Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/mmap.c | |
3 | * | |
4 | * Written by obz. | |
5 | * | |
046c6884 | 6 | * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
1da177e4 LT |
7 | */ |
8 | ||
b1de0d13 MH |
9 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
10 | ||
e8420a8e | 11 | #include <linux/kernel.h> |
1da177e4 | 12 | #include <linux/slab.h> |
4af3c9cc | 13 | #include <linux/backing-dev.h> |
1da177e4 | 14 | #include <linux/mm.h> |
615d6e87 | 15 | #include <linux/vmacache.h> |
1da177e4 LT |
16 | #include <linux/shm.h> |
17 | #include <linux/mman.h> | |
18 | #include <linux/pagemap.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/syscalls.h> | |
c59ede7b | 21 | #include <linux/capability.h> |
1da177e4 LT |
22 | #include <linux/init.h> |
23 | #include <linux/file.h> | |
24 | #include <linux/fs.h> | |
25 | #include <linux/personality.h> | |
26 | #include <linux/security.h> | |
27 | #include <linux/hugetlb.h> | |
28 | #include <linux/profile.h> | |
b95f1b31 | 29 | #include <linux/export.h> |
1da177e4 LT |
30 | #include <linux/mount.h> |
31 | #include <linux/mempolicy.h> | |
32 | #include <linux/rmap.h> | |
cddb8a5c | 33 | #include <linux/mmu_notifier.h> |
82f71ae4 | 34 | #include <linux/mmdebug.h> |
cdd6c482 | 35 | #include <linux/perf_event.h> |
120a795d | 36 | #include <linux/audit.h> |
b15d00b6 | 37 | #include <linux/khugepaged.h> |
2b144498 | 38 | #include <linux/uprobes.h> |
d3737187 | 39 | #include <linux/rbtree_augmented.h> |
cf4aebc2 | 40 | #include <linux/sched/sysctl.h> |
1640879a AS |
41 | #include <linux/notifier.h> |
42 | #include <linux/memory.h> | |
b1de0d13 | 43 | #include <linux/printk.h> |
19a809af | 44 | #include <linux/userfaultfd_k.h> |
d977d56c | 45 | #include <linux/moduleparam.h> |
1da177e4 LT |
46 | |
47 | #include <asm/uaccess.h> | |
48 | #include <asm/cacheflush.h> | |
49 | #include <asm/tlb.h> | |
d6dd61c8 | 50 | #include <asm/mmu_context.h> |
1da177e4 | 51 | |
42b77728 JB |
52 | #include "internal.h" |
53 | ||
3a459756 KK |
54 | #ifndef arch_mmap_check |
55 | #define arch_mmap_check(addr, len, flags) (0) | |
56 | #endif | |
57 | ||
08e7d9b5 MS |
58 | #ifndef arch_rebalance_pgtables |
59 | #define arch_rebalance_pgtables(addr, len) (addr) | |
60 | #endif | |
61 | ||
d07e2259 DC |
62 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
63 | const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; | |
64 | const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; | |
65 | int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; | |
66 | #endif | |
67 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
68 | const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; | |
69 | const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; | |
70 | int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; | |
71 | #endif | |
72 | ||
d977d56c KK |
73 | static bool ignore_rlimit_data = true; |
74 | core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); | |
d07e2259 | 75 | |
e0da382c HD |
76 | static void unmap_region(struct mm_struct *mm, |
77 | struct vm_area_struct *vma, struct vm_area_struct *prev, | |
78 | unsigned long start, unsigned long end); | |
79 | ||
1da177e4 LT |
80 | /* description of effects of mapping type and prot in current implementation. |
81 | * this is due to the limited x86 page protection hardware. The expected | |
82 | * behavior is in parens: | |
83 | * | |
84 | * map_type prot | |
85 | * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC | |
86 | * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes | |
87 | * w: (no) no w: (no) no w: (yes) yes w: (no) no | |
88 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes | |
cc71aba3 | 89 | * |
1da177e4 LT |
90 | * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
91 | * w: (no) no w: (no) no w: (copy) copy w: (no) no | |
92 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes | |
93 | * | |
94 | */ | |
95 | pgprot_t protection_map[16] = { | |
96 | __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, | |
97 | __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 | |
98 | }; | |
99 | ||
804af2cf HD |
100 | pgprot_t vm_get_page_prot(unsigned long vm_flags) |
101 | { | |
b845f313 DK |
102 | return __pgprot(pgprot_val(protection_map[vm_flags & |
103 | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | | |
104 | pgprot_val(arch_vm_get_page_prot(vm_flags))); | |
804af2cf HD |
105 | } |
106 | EXPORT_SYMBOL(vm_get_page_prot); | |
107 | ||
64e45507 PF |
108 | static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) |
109 | { | |
110 | return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); | |
111 | } | |
112 | ||
113 | /* Update vma->vm_page_prot to reflect vma->vm_flags. */ | |
114 | void vma_set_page_prot(struct vm_area_struct *vma) | |
115 | { | |
116 | unsigned long vm_flags = vma->vm_flags; | |
117 | ||
118 | vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); | |
119 | if (vma_wants_writenotify(vma)) { | |
120 | vm_flags &= ~VM_SHARED; | |
121 | vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, | |
122 | vm_flags); | |
123 | } | |
124 | } | |
125 | ||
126 | ||
34679d7e SL |
127 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ |
128 | int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ | |
49f0ce5f | 129 | unsigned long sysctl_overcommit_kbytes __read_mostly; |
c3d8c141 | 130 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; |
c9b1d098 | 131 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ |
4eeab4f5 | 132 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ |
34679d7e SL |
133 | /* |
134 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
135 | * other variables. It can be updated by several CPUs frequently. | |
136 | */ | |
137 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
1da177e4 | 138 | |
997071bc S |
139 | /* |
140 | * The global memory commitment made in the system can be a metric | |
141 | * that can be used to drive ballooning decisions when Linux is hosted | |
142 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
143 | * balancing memory across competing virtual machines that are hosted. | |
144 | * Several metrics drive this policy engine including the guest reported | |
145 | * memory commitment. | |
146 | */ | |
147 | unsigned long vm_memory_committed(void) | |
148 | { | |
149 | return percpu_counter_read_positive(&vm_committed_as); | |
150 | } | |
151 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
152 | ||
1da177e4 LT |
153 | /* |
154 | * Check that a process has enough memory to allocate a new virtual | |
155 | * mapping. 0 means there is enough memory for the allocation to | |
156 | * succeed and -ENOMEM implies there is not. | |
157 | * | |
158 | * We currently support three overcommit policies, which are set via the | |
159 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting | |
160 | * | |
161 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
162 | * Additional code 2002 Jul 20 by Robert Love. | |
163 | * | |
164 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
165 | * | |
166 | * Note this is a helper function intended to be used by LSMs which | |
167 | * wish to use this logic. | |
168 | */ | |
34b4e4aa | 169 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) |
1da177e4 | 170 | { |
5703b087 | 171 | long free, allowed, reserve; |
1da177e4 | 172 | |
82f71ae4 KK |
173 | VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < |
174 | -(s64)vm_committed_as_batch * num_online_cpus(), | |
175 | "memory commitment underflow"); | |
176 | ||
1da177e4 LT |
177 | vm_acct_memory(pages); |
178 | ||
179 | /* | |
180 | * Sometimes we want to use more memory than we have | |
181 | */ | |
182 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
183 | return 0; | |
184 | ||
185 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
c15bef30 DF |
186 | free = global_page_state(NR_FREE_PAGES); |
187 | free += global_page_state(NR_FILE_PAGES); | |
188 | ||
189 | /* | |
190 | * shmem pages shouldn't be counted as free in this | |
191 | * case, they can't be purged, only swapped out, and | |
192 | * that won't affect the overall amount of available | |
193 | * memory in the system. | |
194 | */ | |
195 | free -= global_page_state(NR_SHMEM); | |
1da177e4 | 196 | |
ec8acf20 | 197 | free += get_nr_swap_pages(); |
1da177e4 LT |
198 | |
199 | /* | |
200 | * Any slabs which are created with the | |
201 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents | |
202 | * which are reclaimable, under pressure. The dentry | |
203 | * cache and most inode caches should fall into this | |
204 | */ | |
972d1a7b | 205 | free += global_page_state(NR_SLAB_RECLAIMABLE); |
1da177e4 | 206 | |
6d9f7839 HA |
207 | /* |
208 | * Leave reserved pages. The pages are not for anonymous pages. | |
209 | */ | |
c15bef30 | 210 | if (free <= totalreserve_pages) |
6d9f7839 HA |
211 | goto error; |
212 | else | |
c15bef30 | 213 | free -= totalreserve_pages; |
6d9f7839 HA |
214 | |
215 | /* | |
4eeab4f5 | 216 | * Reserve some for root |
6d9f7839 | 217 | */ |
1da177e4 | 218 | if (!cap_sys_admin) |
4eeab4f5 | 219 | free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
1da177e4 LT |
220 | |
221 | if (free > pages) | |
222 | return 0; | |
6d9f7839 HA |
223 | |
224 | goto error; | |
1da177e4 LT |
225 | } |
226 | ||
00619bcc | 227 | allowed = vm_commit_limit(); |
1da177e4 | 228 | /* |
4eeab4f5 | 229 | * Reserve some for root |
1da177e4 LT |
230 | */ |
231 | if (!cap_sys_admin) | |
4eeab4f5 | 232 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
1da177e4 | 233 | |
c9b1d098 AS |
234 | /* |
235 | * Don't let a single process grow so big a user can't recover | |
236 | */ | |
237 | if (mm) { | |
238 | reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | |
5703b087 | 239 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
c9b1d098 | 240 | } |
1da177e4 | 241 | |
00a62ce9 | 242 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) |
1da177e4 | 243 | return 0; |
6d9f7839 | 244 | error: |
1da177e4 LT |
245 | vm_unacct_memory(pages); |
246 | ||
247 | return -ENOMEM; | |
248 | } | |
249 | ||
1da177e4 | 250 | /* |
c8c06efa | 251 | * Requires inode->i_mapping->i_mmap_rwsem |
1da177e4 LT |
252 | */ |
253 | static void __remove_shared_vm_struct(struct vm_area_struct *vma, | |
254 | struct file *file, struct address_space *mapping) | |
255 | { | |
256 | if (vma->vm_flags & VM_DENYWRITE) | |
496ad9aa | 257 | atomic_inc(&file_inode(file)->i_writecount); |
1da177e4 | 258 | if (vma->vm_flags & VM_SHARED) |
4bb5f5d9 | 259 | mapping_unmap_writable(mapping); |
1da177e4 LT |
260 | |
261 | flush_dcache_mmap_lock(mapping); | |
27ba0644 | 262 | vma_interval_tree_remove(vma, &mapping->i_mmap); |
1da177e4 LT |
263 | flush_dcache_mmap_unlock(mapping); |
264 | } | |
265 | ||
266 | /* | |
6b2dbba8 | 267 | * Unlink a file-based vm structure from its interval tree, to hide |
a8fb5618 | 268 | * vma from rmap and vmtruncate before freeing its page tables. |
1da177e4 | 269 | */ |
a8fb5618 | 270 | void unlink_file_vma(struct vm_area_struct *vma) |
1da177e4 LT |
271 | { |
272 | struct file *file = vma->vm_file; | |
273 | ||
1da177e4 LT |
274 | if (file) { |
275 | struct address_space *mapping = file->f_mapping; | |
83cde9e8 | 276 | i_mmap_lock_write(mapping); |
1da177e4 | 277 | __remove_shared_vm_struct(vma, file, mapping); |
83cde9e8 | 278 | i_mmap_unlock_write(mapping); |
1da177e4 | 279 | } |
a8fb5618 HD |
280 | } |
281 | ||
282 | /* | |
283 | * Close a vm structure and free it, returning the next. | |
284 | */ | |
285 | static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) | |
286 | { | |
287 | struct vm_area_struct *next = vma->vm_next; | |
288 | ||
a8fb5618 | 289 | might_sleep(); |
1da177e4 LT |
290 | if (vma->vm_ops && vma->vm_ops->close) |
291 | vma->vm_ops->close(vma); | |
e9714acf | 292 | if (vma->vm_file) |
a8fb5618 | 293 | fput(vma->vm_file); |
f0be3d32 | 294 | mpol_put(vma_policy(vma)); |
1da177e4 | 295 | kmem_cache_free(vm_area_cachep, vma); |
a8fb5618 | 296 | return next; |
1da177e4 LT |
297 | } |
298 | ||
e4eb1ff6 LT |
299 | static unsigned long do_brk(unsigned long addr, unsigned long len); |
300 | ||
6a6160a7 | 301 | SYSCALL_DEFINE1(brk, unsigned long, brk) |
1da177e4 | 302 | { |
8764b338 | 303 | unsigned long retval; |
1da177e4 LT |
304 | unsigned long newbrk, oldbrk; |
305 | struct mm_struct *mm = current->mm; | |
a5b4592c | 306 | unsigned long min_brk; |
128557ff | 307 | bool populate; |
1da177e4 LT |
308 | |
309 | down_write(&mm->mmap_sem); | |
310 | ||
a5b4592c | 311 | #ifdef CONFIG_COMPAT_BRK |
5520e894 JK |
312 | /* |
313 | * CONFIG_COMPAT_BRK can still be overridden by setting | |
314 | * randomize_va_space to 2, which will still cause mm->start_brk | |
315 | * to be arbitrarily shifted | |
316 | */ | |
4471a675 | 317 | if (current->brk_randomized) |
5520e894 JK |
318 | min_brk = mm->start_brk; |
319 | else | |
320 | min_brk = mm->end_data; | |
a5b4592c JK |
321 | #else |
322 | min_brk = mm->start_brk; | |
323 | #endif | |
324 | if (brk < min_brk) | |
1da177e4 | 325 | goto out; |
1e624196 RG |
326 | |
327 | /* | |
328 | * Check against rlimit here. If this check is done later after the test | |
329 | * of oldbrk with newbrk then it can escape the test and let the data | |
330 | * segment grow beyond its set limit the in case where the limit is | |
331 | * not page aligned -Ram Gupta | |
332 | */ | |
8764b338 CG |
333 | if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, |
334 | mm->end_data, mm->start_data)) | |
1e624196 RG |
335 | goto out; |
336 | ||
1da177e4 LT |
337 | newbrk = PAGE_ALIGN(brk); |
338 | oldbrk = PAGE_ALIGN(mm->brk); | |
339 | if (oldbrk == newbrk) | |
340 | goto set_brk; | |
341 | ||
342 | /* Always allow shrinking brk. */ | |
343 | if (brk <= mm->brk) { | |
344 | if (!do_munmap(mm, newbrk, oldbrk-newbrk)) | |
345 | goto set_brk; | |
346 | goto out; | |
347 | } | |
348 | ||
1da177e4 LT |
349 | /* Check against existing mmap mappings. */ |
350 | if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) | |
351 | goto out; | |
352 | ||
353 | /* Ok, looks good - let it rip. */ | |
354 | if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) | |
355 | goto out; | |
128557ff | 356 | |
1da177e4 LT |
357 | set_brk: |
358 | mm->brk = brk; | |
128557ff ML |
359 | populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; |
360 | up_write(&mm->mmap_sem); | |
361 | if (populate) | |
362 | mm_populate(oldbrk, newbrk - oldbrk); | |
363 | return brk; | |
364 | ||
1da177e4 LT |
365 | out: |
366 | retval = mm->brk; | |
367 | up_write(&mm->mmap_sem); | |
368 | return retval; | |
369 | } | |
370 | ||
d3737187 ML |
371 | static long vma_compute_subtree_gap(struct vm_area_struct *vma) |
372 | { | |
373 | unsigned long max, subtree_gap; | |
374 | max = vma->vm_start; | |
375 | if (vma->vm_prev) | |
376 | max -= vma->vm_prev->vm_end; | |
377 | if (vma->vm_rb.rb_left) { | |
378 | subtree_gap = rb_entry(vma->vm_rb.rb_left, | |
379 | struct vm_area_struct, vm_rb)->rb_subtree_gap; | |
380 | if (subtree_gap > max) | |
381 | max = subtree_gap; | |
382 | } | |
383 | if (vma->vm_rb.rb_right) { | |
384 | subtree_gap = rb_entry(vma->vm_rb.rb_right, | |
385 | struct vm_area_struct, vm_rb)->rb_subtree_gap; | |
386 | if (subtree_gap > max) | |
387 | max = subtree_gap; | |
388 | } | |
389 | return max; | |
390 | } | |
391 | ||
ed8ea815 | 392 | #ifdef CONFIG_DEBUG_VM_RB |
1da177e4 LT |
393 | static int browse_rb(struct rb_root *root) |
394 | { | |
5a0768f6 | 395 | int i = 0, j, bug = 0; |
1da177e4 LT |
396 | struct rb_node *nd, *pn = NULL; |
397 | unsigned long prev = 0, pend = 0; | |
398 | ||
399 | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | |
400 | struct vm_area_struct *vma; | |
401 | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | |
5a0768f6 | 402 | if (vma->vm_start < prev) { |
ff26f70f AM |
403 | pr_emerg("vm_start %lx < prev %lx\n", |
404 | vma->vm_start, prev); | |
5a0768f6 ML |
405 | bug = 1; |
406 | } | |
407 | if (vma->vm_start < pend) { | |
ff26f70f AM |
408 | pr_emerg("vm_start %lx < pend %lx\n", |
409 | vma->vm_start, pend); | |
5a0768f6 ML |
410 | bug = 1; |
411 | } | |
412 | if (vma->vm_start > vma->vm_end) { | |
ff26f70f AM |
413 | pr_emerg("vm_start %lx > vm_end %lx\n", |
414 | vma->vm_start, vma->vm_end); | |
5a0768f6 ML |
415 | bug = 1; |
416 | } | |
417 | if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { | |
8542bdfc | 418 | pr_emerg("free gap %lx, correct %lx\n", |
5a0768f6 ML |
419 | vma->rb_subtree_gap, |
420 | vma_compute_subtree_gap(vma)); | |
421 | bug = 1; | |
422 | } | |
1da177e4 LT |
423 | i++; |
424 | pn = nd; | |
d1af65d1 DM |
425 | prev = vma->vm_start; |
426 | pend = vma->vm_end; | |
1da177e4 LT |
427 | } |
428 | j = 0; | |
5a0768f6 | 429 | for (nd = pn; nd; nd = rb_prev(nd)) |
1da177e4 | 430 | j++; |
5a0768f6 | 431 | if (i != j) { |
