 | goto restart; /* pcpu_lock dropped, restart */ | |
818 | default: | |
819 | goto fail_unlock; | |
820 | } | |
821 | ||
fbf59bc9 TH |
822 | off = pcpu_alloc_area(chunk, size, align); |
823 | if (off >= 0) | |
824 | goto area_found; | |
fbf59bc9 TH |
825 | } |
826 | } | |
827 | ||
828 | /* hmmm... no space left, create a new chunk */ | |
ccea34b5 TH |
829 | spin_unlock_irq(&pcpu_lock); |
830 | ||
fbf59bc9 TH |
831 | chunk = alloc_pcpu_chunk(); |
832 | if (!chunk) | |
ccea34b5 TH |
833 | goto fail_unlock_mutex; |
834 | ||
835 | spin_lock_irq(&pcpu_lock); | |
fbf59bc9 | 836 | pcpu_chunk_relocate(chunk, -1); |
ccea34b5 | 837 | goto restart; |
fbf59bc9 TH |
838 | |
839 | area_found: | |
ccea34b5 TH |
840 | spin_unlock_irq(&pcpu_lock); |
841 | ||
fbf59bc9 TH |
842 | /* populate, map and clear the area */ |
843 | if (pcpu_populate_chunk(chunk, off, size)) { | |
ccea34b5 | 844 | spin_lock_irq(&pcpu_lock); |
fbf59bc9 | 845 | pcpu_free_area(chunk, off); |
ccea34b5 | 846 | goto fail_unlock; |
fbf59bc9 TH |
847 | } |
848 | ||
ccea34b5 TH |
849 | mutex_unlock(&pcpu_alloc_mutex); |
850 | ||
851 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | |
852 | ||
853 | fail_unlock: | |
854 | spin_unlock_irq(&pcpu_lock); | |
855 | fail_unlock_mutex: | |
856 | mutex_unlock(&pcpu_alloc_mutex); | |
857 | return NULL; | |
fbf59bc9 | 858 | } |
edcb4639 TH |
859 | |
860 | /** | |
861 | * __alloc_percpu - allocate dynamic percpu area | |
862 | * @size: size of area to allocate in bytes | |
863 | * @align: alignment of area (max PAGE_SIZE) | |
864 | * | |
865 | * Allocate percpu area of @size bytes aligned at @align. Might | |
866 | * sleep. Might trigger writeouts. | |
867 | * | |
ccea34b5 TH |
868 | * CONTEXT: |
869 | * Does GFP_KERNEL allocation. | |
870 | * | |
edcb4639 TH |
871 | * RETURNS: |
872 | * Percpu pointer to the allocated area on success, NULL on failure. | |
873 | */ | |
874 | void *__alloc_percpu(size_t size, size_t align) | |
875 | { | |
876 | return pcpu_alloc(size, align, false); | |
877 | } | |
fbf59bc9 TH |
878 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
879 | ||
edcb4639 TH |
880 | /** |
881 | * __alloc_reserved_percpu - allocate reserved percpu area | |
882 | * @size: size of area to allocate in bytes | |
883 | * @align: alignment of area (max PAGE_SIZE) | |
884 | * | |
885 | * Allocate percpu area of @size bytes aligned at @align from reserved | |
886 | * percpu area if arch has set it up; otherwise, allocation is served | |
887 | * from the same dynamic area. Might sleep. Might trigger writeouts. | |
888 | * | |
ccea34b5 TH |
889 | * CONTEXT: |
890 | * Does GFP_KERNEL allocation. | |
891 | * | |
edcb4639 TH |
892 | * RETURNS: |
893 | * Percpu pointer to the allocated area on success, NULL on failure. | |
894 | */ | |
895 | void *__alloc_reserved_percpu(size_t size, size_t align) | |
896 | { | |
897 | return pcpu_alloc(size, align, true); | |
898 | } | |
899 | ||
a56dbddf TH |
900 | /** |
901 | * pcpu_reclaim - reclaim fully free chunks, workqueue function | |
902 | * @work: unused | |
903 | * | |
904 | * Reclaim all fully free chunks except for the first one. | |
ccea34b5 TH |
905 | * |
906 | * CONTEXT: | |
907 | * workqueue context. | |
a56dbddf TH |
908 | */ |
909 | static void pcpu_reclaim(struct work_struct *work) | |
fbf59bc9 | 910 | { |
a56dbddf TH |
911 | LIST_HEAD(todo); |
912 | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | |
913 | struct pcpu_chunk *chunk, *next; | |
914 | ||
ccea34b5 TH |
915 | mutex_lock(&pcpu_alloc_mutex); |
916 | spin_lock_irq(&pcpu_lock); | |
a56dbddf TH |
917 | |
918 | list_for_each_entry_safe(chunk, next, head, list) { | |
919 | WARN_ON(chunk->immutable); | |
920 | ||
921 | /* spare the first one */ | |
922 | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | |
923 | continue; | |
