]>
Commit | Line | Data |
---|---|---|
4bbd4c77 KS |
1 | #include <linux/kernel.h> |
2 | #include <linux/errno.h> | |
3 | #include <linux/err.h> | |
4 | #include <linux/spinlock.h> | |
5 | ||
4bbd4c77 | 6 | #include <linux/mm.h> |
3565fce3 | 7 | #include <linux/memremap.h> |
4bbd4c77 KS |
8 | #include <linux/pagemap.h> |
9 | #include <linux/rmap.h> | |
10 | #include <linux/swap.h> | |
11 | #include <linux/swapops.h> | |
12 | ||
174cd4b1 | 13 | #include <linux/sched/signal.h> |
2667f50e | 14 | #include <linux/rwsem.h> |
f30c59e9 | 15 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
16 | #include <linux/migrate.h> |
17 | #include <linux/mm_inline.h> | |
18 | #include <linux/sched/mm.h> | |
1027e443 | 19 | |
33a709b2 | 20 | #include <asm/mmu_context.h> |
2667f50e | 21 | #include <asm/pgtable.h> |
1027e443 | 22 | #include <asm/tlbflush.h> |
2667f50e | 23 | |
4bbd4c77 KS |
24 | #include "internal.h" |
25 | ||
df06b37f KB |
26 | struct follow_page_context { |
27 | struct dev_pagemap *pgmap; | |
28 | unsigned int page_mask; | |
29 | }; | |
30 | ||
fc1d8e7c JH |
31 | typedef int (*set_dirty_func_t)(struct page *page); |
32 | ||
33 | static void __put_user_pages_dirty(struct page **pages, | |
34 | unsigned long npages, | |
35 | set_dirty_func_t sdf) | |
36 | { | |
37 | unsigned long index; | |
38 | ||
39 | for (index = 0; index < npages; index++) { | |
40 | struct page *page = compound_head(pages[index]); | |
41 | ||
42 | /* | |
43 | * Checking PageDirty at this point may race with | |
44 | * clear_page_dirty_for_io(), but that's OK. Two key cases: | |
45 | * | |
46 | * 1) This code sees the page as already dirty, so it skips | |
47 | * the call to sdf(). That could happen because | |
48 | * clear_page_dirty_for_io() called page_mkclean(), | |
49 | * followed by set_page_dirty(). However, now the page is | |
50 | * going to get written back, which meets the original | |
51 | * intention of setting it dirty, so all is well: | |
52 | * clear_page_dirty_for_io() goes on to call | |
53 | * TestClearPageDirty(), and write the page back. | |
54 | * | |
55 | * 2) This code sees the page as clean, so it calls sdf(). | |
56 | * The page stays dirty, despite being written back, so it | |
57 | * gets written back again in the next writeback cycle. | |
58 | * This is harmless. | |
59 | */ | |
60 | if (!PageDirty(page)) | |
61 | sdf(page); | |
62 | ||
63 | put_user_page(page); | |
64 | } | |
65 | } | |
66 | ||
67 | /** | |
68 | * put_user_pages_dirty() - release and dirty an array of gup-pinned pages | |
69 | * @pages: array of pages to be marked dirty and released. | |
70 | * @npages: number of pages in the @pages array. | |
71 | * | |
72 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
73 | * variants called on that page. | |
74 | * | |
75 | * For each page in the @pages array, make that page (or its head page, if a | |
76 | * compound page) dirty, if it was previously listed as clean. Then, release | |
77 | * the page using put_user_page(). | |
78 | * | |
79 | * Please see the put_user_page() documentation for details. | |
80 | * | |
81 | * set_page_dirty(), which does not lock the page, is used here. | |
82 | * Therefore, it is the caller's responsibility to ensure that this is | |
83 | * safe. If not, then put_user_pages_dirty_lock() should be called instead. | |
84 | * | |
85 | */ | |
86 | void put_user_pages_dirty(struct page **pages, unsigned long npages) | |
87 | { | |
88 | __put_user_pages_dirty(pages, npages, set_page_dirty); | |
89 | } | |
90 | EXPORT_SYMBOL(put_user_pages_dirty); | |
91 | ||
92 | /** | |
93 | * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages | |
94 | * @pages: array of pages to be marked dirty and released. | |
95 | * @npages: number of pages in the @pages array. | |
96 | * | |
97 | * For each page in the @pages array, make that page (or its head page, if a | |
98 | * compound page) dirty, if it was previously listed as clean. Then, release | |
99 | * the page using put_user_page(). | |
100 | * | |
101 | * Please see the put_user_page() documentation for details. | |
102 | * | |
103 | * This is just like put_user_pages_dirty(), except that it invokes | |
104 | * set_page_dirty_lock(), instead of set_page_dirty(). | |
105 | * | |
106 | */ | |
107 | void put_user_pages_dirty_lock(struct page **pages, unsigned long npages) | |
108 | { | |
109 | __put_user_pages_dirty(pages, npages, set_page_dirty_lock); | |
110 | } | |
111 | EXPORT_SYMBOL(put_user_pages_dirty_lock); | |
112 | ||
113 | /** | |
114 | * put_user_pages() - release an array of gup-pinned pages. | |
115 | * @pages: array of pages to be marked dirty and released. | |
116 | * @npages: number of pages in the @pages array. | |
117 | * | |
118 | * For each page in the @pages array, release the page using put_user_page(). | |