8542bdfc | 432 | pr_emerg("backwards %d, forwards %d\n", j, i); |
5a0768f6 | 433 | bug = 1; |
1da177e4 | 434 | } |
5a0768f6 | 435 | return bug ? -1 : i; |
1da177e4 LT |
436 | } |
437 | ||
d3737187 ML |
438 | static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) |
439 | { | |
440 | struct rb_node *nd; | |
441 | ||
442 | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | |
443 | struct vm_area_struct *vma; | |
444 | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | |
96dad67f SL |
445 | VM_BUG_ON_VMA(vma != ignore && |
446 | vma->rb_subtree_gap != vma_compute_subtree_gap(vma), | |
447 | vma); | |
1da177e4 | 448 | } |
1da177e4 LT |
449 | } |
450 | ||
eafd4dc4 | 451 | static void validate_mm(struct mm_struct *mm) |
1da177e4 LT |
452 | { |
453 | int bug = 0; | |
454 | int i = 0; | |
5a0768f6 | 455 | unsigned long highest_address = 0; |
ed8ea815 | 456 | struct vm_area_struct *vma = mm->mmap; |
ff26f70f | 457 | |
ed8ea815 ML |
458 | while (vma) { |
459 | struct anon_vma_chain *avc; | |
ff26f70f | 460 | |
63c3b902 | 461 | vma_lock_anon_vma(vma); |
ed8ea815 ML |
462 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
463 | anon_vma_interval_tree_verify(avc); | |
63c3b902 | 464 | vma_unlock_anon_vma(vma); |
5a0768f6 | 465 | highest_address = vma->vm_end; |
ed8ea815 | 466 | vma = vma->vm_next; |
1da177e4 LT |
467 | i++; |
468 | } | |
5a0768f6 | 469 | if (i != mm->map_count) { |
8542bdfc | 470 | pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); |
5a0768f6 ML |
471 | bug = 1; |
472 | } | |
473 | if (highest_address != mm->highest_vm_end) { | |
8542bdfc | 474 | pr_emerg("mm->highest_vm_end %lx, found %lx\n", |
ff26f70f | 475 | mm->highest_vm_end, highest_address); |
5a0768f6 ML |
476 | bug = 1; |
477 | } | |
1da177e4 | 478 | i = browse_rb(&mm->mm_rb); |
5a0768f6 | 479 | if (i != mm->map_count) { |
ff26f70f AM |
480 | if (i != -1) |
481 | pr_emerg("map_count %d rb %d\n", mm->map_count, i); | |
5a0768f6 ML |
482 | bug = 1; |
483 | } | |
96dad67f | 484 | VM_BUG_ON_MM(bug, mm); |
1da177e4 LT |
485 | } |
486 | #else | |
d3737187 | 487 | #define validate_mm_rb(root, ignore) do { } while (0) |
1da177e4 LT |
488 | #define validate_mm(mm) do { } while (0) |
489 | #endif | |
490 | ||
d3737187 ML |
491 | RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, |
492 | unsigned long, rb_subtree_gap, vma_compute_subtree_gap) | |
493 | ||
494 | /* | |
495 | * Update augmented rbtree rb_subtree_gap values after vma->vm_start or | |
496 | * vma->vm_prev->vm_end values changed, without modifying the vma's position | |
497 | * in the rbtree. | |
498 | */ | |
499 | static void vma_gap_update(struct vm_area_struct *vma) | |
500 | { | |
501 | /* | |
502 | * As it turns out, RB_DECLARE_CALLBACKS() already created a callback | |
503 | * function that does exacltly what we want. | |
504 | */ | |
505 | vma_gap_callbacks_propagate(&vma->vm_rb, NULL); | |
506 | } | |
507 | ||
508 | static inline void vma_rb_insert(struct vm_area_struct *vma, | |
509 | struct rb_root *root) | |
510 | { | |
511 | /* All rb_subtree_gap values must be consistent prior to insertion */ | |
512 | validate_mm_rb(root, NULL); | |
513 | ||
514 | rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); | |
515 | } | |
516 | ||
517 | static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) | |
518 | { | |
519 | /* | |
520 | * All rb_subtree_gap values must be consistent prior to erase, | |
521 | * with the possible exception of the vma being erased. | |
522 | */ | |
523 | validate_mm_rb(root, vma); | |
524 | ||
525 | /* | |
526 | * Note rb_erase_augmented is a fairly large inline function, | |
527 | * so make sure we instantiate it only once with our desired | |
528 | * augmented rbtree callbacks. | |
529 | */ | |
530 | rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); | |
531 | } | |
532 | ||
bf181b9f ML |
533 | /* |
534 | * vma has some anon_vma assigned, and is already inserted on that | |
535 | * anon_vma's interval trees. | |
536 | * | |
537 | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the | |
538 | * vma must be removed from the anon_vma's interval trees using | |
539 | * anon_vma_interval_tree_pre_update_vma(). | |
540 | * | |
541 | * After the update, the vma will be reinserted using | |
542 | * anon_vma_interval_tree_post_update_vma(). | |
543 | * | |
544 | * The entire update must be protected by exclusive mmap_sem and by | |
545 | * the root anon_vma's mutex. | |
546 | */ | |
547 | static inline void | |
548 | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) | |
549 | { | |
550 | struct anon_vma_chain *avc; | |
551 | ||
552 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | |
553 | anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); | |
554 | } | |
555 | ||
556 | static inline void | |
557 | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) | |
558 | { | |
559 | struct anon_vma_chain *avc; | |
560 | ||
561 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | |
562 | anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); | |
563 | } | |
564 | ||
6597d783 HD |
565 | static int find_vma_links(struct mm_struct *mm, unsigned long addr, |
566 | unsigned long end, struct vm_area_struct **pprev, | |
567 | struct rb_node ***rb_link, struct rb_node **rb_parent) | |
1da177e4 | 568 | { |
6597d783 | 569 | struct rb_node **__rb_link, *__rb_parent, *rb_prev; |
1da177e4 LT |
570 | |
571 | __rb_link = &mm->mm_rb.rb_node; | |
572 | rb_prev = __rb_parent = NULL; | |
1da177e4 LT |
573 | |
574 | while (*__rb_link) { | |
575 | struct vm_area_struct *vma_tmp; | |
576 | ||
577 | __rb_parent = *__rb_link; | |
578 | vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); | |
579 | ||
580 | if (vma_tmp->vm_end > addr) { | |
6597d783 HD |
581 | /* Fail if an existing vma overlaps the area */ |
582 | if (vma_tmp->vm_start < end) | |
583 | return -ENOMEM; | |
1da177e4 LT |
584 | __rb_link = &__rb_parent->rb_left; |
585 | } else { | |
586 | rb_prev = __rb_parent; | |
587 | __rb_link = &__rb_parent->rb_right; | |
588 | } | |
589 | } | |
590 | ||
591 | *pprev = NULL; | |
592 | if (rb_prev) | |
593 | *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); | |
594 | *rb_link = __rb_link; | |
595 | *rb_parent = __rb_parent; | |
6597d783 | 596 | return 0; |
1da177e4 LT |
597 | } |
598 | ||
e8420a8e CH |
599 | static unsigned long count_vma_pages_range(struct mm_struct *mm, |
600 | unsigned long addr, unsigned long end) | |
601 | { | |
602 | unsigned long nr_pages = 0; | |
603 | struct vm_area_struct *vma; | |
604 | ||
605 | /* Find first overlaping mapping */ | |
606 | vma = find_vma_intersection(mm, addr, end); | |
607 | if (!vma) | |
608 | return 0; | |
609 | ||
610 | nr_pages = (min(end, vma->vm_end) - | |
611 | max(addr, vma->vm_start)) >> PAGE_SHIFT; | |
612 | ||
613 | /* Iterate over the rest of the overlaps */ | |
614 | for (vma = vma->vm_next; vma; vma = vma->vm_next) { | |
615 | unsigned long overlap_len; | |
616 | ||
617 | if (vma->vm_start > end) | |
618 | break; | |
619 | ||
620 | overlap_len = min(end, vma->vm_end) - vma->vm_start; | |
621 | nr_pages += overlap_len >> PAGE_SHIFT; | |
622 | } | |
623 | ||
624 | return nr_pages; | |
625 | } | |
626 | ||
1da177e4 LT |
627 | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, |
628 | struct rb_node **rb_link, struct rb_node *rb_parent) | |
629 | { | |
d3737187 ML |
630 | /* Update tracking information for the gap following the new vma. */ |
631 | if (vma->vm_next) | |
632 | vma_gap_update(vma->vm_next); | |
633 | else | |
634 | mm->highest_vm_end = vma->vm_end; | |
635 | ||
636 | /* | |
637 | * vma->vm_prev wasn't known when we followed the rbtree to find the | |
638 | * correct insertion point for that vma. As a result, we could not | |
639 | * update the vma vm_rb parents rb_subtree_gap values on the way down. | |
640 | * So, we first insert the vma with a zero rb_subtree_gap value | |
641 | * (to be consistent with what we did on the way down), and then | |
642 | * immediately update the gap to the correct value. Finally we | |
643 | * rebalance the rbtree after all augmented values have been set. | |
644 | */ | |
1da177e4 | 645 | rb_link_node(&vma->vm_rb, rb_parent, rb_link); |
d3737187 ML |
646 | vma->rb_subtree_gap = 0; |
647 | vma_gap_update(vma); | |
648 | vma_rb_insert(vma, &mm->mm_rb); | |
1da177e4 LT |
649 | } |
650 | ||
cb8f488c | 651 | static void __vma_link_file(struct vm_area_struct *vma) |
1da177e4 | 652 | { |
48aae425 | 653 | struct file *file; |
1da177e4 LT |
654 | |
655 | file = vma->vm_file; | |
656 | if (file) { | |
657 | struct address_space *mapping = file->f_mapping; | |
658 | ||
659 | if (vma->vm_flags & VM_DENYWRITE) | |
496ad9aa | 660 | atomic_dec(&file_inode(file)->i_writecount); |
1da177e4 | 661 | if (vma->vm_flags & VM_SHARED) |
4bb5f5d9 | 662 | atomic_inc(&mapping->i_mmap_writable); |
1da177e4 LT |
663 | |
664 | flush_dcache_mmap_lock(mapping); | |
27ba0644 | 665 | vma_interval_tree_insert(vma, &mapping->i_mmap); |
1da177e4 LT |
666 | flush_dcache_mmap_unlock(mapping); |
667 | } | |
668 | } | |
669 | ||
670 | static void | |
671 | __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | |
672 | struct vm_area_struct *prev, struct rb_node **rb_link, | |
673 | struct rb_node *rb_parent) | |
674 | { | |
675 | __vma_link_list(mm, vma, prev, rb_parent); | |
676 | __vma_link_rb(mm, vma, rb_link, rb_parent); | |
1da177e4 LT |
677 | } |
678 | ||
679 | static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | |
680 | struct vm_area_struct *prev, struct rb_node **rb_link, | |
681 | struct rb_node *rb_parent) | |
682 | { | |
683 | struct address_space *mapping = NULL; | |
684 | ||
64ac4940 | 685 | if (vma->vm_file) { |
1da177e4 | 686 | mapping = vma->vm_file->f_mapping; |
83cde9e8 | 687 | i_mmap_lock_write(mapping); |
64ac4940 | 688 | } |
1da177e4 LT |
689 | |
690 | __vma_link(mm, vma, prev, rb_link, rb_parent); | |
691 | __vma_link_file(vma); | |
692 | ||
1da177e4 | 693 | if (mapping) |
83cde9e8 | 694 | i_mmap_unlock_write(mapping); |
1da177e4 LT |
695 | |
696 | mm->map_count++; | |
697 | validate_mm(mm); | |
698 | } | |
699 | ||
700 | /* | |
88f6b4c3 | 701 | * Helper for vma_adjust() in the split_vma insert case: insert a vma into the |
6b2dbba8 | 702 | * mm's list and rbtree. It has already been inserted into the interval tree. |
1da177e4 | 703 | */ |
48aae425 | 704 | static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
1da177e4 | 705 | { |
6597d783 | 706 | struct vm_area_struct *prev; |
48aae425 | 707 | struct rb_node **rb_link, *rb_parent; |
1da177e4 | 708 | |
6597d783 HD |
709 | if (find_vma_links(mm, vma->vm_start, vma->vm_end, |
710 | &prev, &rb_link, &rb_parent)) | |
711 | BUG(); | |
1da177e4 LT |
712 | __vma_link(mm, vma, prev, rb_link, rb_parent); |
713 | mm->map_count++; | |
714 | } | |
715 | ||
716 | static inline void | |
717 | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, | |
718 | struct vm_area_struct *prev) | |
719 | { | |
d3737187 | 720 | struct vm_area_struct *next; |
297c5eee | 721 | |
d3737187 ML |
722 | vma_rb_erase(vma, &mm->mm_rb); |
723 | prev->vm_next = next = vma->vm_next; | |
297c5eee LT |
724 | if (next) |
725 | next->vm_prev = prev; | |
615d6e87 DB |
726 | |
727 | /* Kill the cache */ | |
728 | vmacache_invalidate(mm); | |
1da177e4 LT |
729 | } |
730 | ||
731 | /* | |
732 | * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that | |
733 | * is already present in an i_mmap tree without adjusting the tree. | |
734 | * The following helper function should be used when such adjustments | |
735 | * are necessary. The "insert" vma (if any) is to be inserted | |
736 | * before we drop the necessary locks. | |
737 | */ | |
5beb4930 | 738 | int vma_adjust(struct vm_area_struct *vma, unsigned long start, |
1da177e4 LT |
739 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) |
740 | { | |
741 | struct mm_struct *mm = vma->vm_mm; | |
742 | struct vm_area_struct *next = vma->vm_next; | |
743 | struct vm_area_struct *importer = NULL; | |
744 | struct address_space *mapping = NULL; | |
6b2dbba8 | 745 | struct rb_root *root = NULL; |
012f1800 | 746 | struct anon_vma *anon_vma = NULL; |
1da177e4 | 747 | struct file *file = vma->vm_file; |
d3737187 | 748 | bool start_changed = false, end_changed = false; |
1da177e4 LT |
749 | long adjust_next = 0; |
750 | int remove_next = 0; | |
751 | ||
752 | if (next && !insert) { | |
287d97ac LT |
753 | struct vm_area_struct *exporter = NULL; |
754 | ||
1da177e4 LT |
755 | if (end >= next->vm_end) { |
756 | /* | |
757 | * vma expands, overlapping all the next, and | |
758 | * perhaps the one after too (mprotect case 6). | |
759 | */ | |
760 | again: remove_next = 1 + (end > next->vm_end); | |
761 | end = next->vm_end; | |
287d97ac | 762 | exporter = next; |
1da177e4 LT |
763 | importer = vma; |
764 | } else if (end > next->vm_start) { | |
765 | /* | |
766 | * vma expands, overlapping part of the next: | |
767 | * mprotect case 5 shifting the boundary up. | |
768 | */ | |
769 | adjust_next = (end - next->vm_start) >> PAGE_SHIFT; | |
287d97ac | 770 | exporter = next; |
1da177e4 LT |
771 | importer = vma; |
772 | } else if (end < vma->vm_end) { | |
773 | /* | |
774 | * vma shrinks, and !insert tells it's not | |
775 | * split_vma inserting another: so it must be | |
776 | * mprotect case 4 shifting the boundary down. | |
777 | */ | |
cc71aba3 | 778 | adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); |
287d97ac | 779 | exporter = vma; |
1da177e4 LT |
780 | importer = next; |
781 | } | |
1da177e4 | 782 | |
5beb4930 RR |
783 | /* |
784 | * Easily overlooked: when mprotect shifts the boundary, | |
785 | * make sure the expanding vma has anon_vma set if the | |
786 | * shrinking vma had, to cover any anon pages imported. | |
787 | */ | |
287d97ac | 788 | if (exporter && exporter->anon_vma && !importer->anon_vma) { |
c4ea95d7 DF |
789 | int error; |
790 | ||
b800c91a | 791 | importer->anon_vma = exporter->anon_vma; |
c4ea95d7 | 792 | error = anon_vma_clone(importer, exporter); |
3fe89b3e | 793 | if (error) |
c4ea95d7 | 794 | return error; |
5beb4930 RR |
795 | } |
796 | } | |
797 | ||
1da177e4 LT |
798 | if (file) { |
799 | mapping = file->f_mapping; | |
27ba0644 KS |
800 | root = &mapping->i_mmap; |
801 | uprobe_munmap(vma, vma->vm_start, vma->vm_end); | |
682968e0 | 802 | |
27ba0644 KS |
803 | if (adjust_next) |
804 | uprobe_munmap(next, next->vm_start, next->vm_end); | |
682968e0 | 805 | |
83cde9e8 | 806 | i_mmap_lock_write(mapping); |
1da177e4 | 807 | if (insert) { |
1da177e4 | 808 | /* |
6b2dbba8 | 809 | * Put into interval tree now, so instantiated pages |
1da177e4 LT |
810 | * are visible to arm/parisc __flush_dcache_page |
811 | * throughout; but we cannot insert into address | |
812 | * space until vma start or end is updated. | |
813 | */ | |
814 | __vma_link_file(insert); | |
815 | } | |
816 | } | |
817 | ||
94fcc585 AA |
818 | vma_adjust_trans_huge(vma, start, end, adjust_next); |
819 | ||
bf181b9f ML |
820 | anon_vma = vma->anon_vma; |
821 | if (!anon_vma && adjust_next) | |
822 | anon_vma = next->anon_vma; | |
823 | if (anon_vma) { | |
81d1b09c SL |
824 | VM_BUG_ON_VMA(adjust_next && next->anon_vma && |
825 | anon_vma != next->anon_vma, next); | |
4fc3f1d6 | 826 | anon_vma_lock_write(anon_vma); |
bf181b9f ML |
827 | anon_vma_interval_tree_pre_update_vma(vma); |
828 | if (adjust_next) | |
829 | anon_vma_interval_tree_pre_update_vma(next); | |
830 | } | |
012f1800 | 831 | |
1da177e4 LT |
832 | if (root) { |
833 | flush_dcache_mmap_lock(mapping); | |
6b2dbba8 | 834 | vma_interval_tree_remove(vma, root); |
1da177e4 | 835 | if (adjust_next) |
6b2dbba8 | 836 | vma_interval_tree_remove(next, root); |
1da177e4 LT |
837 | } |
838 | ||
d3737187 ML |
839 | if (start != vma->vm_start) { |
840 | vma->vm_start = start; | |
841 | start_changed = true; | |
842 | } | |
843 | if (end != vma->vm_end) { | |
844 | vma->vm_end = end; | |
845 | end_changed = true; | |
846 | } | |
1da177e4 LT |
847 | vma->vm_pgoff = pgoff; |
848 | if (adjust_next) { | |
849 | next->vm_start += adjust_next << PAGE_SHIFT; | |
850 | next->vm_pgoff += adjust_next; | |
851 | } | |
852 | ||
853 | if (root) { | |
854 | if (adjust_next) | |
6b2dbba8 ML |
855 | vma_interval_tree_insert(next, root); |
856 | vma_interval_tree_insert(vma, root); | |
1da177e4 LT |
857 | flush_dcache_mmap_unlock(mapping); |
858 | } | |
859 | ||
860 | if (remove_next) { | |
861 | /* | |
862 | * vma_merge has merged next into vma, and needs | |
863 | * us to remove next before dropping the locks. | |
864 | */ | |
865 | __vma_unlink(mm, next, vma); | |
866 | if (file) | |
867 | __remove_shared_vm_struct(next, file, mapping); | |
1da177e4 LT |
868 | } else if (insert) { |
869 | /* | |
870 | * split_vma has split insert from vma, and needs | |
871 | * us to insert it before dropping the locks | |