924 | ||
a56dbddf TH |
925 | list_move(&chunk->list, &todo); |
926 | } | |
927 | ||
ccea34b5 TH |
928 | spin_unlock_irq(&pcpu_lock); |
929 | mutex_unlock(&pcpu_alloc_mutex); | |
a56dbddf TH |
930 | |
931 | list_for_each_entry_safe(chunk, next, &todo, list) { | |
932 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | |
933 | free_pcpu_chunk(chunk); | |
934 | } | |
fbf59bc9 TH |
935 | } |
936 | ||
937 | /** | |
938 | * free_percpu - free percpu area | |
939 | * @ptr: pointer to area to free | |
940 | * | |
ccea34b5 TH |
941 | * Free percpu area @ptr. |
942 | * | |
943 | * CONTEXT: | |
944 | * Can be called from atomic context. | |
fbf59bc9 TH |
945 | */ |
946 | void free_percpu(void *ptr) | |
947 | { | |
948 | void *addr = __pcpu_ptr_to_addr(ptr); | |
949 | struct pcpu_chunk *chunk; | |
ccea34b5 | 950 | unsigned long flags; |
fbf59bc9 TH |
951 | int off; |
952 | ||
953 | if (!ptr) | |
954 | return; | |
955 | ||
ccea34b5 | 956 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
957 | |
958 | chunk = pcpu_chunk_addr_search(addr); | |
959 | off = addr - chunk->vm->addr; | |
960 | ||
961 | pcpu_free_area(chunk, off); | |
962 | ||
a56dbddf | 963 | /* if there are more than one fully free chunks, wake up grim reaper */ |
fbf59bc9 TH |
964 | if (chunk->free_size == pcpu_unit_size) { |
965 | struct pcpu_chunk *pos; | |
966 | ||
a56dbddf | 967 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) |
fbf59bc9 | 968 | if (pos != chunk) { |
a56dbddf | 969 | schedule_work(&pcpu_reclaim_work); |
fbf59bc9 TH |
970 | break; |
971 | } | |
972 | } | |
973 | ||
ccea34b5 | 974 | spin_unlock_irqrestore(&pcpu_lock, flags); |
fbf59bc9 TH |
975 | } |
976 | EXPORT_SYMBOL_GPL(free_percpu); | |
977 | ||
978 | /** | |
8d408b4b TH |
979 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
980 | * @get_page_fn: callback to fetch page pointer | |
981 | * @static_size: the size of static percpu area in bytes | |
edcb4639 | 982 | * @reserved_size: the size of reserved percpu area in bytes |
cafe8816 | 983 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto |
6074d5b0 | 984 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto |
8d408b4b TH |
985 | * @base_addr: mapped address, NULL for auto |
986 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | |
987 | * | |
988 | * Initialize the first percpu chunk which contains the kernel static | |
989 | * perpcu area. This function is to be called from arch percpu area | |
990 | * setup path. The first two parameters are mandatory. The rest are | |
991 | * optional. | |
992 | * | |
993 | * @get_page_fn() should return pointer to percpu page given cpu | |
994 | * number and page number. It should at least return enough pages to | |
995 | * cover the static area. The returned pages for static area should | |
996 | * have been initialized with valid data. If @unit_size is specified, | |
997 | * it can also return pages after the static area. NULL return | |
998 | * indicates end of pages for the cpu. Note that @get_page_fn() must | |
999 | * return the same number of pages for all cpus. | |
1000 | * | |
edcb4639 TH |
1001 | * @reserved_size, if non-zero, specifies the amount of bytes to |
1002 | * reserve after the static area in the first chunk. This reserves | |
1003 | * the first chunk such that it's available only through reserved | |
1004 | * percpu allocation. This is primarily used to serve module percpu | |
1005 | * static areas on architectures where the addressing model has | |
1006 | * limited offset range for symbol relocations to guarantee module | |
1007 | * percpu symbols fall inside the relocatable range. | |
1008 | * | |
6074d5b0 TH |
1009 | * @dyn_size, if non-negative, determines the number of bytes |
1010 | * available for dynamic allocation in the first chunk. Specifying | |