119 | * | |
120 | * Please see the put_user_page() documentation for details. | |
121 | */ | |
122 | void put_user_pages(struct page **pages, unsigned long npages) | |
123 | { | |
124 | unsigned long index; | |
125 | ||
126 | /* | |
127 | * TODO: this can be optimized for huge pages: if a series of pages is | |
128 | * physically contiguous and part of the same compound page, then a | |
129 | * single operation to the head page should suffice. | |
130 | */ | |
131 | for (index = 0; index < npages; index++) | |
132 | put_user_page(pages[index]); | |
133 | } | |
134 | EXPORT_SYMBOL(put_user_pages); | |
135 | ||
69e68b4f KS |
136 | static struct page *no_page_table(struct vm_area_struct *vma, |
137 | unsigned int flags) | |
4bbd4c77 | 138 | { |
69e68b4f KS |
139 | /* |
140 | * When core dumping an enormous anonymous area that nobody | |
141 | * has touched so far, we don't want to allocate unnecessary pages or | |
142 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
143 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
144 | * But we can only make this optimization where a hole would surely | |
145 | * be zero-filled if handle_mm_fault() actually did handle it. | |
146 | */ | |
147 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
148 | return ERR_PTR(-EFAULT); | |
149 | return NULL; | |
150 | } | |
4bbd4c77 | 151 | |
1027e443 KS |
152 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
153 | pte_t *pte, unsigned int flags) | |
154 | { | |
155 | /* No page to get reference */ | |
156 | if (flags & FOLL_GET) | |
157 | return -EFAULT; | |
158 | ||
159 | if (flags & FOLL_TOUCH) { | |
160 | pte_t entry = *pte; | |
161 | ||
162 | if (flags & FOLL_WRITE) | |
163 | entry = pte_mkdirty(entry); | |
164 | entry = pte_mkyoung(entry); | |
165 | ||
166 | if (!pte_same(*pte, entry)) { | |
167 | set_pte_at(vma->vm_mm, address, pte, entry); | |
168 | update_mmu_cache(vma, address, pte); | |
169 | } | |
170 | } | |
171 | ||
172 | /* Proper page table entry exists, but no corresponding struct page */ | |
173 | return -EEXIST; | |
174 | } | |
175 | ||
19be0eaf LT |
176 | /* |
177 | * FOLL_FORCE can write to even unwritable pte's, but only | |
178 | * after we've gone through a COW cycle and they are dirty. | |
179 | */ | |
180 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
181 | { | |
f6f37321 | 182 | return pte_write(pte) || |
19be0eaf LT |
183 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
184 | } | |
185 | ||
69e68b4f | 186 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
187 | unsigned long address, pmd_t *pmd, unsigned int flags, |
188 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
189 | { |
190 | struct mm_struct *mm = vma->vm_mm; | |
191 | struct page *page; | |
192 | spinlock_t *ptl; | |
193 | pte_t *ptep, pte; | |
4bbd4c77 | 194 | |
69e68b4f | 195 | retry: |
4bbd4c77 | 196 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 197 | return no_page_table(vma, flags); |
4bbd4c77 KS |
198 | |
199 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
200 | pte = *ptep; |
201 | if (!pte_present(pte)) { | |
202 | swp_entry_t entry; | |
203 | /* | |
204 | * KSM's break_ksm() relies upon recognizing a ksm page | |
205 | * even while it is being migrated, so for that case we | |
206 | * need migration_entry_wait(). | |
207 | */ | |
208 | if (likely(!(flags & FOLL_MIGRATION))) | |
209 | goto no_page; | |
0661a336 | 210 | if (pte_none(pte)) |
4bbd4c77 KS |
211 | goto no_page; |
212 | entry = pte_to_swp_entry(pte); | |
213 | if (!is_migration_entry(entry)) | |
214 | goto no_page; | |
215 | pte_unmap_unlock(ptep, ptl); | |
216 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 217 | goto retry; |
4bbd4c77 | 218 | } |
8a0516ed | 219 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 220 | goto no_page; |
19be0eaf | 221 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
222 | pte_unmap_unlock(ptep, ptl); |
223 | return NULL; | |
224 | } | |
4bbd4c77 KS |
225 | |
226 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
227 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
228 | /* | |
229 | * Only return device mapping pages in the FOLL_GET case since | |
230 | * they are only valid while holding the pgmap reference. | |
231 | */ | |
df06b37f KB |
232 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
233 | if (*pgmap) | |
3565fce3 DW |
234 | page = pte_page(pte); |
235 | else | |
236 | goto no_page; | |
237 | } else if (unlikely(!page)) { | |
1027e443 KS |
238 | if (flags & FOLL_DUMP) { |
239 | /* Avoid special (like zero) pages in core dumps */ | |
240 | page = ERR_PTR(-EFAULT); | |
241 | goto out; | |
242 | } | |
243 | ||
244 | if (is_zero_pfn(pte_pfn(pte))) { | |
245 | page = pte_page(pte); | |
246 | } else { | |