872 | * (it may either follow vma or precede it). | |
873 | */ | |
874 | __insert_vm_struct(mm, insert); | |
d3737187 ML |
875 | } else { |
876 | if (start_changed) | |
877 | vma_gap_update(vma); | |
878 | if (end_changed) { | |
879 | if (!next) | |
880 | mm->highest_vm_end = end; | |
881 | else if (!adjust_next) | |
882 | vma_gap_update(next); | |
883 | } | |
1da177e4 LT |
884 | } |
885 | ||
bf181b9f ML |
886 | if (anon_vma) { |
887 | anon_vma_interval_tree_post_update_vma(vma); | |
888 | if (adjust_next) | |
889 | anon_vma_interval_tree_post_update_vma(next); | |
08b52706 | 890 | anon_vma_unlock_write(anon_vma); |
bf181b9f | 891 | } |
1da177e4 | 892 | if (mapping) |
83cde9e8 | 893 | i_mmap_unlock_write(mapping); |
1da177e4 | 894 | |
2b144498 | 895 | if (root) { |
7b2d81d4 | 896 | uprobe_mmap(vma); |
2b144498 SD |
897 | |
898 | if (adjust_next) | |
7b2d81d4 | 899 | uprobe_mmap(next); |
2b144498 SD |
900 | } |
901 | ||
1da177e4 | 902 | if (remove_next) { |
925d1c40 | 903 | if (file) { |
cbc91f71 | 904 | uprobe_munmap(next, next->vm_start, next->vm_end); |
1da177e4 | 905 | fput(file); |
925d1c40 | 906 | } |
5beb4930 RR |
907 | if (next->anon_vma) |
908 | anon_vma_merge(vma, next); | |
1da177e4 | 909 | mm->map_count--; |
3964acd0 | 910 | mpol_put(vma_policy(next)); |
1da177e4 LT |
911 | kmem_cache_free(vm_area_cachep, next); |
912 | /* | |
913 | * In mprotect's case 6 (see comments on vma_merge), | |
914 | * we must remove another next too. It would clutter | |
915 | * up the code too much to do both in one go. | |
916 | */ | |
d3737187 ML |
917 | next = vma->vm_next; |
918 | if (remove_next == 2) | |
1da177e4 | 919 | goto again; |
d3737187 ML |
920 | else if (next) |
921 | vma_gap_update(next); | |
922 | else | |
923 | mm->highest_vm_end = end; | |
1da177e4 | 924 | } |
2b144498 | 925 | if (insert && file) |
7b2d81d4 | 926 | uprobe_mmap(insert); |
1da177e4 LT |
927 | |
928 | validate_mm(mm); | |
5beb4930 RR |
929 | |
930 | return 0; | |
1da177e4 LT |
931 | } |
932 | ||
933 | /* | |
934 | * If the vma has a ->close operation then the driver probably needs to release | |
935 | * per-vma resources, so we don't attempt to merge those. | |
936 | */ | |
1da177e4 | 937 | static inline int is_mergeable_vma(struct vm_area_struct *vma, |
19a809af AA |
938 | struct file *file, unsigned long vm_flags, |
939 | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | |
1da177e4 | 940 | { |
34228d47 CG |
941 | /* |
942 | * VM_SOFTDIRTY should not prevent from VMA merging, if we | |
943 | * match the flags but dirty bit -- the caller should mark | |
944 | * merged VMA as dirty. If dirty bit won't be excluded from | |
945 | * comparison, we increase pressue on the memory system forcing | |
946 | * the kernel to generate new VMAs when old one could be | |
947 | * extended instead. | |
948 | */ | |
949 | if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) | |
1da177e4 LT |
950 | return 0; |
951 | if (vma->vm_file != file) | |
952 | return 0; | |
953 | if (vma->vm_ops && vma->vm_ops->close) | |
954 | return 0; | |
19a809af AA |
955 | if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) |
956 | return 0; | |
1da177e4 LT |
957 | return 1; |
958 | } | |
959 | ||
960 | static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, | |
965f55de SL |
961 | struct anon_vma *anon_vma2, |
962 | struct vm_area_struct *vma) | |
1da177e4 | 963 | { |
965f55de SL |
964 | /* |
965 | * The list_is_singular() test is to avoid merging VMA cloned from | |
966 | * parents. This can improve scalability caused by anon_vma lock. | |
967 | */ | |
968 | if ((!anon_vma1 || !anon_vma2) && (!vma || | |
969 | list_is_singular(&vma->anon_vma_chain))) | |
970 | return 1; | |
971 | return anon_vma1 == anon_vma2; | |
1da177e4 LT |
972 | } |
973 | ||
974 | /* | |
975 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | |
976 | * in front of (at a lower virtual address and file offset than) the vma. | |
977 | * | |
978 | * We cannot merge two vmas if they have differently assigned (non-NULL) | |
979 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | |
980 | * | |
981 | * We don't check here for the merged mmap wrapping around the end of pagecache | |
982 | * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which | |
983 | * wrap, nor mmaps which cover the final page at index -1UL. | |
984 | */ | |
985 | static int | |
986 | can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, | |
19a809af AA |
987 | struct anon_vma *anon_vma, struct file *file, |
988 | pgoff_t vm_pgoff, | |
989 | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | |
1da177e4 | 990 | { |
19a809af | 991 | if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && |
965f55de | 992 | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { |
1da177e4 LT |
993 | if (vma->vm_pgoff == vm_pgoff) |
994 | return 1; | |
995 | } | |
996 | return 0; | |
997 | } | |
998 | ||
999 | /* | |
1000 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | |
1001 | * beyond (at a higher virtual address and file offset than) the vma. | |
1002 | * | |
1003 | * We cannot merge two vmas if they have differently assigned (non-NULL) | |
1004 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | |
1005 | */ | |
1006 | static int | |
1007 | can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, | |
19a809af AA |
1008 | struct anon_vma *anon_vma, struct file *file, |
1009 | pgoff_t vm_pgoff, | |
1010 | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | |
1da177e4 | 1011 | { |
19a809af | 1012 | if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && |
965f55de | 1013 | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { |
1da177e4 | 1014 | pgoff_t vm_pglen; |
d6e93217 | 1015 | vm_pglen = vma_pages(vma); |
1da177e4 LT |
1016 | if (vma->vm_pgoff + vm_pglen == vm_pgoff) |
1017 | return 1; | |
1018 | } | |
1019 | return 0; | |
1020 | } | |
1021 | ||
1022 | /* | |
1023 | * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out | |
1024 | * whether that can be merged with its predecessor or its successor. | |
1025 | * Or both (it neatly fills a hole). | |
1026 | * | |
1027 | * In most cases - when called for mmap, brk or mremap - [addr,end) is | |
1028 | * certain not to be mapped by the time vma_merge is called; but when | |
1029 | * called for mprotect, it is certain to be already mapped (either at | |
1030 | * an offset within prev, or at the start of next), and the flags of | |
1031 | * this area are about to be changed to vm_flags - and the no-change | |
1032 | * case has already been eliminated. | |
1033 | * | |
1034 | * The following mprotect cases have to be considered, where AAAA is | |
1035 | * the area passed down from mprotect_fixup, never extending beyond one | |
1036 | * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: | |
1037 | * | |
1038 | * AAAA AAAA AAAA AAAA | |
1039 | * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX | |
1040 | * cannot merge might become might become might become | |
1041 | * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or | |
1042 | * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or | |
1043 | * mremap move: PPPPNNNNNNNN 8 | |
1044 | * AAAA | |
1045 | * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN | |
1046 | * might become case 1 below case 2 below case 3 below | |
1047 | * | |
1048 | * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: | |
1049 | * mprotect_fixup updates vm_flags & vm_page_prot on successful return. | |
1050 | */ | |
1051 | struct vm_area_struct *vma_merge(struct mm_struct *mm, | |
1052 | struct vm_area_struct *prev, unsigned long addr, | |
1053 | unsigned long end, unsigned long vm_flags, | |
cc71aba3 | 1054 | struct anon_vma *anon_vma, struct file *file, |
19a809af AA |
1055 | pgoff_t pgoff, struct mempolicy *policy, |
1056 | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | |
1da177e4 LT |
1057 | { |
1058 | pgoff_t pglen = (end - addr) >> PAGE_SHIFT; | |
1059 | struct vm_area_struct *area, *next; | |
5beb4930 | 1060 | int err; |
1da177e4 LT |
1061 | |
1062 | /* | |
1063 | * We later require that vma->vm_flags == vm_flags, | |
1064 | * so this tests vma->vm_flags & VM_SPECIAL, too. | |
1065 | */ | |
1066 | if (vm_flags & VM_SPECIAL) | |
1067 | return NULL; | |
1068 | ||
1069 | if (prev) | |
1070 | next = prev->vm_next; | |
1071 | else | |
1072 | next = mm->mmap; | |
1073 | area = next; | |
1074 | if (next && next->vm_end == end) /* cases 6, 7, 8 */ | |
1075 | next = next->vm_next; | |
1076 | ||
1077 | /* | |
1078 | * Can it merge with the predecessor? | |
1079 | */ | |
1080 | if (prev && prev->vm_end == addr && | |
cc71aba3 | 1081 | mpol_equal(vma_policy(prev), policy) && |
1da177e4 | 1082 | can_vma_merge_after(prev, vm_flags, |
19a809af AA |
1083 | anon_vma, file, pgoff, |
1084 | vm_userfaultfd_ctx)) { | |
1da177e4 LT |
1085 | /* |
1086 | * OK, it can. Can we now merge in the successor as well? | |
1087 | */ | |
1088 | if (next && end == next->vm_start && | |
1089 | mpol_equal(policy, vma_policy(next)) && | |
1090 | can_vma_merge_before(next, vm_flags, | |
19a809af AA |
1091 | anon_vma, file, |
1092 | pgoff+pglen, | |
1093 | vm_userfaultfd_ctx) && | |
1da177e4 | 1094 | is_mergeable_anon_vma(prev->anon_vma, |
965f55de | 1095 | next->anon_vma, NULL)) { |
1da177e4 | 1096 | /* cases 1, 6 */ |
5beb4930 | 1097 | err = vma_adjust(prev, prev->vm_start, |
1da177e4 LT |
1098 | next->vm_end, prev->vm_pgoff, NULL); |
1099 | } else /* cases 2, 5, 7 */ | |
5beb4930 | 1100 | err = vma_adjust(prev, prev->vm_start, |
1da177e4 | 1101 | end, prev->vm_pgoff, NULL); |
5beb4930 RR |
1102 | if (err) |
1103 | return NULL; | |
6d50e60c | 1104 | khugepaged_enter_vma_merge(prev, vm_flags); |
1da177e4 LT |
1105 | return prev; |
1106 | } | |
1107 | ||
1108 | /* | |
1109 | * Can this new request be merged in front of next? | |
1110 | */ | |
1111 | if (next && end == next->vm_start && | |
cc71aba3 | 1112 | mpol_equal(policy, vma_policy(next)) && |
1da177e4 | 1113 | can_vma_merge_before(next, vm_flags, |
19a809af AA |
1114 | anon_vma, file, pgoff+pglen, |
1115 | vm_userfaultfd_ctx)) { | |
1da177e4 | 1116 | if (prev && addr < prev->vm_end) /* case 4 */ |
5beb4930 | 1117 | err = vma_adjust(prev, prev->vm_start, |
1da177e4 LT |
1118 | addr, prev->vm_pgoff, NULL); |
1119 | else /* cases 3, 8 */ | |
5beb4930 | 1120 | err = vma_adjust(area, addr, next->vm_end, |
1da177e4 | 1121 | next->vm_pgoff - pglen, NULL); |
5beb4930 RR |
1122 | if (err) |
1123 | return NULL; | |
6d50e60c | 1124 | khugepaged_enter_vma_merge(area, vm_flags); |
1da177e4 LT |
1125 | return area; |
1126 | } | |
1127 | ||
1128 | return NULL; | |
1129 | } | |
1130 | ||
d0e9fe17 LT |
1131 | /* |
1132 | * Rough compatbility check to quickly see if it's even worth looking | |
1133 | * at sharing an anon_vma. | |
1134 | * | |
1135 | * They need to have the same vm_file, and the flags can only differ | |
1136 | * in things that mprotect may change. | |
1137 | * | |
1138 | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that | |
1139 | * we can merge the two vma's. For example, we refuse to merge a vma if | |
1140 | * there is a vm_ops->close() function, because that indicates that the | |
1141 | * driver is doing some kind of reference counting. But that doesn't | |
1142 | * really matter for the anon_vma sharing case. | |
1143 | */ | |
1144 | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) | |
1145 | { | |
1146 | return a->vm_end == b->vm_start && | |
1147 | mpol_equal(vma_policy(a), vma_policy(b)) && | |
1148 | a->vm_file == b->vm_file && | |
34228d47 | 1149 | !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && |
d0e9fe17 LT |
1150 | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); |
1151 | } | |
1152 | ||
1153 | /* | |
1154 | * Do some basic sanity checking to see if we can re-use the anon_vma | |
1155 | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be | |
1156 | * the same as 'old', the other will be the new one that is trying | |
1157 | * to share the anon_vma. | |
1158 | * | |
1159 | * NOTE! This runs with mm_sem held for reading, so it is possible that | |
1160 | * the anon_vma of 'old' is concurrently in the process of being set up | |
1161 | * by another page fault trying to merge _that_. But that's ok: if it | |
1162 | * is being set up, that automatically means that it will be a singleton | |
1163 | * acceptable for merging, so we can do all of this optimistically. But | |
4db0c3c2 | 1164 | * we do that READ_ONCE() to make sure that we never re-load the pointer. |
d0e9fe17 LT |
1165 | * |
1166 | * IOW: that the "list_is_singular()" test on the anon_vma_chain only | |
1167 | * matters for the 'stable anon_vma' case (ie the thing we want to avoid | |
1168 | * is to return an anon_vma that is "complex" due to having gone through | |
1169 | * a fork). | |
1170 | * | |
1171 | * We also make sure that the two vma's are compatible (adjacent, | |
1172 | * and with the same memory policies). That's all stable, even with just | |
1173 | * a read lock on the mm_sem. | |
1174 | */ | |
1175 | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) | |
1176 | { | |
1177 | if (anon_vma_compatible(a, b)) { | |
4db0c3c2 | 1178 | struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); |
d0e9fe17 LT |
1179 | |
1180 | if (anon_vma && list_is_singular(&old->anon_vma_chain)) | |
1181 | return anon_vma; | |
1182 | } | |
1183 | return NULL; | |
1184 | } | |
1185 | ||
1da177e4 LT |
1186 | /* |
1187 | * find_mergeable_anon_vma is used by anon_vma_prepare, to check | |
1188 | * neighbouring vmas for a suitable anon_vma, before it goes off | |
1189 | * to allocate a new anon_vma. It checks because a repetitive | |
1190 | * sequence of mprotects and faults may otherwise lead to distinct | |
1191 | * anon_vmas being allocated, preventing vma merge in subsequent | |
1192 | * mprotect. | |
1193 | */ | |
1194 | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) | |
1195 | { | |
d0e9fe17 | 1196 | struct anon_vma *anon_vma; |
1da177e4 | 1197 | struct vm_area_struct *near; |
1da177e4 LT |
1198 | |
1199 | near = vma->vm_next; | |
1200 | if (!near) | |
1201 | goto try_prev; | |
1202 | ||
d0e9fe17 LT |
1203 | anon_vma = reusable_anon_vma(near, vma, near); |
1204 | if (anon_vma) | |
1205 | return anon_vma; | |
1da177e4 | 1206 | try_prev: |
9be34c9d | 1207 | near = vma->vm_prev; |
1da177e4 LT |
1208 | if (!near) |
1209 | goto none; | |
1210 | ||
d0e9fe17 LT |
1211 | anon_vma = reusable_anon_vma(near, near, vma); |
1212 | if (anon_vma) | |
1213 | return anon_vma; | |
1da177e4 LT |
1214 | none: |
1215 | /* | |
1216 | * There's no absolute need to look only at touching neighbours: | |
1217 | * we could search further afield for "compatible" anon_vmas. | |
1218 | * But it would probably just be a waste of time searching, | |
1219 | * or lead to too many vmas hanging off the same anon_vma. | |
1220 | * We're trying to allow mprotect remerging later on, | |
1221 | * not trying to minimize memory used for anon_vmas. | |
1222 | */ | |
1223 | return NULL; | |
1224 | } | |
1225 | ||
40401530 AV |
1226 | /* |
1227 | * If a hint addr is less than mmap_min_addr change hint to be as | |
1228 | * low as possible but still greater than mmap_min_addr | |
1229 | */ | |
1230 | static inline unsigned long round_hint_to_min(unsigned long hint) | |
1231 | { | |
1232 | hint &= PAGE_MASK; | |
1233 | if (((void *)hint != NULL) && | |
1234 | (hint < mmap_min_addr)) | |
1235 | return PAGE_ALIGN(mmap_min_addr); | |
1236 | return hint; | |
1237 | } | |
1238 | ||
363ee17f DB |
1239 | static inline int mlock_future_check(struct mm_struct *mm, |
1240 | unsigned long flags, | |
1241 | unsigned long len) | |
1242 | { | |
1243 | unsigned long locked, lock_limit; | |
1244 | ||
1245 | /* mlock MCL_FUTURE? */ | |
1246 | if (flags & VM_LOCKED) { | |
1247 | locked = len >> PAGE_SHIFT; | |
1248 | locked += mm->locked_vm; | |
1249 | lock_limit = rlimit(RLIMIT_MEMLOCK); | |
1250 | lock_limit >>= PAGE_SHIFT; | |
1251 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) | |
1252 | return -EAGAIN; | |
1253 | } | |
1254 | return 0; | |
1255 | } | |
1256 | ||
1da177e4 | 1257 | /* |
27f5de79 | 1258 | * The caller must hold down_write(¤t->mm->mmap_sem). |
1da177e4 | 1259 | */ |
1fcfd8db | 1260 | unsigned long do_mmap(struct file *file, unsigned long addr, |
1da177e4 | 1261 | unsigned long len, unsigned long prot, |
1fcfd8db ON |
1262 | unsigned long flags, vm_flags_t vm_flags, |
1263 | unsigned long pgoff, unsigned long *populate) | |
1da177e4 | 1264 | { |
cc71aba3 | 1265 | struct mm_struct *mm = current->mm; |
1da177e4 | 1266 | |
41badc15 | 1267 | *populate = 0; |
bebeb3d6 | 1268 | |
e37609bb PK |
1269 | if (!len) |
1270 | return -EINVAL; | |
1271 | ||
1da177e4 LT |
1272 | /* |
1273 | * Does the application expect PROT_READ to imply PROT_EXEC? | |
1274 | * | |
1275 | * (the exception is when the underlying filesystem is noexec | |