1011 | * non-negative value makes percpu leave alone the area beyond | |
1012 | * @static_size + @reserved_size + @dyn_size. | |
1013 | * | |
cafe8816 TH |
1014 | * @unit_size, if non-negative, specifies unit size and must be |
1015 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | |
6074d5b0 | 1016 | * @reserved_size + if non-negative, @dyn_size. |
8d408b4b TH |
1017 | * |
1018 | * Non-null @base_addr means that the caller already allocated virtual | |
1019 | * region for the first chunk and mapped it. percpu must not mess | |
1020 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | |
1021 | * @populate_pte_fn doesn't make any sense. | |
1022 | * | |
1023 | * @populate_pte_fn is used to populate the pagetable. NULL means the | |
1024 | * caller already populated the pagetable. | |
fbf59bc9 | 1025 | * |
edcb4639 TH |
1026 | * If the first chunk ends up with both reserved and dynamic areas, it |
1027 | * is served by two chunks - one to serve the core static and reserved | |
1028 | * areas and the other for the dynamic area. They share the same vm | |
1029 | * and page map but uses different area allocation map to stay away | |
1030 | * from each other. The latter chunk is circulated in the chunk slots | |
1031 | * and available for dynamic allocation like any other chunks. | |
1032 | * | |
fbf59bc9 TH |
1033 | * RETURNS: |
1034 | * The determined pcpu_unit_size which can be used to initialize | |
1035 | * percpu access. | |
1036 | */ | |
8d408b4b | 1037 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, |
edcb4639 | 1038 | size_t static_size, size_t reserved_size, |
6074d5b0 | 1039 | ssize_t dyn_size, ssize_t unit_size, |
cafe8816 | 1040 | void *base_addr, |
8d408b4b | 1041 | pcpu_populate_pte_fn_t populate_pte_fn) |
fbf59bc9 | 1042 | { |
2441d15c | 1043 | static struct vm_struct first_vm; |
edcb4639 | 1044 | static int smap[2], dmap[2]; |
6074d5b0 TH |
1045 | size_t size_sum = static_size + reserved_size + |
1046 | (dyn_size >= 0 ? dyn_size : 0); | |
edcb4639 | 1047 | struct pcpu_chunk *schunk, *dchunk = NULL; |
fbf59bc9 | 1048 | unsigned int cpu; |
8d408b4b | 1049 | int nr_pages; |
fbf59bc9 TH |
1050 | int err, i; |
1051 | ||
8d408b4b | 1052 | /* santiy checks */ |
edcb4639 TH |
1053 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || |
1054 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | |
8d408b4b | 1055 | BUG_ON(!static_size); |
cafe8816 | 1056 | if (unit_size >= 0) { |
6074d5b0 | 1057 | BUG_ON(unit_size < size_sum); |
cafe8816 | 1058 | BUG_ON(unit_size & ~PAGE_MASK); |
6074d5b0 TH |
1059 | BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); |
1060 | } else | |
cafe8816 | 1061 | BUG_ON(base_addr); |
8d408b4b | 1062 | BUG_ON(base_addr && populate_pte_fn); |
fbf59bc9 | 1063 | |
cafe8816 | 1064 | if (unit_size >= 0) |
8d408b4b TH |
1065 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; |
1066 | else | |
1067 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | |
6074d5b0 | 1068 | PFN_UP(size_sum)); |
8d408b4b | 1069 | |
d9b55eeb | 1070 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
fbf59bc9 | 1071 | pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; |
fbf59bc9 | 1072 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) |
cb83b42e | 1073 | + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); |
fbf59bc9 | 1074 | |
cafe8816 | 1075 | if (dyn_size < 0) |
edcb4639 | 1076 | dyn_size = pcpu_unit_size - static_size - reserved_size; |
cafe8816 | 1077 | |
d9b55eeb TH |
1078 | /* |
1079 | * Allocate chunk slots. The additional last slot is for | |
1080 | * empty chunks. | |
1081 | */ | |
1082 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | |
fbf59bc9 TH |
1083 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); |
1084 | for (i = 0; i < pcpu_nr_slots; i++) | |
1085 | INIT_LIST_HEAD(&pcpu_slot[i]); | |