247 | int ret; | |
248 | ||
249 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
250 | page = ERR_PTR(ret); | |
251 | goto out; | |
252 | } | |
4bbd4c77 KS |
253 | } |
254 | ||
6742d293 KS |
255 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
256 | int ret; | |
257 | get_page(page); | |
258 | pte_unmap_unlock(ptep, ptl); | |
259 | lock_page(page); | |
260 | ret = split_huge_page(page); | |
261 | unlock_page(page); | |
262 | put_page(page); | |
263 | if (ret) | |
264 | return ERR_PTR(ret); | |
265 | goto retry; | |
266 | } | |
267 | ||
8fde12ca LT |
268 | if (flags & FOLL_GET) { |
269 | if (unlikely(!try_get_page(page))) { | |
270 | page = ERR_PTR(-ENOMEM); | |
271 | goto out; | |
272 | } | |
273 | } | |
4bbd4c77 KS |
274 | if (flags & FOLL_TOUCH) { |
275 | if ((flags & FOLL_WRITE) && | |
276 | !pte_dirty(pte) && !PageDirty(page)) | |
277 | set_page_dirty(page); | |
278 | /* | |
279 | * pte_mkyoung() would be more correct here, but atomic care | |
280 | * is needed to avoid losing the dirty bit: it is easier to use | |
281 | * mark_page_accessed(). | |
282 | */ | |
283 | mark_page_accessed(page); | |
284 | } | |
de60f5f1 | 285 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
286 | /* Do not mlock pte-mapped THP */ |
287 | if (PageTransCompound(page)) | |
288 | goto out; | |
289 | ||
4bbd4c77 KS |
290 | /* |
291 | * The preliminary mapping check is mainly to avoid the | |
292 | * pointless overhead of lock_page on the ZERO_PAGE | |
293 | * which might bounce very badly if there is contention. | |
294 | * | |
295 | * If the page is already locked, we don't need to | |
296 | * handle it now - vmscan will handle it later if and | |
297 | * when it attempts to reclaim the page. | |
298 | */ | |
299 | if (page->mapping && trylock_page(page)) { | |
300 | lru_add_drain(); /* push cached pages to LRU */ | |
301 | /* | |
302 | * Because we lock page here, and migration is | |
303 | * blocked by the pte's page reference, and we | |
304 | * know the page is still mapped, we don't even | |
305 | * need to check for file-cache page truncation. | |
306 | */ | |
307 | mlock_vma_page(page); | |
308 | unlock_page(page); | |
309 | } | |
310 | } | |
1027e443 | 311 | out: |
4bbd4c77 | 312 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 313 | return page; |
4bbd4c77 KS |
314 | no_page: |
315 | pte_unmap_unlock(ptep, ptl); | |
316 | if (!pte_none(pte)) | |
69e68b4f KS |
317 | return NULL; |
318 | return no_page_table(vma, flags); | |
319 | } | |
320 | ||
080dbb61 AK |
321 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
322 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
323 | unsigned int flags, |
324 | struct follow_page_context *ctx) | |
69e68b4f | 325 | { |
68827280 | 326 | pmd_t *pmd, pmdval; |
69e68b4f KS |
327 | spinlock_t *ptl; |
328 | struct page *page; | |
329 | struct mm_struct *mm = vma->vm_mm; | |
330 | ||
080dbb61 | 331 | pmd = pmd_offset(pudp, address); |
68827280 YH |
332 | /* |
333 | * The READ_ONCE() will stabilize the pmdval in a register or | |
334 | * on the stack so that it will stop changing under the code. | |
335 | */ | |
336 | pmdval = READ_ONCE(*pmd); | |
337 | if (pmd_none(pmdval)) | |
69e68b4f | 338 | return no_page_table(vma, flags); |
68827280 | 339 | if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { |
e66f17ff NH |
340 | page = follow_huge_pmd(mm, address, pmd, flags); |
341 | if (page) | |
342 | return page; | |
343 | return no_page_table(vma, flags); | |
69e68b4f | 344 | } |
68827280 | 345 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 346 | page = follow_huge_pd(vma, address, |
68827280 | 347 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
348 | PMD_SHIFT); |
349 | if (page) | |
350 | return page; | |
351 | return no_page_table(vma, flags); | |
352 | } | |
84c3fc4e | 353 | retry: |
68827280 | 354 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
355 | if (likely(!(flags & FOLL_MIGRATION))) |
356 | return no_page_table(vma, flags); | |
357 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
358 | !is_pmd_migration_entry(pmdval)); |
359 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 360 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
361 | pmdval = READ_ONCE(*pmd); |
362 | /* | |
363 | * MADV_DONTNEED may convert the pmd to null because | |
364 | * mmap_sem is held in read mode | |
365 | */ | |
366 | if (pmd_none(pmdval)) | |
367 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
368 | goto retry; |
369 | } | |
68827280 | 370 | if (pmd_devmap(pmdval)) { |
3565fce3 | 371 | ptl = pmd_lock(mm, pmd); |
df06b37f | 372 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
373 | spin_unlock(ptl); |
374 | if (page) | |
375 | return page; | |
376 | } | |