1276 | * mounted, in which case we dont add PROT_EXEC.) | |
1277 | */ | |
1278 | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) | |
90f8572b | 1279 | if (!(file && path_noexec(&file->f_path))) |
1da177e4 LT |
1280 | prot |= PROT_EXEC; |
1281 | ||
7cd94146 EP |
1282 | if (!(flags & MAP_FIXED)) |
1283 | addr = round_hint_to_min(addr); | |
1284 | ||
1da177e4 LT |
1285 | /* Careful about overflows.. */ |
1286 | len = PAGE_ALIGN(len); | |
9206de95 | 1287 | if (!len) |
1da177e4 LT |
1288 | return -ENOMEM; |
1289 | ||
1290 | /* offset overflow? */ | |
1291 | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) | |
cc71aba3 | 1292 | return -EOVERFLOW; |
1da177e4 LT |
1293 | |
1294 | /* Too many mappings? */ | |
1295 | if (mm->map_count > sysctl_max_map_count) | |
1296 | return -ENOMEM; | |
1297 | ||
1298 | /* Obtain the address to map to. we verify (or select) it and ensure | |
1299 | * that it represents a valid section of the address space. | |
1300 | */ | |
1301 | addr = get_unmapped_area(file, addr, len, pgoff, flags); | |
de1741a1 | 1302 | if (offset_in_page(addr)) |
1da177e4 LT |
1303 | return addr; |
1304 | ||
1305 | /* Do simple checking here so the lower-level routines won't have | |
1306 | * to. we assume access permissions have been handled by the open | |
1307 | * of the memory object, so we don't do any here. | |
1308 | */ | |
1fcfd8db | 1309 | vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | |
1da177e4 LT |
1310 | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; |
1311 | ||
cdf7b341 | 1312 | if (flags & MAP_LOCKED) |
1da177e4 LT |
1313 | if (!can_do_mlock()) |
1314 | return -EPERM; | |
ba470de4 | 1315 | |
363ee17f DB |
1316 | if (mlock_future_check(mm, vm_flags, len)) |
1317 | return -EAGAIN; | |
1da177e4 | 1318 | |
1da177e4 | 1319 | if (file) { |
077bf22b ON |
1320 | struct inode *inode = file_inode(file); |
1321 | ||
1da177e4 LT |
1322 | switch (flags & MAP_TYPE) { |
1323 | case MAP_SHARED: | |
1324 | if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) | |
1325 | return -EACCES; | |
1326 | ||
1327 | /* | |
1328 | * Make sure we don't allow writing to an append-only | |
1329 | * file.. | |
1330 | */ | |
1331 | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) | |
1332 | return -EACCES; | |
1333 | ||
1334 | /* | |
1335 | * Make sure there are no mandatory locks on the file. | |
1336 | */ | |
d7a06983 | 1337 | if (locks_verify_locked(file)) |
1da177e4 LT |
1338 | return -EAGAIN; |
1339 | ||
1340 | vm_flags |= VM_SHARED | VM_MAYSHARE; | |
1341 | if (!(file->f_mode & FMODE_WRITE)) | |
1342 | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); | |
1343 | ||
1344 | /* fall through */ | |
1345 | case MAP_PRIVATE: | |
1346 | if (!(file->f_mode & FMODE_READ)) | |
1347 | return -EACCES; | |
90f8572b | 1348 | if (path_noexec(&file->f_path)) { |
80c5606c LT |
1349 | if (vm_flags & VM_EXEC) |
1350 | return -EPERM; | |
1351 | vm_flags &= ~VM_MAYEXEC; | |
1352 | } | |
80c5606c | 1353 | |
72c2d531 | 1354 | if (!file->f_op->mmap) |
80c5606c | 1355 | return -ENODEV; |
b2c56e4f ON |
1356 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
1357 | return -EINVAL; | |
1da177e4 LT |
1358 | break; |
1359 | ||
1360 | default: | |
1361 | return -EINVAL; | |
1362 | } | |
1363 | } else { | |
1364 | switch (flags & MAP_TYPE) { | |
1365 | case MAP_SHARED: | |
b2c56e4f ON |
1366 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
1367 | return -EINVAL; | |
ce363942 TH |
1368 | /* |
1369 | * Ignore pgoff. | |
1370 | */ | |
1371 | pgoff = 0; | |
1da177e4 LT |
1372 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
1373 | break; | |
1374 | case MAP_PRIVATE: | |
1375 | /* | |
1376 | * Set pgoff according to addr for anon_vma. | |
1377 | */ | |
1378 | pgoff = addr >> PAGE_SHIFT; | |
1379 | break; | |
1380 | default: | |
1381 | return -EINVAL; | |
1382 | } | |
1383 | } | |
1384 | ||
c22c0d63 ML |
1385 | /* |
1386 | * Set 'VM_NORESERVE' if we should not account for the | |
1387 | * memory use of this mapping. | |
1388 | */ | |
1389 | if (flags & MAP_NORESERVE) { | |
1390 | /* We honor MAP_NORESERVE if allowed to overcommit */ | |
1391 | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) | |
1392 | vm_flags |= VM_NORESERVE; | |
1393 | ||
1394 | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ | |
1395 | if (file && is_file_hugepages(file)) | |
1396 | vm_flags |= VM_NORESERVE; | |
1397 | } | |
1398 | ||
1399 | addr = mmap_region(file, addr, len, vm_flags, pgoff); | |
09a9f1d2 ML |
1400 | if (!IS_ERR_VALUE(addr) && |
1401 | ((vm_flags & VM_LOCKED) || | |
1402 | (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) | |
41badc15 | 1403 | *populate = len; |
bebeb3d6 | 1404 | return addr; |
0165ab44 | 1405 | } |
6be5ceb0 | 1406 | |
66f0dc48 HD |
1407 | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, |
1408 | unsigned long, prot, unsigned long, flags, | |
1409 | unsigned long, fd, unsigned long, pgoff) | |
1410 | { | |
1411 | struct file *file = NULL; | |
1e3ee14b | 1412 | unsigned long retval; |
66f0dc48 HD |
1413 | |
1414 | if (!(flags & MAP_ANONYMOUS)) { | |
120a795d | 1415 | audit_mmap_fd(fd, flags); |
66f0dc48 HD |
1416 | file = fget(fd); |
1417 | if (!file) | |
1e3ee14b | 1418 | return -EBADF; |
af73e4d9 NH |
1419 | if (is_file_hugepages(file)) |
1420 | len = ALIGN(len, huge_page_size(hstate_file(file))); | |
493af578 JE |
1421 | retval = -EINVAL; |
1422 | if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) | |
1423 | goto out_fput; | |
66f0dc48 HD |
1424 | } else if (flags & MAP_HUGETLB) { |
1425 | struct user_struct *user = NULL; | |
c103a4dc | 1426 | struct hstate *hs; |
af73e4d9 | 1427 | |
c103a4dc | 1428 | hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); |
091d0d55 LZ |
1429 | if (!hs) |
1430 | return -EINVAL; | |
1431 | ||
1432 | len = ALIGN(len, huge_page_size(hs)); | |
66f0dc48 HD |
1433 | /* |
1434 | * VM_NORESERVE is used because the reservations will be | |
1435 | * taken when vm_ops->mmap() is called | |
1436 | * A dummy user value is used because we are not locking | |
1437 | * memory so no accounting is necessary | |
1438 | */ | |
af73e4d9 | 1439 | file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, |
42d7395f AK |
1440 | VM_NORESERVE, |
1441 | &user, HUGETLB_ANONHUGE_INODE, | |
1442 | (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); | |
66f0dc48 HD |
1443 | if (IS_ERR(file)) |
1444 | return PTR_ERR(file); | |
1445 | } | |
1446 | ||
1447 | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); | |
1448 | ||
eb36c587 | 1449 | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); |
493af578 | 1450 | out_fput: |
66f0dc48 HD |
1451 | if (file) |
1452 | fput(file); | |
66f0dc48 HD |
1453 | return retval; |
1454 | } | |
1455 | ||
a4679373 CH |
1456 | #ifdef __ARCH_WANT_SYS_OLD_MMAP |
1457 | struct mmap_arg_struct { | |
1458 | unsigned long addr; | |
1459 | unsigned long len; | |
1460 | unsigned long prot; | |
1461 | unsigned long flags; | |
1462 | unsigned long fd; | |
1463 | unsigned long offset; | |
1464 | }; | |
1465 | ||
1466 | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) | |
1467 | { | |
1468 | struct mmap_arg_struct a; | |
1469 | ||
1470 | if (copy_from_user(&a, arg, sizeof(a))) | |
1471 | return -EFAULT; | |
de1741a1 | 1472 | if (offset_in_page(a.offset)) |
a4679373 CH |
1473 | return -EINVAL; |
1474 | ||
1475 | return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, | |
1476 | a.offset >> PAGE_SHIFT); | |
1477 | } | |
1478 | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ | |
1479 | ||
4e950f6f AD |
1480 | /* |
1481 | * Some shared mappigns will want the pages marked read-only | |
1482 | * to track write events. If so, we'll downgrade vm_page_prot | |
1483 | * to the private version (using protection_map[] without the | |
1484 | * VM_SHARED bit). | |
1485 | */ | |
1486 | int vma_wants_writenotify(struct vm_area_struct *vma) | |
1487 | { | |
ca16d140 | 1488 | vm_flags_t vm_flags = vma->vm_flags; |
8a04446a | 1489 | const struct vm_operations_struct *vm_ops = vma->vm_ops; |
4e950f6f AD |
1490 | |
1491 | /* If it was private or non-writable, the write bit is already clear */ | |
1492 | if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) | |
1493 | return 0; | |
1494 | ||
1495 | /* The backer wishes to know when pages are first written to? */ | |
8a04446a | 1496 | if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) |
4e950f6f AD |
1497 | return 1; |
1498 | ||
64e45507 PF |
1499 | /* The open routine did something to the protections that pgprot_modify |
1500 | * won't preserve? */ | |
4e950f6f | 1501 | if (pgprot_val(vma->vm_page_prot) != |
64e45507 | 1502 | pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) |
4e950f6f AD |
1503 | return 0; |
1504 | ||
64e45507 PF |
1505 | /* Do we need to track softdirty? */ |
1506 | if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) | |
1507 | return 1; | |
1508 | ||
4e950f6f | 1509 | /* Specialty mapping? */ |
4b6e1e37 | 1510 | if (vm_flags & VM_PFNMAP) |
4e950f6f AD |
1511 | return 0; |
1512 | ||
1513 | /* Can the mapping track the dirty pages? */ | |
1514 | return vma->vm_file && vma->vm_file->f_mapping && | |
1515 | mapping_cap_account_dirty(vma->vm_file->f_mapping); | |
1516 | } | |
1517 | ||
fc8744ad LT |
1518 | /* |
1519 | * We account for memory if it's a private writeable mapping, | |
5a6fe125 | 1520 | * not hugepages and VM_NORESERVE wasn't set. |
fc8744ad | 1521 | */ |
ca16d140 | 1522 | static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) |
fc8744ad | 1523 | { |
5a6fe125 MG |
1524 | /* |
1525 | * hugetlb has its own accounting separate from the core VM | |
1526 | * VM_HUGETLB may not be set yet so we cannot check for that flag. | |
1527 | */ | |
1528 | if (file && is_file_hugepages(file)) | |
1529 | return 0; | |
1530 | ||
fc8744ad LT |
1531 | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; |
1532 | } | |
1533 | ||
0165ab44 | 1534 | unsigned long mmap_region(struct file *file, unsigned long addr, |
c22c0d63 | 1535 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) |
0165ab44 MS |
1536 | { |
1537 | struct mm_struct *mm = current->mm; | |
1538 | struct vm_area_struct *vma, *prev; | |
0165ab44 MS |
1539 | int error; |
1540 | struct rb_node **rb_link, *rb_parent; | |
1541 | unsigned long charged = 0; | |
0165ab44 | 1542 | |
e8420a8e | 1543 | /* Check against address space limit. */ |
84638335 | 1544 | if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { |
e8420a8e CH |
1545 | unsigned long nr_pages; |
1546 | ||
1547 | /* | |
1548 | * MAP_FIXED may remove pages of mappings that intersects with | |
1549 | * requested mapping. Account for the pages it would unmap. | |
1550 | */ | |
e8420a8e CH |
1551 | nr_pages = count_vma_pages_range(mm, addr, addr + len); |
1552 | ||
84638335 KK |
1553 | if (!may_expand_vm(mm, vm_flags, |
1554 | (len >> PAGE_SHIFT) - nr_pages)) | |
e8420a8e CH |
1555 | return -ENOMEM; |
1556 | } | |
1557 | ||
1da177e4 | 1558 | /* Clear old maps */ |
9fcd1457 RV |
1559 | while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, |
1560 | &rb_parent)) { | |
1da177e4 LT |
1561 | if (do_munmap(mm, addr, len)) |
1562 | return -ENOMEM; | |
1da177e4 LT |
1563 | } |
1564 | ||
fc8744ad LT |
1565 | /* |
1566 | * Private writable mapping: check memory availability | |
1567 | */ | |
5a6fe125 | 1568 | if (accountable_mapping(file, vm_flags)) { |
fc8744ad | 1569 | charged = len >> PAGE_SHIFT; |
191c5424 | 1570 | if (security_vm_enough_memory_mm(mm, charged)) |
fc8744ad LT |
1571 | return -ENOMEM; |
1572 | vm_flags |= VM_ACCOUNT; | |
1da177e4 LT |
1573 | } |
1574 | ||
1575 | /* | |
de33c8db | 1576 | * Can we just expand an old mapping? |
1da177e4 | 1577 | */ |
19a809af AA |
1578 | vma = vma_merge(mm, prev, addr, addr + len, vm_flags, |
1579 | NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); | |
de33c8db LT |
1580 | if (vma) |
1581 | goto out; | |
1da177e4 LT |
1582 | |
1583 | /* | |
1584 | * Determine the object being mapped and call the appropriate | |
1585 | * specific mapper. the address has already been validated, but | |
1586 | * not unmapped, but the maps are removed from the list. | |
1587 | */ | |
c5e3b83e | 1588 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 LT |
1589 | if (!vma) { |
1590 | error = -ENOMEM; | |
1591 | goto unacct_error; | |
1592 | } | |
1da177e4 LT |
1593 | |
1594 | vma->vm_mm = mm; | |
1595 | vma->vm_start = addr; | |
1596 | vma->vm_end = addr + len; | |
1597 | vma->vm_flags = vm_flags; | |
3ed75eb8 | 1598 | vma->vm_page_prot = vm_get_page_prot(vm_flags); |
1da177e4 | 1599 | vma->vm_pgoff = pgoff; |
5beb4930 | 1600 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1da177e4 LT |
1601 | |
1602 | if (file) { | |
1da177e4 LT |
1603 | if (vm_flags & VM_DENYWRITE) { |
1604 | error = deny_write_access(file); | |
1605 | if (error) | |
1606 | goto free_vma; | |
1da177e4 | 1607 | } |
4bb5f5d9 DR |
1608 | if (vm_flags & VM_SHARED) { |
1609 | error = mapping_map_writable(file->f_mapping); | |
1610 | if (error) | |
1611 | goto allow_write_and_free_vma; | |
1612 | } | |
1613 | ||
1614 | /* ->mmap() can change vma->vm_file, but must guarantee that | |
1615 | * vma_link() below can deny write-access if VM_DENYWRITE is set | |
1616 | * and map writably if VM_SHARED is set. This usually means the | |
1617 | * new file must not have been exposed to user-space, yet. | |
1618 | */ | |
cb0942b8 | 1619 | vma->vm_file = get_file(file); |
1da177e4 LT |
1620 | error = file->f_op->mmap(file, vma); |
1621 | if (error) | |
1622 | goto unmap_and_free_vma; | |
f8dbf0a7 HS |
1623 | |
1624 | /* Can addr have changed?? | |
1625 | * | |
1626 | * Answer: Yes, several device drivers can do it in their | |
1627 | * f_op->mmap method. -DaveM | |
2897b4d2 JK |
1628 | * Bug: If addr is changed, prev, rb_link, rb_parent should |
1629 | * be updated for vma_link() | |
f8dbf0a7 | 1630 | */ |
2897b4d2 JK |
1631 | WARN_ON_ONCE(addr != vma->vm_start); |
1632 | ||
f8dbf0a7 | 1633 | addr = vma->vm_start; |
f8dbf0a7 | 1634 | vm_flags = vma->vm_flags; |
1da177e4 LT |
1635 | } else if (vm_flags & VM_SHARED) { |
1636 | error = shmem_zero_setup(vma); | |
1637 | if (error) | |
1638 | goto free_vma; | |
1639 | } | |
1640 | ||
de33c8db | 1641 | vma_link(mm, vma, prev, rb_link, rb_parent); |
4d3d5b41 | 1642 | /* Once vma denies write, undo our temporary denial count */ |
4bb5f5d9 DR |
1643 | if (file) { |
1644 | if (vm_flags & VM_SHARED) | |
1645 | mapping_unmap_writable(file->f_mapping); | |
1646 | if (vm_flags & VM_DENYWRITE) | |
1647 | allow_write_access(file); | |
1648 | } | |
e8686772 | 1649 | file = vma->vm_file; |
4d3d5b41 | 1650 | out: |
cdd6c482 | 1651 | perf_event_mmap(vma); |
0a4a9391 | 1652 | |
84638335 | 1653 | vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); |
1da177e4 | 1654 | if (vm_flags & VM_LOCKED) { |
bebeb3d6 ML |
1655 | if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || |
1656 | vma == get_gate_vma(current->mm))) | |
06f9d8c2 | 1657 | mm->locked_vm += (len >> PAGE_SHIFT); |
bebeb3d6 | 1658 | else |
de60f5f1 | 1659 | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; |
bebeb3d6 | 1660 | } |
2b144498 | 1661 | |
c7a3a88c ON |
1662 | if (file) |
1663 | uprobe_mmap(vma); | |
2b144498 | 1664 | |
d9104d1c CG |
1665 | /* |
1666 | * New (or expanded) vma always get soft dirty status. | |
1667 | * Otherwise user-space soft-dirty page tracker won't | |
1668 | * be able to distinguish situation when vma area unmapped, | |
1669 | * then new mapped in-place (which must be aimed as | |
1670 | * a completely new data area). | |
1671 | */ | |
1672 | vma->vm_flags |= VM_SOFTDIRTY; | |
1673 | ||
64e45507 PF |
1674 | vma_set_page_prot(vma); |
1675 | ||
1da177e4 LT |
1676 | return addr; |
1677 | ||
1678 | unmap_and_free_vma: | |
1da177e4 LT |
1679 | vma->vm_file = NULL; |
1680 | fput(file); | |
1681 | ||
1682 | /* Undo any partial mapping done by a device driver. */ | |
e0da382c HD |
1683 | unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); |
1684 | charged = 0; | |
4bb5f5d9 DR |
1685 | if (vm_flags & VM_SHARED) |
1686 | mapping_unmap_writable(file->f_mapping); | |
1687 | allow_write_and_free_vma: | |
1688 | if (vm_flags & VM_DENYWRITE) | |
1689 | allow_write_access(file); | |
1da177e4 LT |
1690 | free_vma: |
1691 | kmem_cache_free(vm_area_cachep, vma); | |
1692 | unacct_error: | |
1693 | if (charged) | |
1694 | vm_unacct_memory(charged); | |
1695 | return error; | |
1696 | } | |
1697 | ||
db4fbfb9 ML |
1698 | unsigned long unmapped_area(struct vm_unmapped_area_info *info) |
1699 | { | |
1700 | /* | |
1701 | * We implement the search by looking for an rbtree node that | |
1702 | * immediately follows a suitable gap. That is, | |
1703 | * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; | |
1704 | * - gap_end = vma->vm_start >= info->low_limit + length; | |
1705 | * - gap_end - gap_start >= length | |