1086 | ||
edcb4639 TH |
1087 | /* |
1088 | * Initialize static chunk. If reserved_size is zero, the | |
1089 | * static chunk covers static area + dynamic allocation area | |
1090 | * in the first chunk. If reserved_size is not zero, it | |
1091 | * covers static area + reserved area (mostly used for module | |
1092 | * static percpu allocation). | |
1093 | */ | |
2441d15c TH |
1094 | schunk = alloc_bootmem(pcpu_chunk_struct_size); |
1095 | INIT_LIST_HEAD(&schunk->list); | |
1096 | schunk->vm = &first_vm; | |
61ace7fa TH |
1097 | schunk->map = smap; |
1098 | schunk->map_alloc = ARRAY_SIZE(smap); | |
3e24aa58 | 1099 | schunk->page = schunk->page_ar; |
edcb4639 TH |
1100 | |
1101 | if (reserved_size) { | |
1102 | schunk->free_size = reserved_size; | |
ae9e6bc9 TH |
1103 | pcpu_reserved_chunk = schunk; |
1104 | pcpu_reserved_chunk_limit = static_size + reserved_size; | |
edcb4639 TH |
1105 | } else { |
1106 | schunk->free_size = dyn_size; | |
1107 | dyn_size = 0; /* dynamic area covered */ | |
1108 | } | |
2441d15c | 1109 | schunk->contig_hint = schunk->free_size; |
fbf59bc9 | 1110 | |
61ace7fa TH |
1111 | schunk->map[schunk->map_used++] = -static_size; |
1112 | if (schunk->free_size) | |
1113 | schunk->map[schunk->map_used++] = schunk->free_size; | |
1114 | ||
edcb4639 TH |
1115 | /* init dynamic chunk if necessary */ |
1116 | if (dyn_size) { | |
1117 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | |
1118 | INIT_LIST_HEAD(&dchunk->list); | |
1119 | dchunk->vm = &first_vm; | |
1120 | dchunk->map = dmap; | |
1121 | dchunk->map_alloc = ARRAY_SIZE(dmap); | |
1122 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | |
1123 | ||
1124 | dchunk->contig_hint = dchunk->free_size = dyn_size; | |
1125 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | |
1126 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | |
1127 | } | |
1128 | ||
8d408b4b | 1129 | /* allocate vm address */ |
2441d15c TH |
1130 | first_vm.flags = VM_ALLOC; |
1131 | first_vm.size = pcpu_chunk_size; | |
8d408b4b TH |
1132 | |
1133 | if (!base_addr) | |
2441d15c | 1134 | vm_area_register_early(&first_vm, PAGE_SIZE); |
8d408b4b TH |
1135 | else { |
1136 | /* | |
1137 | * Pages already mapped. No need to remap into | |
edcb4639 TH |
1138 | * vmalloc area. In this case the first chunks can't |
1139 | * be mapped or unmapped by percpu and are marked | |
8d408b4b TH |
1140 | * immutable. |
1141 | */ | |
2441d15c TH |
1142 | first_vm.addr = base_addr; |
1143 | schunk->immutable = true; | |
edcb4639 TH |
1144 | if (dchunk) |
1145 | dchunk->immutable = true; | |
8d408b4b TH |
1146 | } |
1147 | ||
1148 | /* assign pages */ | |
1149 | nr_pages = -1; | |
fbf59bc9 | 1150 | for_each_possible_cpu(cpu) { |
8d408b4b TH |
1151 | for (i = 0; i < pcpu_unit_pages; i++) { |
1152 | struct page *page = get_page_fn(cpu, i); | |
1153 | ||
1154 | if (!page) | |
1155 | break; | |
2441d15c | 1156 | *pcpu_chunk_pagep(schunk, cpu, i) = page; |
fbf59bc9 | 1157 | } |
8d408b4b | 1158 | |
61ace7fa | 1159 | BUG_ON(i < PFN_UP(static_size)); |
8d408b4b TH |
1160 | |
1161 | if (nr_pages < 0) | |
1162 | nr_pages = i; | |
1163 | else | |
1164 | BUG_ON(nr_pages != i); | |
fbf59bc9 TH |
1165 | } |
1166 | ||
8d408b4b TH |
1167 | /* map them */ |
1168 | if (populate_pte_fn) { | |
1169 | for_each_possible_cpu(cpu) | |
1170 | for (i = 0; i < nr_pages; i++) | |
2441d15c | 1171 | populate_pte_fn(pcpu_chunk_addr(schunk, |
8d408b4b TH |
1172 | cpu, i)); |
1173 | ||
2441d15c | 1174 | err = pcpu_map(schunk, 0, nr_pages); |
8d408b4b TH |
1175 | if (err) |
1176 | panic("failed to setup static percpu area, err=%d\n", | |
1177 | err); | |
1178 | } | |
fbf59bc9 | 1179 | |
2441d15c | 1180 | /* link the first chunk in */ |
ae9e6bc9 TH |
1181 | pcpu_first_chunk = dchunk ?: schunk; |
1182 | pcpu_chunk_relocate(pcpu_first_chunk, -1); | |