68827280 | 377 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 378 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 379 | |
68827280 | 380 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
381 | return no_page_table(vma, flags); |
382 | ||
84c3fc4e | 383 | retry_locked: |
6742d293 | 384 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
385 | if (unlikely(pmd_none(*pmd))) { |
386 | spin_unlock(ptl); | |
387 | return no_page_table(vma, flags); | |
388 | } | |
84c3fc4e ZY |
389 | if (unlikely(!pmd_present(*pmd))) { |
390 | spin_unlock(ptl); | |
391 | if (likely(!(flags & FOLL_MIGRATION))) | |
392 | return no_page_table(vma, flags); | |
393 | pmd_migration_entry_wait(mm, pmd); | |
394 | goto retry_locked; | |
395 | } | |
6742d293 KS |
396 | if (unlikely(!pmd_trans_huge(*pmd))) { |
397 | spin_unlock(ptl); | |
df06b37f | 398 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 399 | } |
6742d293 KS |
400 | if (flags & FOLL_SPLIT) { |
401 | int ret; | |
402 | page = pmd_page(*pmd); | |
403 | if (is_huge_zero_page(page)) { | |
404 | spin_unlock(ptl); | |
405 | ret = 0; | |
78ddc534 | 406 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
407 | if (pmd_trans_unstable(pmd)) |
408 | ret = -EBUSY; | |
6742d293 | 409 | } else { |
8fde12ca LT |
410 | if (unlikely(!try_get_page(page))) { |
411 | spin_unlock(ptl); | |
412 | return ERR_PTR(-ENOMEM); | |
413 | } | |
69e68b4f | 414 | spin_unlock(ptl); |
6742d293 KS |
415 | lock_page(page); |
416 | ret = split_huge_page(page); | |
417 | unlock_page(page); | |
418 | put_page(page); | |
baa355fd KS |
419 | if (pmd_none(*pmd)) |
420 | return no_page_table(vma, flags); | |
6742d293 KS |
421 | } |
422 | ||
423 | return ret ? ERR_PTR(ret) : | |
df06b37f | 424 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 425 | } |
6742d293 KS |
426 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
427 | spin_unlock(ptl); | |
df06b37f | 428 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 429 | return page; |
4bbd4c77 KS |
430 | } |
431 | ||
080dbb61 AK |
432 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
433 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
434 | unsigned int flags, |
435 | struct follow_page_context *ctx) | |
080dbb61 AK |
436 | { |
437 | pud_t *pud; | |
438 | spinlock_t *ptl; | |
439 | struct page *page; | |
440 | struct mm_struct *mm = vma->vm_mm; | |
441 | ||
442 | pud = pud_offset(p4dp, address); | |
443 | if (pud_none(*pud)) | |
444 | return no_page_table(vma, flags); | |
445 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | |
446 | page = follow_huge_pud(mm, address, pud, flags); | |
447 | if (page) | |
448 | return page; | |
449 | return no_page_table(vma, flags); | |
450 | } | |
4dc71451 AK |
451 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
452 | page = follow_huge_pd(vma, address, | |
453 | __hugepd(pud_val(*pud)), flags, | |
454 | PUD_SHIFT); | |
455 | if (page) | |
456 | return page; | |
457 | return no_page_table(vma, flags); | |
458 | } | |
080dbb61 AK |
459 | if (pud_devmap(*pud)) { |
460 | ptl = pud_lock(mm, pud); | |
df06b37f | 461 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
462 | spin_unlock(ptl); |
463 | if (page) | |
464 | return page; | |
465 | } | |
466 | if (unlikely(pud_bad(*pud))) | |
467 | return no_page_table(vma, flags); | |
468 | ||
df06b37f | 469 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
470 | } |
471 | ||
080dbb61 AK |
472 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
473 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
474 | unsigned int flags, |
475 | struct follow_page_context *ctx) | |
080dbb61 AK |
476 | { |
477 | p4d_t *p4d; | |
4dc71451 | 478 | struct page *page; |
080dbb61 AK |
479 | |
480 | p4d = p4d_offset(pgdp, address); | |
481 | if (p4d_none(*p4d)) | |
482 | return no_page_table(vma, flags); | |
483 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
484 | if (unlikely(p4d_bad(*p4d))) | |
485 | return no_page_table(vma, flags); | |
486 | ||
4dc71451 AK |
487 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
488 | page = follow_huge_pd(vma, address, | |
489 | __hugepd(p4d_val(*p4d)), flags, | |
490 | P4D_SHIFT); | |
491 | if (page) | |
492 | return page; | |
493 | return no_page_table(vma, flags); | |
494 | } | |
df06b37f | 495 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
496 | } |
497 | ||
498 | /** | |
499 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
500 | * @vma: vm_area_struct mapping @address | |
501 | * @address: virtual address to look up | |
502 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
503 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
504 | * pointer to output page_mask | |
080dbb61 AK |
505 | * |
506 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
507 | * | |
78179556 MR |
508 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