1706 | */ | |
1707 | ||
1708 | struct mm_struct *mm = current->mm; | |
1709 | struct vm_area_struct *vma; | |
1710 | unsigned long length, low_limit, high_limit, gap_start, gap_end; | |
1711 | ||
1712 | /* Adjust search length to account for worst case alignment overhead */ | |
1713 | length = info->length + info->align_mask; | |
1714 | if (length < info->length) | |
1715 | return -ENOMEM; | |
1716 | ||
1717 | /* Adjust search limits by the desired length */ | |
1718 | if (info->high_limit < length) | |
1719 | return -ENOMEM; | |
1720 | high_limit = info->high_limit - length; | |
1721 | ||
1722 | if (info->low_limit > high_limit) | |
1723 | return -ENOMEM; | |
1724 | low_limit = info->low_limit + length; | |
1725 | ||
1726 | /* Check if rbtree root looks promising */ | |
1727 | if (RB_EMPTY_ROOT(&mm->mm_rb)) | |
1728 | goto check_highest; | |
1729 | vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); | |
1730 | if (vma->rb_subtree_gap < length) | |
1731 | goto check_highest; | |
1732 | ||
1733 | while (true) { | |
1734 | /* Visit left subtree if it looks promising */ | |
1735 | gap_end = vma->vm_start; | |
1736 | if (gap_end >= low_limit && vma->vm_rb.rb_left) { | |
1737 | struct vm_area_struct *left = | |
1738 | rb_entry(vma->vm_rb.rb_left, | |
1739 | struct vm_area_struct, vm_rb); | |
1740 | if (left->rb_subtree_gap >= length) { | |
1741 | vma = left; | |
1742 | continue; | |
1743 | } | |
1744 | } | |
1745 | ||
1746 | gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; | |
1747 | check_current: | |
1748 | /* Check if current node has a suitable gap */ | |
1749 | if (gap_start > high_limit) | |
1750 | return -ENOMEM; | |
1751 | if (gap_end >= low_limit && gap_end - gap_start >= length) | |
1752 | goto found; | |
1753 | ||
1754 | /* Visit right subtree if it looks promising */ | |
1755 | if (vma->vm_rb.rb_right) { | |
1756 | struct vm_area_struct *right = | |
1757 | rb_entry(vma->vm_rb.rb_right, | |
1758 | struct vm_area_struct, vm_rb); | |
1759 | if (right->rb_subtree_gap >= length) { | |
1760 | vma = right; | |
1761 | continue; | |
1762 | } | |
1763 | } | |
1764 | ||
1765 | /* Go back up the rbtree to find next candidate node */ | |
1766 | while (true) { | |
1767 | struct rb_node *prev = &vma->vm_rb; | |
1768 | if (!rb_parent(prev)) | |
1769 | goto check_highest; | |
1770 | vma = rb_entry(rb_parent(prev), | |
1771 | struct vm_area_struct, vm_rb); | |
1772 | if (prev == vma->vm_rb.rb_left) { | |
1773 | gap_start = vma->vm_prev->vm_end; | |
1774 | gap_end = vma->vm_start; | |
1775 | goto check_current; | |
1776 | } | |
1777 | } | |
1778 | } | |
1779 | ||
1780 | check_highest: | |
1781 | /* Check highest gap, which does not precede any rbtree node */ | |
1782 | gap_start = mm->highest_vm_end; | |
1783 | gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ | |
1784 | if (gap_start > high_limit) | |
1785 | return -ENOMEM; | |
1786 | ||
1787 | found: | |
1788 | /* We found a suitable gap. Clip it with the original low_limit. */ | |
1789 | if (gap_start < info->low_limit) | |
1790 | gap_start = info->low_limit; | |
1791 | ||
1792 | /* Adjust gap address to the desired alignment */ | |
1793 | gap_start += (info->align_offset - gap_start) & info->align_mask; | |
1794 | ||
1795 | VM_BUG_ON(gap_start + info->length > info->high_limit); | |
1796 | VM_BUG_ON(gap_start + info->length > gap_end); | |
1797 | return gap_start; | |
1798 | } | |
1799 | ||
1800 | unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) | |
1801 | { | |
1802 | struct mm_struct *mm = current->mm; | |
1803 | struct vm_area_struct *vma; | |
1804 | unsigned long length, low_limit, high_limit, gap_start, gap_end; | |
1805 | ||
1806 | /* Adjust search length to account for worst case alignment overhead */ | |
1807 | length = info->length + info->align_mask; | |
1808 | if (length < info->length) | |
1809 | return -ENOMEM; | |
1810 | ||
1811 | /* | |
1812 | * Adjust search limits by the desired length. | |
1813 | * See implementation comment at top of unmapped_area(). | |
1814 | */ | |
1815 | gap_end = info->high_limit; | |
1816 | if (gap_end < length) | |
1817 | return -ENOMEM; | |
1818 | high_limit = gap_end - length; | |
1819 | ||
1820 | if (info->low_limit > high_limit) | |
1821 | return -ENOMEM; | |
1822 | low_limit = info->low_limit + length; | |
1823 | ||
1824 | /* Check highest gap, which does not precede any rbtree node */ | |
1825 | gap_start = mm->highest_vm_end; | |
1826 | if (gap_start <= high_limit) | |
1827 | goto found_highest; | |
1828 | ||
1829 | /* Check if rbtree root looks promising */ | |
1830 | if (RB_EMPTY_ROOT(&mm->mm_rb)) | |
1831 | return -ENOMEM; | |
1832 | vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); | |
1833 | if (vma->rb_subtree_gap < length) | |
1834 | return -ENOMEM; | |
1835 | ||
1836 | while (true) { | |
1837 | /* Visit right subtree if it looks promising */ | |
1838 | gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; | |
1839 | if (gap_start <= high_limit && vma->vm_rb.rb_right) { | |
1840 | struct vm_area_struct *right = | |
1841 | rb_entry(vma->vm_rb.rb_right, | |
1842 | struct vm_area_struct, vm_rb); | |
1843 | if (right->rb_subtree_gap >= length) { | |
1844 | vma = right; | |
1845 | continue; | |
1846 | } | |
1847 | } | |
1848 | ||
1849 | check_current: | |
1850 | /* Check if current node has a suitable gap */ | |
1851 | gap_end = vma->vm_start; | |
1852 | if (gap_end < low_limit) | |
1853 | return -ENOMEM; | |
1854 | if (gap_start <= high_limit && gap_end - gap_start >= length) | |
1855 | goto found; | |
1856 | ||
1857 | /* Visit left subtree if it looks promising */ | |
1858 | if (vma->vm_rb.rb_left) { | |
1859 | struct vm_area_struct *left = | |
1860 | rb_entry(vma->vm_rb.rb_left, | |
1861 | struct vm_area_struct, vm_rb); | |
1862 | if (left->rb_subtree_gap >= length) { | |
1863 | vma = left; | |
1864 | continue; | |
1865 | } | |
1866 | } | |
1867 | ||
1868 | /* Go back up the rbtree to find next candidate node */ | |
1869 | while (true) { | |
1870 | struct rb_node *prev = &vma->vm_rb; | |
1871 | if (!rb_parent(prev)) | |
1872 | return -ENOMEM; | |
1873 | vma = rb_entry(rb_parent(prev), | |
1874 | struct vm_area_struct, vm_rb); | |
1875 | if (prev == vma->vm_rb.rb_right) { | |
1876 | gap_start = vma->vm_prev ? | |
1877 | vma->vm_prev->vm_end : 0; | |
1878 | goto check_current; | |
1879 | } | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | found: | |
1884 | /* We found a suitable gap. Clip it with the original high_limit. */ | |
1885 | if (gap_end > info->high_limit) | |
1886 | gap_end = info->high_limit; | |
1887 | ||
1888 | found_highest: | |
1889 | /* Compute highest gap address at the desired alignment */ | |
1890 | gap_end -= info->length; | |
1891 | gap_end -= (gap_end - info->align_offset) & info->align_mask; | |
1892 | ||
1893 | VM_BUG_ON(gap_end < info->low_limit); | |
1894 | VM_BUG_ON(gap_end < gap_start); | |
1895 | return gap_end; | |
1896 | } | |
1897 | ||
1da177e4 LT |
1898 | /* Get an address range which is currently unmapped. |
1899 | * For shmat() with addr=0. | |
1900 | * | |
1901 | * Ugly calling convention alert: | |
1902 | * Return value with the low bits set means error value, | |
1903 | * ie | |
1904 | * if (ret & ~PAGE_MASK) | |
1905 | * error = ret; | |
1906 | * | |
1907 | * This function "knows" that -ENOMEM has the bits set. | |
1908 | */ | |
1909 | #ifndef HAVE_ARCH_UNMAPPED_AREA | |
1910 | unsigned long | |
1911 | arch_get_unmapped_area(struct file *filp, unsigned long addr, | |
1912 | unsigned long len, unsigned long pgoff, unsigned long flags) | |
1913 | { | |
1914 | struct mm_struct *mm = current->mm; | |
1915 | struct vm_area_struct *vma; | |
db4fbfb9 | 1916 | struct vm_unmapped_area_info info; |
1da177e4 | 1917 | |
2afc745f | 1918 | if (len > TASK_SIZE - mmap_min_addr) |
1da177e4 LT |
1919 | return -ENOMEM; |
1920 | ||
06abdfb4 BH |
1921 | if (flags & MAP_FIXED) |
1922 | return addr; | |
1923 | ||
1da177e4 LT |
1924 | if (addr) { |
1925 | addr = PAGE_ALIGN(addr); | |
1926 | vma = find_vma(mm, addr); | |
2afc745f | 1927 | if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && |
1da177e4 LT |
1928 | (!vma || addr + len <= vma->vm_start)) |
1929 | return addr; | |
1930 | } | |
1da177e4 | 1931 | |
db4fbfb9 ML |
1932 | info.flags = 0; |
1933 | info.length = len; | |
4e99b021 | 1934 | info.low_limit = mm->mmap_base; |
db4fbfb9 ML |
1935 | info.high_limit = TASK_SIZE; |
1936 | info.align_mask = 0; | |
1937 | return vm_unmapped_area(&info); | |
1da177e4 | 1938 | } |
cc71aba3 | 1939 | #endif |
1da177e4 | 1940 | |
1da177e4 LT |
1941 | /* |
1942 | * This mmap-allocator allocates new areas top-down from below the | |
1943 | * stack's low limit (the base): | |
1944 | */ | |
1945 | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | |
1946 | unsigned long | |
1947 | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | |
1948 | const unsigned long len, const unsigned long pgoff, | |
1949 | const unsigned long flags) | |
1950 | { | |
1951 | struct vm_area_struct *vma; | |
1952 | struct mm_struct *mm = current->mm; | |
db4fbfb9 ML |
1953 | unsigned long addr = addr0; |
1954 | struct vm_unmapped_area_info info; | |
1da177e4 LT |
1955 | |
1956 | /* requested length too big for entire address space */ | |
2afc745f | 1957 | if (len > TASK_SIZE - mmap_min_addr) |
1da177e4 LT |
1958 | return -ENOMEM; |
1959 | ||
06abdfb4 BH |
1960 | if (flags & MAP_FIXED) |
1961 | return addr; | |
1962 | ||
1da177e4 LT |
1963 | /* requesting a specific address */ |
1964 | if (addr) { | |
1965 | addr = PAGE_ALIGN(addr); | |
1966 | vma = find_vma(mm, addr); | |
2afc745f | 1967 | if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && |
1da177e4 LT |
1968 | (!vma || addr + len <= vma->vm_start)) |
1969 | return addr; | |
1970 | } | |
1971 | ||
db4fbfb9 ML |
1972 | info.flags = VM_UNMAPPED_AREA_TOPDOWN; |
1973 | info.length = len; | |
2afc745f | 1974 | info.low_limit = max(PAGE_SIZE, mmap_min_addr); |
db4fbfb9 ML |
1975 | info.high_limit = mm->mmap_base; |
1976 | info.align_mask = 0; | |
1977 | addr = vm_unmapped_area(&info); | |
b716ad95 | 1978 | |
1da177e4 LT |
1979 | /* |
1980 | * A failed mmap() very likely causes application failure, | |
1981 | * so fall back to the bottom-up function here. This scenario | |
1982 | * can happen with large stack limits and large mmap() | |
1983 | * allocations. | |
1984 | */ | |
de1741a1 | 1985 | if (offset_in_page(addr)) { |
db4fbfb9 ML |
1986 | VM_BUG_ON(addr != -ENOMEM); |
1987 | info.flags = 0; | |
1988 | info.low_limit = TASK_UNMAPPED_BASE; | |
1989 | info.high_limit = TASK_SIZE; | |
1990 | addr = vm_unmapped_area(&info); | |
1991 | } | |
1da177e4 LT |
1992 | |
1993 | return addr; | |
1994 | } | |
1995 | #endif | |
1996 | ||
1da177e4 LT |
1997 | unsigned long |
1998 | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, | |
1999 | unsigned long pgoff, unsigned long flags) | |
2000 | { | |
06abdfb4 BH |
2001 | unsigned long (*get_area)(struct file *, unsigned long, |
2002 | unsigned long, unsigned long, unsigned long); | |
2003 | ||
9206de95 AV |
2004 | unsigned long error = arch_mmap_check(addr, len, flags); |
2005 | if (error) | |
2006 | return error; | |
2007 | ||
2008 | /* Careful about overflows.. */ | |
2009 | if (len > TASK_SIZE) | |
2010 | return -ENOMEM; | |
2011 | ||
06abdfb4 | 2012 | get_area = current->mm->get_unmapped_area; |
72c2d531 | 2013 | if (file && file->f_op->get_unmapped_area) |
06abdfb4 BH |
2014 | get_area = file->f_op->get_unmapped_area; |
2015 | addr = get_area(file, addr, len, pgoff, flags); | |
2016 | if (IS_ERR_VALUE(addr)) | |
2017 | return addr; | |
1da177e4 | 2018 | |
07ab67c8 LT |
2019 | if (addr > TASK_SIZE - len) |
2020 | return -ENOMEM; | |
de1741a1 | 2021 | if (offset_in_page(addr)) |
07ab67c8 | 2022 | return -EINVAL; |
06abdfb4 | 2023 | |
9ac4ed4b AV |
2024 | addr = arch_rebalance_pgtables(addr, len); |
2025 | error = security_mmap_addr(addr); | |
2026 | return error ? error : addr; | |
1da177e4 LT |
2027 | } |
2028 | ||
2029 | EXPORT_SYMBOL(get_unmapped_area); | |
2030 | ||
2031 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ | |
48aae425 | 2032 | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) |
1da177e4 | 2033 | { |
615d6e87 DB |
2034 | struct rb_node *rb_node; |
2035 | struct vm_area_struct *vma; | |
1da177e4 | 2036 | |
841e31e5 | 2037 | /* Check the cache first. */ |
615d6e87 DB |
2038 | vma = vmacache_find(mm, addr); |
2039 | if (likely(vma)) | |
2040 | return vma; | |
841e31e5 | 2041 | |
615d6e87 | 2042 | rb_node = mm->mm_rb.rb_node; |
841e31e5 | 2043 | |
615d6e87 DB |
2044 | while (rb_node) { |
2045 | struct vm_area_struct *tmp; | |
2046 | ||
2047 | tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); | |
2048 | ||
2049 | if (tmp->vm_end > addr) { | |
2050 | vma = tmp; | |
2051 | if (tmp->vm_start <= addr) | |
2052 | break; | |
2053 | rb_node = rb_node->rb_left; | |
2054 | } else | |
2055 | rb_node = rb_node->rb_right; | |
1da177e4 | 2056 | } |
615d6e87 DB |
2057 | |
2058 | if (vma) | |
2059 | vmacache_update(addr, vma); | |
1da177e4 LT |
2060 | return vma; |
2061 | } | |
2062 | ||
2063 | EXPORT_SYMBOL(find_vma); | |
2064 | ||
6bd4837d KM |
2065 | /* |
2066 | * Same as find_vma, but also return a pointer to the previous VMA in *pprev. | |
6bd4837d | 2067 | */ |
1da177e4 LT |
2068 | struct vm_area_struct * |
2069 | find_vma_prev(struct mm_struct *mm, unsigned long addr, | |
2070 | struct vm_area_struct **pprev) | |
2071 | { | |
6bd4837d | 2072 | struct vm_area_struct *vma; |
1da177e4 | 2073 | |
6bd4837d | 2074 | vma = find_vma(mm, addr); |
83cd904d MP |
2075 | if (vma) { |
2076 | *pprev = vma->vm_prev; | |
2077 | } else { | |
2078 | struct rb_node *rb_node = mm->mm_rb.rb_node; | |
2079 | *pprev = NULL; | |
2080 | while (rb_node) { | |
2081 | *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); | |
2082 | rb_node = rb_node->rb_right; | |
2083 | } | |
2084 | } | |
6bd4837d | 2085 | return vma; |
1da177e4 LT |
2086 | } |
2087 | ||
2088 | /* | |
2089 | * Verify that the stack growth is acceptable and | |
2090 | * update accounting. This is shared with both the | |
2091 | * grow-up and grow-down cases. | |
2092 | */ | |
48aae425 | 2093 | static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) |
1da177e4 LT |
2094 | { |
2095 | struct mm_struct *mm = vma->vm_mm; | |
2096 | struct rlimit *rlim = current->signal->rlim; | |
690eac53 | 2097 | unsigned long new_start, actual_size; |
1da177e4 LT |
2098 | |
2099 | /* address space limit tests */ | |
84638335 | 2100 | if (!may_expand_vm(mm, vma->vm_flags, grow)) |
1da177e4 LT |
2101 | return -ENOMEM; |
2102 | ||
2103 | /* Stack limit test */ | |
690eac53 LT |
2104 | actual_size = size; |
2105 | if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) | |
2106 | actual_size -= PAGE_SIZE; | |
4db0c3c2 | 2107 | if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) |
1da177e4 LT |
2108 | return -ENOMEM; |
2109 | ||
2110 | /* mlock limit tests */ | |
2111 | if (vma->vm_flags & VM_LOCKED) { | |
2112 | unsigned long locked; | |
2113 | unsigned long limit; | |
2114 | locked = mm->locked_vm + grow; | |
4db0c3c2 | 2115 | limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); |
59e99e5b | 2116 | limit >>= PAGE_SHIFT; |
1da177e4 LT |
2117 | if (locked > limit && !capable(CAP_IPC_LOCK)) |
2118 | return -ENOMEM; | |
2119 | } | |
2120 | ||
0d59a01b AL |
2121 | /* Check to ensure the stack will not grow into a hugetlb-only region */ |
2122 | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : | |
2123 | vma->vm_end - size; | |
2124 | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) | |
2125 | return -EFAULT; | |
2126 | ||
1da177e4 LT |
2127 | /* |
2128 | * Overcommit.. This must be the final test, as it will | |
2129 | * update security statistics. | |
2130 | */ | |
05fa199d | 2131 | if (security_vm_enough_memory_mm(mm, grow)) |
1da177e4 LT |
2132 | return -ENOMEM; |
2133 | ||
1da177e4 LT |
2134 | return 0; |
2135 | } | |
2136 | ||
46dea3d0 | 2137 | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) |
1da177e4 | 2138 | /* |
46dea3d0 HD |
2139 | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. |
2140 | * vma is the last one with address > vma->vm_end. Have to extend vma. | |
1da177e4 | 2141 | */ |
46dea3d0 | 2142 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
1da177e4 | 2143 | { |
09357814 | 2144 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 LT |
2145 | int error; |
2146 | ||
2147 | if (!(vma->vm_flags & VM_GROWSUP)) | |
2148 | return -EFAULT; | |
2149 | ||
2150 | /* | |
2151 | * We must make sure the anon_vma is allocated | |
2152 | * so that the anon_vma locking is not a noop. | |
2153 | */ | |
2154 | if (unlikely(anon_vma_prepare(vma))) | |
2155 | return -ENOMEM; | |
bb4a340e | 2156 | vma_lock_anon_vma(vma); |
1da177e4 LT |
2157 | |
2158 | /* | |