fbf59bc9 TH |
1183 | |
1184 | /* we're done */ | |
2441d15c | 1185 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); |
fbf59bc9 TH |
1186 | return pcpu_unit_size; |
1187 | } | |
66c3a757 TH |
1188 | |
1189 | /* | |
1190 | * Embedding first chunk setup helper. | |
1191 | */ | |
1192 | static void *pcpue_ptr __initdata; | |
1193 | static size_t pcpue_size __initdata; | |
1194 | static size_t pcpue_unit_size __initdata; | |
1195 | ||
1196 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | |
1197 | { | |
1198 | size_t off = (size_t)pageno << PAGE_SHIFT; | |
1199 | ||
1200 | if (off >= pcpue_size) | |
1201 | return NULL; | |
1202 | ||
1203 | return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | |
1204 | } | |
1205 | ||
1206 | /** | |
1207 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
1208 | * @static_size: the size of static percpu area in bytes | |
1209 | * @reserved_size: the size of reserved percpu area in bytes | |
1210 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | |
1211 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | |
1212 | * | |
1213 | * This is a helper to ease setting up embedded first percpu chunk and | |
1214 | * can be called where pcpu_setup_first_chunk() is expected. | |
1215 | * | |
1216 | * If this function is used to setup the first chunk, it is allocated | |
1217 | * as a contiguous area using bootmem allocator and used as-is without | |
1218 | * being mapped into vmalloc area. This enables the first chunk to | |
1219 | * piggy back on the linear physical mapping which often uses larger | |
1220 | * page size. | |
1221 | * | |
1222 | * When @dyn_size is positive, dynamic area might be larger than | |
1223 | * specified to fill page alignment. Also, when @dyn_size is auto, | |
1224 | * @dyn_size does not fill the whole first chunk but only what's | |
1225 | * necessary for page alignment after static and reserved areas. | |
1226 | * | |
1227 | * If the needed size is smaller than the minimum or specified unit | |
1228 | * size, the leftover is returned to the bootmem allocator. | |
1229 | * | |
1230 | * RETURNS: | |
1231 | * The determined pcpu_unit_size which can be used to initialize | |
1232 | * percpu access on success, -errno on failure. | |
1233 | */ | |
1234 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | |
1235 | ssize_t dyn_size, ssize_t unit_size) | |
1236 | { | |
1237 | unsigned int cpu; | |
1238 | ||
1239 | /* determine parameters and allocate */ | |
1240 | pcpue_size = PFN_ALIGN(static_size + reserved_size + | |
1241 | (dyn_size >= 0 ? dyn_size : 0)); | |
1242 | if (dyn_size != 0) | |
1243 | dyn_size = pcpue_size - static_size - reserved_size; | |
1244 | ||
1245 | if (unit_size >= 0) { | |
1246 | BUG_ON(unit_size < pcpue_size); | |
1247 | pcpue_unit_size = unit_size; | |
1248 | } else | |
1249 | pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | |
1250 | ||
1251 | pcpue_ptr = __alloc_bootmem_nopanic( | |
1252 | num_possible_cpus() * pcpue_unit_size, | |
1253 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | |
1254 | if (!pcpue_ptr) | |
1255 | return -ENOMEM; | |
1256 | ||
1257 | /* return the leftover and copy */ | |
1258 | for_each_possible_cpu(cpu) { | |
1259 | void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | |
1260 | ||
1261 | free_bootmem(__pa(ptr + pcpue_size), | |
1262 | pcpue_unit_size - pcpue_size); | |
1263 | memcpy(ptr, __per_cpu_load, static_size); | |
1264 | } | |
1265 | ||
1266 | /* we're ready, commit */ | |
1267 | pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | |
1268 | pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | |
1269 | ||
1270 | return pcpu_setup_first_chunk(pcpue_get_page, static_size, | |
1271 | reserved_size, dyn_size, | |
1272 | pcpue_unit_size, pcpue_ptr, NULL); | |
1273 | } |