509 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
510 | * | |
511 | * On output, the @ctx->page_mask is set according to the size of the page. | |
512 | * | |
513 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
514 | * an error pointer if there is a mapping to something not represented |
515 | * by a page descriptor (see also vm_normal_page()). | |
516 | */ | |
517 | struct page *follow_page_mask(struct vm_area_struct *vma, | |
518 | unsigned long address, unsigned int flags, | |
df06b37f | 519 | struct follow_page_context *ctx) |
080dbb61 AK |
520 | { |
521 | pgd_t *pgd; | |
522 | struct page *page; | |
523 | struct mm_struct *mm = vma->vm_mm; | |
524 | ||
df06b37f | 525 | ctx->page_mask = 0; |
080dbb61 AK |
526 | |
527 | /* make this handle hugepd */ | |
528 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
529 | if (!IS_ERR(page)) { | |
530 | BUG_ON(flags & FOLL_GET); | |
531 | return page; | |
532 | } | |
533 | ||
534 | pgd = pgd_offset(mm, address); | |
535 | ||
536 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
537 | return no_page_table(vma, flags); | |
538 | ||
faaa5b62 AK |
539 | if (pgd_huge(*pgd)) { |
540 | page = follow_huge_pgd(mm, address, pgd, flags); | |
541 | if (page) | |
542 | return page; | |
543 | return no_page_table(vma, flags); | |
544 | } | |
4dc71451 AK |
545 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
546 | page = follow_huge_pd(vma, address, | |
547 | __hugepd(pgd_val(*pgd)), flags, | |
548 | PGDIR_SHIFT); | |
549 | if (page) | |
550 | return page; | |
551 | return no_page_table(vma, flags); | |
552 | } | |
faaa5b62 | 553 | |
df06b37f KB |
554 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
555 | } | |
556 | ||
557 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
558 | unsigned int foll_flags) | |
559 | { | |
560 | struct follow_page_context ctx = { NULL }; | |
561 | struct page *page; | |
562 | ||
563 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
564 | if (ctx.pgmap) | |
565 | put_dev_pagemap(ctx.pgmap); | |
566 | return page; | |
080dbb61 AK |
567 | } |
568 | ||
f2b495ca KS |
569 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
570 | unsigned int gup_flags, struct vm_area_struct **vma, | |
571 | struct page **page) | |
572 | { | |
573 | pgd_t *pgd; | |
c2febafc | 574 | p4d_t *p4d; |
f2b495ca KS |
575 | pud_t *pud; |
576 | pmd_t *pmd; | |
577 | pte_t *pte; | |
578 | int ret = -EFAULT; | |
579 | ||
580 | /* user gate pages are read-only */ | |
581 | if (gup_flags & FOLL_WRITE) | |
582 | return -EFAULT; | |
583 | if (address > TASK_SIZE) | |
584 | pgd = pgd_offset_k(address); | |
585 | else | |
586 | pgd = pgd_offset_gate(mm, address); | |
587 | BUG_ON(pgd_none(*pgd)); | |
c2febafc KS |
588 | p4d = p4d_offset(pgd, address); |
589 | BUG_ON(p4d_none(*p4d)); | |
590 | pud = pud_offset(p4d, address); | |
f2b495ca KS |
591 | BUG_ON(pud_none(*pud)); |
592 | pmd = pmd_offset(pud, address); | |
84c3fc4e | 593 | if (!pmd_present(*pmd)) |
f2b495ca KS |
594 | return -EFAULT; |
595 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
596 | pte = pte_offset_map(pmd, address); | |
597 | if (pte_none(*pte)) | |
598 | goto unmap; | |
599 | *vma = get_gate_vma(mm); | |
600 | if (!page) | |
601 | goto out; | |
602 | *page = vm_normal_page(*vma, address, *pte); | |
603 | if (!*page) { | |
604 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
605 | goto unmap; | |
606 | *page = pte_page(*pte); | |
df6ad698 JG |
607 | |
608 | /* | |
609 | * This should never happen (a device public page in the gate | |
610 | * area). | |
611 | */ | |
612 | if (is_device_public_page(*page)) | |
613 | goto unmap; | |
f2b495ca | 614 | } |
8fde12ca LT |
615 | if (unlikely(!try_get_page(*page))) { |
616 | ret = -ENOMEM; | |
617 | goto unmap; | |
618 | } | |
f2b495ca KS |
619 | out: |
620 | ret = 0; | |
621 | unmap: | |
622 | pte_unmap(pte); | |
623 | return ret; | |
624 | } | |
625 | ||
9a95f3cf PC |
626 | /* |
627 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
628 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
629 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
630 | */ | |
16744483 KS |
631 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
632 | unsigned long address, unsigned int *flags, int *nonblocking) | |
633 | { | |
16744483 | 634 | unsigned int fault_flags = 0; |
2b740303 | 635 | vm_fault_t ret; |
16744483 | 636 | |
de60f5f1 EM |
637 | /* mlock all present pages, but do not fault in new pages */ |
638 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
639 | return -ENOENT; | |
16744483 KS |
640 | if (*flags & FOLL_WRITE) |
641 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
642 | if (*flags & FOLL_REMOTE) |
643 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