2159 | * vma->vm_start/vm_end cannot change under us because the caller | |
2160 | * is required to hold the mmap_sem in read mode. We need the | |
2161 | * anon_vma lock to serialize against concurrent expand_stacks. | |
06b32f3a | 2162 | * Also guard against wrapping around to address 0. |
1da177e4 | 2163 | */ |
06b32f3a HD |
2164 | if (address < PAGE_ALIGN(address+4)) |
2165 | address = PAGE_ALIGN(address+4); | |
2166 | else { | |
bb4a340e | 2167 | vma_unlock_anon_vma(vma); |
06b32f3a HD |
2168 | return -ENOMEM; |
2169 | } | |
1da177e4 LT |
2170 | error = 0; |
2171 | ||
2172 | /* Somebody else might have raced and expanded it already */ | |
2173 | if (address > vma->vm_end) { | |
2174 | unsigned long size, grow; | |
2175 | ||
2176 | size = address - vma->vm_start; | |
2177 | grow = (address - vma->vm_end) >> PAGE_SHIFT; | |
2178 | ||
42c36f63 HD |
2179 | error = -ENOMEM; |
2180 | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { | |
2181 | error = acct_stack_growth(vma, size, grow); | |
2182 | if (!error) { | |
4128997b ML |
2183 | /* |
2184 | * vma_gap_update() doesn't support concurrent | |
2185 | * updates, but we only hold a shared mmap_sem | |
2186 | * lock here, so we need to protect against | |
2187 | * concurrent vma expansions. | |
2188 | * vma_lock_anon_vma() doesn't help here, as | |
2189 | * we don't guarantee that all growable vmas | |
2190 | * in a mm share the same root anon vma. | |
2191 | * So, we reuse mm->page_table_lock to guard | |
2192 | * against concurrent vma expansions. | |
2193 | */ | |
09357814 | 2194 | spin_lock(&mm->page_table_lock); |
87e8827b | 2195 | if (vma->vm_flags & VM_LOCKED) |
09357814 | 2196 | mm->locked_vm += grow; |
84638335 | 2197 | vm_stat_account(mm, vma->vm_flags, grow); |
bf181b9f | 2198 | anon_vma_interval_tree_pre_update_vma(vma); |
42c36f63 | 2199 | vma->vm_end = address; |
bf181b9f | 2200 | anon_vma_interval_tree_post_update_vma(vma); |
d3737187 ML |
2201 | if (vma->vm_next) |
2202 | vma_gap_update(vma->vm_next); | |
2203 | else | |
09357814 ON |
2204 | mm->highest_vm_end = address; |
2205 | spin_unlock(&mm->page_table_lock); | |
4128997b | 2206 | |
42c36f63 HD |
2207 | perf_event_mmap(vma); |
2208 | } | |
3af9e859 | 2209 | } |
1da177e4 | 2210 | } |
bb4a340e | 2211 | vma_unlock_anon_vma(vma); |
6d50e60c | 2212 | khugepaged_enter_vma_merge(vma, vma->vm_flags); |
09357814 | 2213 | validate_mm(mm); |
1da177e4 LT |
2214 | return error; |
2215 | } | |
46dea3d0 HD |
2216 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ |
2217 | ||
1da177e4 LT |
2218 | /* |
2219 | * vma is the first one with address < vma->vm_start. Have to extend vma. | |
2220 | */ | |
d05f3169 | 2221 | int expand_downwards(struct vm_area_struct *vma, |
b6a2fea3 | 2222 | unsigned long address) |
1da177e4 | 2223 | { |
09357814 | 2224 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 LT |
2225 | int error; |
2226 | ||
2227 | /* | |
2228 | * We must make sure the anon_vma is allocated | |
2229 | * so that the anon_vma locking is not a noop. | |
2230 | */ | |
2231 | if (unlikely(anon_vma_prepare(vma))) | |
2232 | return -ENOMEM; | |
8869477a EP |
2233 | |
2234 | address &= PAGE_MASK; | |
e5467859 | 2235 | error = security_mmap_addr(address); |
8869477a EP |
2236 | if (error) |
2237 | return error; | |
2238 | ||
bb4a340e | 2239 | vma_lock_anon_vma(vma); |
1da177e4 LT |
2240 | |
2241 | /* | |
2242 | * vma->vm_start/vm_end cannot change under us because the caller | |
2243 | * is required to hold the mmap_sem in read mode. We need the | |
2244 | * anon_vma lock to serialize against concurrent expand_stacks. | |
2245 | */ | |
1da177e4 LT |
2246 | |
2247 | /* Somebody else might have raced and expanded it already */ | |
2248 | if (address < vma->vm_start) { | |
2249 | unsigned long size, grow; | |
2250 | ||
2251 | size = vma->vm_end - address; | |
2252 | grow = (vma->vm_start - address) >> PAGE_SHIFT; | |
2253 | ||
a626ca6a LT |
2254 | error = -ENOMEM; |
2255 | if (grow <= vma->vm_pgoff) { | |
2256 | error = acct_stack_growth(vma, size, grow); | |
2257 | if (!error) { | |
4128997b ML |
2258 | /* |
2259 | * vma_gap_update() doesn't support concurrent | |
2260 | * updates, but we only hold a shared mmap_sem | |
2261 | * lock here, so we need to protect against | |
2262 | * concurrent vma expansions. | |
2263 | * vma_lock_anon_vma() doesn't help here, as | |
2264 | * we don't guarantee that all growable vmas | |
2265 | * in a mm share the same root anon vma. | |
2266 | * So, we reuse mm->page_table_lock to guard | |
2267 | * against concurrent vma expansions. | |
2268 | */ | |
09357814 | 2269 | spin_lock(&mm->page_table_lock); |
87e8827b | 2270 | if (vma->vm_flags & VM_LOCKED) |
09357814 | 2271 | mm->locked_vm += grow; |
84638335 | 2272 | vm_stat_account(mm, vma->vm_flags, grow); |
bf181b9f | 2273 | anon_vma_interval_tree_pre_update_vma(vma); |
a626ca6a LT |
2274 | vma->vm_start = address; |
2275 | vma->vm_pgoff -= grow; | |
bf181b9f | 2276 | anon_vma_interval_tree_post_update_vma(vma); |
d3737187 | 2277 | vma_gap_update(vma); |
09357814 | 2278 | spin_unlock(&mm->page_table_lock); |
4128997b | 2279 | |
a626ca6a LT |
2280 | perf_event_mmap(vma); |
2281 | } | |
1da177e4 LT |
2282 | } |
2283 | } | |
bb4a340e | 2284 | vma_unlock_anon_vma(vma); |
6d50e60c | 2285 | khugepaged_enter_vma_merge(vma, vma->vm_flags); |
09357814 | 2286 | validate_mm(mm); |
1da177e4 LT |
2287 | return error; |
2288 | } | |
2289 | ||
09884964 LT |
2290 | /* |
2291 | * Note how expand_stack() refuses to expand the stack all the way to | |
2292 | * abut the next virtual mapping, *unless* that mapping itself is also | |
2293 | * a stack mapping. We want to leave room for a guard page, after all | |
2294 | * (the guard page itself is not added here, that is done by the | |
2295 | * actual page faulting logic) | |
2296 | * | |
2297 | * This matches the behavior of the guard page logic (see mm/memory.c: | |
2298 | * check_stack_guard_page()), which only allows the guard page to be | |
2299 | * removed under these circumstances. | |
2300 | */ | |
b6a2fea3 OW |
2301 | #ifdef CONFIG_STACK_GROWSUP |
2302 | int expand_stack(struct vm_area_struct *vma, unsigned long address) | |
2303 | { | |
09884964 LT |
2304 | struct vm_area_struct *next; |
2305 | ||
2306 | address &= PAGE_MASK; | |
2307 | next = vma->vm_next; | |
2308 | if (next && next->vm_start == address + PAGE_SIZE) { | |
2309 | if (!(next->vm_flags & VM_GROWSUP)) | |
2310 | return -ENOMEM; | |
2311 | } | |
b6a2fea3 OW |
2312 | return expand_upwards(vma, address); |
2313 | } | |
2314 | ||
2315 | struct vm_area_struct * | |
2316 | find_extend_vma(struct mm_struct *mm, unsigned long addr) | |
2317 | { | |
2318 | struct vm_area_struct *vma, *prev; | |
2319 | ||
2320 | addr &= PAGE_MASK; | |
2321 | vma = find_vma_prev(mm, addr, &prev); | |
2322 | if (vma && (vma->vm_start <= addr)) | |
2323 | return vma; | |
1c127185 | 2324 | if (!prev || expand_stack(prev, addr)) |
b6a2fea3 | 2325 | return NULL; |
cea10a19 | 2326 | if (prev->vm_flags & VM_LOCKED) |
fc05f566 | 2327 | populate_vma_page_range(prev, addr, prev->vm_end, NULL); |
b6a2fea3 OW |
2328 | return prev; |
2329 | } | |
2330 | #else | |
2331 | int expand_stack(struct vm_area_struct *vma, unsigned long address) | |
2332 | { | |
09884964 LT |
2333 | struct vm_area_struct *prev; |
2334 | ||
2335 | address &= PAGE_MASK; | |
2336 | prev = vma->vm_prev; | |
2337 | if (prev && prev->vm_end == address) { | |
2338 | if (!(prev->vm_flags & VM_GROWSDOWN)) | |
2339 | return -ENOMEM; | |
2340 | } | |
b6a2fea3 OW |
2341 | return expand_downwards(vma, address); |
2342 | } | |
2343 | ||
1da177e4 | 2344 | struct vm_area_struct * |
cc71aba3 | 2345 | find_extend_vma(struct mm_struct *mm, unsigned long addr) |
1da177e4 | 2346 | { |
cc71aba3 | 2347 | struct vm_area_struct *vma; |
1da177e4 LT |
2348 | unsigned long start; |
2349 | ||
2350 | addr &= PAGE_MASK; | |
cc71aba3 | 2351 | vma = find_vma(mm, addr); |
1da177e4 LT |
2352 | if (!vma) |
2353 | return NULL; | |
2354 | if (vma->vm_start <= addr) | |
2355 | return vma; | |
2356 | if (!(vma->vm_flags & VM_GROWSDOWN)) | |
2357 | return NULL; | |
2358 | start = vma->vm_start; | |
2359 | if (expand_stack(vma, addr)) | |
2360 | return NULL; | |
cea10a19 | 2361 | if (vma->vm_flags & VM_LOCKED) |
fc05f566 | 2362 | populate_vma_page_range(vma, addr, start, NULL); |
1da177e4 LT |
2363 | return vma; |
2364 | } | |
2365 | #endif | |
2366 | ||
e1d6d01a JB |
2367 | EXPORT_SYMBOL_GPL(find_extend_vma); |
2368 | ||
1da177e4 | 2369 | /* |
2c0b3814 | 2370 | * Ok - we have the memory areas we should free on the vma list, |
1da177e4 | 2371 | * so release them, and do the vma updates. |
2c0b3814 HD |
2372 | * |
2373 | * Called with the mm semaphore held. | |
1da177e4 | 2374 | */ |
2c0b3814 | 2375 | static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) |
1da177e4 | 2376 | { |
4f74d2c8 LT |
2377 | unsigned long nr_accounted = 0; |
2378 | ||
365e9c87 HD |
2379 | /* Update high watermark before we lower total_vm */ |
2380 | update_hiwater_vm(mm); | |
1da177e4 | 2381 | do { |
2c0b3814 HD |
2382 | long nrpages = vma_pages(vma); |
2383 | ||
4f74d2c8 LT |
2384 | if (vma->vm_flags & VM_ACCOUNT) |
2385 | nr_accounted += nrpages; | |
84638335 | 2386 | vm_stat_account(mm, vma->vm_flags, -nrpages); |
a8fb5618 | 2387 | vma = remove_vma(vma); |
146425a3 | 2388 | } while (vma); |
4f74d2c8 | 2389 | vm_unacct_memory(nr_accounted); |
1da177e4 LT |
2390 | validate_mm(mm); |
2391 | } | |
2392 | ||
2393 | /* | |
2394 | * Get rid of page table information in the indicated region. | |
2395 | * | |
f10df686 | 2396 | * Called with the mm semaphore held. |
1da177e4 LT |
2397 | */ |
2398 | static void unmap_region(struct mm_struct *mm, | |
e0da382c HD |
2399 | struct vm_area_struct *vma, struct vm_area_struct *prev, |
2400 | unsigned long start, unsigned long end) | |
1da177e4 | 2401 | { |
cc71aba3 | 2402 | struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; |
d16dfc55 | 2403 | struct mmu_gather tlb; |
1da177e4 LT |
2404 | |
2405 | lru_add_drain(); | |
2b047252 | 2406 | tlb_gather_mmu(&tlb, mm, start, end); |
365e9c87 | 2407 | update_hiwater_rss(mm); |
4f74d2c8 | 2408 | unmap_vmas(&tlb, vma, start, end); |
d16dfc55 | 2409 | free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, |
6ee8630e | 2410 | next ? next->vm_start : USER_PGTABLES_CEILING); |
d16dfc55 | 2411 | tlb_finish_mmu(&tlb, start, end); |
1da177e4 LT |
2412 | } |
2413 | ||
2414 | /* | |
2415 | * Create a list of vma's touched by the unmap, removing them from the mm's | |
2416 | * vma list as we go.. | |
2417 | */ | |
2418 | static void | |
2419 | detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, | |
2420 | struct vm_area_struct *prev, unsigned long end) | |
2421 | { | |
2422 | struct vm_area_struct **insertion_point; | |
2423 | struct vm_area_struct *tail_vma = NULL; | |
2424 | ||
2425 | insertion_point = (prev ? &prev->vm_next : &mm->mmap); | |
297c5eee | 2426 | vma->vm_prev = NULL; |
1da177e4 | 2427 | do { |
d3737187 | 2428 | vma_rb_erase(vma, &mm->mm_rb); |
1da177e4 LT |
2429 | mm->map_count--; |
2430 | tail_vma = vma; | |
2431 | vma = vma->vm_next; | |
2432 | } while (vma && vma->vm_start < end); | |
2433 | *insertion_point = vma; | |
d3737187 | 2434 | if (vma) { |
297c5eee | 2435 | vma->vm_prev = prev; |
d3737187 ML |
2436 | vma_gap_update(vma); |
2437 | } else | |
2438 | mm->highest_vm_end = prev ? prev->vm_end : 0; | |
1da177e4 | 2439 | tail_vma->vm_next = NULL; |
615d6e87 DB |
2440 | |
2441 | /* Kill the cache */ | |
2442 | vmacache_invalidate(mm); | |
1da177e4 LT |
2443 | } |
2444 | ||
2445 | /* | |
659ace58 KM |
2446 | * __split_vma() bypasses sysctl_max_map_count checking. We use this on the |
2447 | * munmap path where it doesn't make sense to fail. | |
1da177e4 | 2448 | */ |
cc71aba3 | 2449 | static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2450 | unsigned long addr, int new_below) |
2451 | { | |
1da177e4 | 2452 | struct vm_area_struct *new; |
e3975891 | 2453 | int err; |
1da177e4 | 2454 | |
a5516438 AK |
2455 | if (is_vm_hugetlb_page(vma) && (addr & |
2456 | ~(huge_page_mask(hstate_vma(vma))))) | |
1da177e4 LT |
2457 | return -EINVAL; |
2458 | ||
e94b1766 | 2459 | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 | 2460 | if (!new) |
e3975891 | 2461 | return -ENOMEM; |
1da177e4 LT |
2462 | |
2463 | /* most fields are the same, copy all, and then fixup */ | |
2464 | *new = *vma; | |
2465 | ||
5beb4930 RR |
2466 | INIT_LIST_HEAD(&new->anon_vma_chain); |
2467 | ||
1da177e4 LT |
2468 | if (new_below) |
2469 | new->vm_end = addr; | |
2470 | else { | |
2471 | new->vm_start = addr; | |
2472 | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); | |
2473 | } | |
2474 | ||
ef0855d3 ON |
2475 | err = vma_dup_policy(vma, new); |
2476 | if (err) | |
5beb4930 | 2477 | goto out_free_vma; |
1da177e4 | 2478 | |
c4ea95d7 DF |
2479 | err = anon_vma_clone(new, vma); |
2480 | if (err) | |
5beb4930 RR |
2481 | goto out_free_mpol; |
2482 | ||
e9714acf | 2483 | if (new->vm_file) |
1da177e4 LT |
2484 | get_file(new->vm_file); |
2485 | ||
2486 | if (new->vm_ops && new->vm_ops->open) | |
2487 | new->vm_ops->open(new); | |
2488 | ||
2489 | if (new_below) | |
5beb4930 | 2490 | err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + |
1da177e4 LT |
2491 | ((addr - new->vm_start) >> PAGE_SHIFT), new); |
2492 | else | |
5beb4930 | 2493 | err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); |
1da177e4 | 2494 | |
5beb4930 RR |
2495 | /* Success. */ |
2496 | if (!err) | |
2497 | return 0; | |
2498 | ||
2499 | /* Clean everything up if vma_adjust failed. */ | |
58927533 RR |
2500 | if (new->vm_ops && new->vm_ops->close) |
2501 | new->vm_ops->close(new); | |
e9714acf | 2502 | if (new->vm_file) |
5beb4930 | 2503 | fput(new->vm_file); |
2aeadc30 | 2504 | unlink_anon_vmas(new); |
5beb4930 | 2505 | out_free_mpol: |
ef0855d3 | 2506 | mpol_put(vma_policy(new)); |
5beb4930 RR |
2507 | out_free_vma: |
2508 | kmem_cache_free(vm_area_cachep, new); | |
5beb4930 | 2509 | return err; |
1da177e4 LT |
2510 | } |
2511 | ||
659ace58 KM |
2512 | /* |
2513 | * Split a vma into two pieces at address 'addr', a new vma is allocated | |
2514 | * either for the first part or the tail. | |
2515 | */ | |
2516 | int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, | |
2517 | unsigned long addr, int new_below) | |
2518 | { | |
2519 | if (mm->map_count >= sysctl_max_map_count) | |
2520 | return -ENOMEM; | |
2521 | ||
2522 | return __split_vma(mm, vma, addr, new_below); | |
2523 | } | |
2524 | ||
1da177e4 LT |
2525 | /* Munmap is split into 2 main parts -- this part which finds |
2526 | * what needs doing, and the areas themselves, which do the | |
2527 | * work. This now handles partial unmappings. | |
2528 | * Jeremy Fitzhardinge <jeremy@goop.org> | |
2529 | */ | |
2530 | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) | |
2531 | { | |
2532 | unsigned long end; | |
146425a3 | 2533 | struct vm_area_struct *vma, *prev, *last; |
1da177e4 | 2534 | |
de1741a1 | 2535 | if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) |
1da177e4 LT |
2536 | return -EINVAL; |
2537 | ||
cc71aba3 | 2538 | len = PAGE_ALIGN(len); |
2539 | if (len == 0) | |
1da177e4 LT |
2540 | return -EINVAL; |
2541 | ||
2542 | /* Find the first overlapping VMA */ | |
9be34c9d | 2543 | vma = find_vma(mm, start); |
146425a3 | 2544 | if (!vma) |
1da177e4 | 2545 | return 0; |
9be34c9d | 2546 | prev = vma->vm_prev; |
146425a3 | 2547 | /* we have start < vma->vm_end */ |
1da177e4 LT |
2548 | |
2549 | /* if it doesn't overlap, we have nothing.. */ | |
2550 | end = start + len; | |
146425a3 | 2551 | if (vma->vm_start >= end) |
1da177e4 LT |
2552 | return 0; |
2553 | ||
2554 | /* | |
2555 | * If we need to split any vma, do it now to save pain later. | |
2556 | * | |
2557 | * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially | |
2558 | * unmapped vm_area_struct will remain in use: so lower split_vma | |
2559 | * places tmp vma above, and higher split_vma places tmp vma below. | |
2560 | */ | |
146425a3 | 2561 | if (start > vma->vm_start) { |
659ace58 KM |
2562 | int error; |
2563 | ||
2564 | /* | |
2565 | * Make sure that map_count on return from munmap() will | |
2566 | * not exceed its limit; but let map_count go just above | |
2567 | * its limit temporarily, to help free resources as expected. | |
2568 | */ | |
2569 | if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) | |
2570 | return -ENOMEM; | |
2571 | ||
2572 | error = __split_vma(mm, vma, start, 0); | |
1da177e4 LT |
2573 | if (error) |
2574 | return error; | |
146425a3 | 2575 | prev = vma; |
1da177e4 LT |
2576 | } |
2577 | ||
2578 | /* Does it split the last one? */ | |
2579 | last = find_vma(mm, end); | |
2580 | if (last && end > last->vm_start) { | |
659ace58 | 2581 | int error = __split_vma(mm, last, end, 1); |
1da177e4 LT |
2582 | if (error) |