644 | if (nonblocking) |
645 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
646 | if (*flags & FOLL_NOWAIT) | |
647 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
648 | if (*flags & FOLL_TRIED) { |
649 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
650 | fault_flags |= FAULT_FLAG_TRIED; | |
651 | } | |
16744483 | 652 | |
dcddffd4 | 653 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 654 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
655 | int err = vm_fault_to_errno(ret, *flags); |
656 | ||
657 | if (err) | |
658 | return err; | |
16744483 KS |
659 | BUG(); |
660 | } | |
661 | ||
662 | if (tsk) { | |
663 | if (ret & VM_FAULT_MAJOR) | |
664 | tsk->maj_flt++; | |
665 | else | |
666 | tsk->min_flt++; | |
667 | } | |
668 | ||
669 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 670 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
671 | *nonblocking = 0; |
672 | return -EBUSY; | |
673 | } | |
674 | ||
675 | /* | |
676 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
677 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
678 | * can thus safely do subsequent page lookups as if they were reads. | |
679 | * But only do so when looping for pte_write is futile: in some cases | |
680 | * userspace may also be wanting to write to the gotten user page, | |
681 | * which a read fault here might prevent (a readonly page might get | |
682 | * reCOWed by userspace write). | |
683 | */ | |
684 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 685 | *flags |= FOLL_COW; |
16744483 KS |
686 | return 0; |
687 | } | |
688 | ||
fa5bb209 KS |
689 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
690 | { | |
691 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
692 | int write = (gup_flags & FOLL_WRITE); |
693 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
694 | |
695 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
696 | return -EFAULT; | |
697 | ||
7f7ccc2c WT |
698 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
699 | return -EFAULT; | |
700 | ||
1b2ee126 | 701 | if (write) { |
fa5bb209 KS |
702 | if (!(vm_flags & VM_WRITE)) { |
703 | if (!(gup_flags & FOLL_FORCE)) | |
704 | return -EFAULT; | |
705 | /* | |
706 | * We used to let the write,force case do COW in a | |
707 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
708 | * set a breakpoint in a read-only mapping of an | |
709 | * executable, without corrupting the file (yet only | |
710 | * when that file had been opened for writing!). | |
711 | * Anon pages in shared mappings are surprising: now | |
712 | * just reject it. | |
713 | */ | |
46435364 | 714 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 715 | return -EFAULT; |
fa5bb209 KS |
716 | } |
717 | } else if (!(vm_flags & VM_READ)) { | |
718 | if (!(gup_flags & FOLL_FORCE)) | |
719 | return -EFAULT; | |
720 | /* | |
721 | * Is there actually any vma we can reach here which does not | |
722 | * have VM_MAYREAD set? | |
723 | */ | |
724 | if (!(vm_flags & VM_MAYREAD)) | |
725 | return -EFAULT; | |
726 | } | |
d61172b4 DH |
727 | /* |
728 | * gups are always data accesses, not instruction | |
729 | * fetches, so execute=false here | |
730 | */ | |
731 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 732 | return -EFAULT; |
fa5bb209 KS |
733 | return 0; |
734 | } | |
735 | ||
4bbd4c77 KS |
736 | /** |
737 | * __get_user_pages() - pin user pages in memory | |
738 | * @tsk: task_struct of target task | |
739 | * @mm: mm_struct of target mm | |
740 | * @start: starting user address | |
741 | * @nr_pages: number of pages from start to pin | |
742 | * @gup_flags: flags modifying pin behaviour | |
743 | * @pages: array that receives pointers to the pages pinned. | |
744 | * Should be at least nr_pages long. Or NULL, if caller | |
745 | * only intends to ensure the pages are faulted in. | |
746 | * @vmas: array of pointers to vmas corresponding to each page. | |
747 | * Or NULL if the caller does not require them. | |
748 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
749 | * | |
750 | * Returns number of pages pinned. This may be fewer than the number | |
751 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
752 | * were pinned, returns -errno. Each page returned must be released | |
753 | * with a put_page() call when it is finished with. vmas will only | |
754 | * remain valid while mmap_sem is held. | |
755 | * | |
9a95f3cf | 756 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
757 | * |
758 | * __get_user_pages walks a process's page tables and takes a reference to | |
759 | * each struct page that each user address corresponds to at a given | |
760 | * instant. That is, it takes the page that would be accessed if a user | |
761 | * thread accesses the given user virtual address at that instant. | |
762 | * | |
763 | * This does not guarantee that the page exists in the user mappings when | |
764 | * __get_user_pages returns, and there may even be a completely different | |
765 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
766 | * and subsequently re faulted). However it does guarantee that the page | |
767 | * won't be freed completely. And mostly callers simply care that the page | |
768 | * contains data that was valid *at some point in time*. Typically, an IO | |
769 | * or similar operation cannot guarantee anything stronger anyway because | |
770 | * locks can't be held over the syscall boundary. | |
771 | * | |
772 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
773 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
774 | * appropriate) must be called after the page is finished with, and | |
775 | * before put_page is called. | |
776 | * | |
777 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
778 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
779 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
780 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
781 | * this case. | |
782 | * | |
783 | * A caller using such a combination of @nonblocking and @gup_flags | |
784 | * must therefore hold the mmap_sem for reading only, and recognize | |
785 | * when it's been released. Otherwise, it must be held for either | |
786 | * reading or writing and will not be released. | |
4bbd4c77 KS |
787 | * |
788 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
789 | * instead of __get_user_pages. __get_user_pages should be used only if | |
790 | * you need some special @gup_flags. | |
791 | */ | |
0d731759 | 792 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
793 | unsigned long start, unsigned long nr_pages, |
794 | unsigned int gup_flags, struct page **pages, | |
795 | struct vm_area_struct **vmas, int *nonblocking) | |
796 | { | |
df06b37f | 797 | long ret = 0, i = 0; |
fa5bb209 | 798 | struct vm_area_struct *vma = NULL; |
df06b37f | 799 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
800 | |
801 | if (!nr_pages) | |
802 | return 0; | |
803 | ||
804 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
805 | ||
806 | /* | |
807 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
808 | * fault information is unrelated to the reference behaviour of a task | |
809 | * using the address space | |
810 | */ | |
811 | if (!(gup_flags & FOLL_FORCE)) | |
812 | gup_flags |= FOLL_NUMA; | |
813 | ||
4bbd4c77 | 814 | do { |
fa5bb209 KS |
815 | struct page *page; |
816 | unsigned int foll_flags = gup_flags; | |
817 | unsigned int page_increm; | |
818 | ||
819 | /* first iteration or cross vma bound */ | |
820 | if (!vma || start >= vma->vm_end) { | |
821 | vma = find_extend_vma(mm, start); | |
822 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
823 | ret = get_gate_page(mm, start & PAGE_MASK, |
824 | gup_flags, &vma, | |
825 | pages ? &pages[i] : NULL); | |
826 | if (ret) | |
08be37b7 | 827 | goto out; |
df06b37f | 828 | ctx.page_mask = 0; |
fa5bb209 KS |
829 | goto next_page; |
830 | } | |
4bbd4c77 | 831 | |
df06b37f KB |
832 | if (!vma || check_vma_flags(vma, gup_flags)) { |
833 | ret = -EFAULT; | |
834 | goto out; | |
835 | } | |
fa5bb209 KS |
836 | if (is_vm_hugetlb_page(vma)) { |
837 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
838 | &start, &nr_pages, i, | |
87ffc118 | 839 | gup_flags, nonblocking); |
fa5bb209 | 840 | continue; |
4bbd4c77 | 841 | } |
fa5bb209 KS |
842 | } |
843 | retry: | |
844 | /* | |
845 | * If we have a pending SIGKILL, don't keep faulting pages and | |
846 | * potentially allocating memory. | |
847 | */ | |
fa45f116 | 848 | if (fatal_signal_pending(current)) { |
df06b37f KB |
849 | ret = -ERESTARTSYS; |
850 | goto out; | |
851 | } | |
fa5bb209 | 852 | cond_resched(); |
df06b37f KB |
853 | |
854 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 855 | if (!page) { |
fa5bb209 KS |
856 | ret = faultin_page(tsk, vma, start, &foll_flags, |
857 | nonblocking); | |
858 | switch (ret) { | |
859 | case 0: | |
860 | goto retry; | |
df06b37f KB |
861 | case -EBUSY: |
862 | ret = 0; | |
863 | /* FALLTHRU */ | |
fa5bb209 KS |
864 | case -EFAULT: |
865 | case -ENOMEM: | |
866 | case -EHWPOISON: | |
df06b37f | 867 | goto out; |
fa5bb209 KS |
868 | case -ENOENT: |
869 | goto next_page; | |
4bbd4c77 | 870 | } |
fa5bb209 | 871 | BUG(); |
1027e443 KS |
872 | } else if (PTR_ERR(page) == -EEXIST) { |
873 | /* | |
874 | * Proper page table entry exists, but no corresponding | |
875 | * struct page. | |
876 | */ | |
877 | goto next_page; | |
878 | } else if (IS_ERR(page)) { | |
df06b37f KB |
879 | ret = PTR_ERR(page); |
880 | goto out; | |
1027e443 | 881 | } |
fa5bb209 KS |
882 | if (pages) { |
883 | pages[i] = page; | |