2583 | return error; | |
2584 | } | |
cc71aba3 | 2585 | vma = prev ? prev->vm_next : mm->mmap; |
1da177e4 | 2586 | |
ba470de4 RR |
2587 | /* |
2588 | * unlock any mlock()ed ranges before detaching vmas | |
2589 | */ | |
2590 | if (mm->locked_vm) { | |
2591 | struct vm_area_struct *tmp = vma; | |
2592 | while (tmp && tmp->vm_start < end) { | |
2593 | if (tmp->vm_flags & VM_LOCKED) { | |
2594 | mm->locked_vm -= vma_pages(tmp); | |
2595 | munlock_vma_pages_all(tmp); | |
2596 | } | |
2597 | tmp = tmp->vm_next; | |
2598 | } | |
2599 | } | |
2600 | ||
1da177e4 LT |
2601 | /* |
2602 | * Remove the vma's, and unmap the actual pages | |
2603 | */ | |
146425a3 HD |
2604 | detach_vmas_to_be_unmapped(mm, vma, prev, end); |
2605 | unmap_region(mm, vma, prev, start, end); | |
1da177e4 | 2606 | |
1de4fa14 DH |
2607 | arch_unmap(mm, vma, start, end); |
2608 | ||
1da177e4 | 2609 | /* Fix up all other VM information */ |
2c0b3814 | 2610 | remove_vma_list(mm, vma); |
1da177e4 LT |
2611 | |
2612 | return 0; | |
2613 | } | |
1da177e4 | 2614 | |
bfce281c | 2615 | int vm_munmap(unsigned long start, size_t len) |
1da177e4 LT |
2616 | { |
2617 | int ret; | |
bfce281c | 2618 | struct mm_struct *mm = current->mm; |
1da177e4 LT |
2619 | |
2620 | down_write(&mm->mmap_sem); | |
a46ef99d | 2621 | ret = do_munmap(mm, start, len); |
1da177e4 LT |
2622 | up_write(&mm->mmap_sem); |
2623 | return ret; | |
2624 | } | |
a46ef99d LT |
2625 | EXPORT_SYMBOL(vm_munmap); |
2626 | ||
2627 | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) | |
2628 | { | |
2629 | profile_munmap(addr); | |
bfce281c | 2630 | return vm_munmap(addr, len); |
a46ef99d | 2631 | } |
1da177e4 | 2632 | |
c8d78c18 KS |
2633 | |
2634 | /* | |
2635 | * Emulation of deprecated remap_file_pages() syscall. | |
2636 | */ | |
2637 | SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, | |
2638 | unsigned long, prot, unsigned long, pgoff, unsigned long, flags) | |
2639 | { | |
2640 | ||
2641 | struct mm_struct *mm = current->mm; | |
2642 | struct vm_area_struct *vma; | |
2643 | unsigned long populate = 0; | |
2644 | unsigned long ret = -EINVAL; | |
2645 | struct file *file; | |
2646 | ||
2647 | pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. " | |
2648 | "See Documentation/vm/remap_file_pages.txt.\n", | |
2649 | current->comm, current->pid); | |
2650 | ||
2651 | if (prot) | |
2652 | return ret; | |
2653 | start = start & PAGE_MASK; | |
2654 | size = size & PAGE_MASK; | |
2655 | ||
2656 | if (start + size <= start) | |
2657 | return ret; | |
2658 | ||
2659 | /* Does pgoff wrap? */ | |
2660 | if (pgoff + (size >> PAGE_SHIFT) < pgoff) | |
2661 | return ret; | |
2662 | ||
2663 | down_write(&mm->mmap_sem); | |
2664 | vma = find_vma(mm, start); | |
2665 | ||
2666 | if (!vma || !(vma->vm_flags & VM_SHARED)) | |
2667 | goto out; | |
2668 | ||
2669 | if (start < vma->vm_start || start + size > vma->vm_end) | |
2670 | goto out; | |
2671 | ||
2672 | if (pgoff == linear_page_index(vma, start)) { | |
2673 | ret = 0; | |
2674 | goto out; | |
2675 | } | |
2676 | ||
2677 | prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; | |
2678 | prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; | |
2679 | prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; | |
2680 | ||
2681 | flags &= MAP_NONBLOCK; | |
2682 | flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; | |
2683 | if (vma->vm_flags & VM_LOCKED) { | |
2684 | flags |= MAP_LOCKED; | |
2685 | /* drop PG_Mlocked flag for over-mapped range */ | |
2686 | munlock_vma_pages_range(vma, start, start + size); | |
2687 | } | |
2688 | ||
2689 | file = get_file(vma->vm_file); | |
2690 | ret = do_mmap_pgoff(vma->vm_file, start, size, | |
2691 | prot, flags, pgoff, &populate); | |
2692 | fput(file); | |
2693 | out: | |
2694 | up_write(&mm->mmap_sem); | |
2695 | if (populate) | |
2696 | mm_populate(ret, populate); | |
2697 | if (!IS_ERR_VALUE(ret)) | |
2698 | ret = 0; | |
2699 | return ret; | |
2700 | } | |
2701 | ||
1da177e4 LT |
2702 | static inline void verify_mm_writelocked(struct mm_struct *mm) |
2703 | { | |
a241ec65 | 2704 | #ifdef CONFIG_DEBUG_VM |
1da177e4 LT |
2705 | if (unlikely(down_read_trylock(&mm->mmap_sem))) { |
2706 | WARN_ON(1); | |
2707 | up_read(&mm->mmap_sem); | |
2708 | } | |
2709 | #endif | |
2710 | } | |
2711 | ||
2712 | /* | |
2713 | * this is really a simplified "do_mmap". it only handles | |
2714 | * anonymous maps. eventually we may be able to do some | |
2715 | * brk-specific accounting here. | |
2716 | */ | |
e4eb1ff6 | 2717 | static unsigned long do_brk(unsigned long addr, unsigned long len) |
1da177e4 | 2718 | { |
cc71aba3 | 2719 | struct mm_struct *mm = current->mm; |
2720 | struct vm_area_struct *vma, *prev; | |
1da177e4 | 2721 | unsigned long flags; |
cc71aba3 | 2722 | struct rb_node **rb_link, *rb_parent; |
1da177e4 | 2723 | pgoff_t pgoff = addr >> PAGE_SHIFT; |
3a459756 | 2724 | int error; |
1da177e4 LT |
2725 | |
2726 | len = PAGE_ALIGN(len); | |
2727 | if (!len) | |
2728 | return addr; | |
2729 | ||
3a459756 KK |
2730 | flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; |
2731 | ||
2c6a1016 | 2732 | error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); |
de1741a1 | 2733 | if (offset_in_page(error)) |
3a459756 KK |
2734 | return error; |
2735 | ||
363ee17f DB |
2736 | error = mlock_future_check(mm, mm->def_flags, len); |
2737 | if (error) | |
2738 | return error; | |
1da177e4 LT |
2739 | |
2740 | /* | |
2741 | * mm->mmap_sem is required to protect against another thread | |
2742 | * changing the mappings in case we sleep. | |
2743 | */ | |
2744 | verify_mm_writelocked(mm); | |
2745 | ||
2746 | /* | |
2747 | * Clear old maps. this also does some error checking for us | |
2748 | */ | |
9fcd1457 RV |
2749 | while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, |
2750 | &rb_parent)) { | |
1da177e4 LT |
2751 | if (do_munmap(mm, addr, len)) |
2752 | return -ENOMEM; | |
1da177e4 LT |
2753 | } |
2754 | ||
2755 | /* Check against address space limits *after* clearing old maps... */ | |
84638335 | 2756 | if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) |
1da177e4 LT |
2757 | return -ENOMEM; |
2758 | ||
2759 | if (mm->map_count > sysctl_max_map_count) | |
2760 | return -ENOMEM; | |
2761 | ||
191c5424 | 2762 | if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) |
1da177e4 LT |
2763 | return -ENOMEM; |
2764 | ||
1da177e4 | 2765 | /* Can we just expand an old private anonymous mapping? */ |
ba470de4 | 2766 | vma = vma_merge(mm, prev, addr, addr + len, flags, |
19a809af | 2767 | NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); |
ba470de4 | 2768 | if (vma) |
1da177e4 LT |
2769 | goto out; |
2770 | ||
2771 | /* | |
2772 | * create a vma struct for an anonymous mapping | |
2773 | */ | |
c5e3b83e | 2774 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 LT |
2775 | if (!vma) { |
2776 | vm_unacct_memory(len >> PAGE_SHIFT); | |
2777 | return -ENOMEM; | |
2778 | } | |
1da177e4 | 2779 | |
5beb4930 | 2780 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1da177e4 LT |
2781 | vma->vm_mm = mm; |
2782 | vma->vm_start = addr; | |
2783 | vma->vm_end = addr + len; | |
2784 | vma->vm_pgoff = pgoff; | |
2785 | vma->vm_flags = flags; | |
3ed75eb8 | 2786 | vma->vm_page_prot = vm_get_page_prot(flags); |
1da177e4 LT |
2787 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2788 | out: | |
3af9e859 | 2789 | perf_event_mmap(vma); |
1da177e4 | 2790 | mm->total_vm += len >> PAGE_SHIFT; |
84638335 | 2791 | mm->data_vm += len >> PAGE_SHIFT; |
128557ff ML |
2792 | if (flags & VM_LOCKED) |
2793 | mm->locked_vm += (len >> PAGE_SHIFT); | |
d9104d1c | 2794 | vma->vm_flags |= VM_SOFTDIRTY; |
1da177e4 LT |
2795 | return addr; |
2796 | } | |
2797 | ||
e4eb1ff6 LT |
2798 | unsigned long vm_brk(unsigned long addr, unsigned long len) |
2799 | { | |
2800 | struct mm_struct *mm = current->mm; | |
2801 | unsigned long ret; | |
128557ff | 2802 | bool populate; |
e4eb1ff6 LT |
2803 | |
2804 | down_write(&mm->mmap_sem); | |
2805 | ret = do_brk(addr, len); | |
128557ff | 2806 | populate = ((mm->def_flags & VM_LOCKED) != 0); |
e4eb1ff6 | 2807 | up_write(&mm->mmap_sem); |
128557ff ML |
2808 | if (populate) |
2809 | mm_populate(addr, len); | |
e4eb1ff6 LT |
2810 | return ret; |
2811 | } | |
2812 | EXPORT_SYMBOL(vm_brk); | |
1da177e4 LT |
2813 | |
2814 | /* Release all mmaps. */ | |
2815 | void exit_mmap(struct mm_struct *mm) | |
2816 | { | |
d16dfc55 | 2817 | struct mmu_gather tlb; |
ba470de4 | 2818 | struct vm_area_struct *vma; |
1da177e4 LT |
2819 | unsigned long nr_accounted = 0; |
2820 | ||
d6dd61c8 | 2821 | /* mm's last user has gone, and its about to be pulled down */ |
cddb8a5c | 2822 | mmu_notifier_release(mm); |
d6dd61c8 | 2823 | |
ba470de4 RR |
2824 | if (mm->locked_vm) { |
2825 | vma = mm->mmap; | |
2826 | while (vma) { | |
2827 | if (vma->vm_flags & VM_LOCKED) | |
2828 | munlock_vma_pages_all(vma); | |
2829 | vma = vma->vm_next; | |
2830 | } | |
2831 | } | |
9480c53e JF |
2832 | |
2833 | arch_exit_mmap(mm); | |
2834 | ||
ba470de4 | 2835 | vma = mm->mmap; |
9480c53e JF |
2836 | if (!vma) /* Can happen if dup_mmap() received an OOM */ |
2837 | return; | |
2838 | ||
1da177e4 | 2839 | lru_add_drain(); |
1da177e4 | 2840 | flush_cache_mm(mm); |
2b047252 | 2841 | tlb_gather_mmu(&tlb, mm, 0, -1); |
901608d9 | 2842 | /* update_hiwater_rss(mm) here? but nobody should be looking */ |
e0da382c | 2843 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ |
4f74d2c8 | 2844 | unmap_vmas(&tlb, vma, 0, -1); |
9ba69294 | 2845 | |
6ee8630e | 2846 | free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); |
853f5e26 | 2847 | tlb_finish_mmu(&tlb, 0, -1); |
1da177e4 | 2848 | |
1da177e4 | 2849 | /* |
8f4f8c16 HD |
2850 | * Walk the list again, actually closing and freeing it, |
2851 | * with preemption enabled, without holding any MM locks. | |
1da177e4 | 2852 | */ |
4f74d2c8 LT |
2853 | while (vma) { |
2854 | if (vma->vm_flags & VM_ACCOUNT) | |
2855 | nr_accounted += vma_pages(vma); | |
a8fb5618 | 2856 | vma = remove_vma(vma); |
4f74d2c8 LT |
2857 | } |
2858 | vm_unacct_memory(nr_accounted); | |
1da177e4 LT |
2859 | } |
2860 | ||
2861 | /* Insert vm structure into process list sorted by address | |
2862 | * and into the inode's i_mmap tree. If vm_file is non-NULL | |
c8c06efa | 2863 | * then i_mmap_rwsem is taken here. |
1da177e4 | 2864 | */ |
6597d783 | 2865 | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
1da177e4 | 2866 | { |
6597d783 HD |
2867 | struct vm_area_struct *prev; |
2868 | struct rb_node **rb_link, *rb_parent; | |
1da177e4 | 2869 | |
c9d13f5f CG |
2870 | if (find_vma_links(mm, vma->vm_start, vma->vm_end, |
2871 | &prev, &rb_link, &rb_parent)) | |
2872 | return -ENOMEM; | |
2873 | if ((vma->vm_flags & VM_ACCOUNT) && | |
2874 | security_vm_enough_memory_mm(mm, vma_pages(vma))) | |
2875 | return -ENOMEM; | |
2876 | ||
1da177e4 LT |
2877 | /* |
2878 | * The vm_pgoff of a purely anonymous vma should be irrelevant | |
2879 | * until its first write fault, when page's anon_vma and index | |
2880 | * are set. But now set the vm_pgoff it will almost certainly | |
2881 | * end up with (unless mremap moves it elsewhere before that | |
2882 | * first wfault), so /proc/pid/maps tells a consistent story. | |
2883 | * | |
2884 | * By setting it to reflect the virtual start address of the | |
2885 | * vma, merges and splits can happen in a seamless way, just | |
2886 | * using the existing file pgoff checks and manipulations. | |
2887 | * Similarly in do_mmap_pgoff and in do_brk. | |
2888 | */ | |
8a9cc3b5 | 2889 | if (vma_is_anonymous(vma)) { |
1da177e4 LT |
2890 | BUG_ON(vma->anon_vma); |
2891 | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | |
2892 | } | |
2b144498 | 2893 | |
1da177e4 LT |
2894 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2895 | return 0; | |
2896 | } | |
2897 | ||
2898 | /* | |
2899 | * Copy the vma structure to a new location in the same mm, | |
2900 | * prior to moving page table entries, to effect an mremap move. | |
2901 | */ | |
2902 | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, | |
38a76013 ML |
2903 | unsigned long addr, unsigned long len, pgoff_t pgoff, |
2904 | bool *need_rmap_locks) | |
1da177e4 LT |
2905 | { |
2906 | struct vm_area_struct *vma = *vmap; | |
2907 | unsigned long vma_start = vma->vm_start; | |
2908 | struct mm_struct *mm = vma->vm_mm; | |
2909 | struct vm_area_struct *new_vma, *prev; | |
2910 | struct rb_node **rb_link, *rb_parent; | |
948f017b | 2911 | bool faulted_in_anon_vma = true; |
1da177e4 LT |
2912 | |
2913 | /* | |
2914 | * If anonymous vma has not yet been faulted, update new pgoff | |
2915 | * to match new location, to increase its chance of merging. | |
2916 | */ | |
ce75799b | 2917 | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { |
1da177e4 | 2918 | pgoff = addr >> PAGE_SHIFT; |
948f017b AA |
2919 | faulted_in_anon_vma = false; |
2920 | } | |
1da177e4 | 2921 | |
6597d783 HD |
2922 | if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) |
2923 | return NULL; /* should never get here */ | |
1da177e4 | 2924 | new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, |
19a809af AA |
2925 | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), |
2926 | vma->vm_userfaultfd_ctx); | |
1da177e4 LT |
2927 | if (new_vma) { |
2928 | /* | |
2929 | * Source vma may have been merged into new_vma | |
2930 | */ | |
948f017b AA |
2931 | if (unlikely(vma_start >= new_vma->vm_start && |
2932 | vma_start < new_vma->vm_end)) { | |
2933 | /* | |
2934 | * The only way we can get a vma_merge with | |
2935 | * self during an mremap is if the vma hasn't | |
2936 | * been faulted in yet and we were allowed to | |
2937 | * reset the dst vma->vm_pgoff to the | |
2938 | * destination address of the mremap to allow | |
2939 | * the merge to happen. mremap must change the | |
2940 | * vm_pgoff linearity between src and dst vmas | |
2941 | * (in turn preventing a vma_merge) to be | |
2942 | * safe. It is only safe to keep the vm_pgoff | |
2943 | * linear if there are no pages mapped yet. | |
2944 | */ | |
81d1b09c | 2945 | VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); |
38a76013 | 2946 | *vmap = vma = new_vma; |
108d6642 | 2947 | } |
38a76013 | 2948 | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); |
1da177e4 | 2949 | } else { |
e94b1766 | 2950 | new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
e3975891 CG |
2951 | if (!new_vma) |
2952 | goto out; | |
2953 | *new_vma = *vma; | |
2954 | new_vma->vm_start = addr; | |
2955 | new_vma->vm_end = addr + len; | |
2956 | new_vma->vm_pgoff = pgoff; | |
2957 | if (vma_dup_policy(vma, new_vma)) | |
2958 | goto out_free_vma; | |
2959 | INIT_LIST_HEAD(&new_vma->anon_vma_chain); | |
2960 | if (anon_vma_clone(new_vma, vma)) | |
2961 | goto out_free_mempol; | |
2962 | if (new_vma->vm_file) | |
2963 | get_file(new_vma->vm_file); | |
2964 | if (new_vma->vm_ops && new_vma->vm_ops->open) | |
2965 | new_vma->vm_ops->open(new_vma); | |
2966 | vma_link(mm, new_vma, prev, rb_link, rb_parent); | |
2967 | *need_rmap_locks = false; | |
1da177e4 LT |
2968 | } |
2969 | return new_vma; | |
5beb4930 | 2970 | |
e3975891 | 2971 | out_free_mempol: |
ef0855d3 | 2972 | mpol_put(vma_policy(new_vma)); |
e3975891 | 2973 | out_free_vma: |
5beb4930 | 2974 | kmem_cache_free(vm_area_cachep, new_vma); |
e3975891 | 2975 | out: |
5beb4930 | 2976 | return NULL; |
1da177e4 | 2977 | } |
119f657c | 2978 | |
2979 | /* | |
2980 | * Return true if the calling process may expand its vm space by the passed | |
2981 | * number of pages | |
2982 | */ | |
84638335 | 2983 | bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) |
119f657c | 2984 | { |
84638335 KK |
2985 | if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) |
2986 | return false; | |
2987 | ||
d977d56c KK |
2988 | if (is_data_mapping(flags) && |
2989 | mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { | |
2990 | if (ignore_rlimit_data) | |
2991 | pr_warn_once("%s (%d): VmData %lu exceed data ulimit " | |
2992 | "%lu. Will be forbidden soon.\n", | |
2993 | current->comm, current->pid, | |
2994 | (mm->data_vm + npages) << PAGE_SHIFT, | |
2995 | rlimit(RLIMIT_DATA)); | |
2996 | else | |
2997 | return false; | |
2998 | } | |
84638335 KK |
2999 | |
3000 | return true; | |
3001 | } | |
3002 | ||
3003 | void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) | |
3004 | { | |
3005 | mm->total_vm += npages; | |
3006 | ||
d977d56c | 3007 | if (is_exec_mapping(flags)) |
84638335 | 3008 | mm->exec_vm += npages; |
d977d56c | 3009 | else if (is_stack_mapping(flags)) |
84638335 | 3010 | mm->stack_vm += npages; |
d977d56c | 3011 | else if (is_data_mapping(flags)) |
84638335 | 3012 | mm->data_vm += npages; |
119f657c | 3013 | } |
fa5dc22f | 3014 | |
a62c34bd AL |
3015 | static int special_mapping_fault(struct vm_area_struct *vma, |
3016 | struct vm_fault *vmf); | |
3017 | ||
3018 | /* | |
3019 | * Having a close hook prevents vma merging regardless of flags. | |
3020 | */ | |
3021 | static void special_mapping_close(struct vm_area_struct *vma) | |
3022 | { | |
3023 | } | |
3024 | ||
3025 | static const char *special_mapping_name(struct vm_area_struct *vma) | |
3026 | { | |
3027 | return ((struct vm_special_mapping *)vma->vm_private_data)->name; | |
3028 | } | |
3029 | ||
3030 | static const struct vm_operations_struct special_mapping_vmops = { | |
3031 | .close = special_mapping_close, | |
3032 | .fault = special_mapping_fault, | |
3033 | .name = special_mapping_name, | |
3034 | }; | |
3035 | ||
3036 | static const struct vm_operations_struct legacy_special_mapping_vmops = { | |
3037 | .close = special_mapping_close, | |
3038 | .fault = special_mapping_fault, | |
3039 | }; | |
fa5dc22f | 3040 | |
b1d0e4f5 NP |
3041 | static int special_mapping_fault(struct vm_area_struct *vma, |
3042 | struct vm_fault *vmf) | |
fa5dc22f | 3043 | { |
b1d0e4f5 | 3044 | pgoff_t pgoff; |
fa5dc22f RM |
3045 | struct page **pages; |
3046 | ||
a62c34bd AL |
3047 | if (vma->vm_ops == &legacy_special_mapping_vmops) |
3048 | pages = vma->vm_private_data; | |
3049 | else | |
3050 | pages = ((struct vm_special_mapping *)vma->vm_private_data)-> | |
3051 | pages; | |
3052 | ||
8a9cc3b5 | 3053 | for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) |
b1d0e4f5 | 3054 | pgoff--; |
fa5dc22f RM |
3055 | |
3056 | if (*pages) { | |
3057 | struct page *page = *pages; | |
3058 | get_page(page); | |
b1d0e4f5 NP |
3059 | vmf->page = page; |
3060 | return 0; | |
fa5dc22f RM |
3061 | } |
3062 | ||
b1d0e4f5 | 3063 | return VM_FAULT_SIGBUS; |
fa5dc22f RM |
3064 | } |
3065 | ||
a62c34bd AL |
3066 | static struct vm_area_struct *__install_special_mapping( |
3067 | struct mm_struct *mm, | |
3068 | unsigned long addr, unsigned long len, | |
27f28b97 CG |
3069 | unsigned long vm_flags, void *priv, |
3070 | const struct vm_operations_struct *ops) | |
fa5dc22f | 3071 | { |
462e635e | 3072 | int ret; |
fa5dc22f RM |
3073 | struct vm_area_struct *vma; |
3074 | ||
3075 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | |
3076 | if (unlikely(vma == NULL)) | |
3935ed6a | 3077 | return ERR_PTR(-ENOMEM); |
fa5dc22f | 3078 | |
5beb4930 | 3079 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
fa5dc22f RM |
3080 | vma->vm_mm = mm; |
3081 | vma->vm_start = addr; | |
3082 | vma->vm_end = addr + len; | |
3083 | ||
d9104d1c | 3084 | vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; |
3ed75eb8 | 3085 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
fa5dc22f | 3086 | |
a62c34bd AL |
3087 | vma->vm_ops = ops; |
3088 | vma->vm_private_data = priv; | |
fa5dc22f | 3089 | |
462e635e TO |
3090 | ret = insert_vm_struct(mm, vma); |
3091 | if (ret) | |
3092 | goto out; | |
fa5dc22f | 3093 | |
84638335 | 3094 | vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); |
fa5dc22f | 3095 | |
cdd6c482 | 3096 | perf_event_mmap(vma); |
089dd79d | 3097 | |
3935ed6a | 3098 | return vma; |
462e635e TO |
3099 | |
3100 | out: | |
3101 | kmem_cache_free(vm_area_cachep, vma); | |
3935ed6a SS |
3102 | return ERR_PTR(ret); |
3103 | } | |
3104 | ||
a62c34bd AL |
3105 | /* |
3106 | * Called with mm->mmap_sem held for writing. | |
3107 | * Insert a new vma covering the given region, with the given flags. | |
3108 | * Its pages are supplied by the given array of struct page *. | |
3109 | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. | |
3110 | * The region past the last page supplied will always produce SIGBUS. | |
3111 | * The array pointer and the pages it points to are assumed to stay alive | |
3112 | * for as long as this mapping might exist. | |
3113 | */ | |
3114 | struct vm_area_struct *_install_special_mapping( | |
3115 | struct mm_struct *mm, | |
3116 | unsigned long addr, unsigned long len, | |
3117 | unsigned long vm_flags, const struct vm_special_mapping *spec) | |
3118 | { | |
27f28b97 CG |
3119 | return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, |
3120 | &special_mapping_vmops); | |
a62c34bd AL |
3121 | } |
3122 | ||
3935ed6a SS |
3123 | int install_special_mapping(struct mm_struct *mm, |
3124 | unsigned long addr, unsigned long len, | |
3125 | unsigned long vm_flags, struct page **pages) | |
3126 | { | |
a62c34bd | 3127 | struct vm_area_struct *vma = __install_special_mapping( |
27f28b97 CG |
3128 | mm, addr, len, vm_flags, (void *)pages, |
3129 | &legacy_special_mapping_vmops); | |
3935ed6a | 3130 | |
14bd5b45 | 3131 | return PTR_ERR_OR_ZERO(vma); |
fa5dc22f | 3132 | } |
7906d00c AA |
3133 | |
3134 | static DEFINE_MUTEX(mm_all_locks_mutex); | |
3135 | ||
454ed842 | 3136 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
7906d00c | 3137 | { |
bf181b9f | 3138 | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { |
7906d00c AA |
3139 | /* |
3140 | * The LSB of head.next can't change from under us | |
3141 | * because we hold the mm_all_locks_mutex. | |
3142 | */ | |
572043c9 | 3143 | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); |
7906d00c AA |
3144 | /* |
3145 | * We can safely modify head.next after taking the | |
5a505085 | 3146 | * anon_vma->root->rwsem. If some other vma in this mm shares |
7906d00c AA |
3147 | * the same anon_vma we won't take it again. |
3148 | * | |
3149 | * No need of atomic instructions here, head.next | |
3150 | * can't change from under us thanks to the | |
5a505085 | 3151 | * anon_vma->root->rwsem. |
7906d00c AA |
3152 | */ |
3153 | if (__test_and_set_bit(0, (unsigned long *) | |
bf181b9f | 3154 | &anon_vma->root->rb_root.rb_node)) |
7906d00c AA |
3155 | BUG(); |
3156 | } | |
3157 | } | |
3158 | ||
454ed842 | 3159 | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) |
7906d00c AA |
3160 | { |
3161 | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | |
3162 | /* | |
3163 | * AS_MM_ALL_LOCKS can't change from under us because | |
3164 | * we hold the mm_all_locks_mutex. | |
3165 | * | |
3166 | * Operations on ->flags have to be atomic because | |
3167 | * even if AS_MM_ALL_LOCKS is stable thanks to the | |
3168 | * mm_all_locks_mutex, there may be other cpus | |
3169 | * changing other bitflags in parallel to us. | |
3170 | */ | |
3171 | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | |
3172 | BUG(); | |
c8c06efa | 3173 | down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); |
7906d00c AA |
3174 | } |
3175 | } | |
3176 | ||
3177 | /* | |
3178 | * This operation locks against the VM for all pte/vma/mm related | |
3179 | * operations that could ever happen on a certain mm. This includes | |
3180 | * vmtruncate, try_to_unmap, and all page faults. | |
3181 | * | |
3182 | * The caller must take the mmap_sem in write mode before calling | |
3183 | * mm_take_all_locks(). The caller isn't allowed to release the | |
3184 | * mmap_sem until mm_drop_all_locks() returns. | |
3185 | * | |
3186 | * mmap_sem in write mode is required in order to block all operations | |
3187 | * that could modify pagetables and free pages without need of | |
27ba0644 | 3188 | * altering the vma layout. It's also needed in write mode to avoid new |
7906d00c AA |
3189 | * anon_vmas to be associated with existing vmas. |
3190 | * | |
3191 | * A single task can't take more than one mm_take_all_locks() in a row | |
3192 | * or it would deadlock. | |
3193 | * | |
bf181b9f | 3194 | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in |
7906d00c AA |
3195 | * mapping->flags avoid to take the same lock twice, if more than one |
3196 | * vma in this mm is backed by the same anon_vma or address_space. | |
3197 | * | |
88f306b6 KS |
3198 | * We take locks in following order, accordingly to comment at beginning |
3199 | * of mm/rmap.c: | |
3200 | * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for | |
3201 | * hugetlb mapping); | |
3202 | * - all i_mmap_rwsem locks; | |
3203 | * - all anon_vma->rwseml | |
3204 | * | |
3205 | * We can take all locks within these types randomly because the VM code | |
3206 | * doesn't nest them and we protected from parallel mm_take_all_locks() by | |
3207 | * mm_all_locks_mutex. | |
7906d00c AA |
3208 | * |
3209 | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | |
3210 | * that may have to take thousand of locks. | |
3211 | * | |
3212 | * mm_take_all_locks() can fail if it's interrupted by signals. | |
3213 | */ | |
3214 | int mm_take_all_locks(struct mm_struct *mm) | |
3215 | { | |
3216 | struct vm_area_struct *vma; | |
5beb4930 | 3217 | struct anon_vma_chain *avc; |
7906d00c AA |
3218 | |
3219 | BUG_ON(down_read_trylock(&mm->mmap_sem)); | |
3220 | ||
3221 | mutex_lock(&mm_all_locks_mutex); | |
3222 | ||
3223 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3224 | if (signal_pending(current)) | |
3225 | goto out_unlock; | |
88f306b6 KS |
3226 | if (vma->vm_file && vma->vm_file->f_mapping && |
3227 | is_vm_hugetlb_page(vma)) | |
3228 | vm_lock_mapping(mm, vma->vm_file->f_mapping); | |
3229 | } | |
3230 | ||
3231 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3232 | if (signal_pending(current)) | |
3233 | goto out_unlock; | |
3234 | if (vma->vm_file && vma->vm_file->f_mapping && | |
3235 | !is_vm_hugetlb_page(vma)) | |
454ed842 | 3236 | vm_lock_mapping(mm, vma->vm_file->f_mapping); |
7906d00c | 3237 | } |
7cd5a02f PZ |
3238 | |
3239 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3240 | if (signal_pending(current)) | |
3241 | goto out_unlock; | |
3242 | if (vma->anon_vma) | |
5beb4930 RR |
3243 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
3244 | vm_lock_anon_vma(mm, avc->anon_vma); | |
7906d00c | 3245 | } |
7cd5a02f | 3246 | |
584cff54 | 3247 | return 0; |
7906d00c AA |
3248 | |
3249 | out_unlock: | |
584cff54 KC |
3250 | mm_drop_all_locks(mm); |
3251 | return -EINTR; | |
7906d00c AA |
3252 | } |
3253 | ||
3254 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | |
3255 | { | |
bf181b9f | 3256 | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { |
7906d00c AA |
3257 | /* |
3258 | * The LSB of head.next can't change to 0 from under | |
3259 | * us because we hold the mm_all_locks_mutex. | |
3260 | * | |
3261 | * We must however clear the bitflag before unlocking | |
bf181b9f | 3262 | * the vma so the users using the anon_vma->rb_root will |
7906d00c AA |
3263 | * never see our bitflag. |
3264 | * | |
3265 | * No need of atomic instructions here, head.next | |
3266 | * can't change from under us until we release the | |
5a505085 | 3267 | * anon_vma->root->rwsem. |
7906d00c AA |
3268 | */ |
3269 | if (!__test_and_clear_bit(0, (unsigned long *) | |
bf181b9f | 3270 | &anon_vma->root->rb_root.rb_node)) |
7906d00c | 3271 | BUG(); |
08b52706 | 3272 | anon_vma_unlock_write(anon_vma); |
7906d00c AA |
3273 | } |
3274 | } | |
3275 | ||
3276 | static void vm_unlock_mapping(struct address_space *mapping) | |
3277 | { | |
3278 | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | |
3279 | /* | |
3280 | * AS_MM_ALL_LOCKS can't change to 0 from under us | |
3281 | * because we hold the mm_all_locks_mutex. | |
3282 | */ | |
83cde9e8 | 3283 | i_mmap_unlock_write(mapping); |
7906d00c AA |
3284 | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, |
3285 | &mapping->flags)) | |
3286 | BUG(); | |
3287 | } | |
3288 | } | |
3289 | ||
3290 | /* | |
3291 | * The mmap_sem cannot be released by the caller until | |
3292 | * mm_drop_all_locks() returns. | |
3293 | */ | |
3294 | void mm_drop_all_locks(struct mm_struct *mm) | |
3295 | { | |
3296 | struct vm_area_struct *vma; | |
5beb4930 | 3297 | struct anon_vma_chain *avc; |
7906d00c AA |
3298 | |
3299 | BUG_ON(down_read_trylock(&mm->mmap_sem)); | |
3300 | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | |
3301 | ||
3302 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3303 | if (vma->anon_vma) | |
5beb4930 RR |
3304 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
3305 | vm_unlock_anon_vma(avc->anon_vma); | |
7906d00c AA |
3306 | if (vma->vm_file && vma->vm_file->f_mapping) |
3307 | vm_unlock_mapping(vma->vm_file->f_mapping); | |
3308 | } | |
3309 | ||
3310 | mutex_unlock(&mm_all_locks_mutex); | |
3311 | } | |
8feae131 DH |
3312 | |
3313 | /* | |
3314 | * initialise the VMA slab | |
3315 | */ | |
3316 | void __init mmap_init(void) | |
3317 | { | |
00a62ce9 KM |
3318 | int ret; |
3319 | ||
908c7f19 | 3320 | ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); |
00a62ce9 | 3321 | VM_BUG_ON(ret); |
8feae131 | 3322 | } |
c9b1d098 AS |
3323 | |
3324 | /* | |
3325 | * Initialise sysctl_user_reserve_kbytes. | |
3326 | * | |
3327 | * This is intended to prevent a user from starting a single memory hogging | |
3328 | * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER | |
3329 | * mode. | |
3330 | * | |
3331 | * The default value is min(3% of free memory, 128MB) | |
3332 | * 128MB is enough to recover with sshd/login, bash, and top/kill. | |
3333 | */ | |
1640879a | 3334 | static int init_user_reserve(void) |
c9b1d098 AS |
3335 | { |
3336 | unsigned long free_kbytes; | |
3337 | ||
3338 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | |
3339 | ||
3340 | sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); | |
3341 | return 0; | |
3342 | } | |
a64fb3cd | 3343 | subsys_initcall(init_user_reserve); |
4eeab4f5 AS |
3344 | |
3345 | /* | |
3346 | * Initialise sysctl_admin_reserve_kbytes. | |
3347 | * | |
3348 | * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin | |
3349 | * to log in and kill a memory hogging process. | |
3350 | * | |
3351 | * Systems with more than 256MB will reserve 8MB, enough to recover | |
3352 | * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will | |
3353 | * only reserve 3% of free pages by default. | |
3354 | */ | |
1640879a | 3355 | static int init_admin_reserve(void) |
4eeab4f5 AS |
3356 | { |
3357 | unsigned long free_kbytes; | |
3358 | ||
3359 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | |
3360 | ||
3361 | sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); | |
3362 | return 0; | |
3363 | } | |
a64fb3cd | 3364 | subsys_initcall(init_admin_reserve); |
1640879a AS |
3365 | |
3366 | /* | |
3367 | * Reinititalise user and admin reserves if memory is added or removed. | |
3368 | * | |
3369 | * The default user reserve max is 128MB, and the default max for the | |
3370 | * admin reserve is 8MB. These are usually, but not always, enough to | |
3371 | * enable recovery from a memory hogging process using login/sshd, a shell, | |
3372 | * and tools like top. It may make sense to increase or even disable the | |
3373 | * reserve depending on the existence of swap or variations in the recovery | |
3374 | * tools. So, the admin may have changed them. | |
3375 | * | |
3376 | * If memory is added and the reserves have been eliminated or increased above | |
3377 | * the default max, then we'll trust the admin. | |
3378 | * | |
3379 | * If memory is removed and there isn't enough free memory, then we | |
3380 | * need to reset the reserves. | |
3381 | * | |
3382 | * Otherwise keep the reserve set by the admin. | |
3383 | */ | |
3384 | static int reserve_mem_notifier(struct notifier_block *nb, | |
3385 | unsigned long action, void *data) | |
3386 | { | |
3387 | unsigned long tmp, free_kbytes; | |
3388 | ||
3389 | switch (action) { | |
3390 | case MEM_ONLINE: | |
3391 | /* Default max is 128MB. Leave alone if modified by operator. */ | |
3392 | tmp = sysctl_user_reserve_kbytes; | |
3393 | if (0 < tmp && tmp < (1UL << 17)) | |
3394 | init_user_reserve(); | |
3395 | ||
3396 | /* Default max is 8MB. Leave alone if modified by operator. */ | |
3397 | tmp = sysctl_admin_reserve_kbytes; | |
3398 | if (0 < tmp && tmp < (1UL << 13)) | |
3399 | init_admin_reserve(); | |
3400 | ||
3401 | break; | |
3402 | case MEM_OFFLINE: | |
3403 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | |
3404 | ||
3405 | if (sysctl_user_reserve_kbytes > free_kbytes) { | |
3406 | init_user_reserve(); | |
3407 | pr_info("vm.user_reserve_kbytes reset to %lu\n", | |
3408 | sysctl_user_reserve_kbytes); | |
3409 | } | |
3410 | ||
3411 | if (sysctl_admin_reserve_kbytes > free_kbytes) { | |
3412 | init_admin_reserve(); | |
3413 | pr_info("vm.admin_reserve_kbytes reset to %lu\n", | |
3414 | sysctl_admin_reserve_kbytes); | |
3415 | } | |
3416 | break; | |
3417 | default: | |
3418 | break; | |
3419 | } | |
3420 | return NOTIFY_OK; | |
3421 | } | |
3422 | ||
3423 | static struct notifier_block reserve_mem_nb = { | |
3424 | .notifier_call = reserve_mem_notifier, | |
3425 | }; | |
3426 | ||
3427 | static int __meminit init_reserve_notifier(void) | |
3428 | { | |
3429 | if (register_hotmemory_notifier(&reserve_mem_nb)) | |
b1de0d13 | 3430 | pr_err("Failed registering memory add/remove notifier for admin reserve\n"); |
1640879a AS |
3431 | |
3432 | return 0; | |
3433 | } | |
a64fb3cd | 3434 | subsys_initcall(init_reserve_notifier); |