884 | flush_anon_page(vma, page, start); | |
885 | flush_dcache_page(page); | |
df06b37f | 886 | ctx.page_mask = 0; |
4bbd4c77 | 887 | } |
4bbd4c77 | 888 | next_page: |
fa5bb209 KS |
889 | if (vmas) { |
890 | vmas[i] = vma; | |
df06b37f | 891 | ctx.page_mask = 0; |
fa5bb209 | 892 | } |
df06b37f | 893 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
894 | if (page_increm > nr_pages) |
895 | page_increm = nr_pages; | |
896 | i += page_increm; | |
897 | start += page_increm * PAGE_SIZE; | |
898 | nr_pages -= page_increm; | |
4bbd4c77 | 899 | } while (nr_pages); |
df06b37f KB |
900 | out: |
901 | if (ctx.pgmap) | |
902 | put_dev_pagemap(ctx.pgmap); | |
903 | return i ? i : ret; | |
4bbd4c77 | 904 | } |
4bbd4c77 | 905 | |
771ab430 TK |
906 | static bool vma_permits_fault(struct vm_area_struct *vma, |
907 | unsigned int fault_flags) | |
d4925e00 | 908 | { |
1b2ee126 DH |
909 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
910 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 911 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
912 | |
913 | if (!(vm_flags & vma->vm_flags)) | |
914 | return false; | |
915 | ||
33a709b2 DH |
916 | /* |
917 | * The architecture might have a hardware protection | |
1b2ee126 | 918 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
919 | * |
920 | * gup always represents data access, not instruction | |
921 | * fetches, so execute=false here: | |
33a709b2 | 922 | */ |
d61172b4 | 923 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
924 | return false; |
925 | ||
d4925e00 DH |
926 | return true; |
927 | } | |
928 | ||
4bbd4c77 KS |
929 | /* |
930 | * fixup_user_fault() - manually resolve a user page fault | |
931 | * @tsk: the task_struct to use for page fault accounting, or | |
932 | * NULL if faults are not to be recorded. | |
933 | * @mm: mm_struct of target mm | |
934 | * @address: user address | |
935 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
936 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
937 | * does not allow retry | |
4bbd4c77 KS |
938 | * |
939 | * This is meant to be called in the specific scenario where for locking reasons | |
940 | * we try to access user memory in atomic context (within a pagefault_disable() | |
941 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
942 | * trying again. | |
943 | * | |
944 | * Typically this is meant to be used by the futex code. | |
945 | * | |
946 | * The main difference with get_user_pages() is that this function will | |
947 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
948 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 949 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
950 | * |
951 | * This is important for some architectures where those bits also gate the | |
952 | * access permission to the page because they are maintained in software. On | |
953 | * such architectures, gup() will not be enough to make a subsequent access | |
954 | * succeed. | |
955 | * | |
4a9e1cda DD |
956 | * This function will not return with an unlocked mmap_sem. So it has not the |
957 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
958 | */ |
959 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
960 | unsigned long address, unsigned int fault_flags, |
961 | bool *unlocked) | |
4bbd4c77 KS |
962 | { |
963 | struct vm_area_struct *vma; | |
2b740303 | 964 | vm_fault_t ret, major = 0; |
4a9e1cda DD |
965 | |
966 | if (unlocked) | |
967 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 968 | |
4a9e1cda | 969 | retry: |
4bbd4c77 KS |
970 | vma = find_extend_vma(mm, address); |
971 | if (!vma || address < vma->vm_start) | |
972 | return -EFAULT; | |
973 | ||
d4925e00 | 974 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
975 | return -EFAULT; |
976 | ||
dcddffd4 | 977 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 978 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 979 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
980 | int err = vm_fault_to_errno(ret, 0); |
981 | ||
982 | if (err) | |
983 | return err; | |
4bbd4c77 KS |
984 | BUG(); |
985 | } | |
4a9e1cda DD |
986 | |
987 | if (ret & VM_FAULT_RETRY) { | |
988 | down_read(&mm->mmap_sem); | |
989 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
990 | *unlocked = true; | |
991 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
992 | fault_flags |= FAULT_FLAG_TRIED; | |
993 | goto retry; | |
994 | } | |
995 | } | |
996 | ||
4bbd4c77 | 997 | if (tsk) { |
4a9e1cda | 998 | if (major) |
4bbd4c77 KS |
999 | tsk->maj_flt++; |
1000 | else | |
1001 | tsk->min_flt++; | |
1002 | } | |
1003 | return 0; | |
1004 | } | |
add6a0cd | 1005 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1006 | |
f0818f47 AA |
1007 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
1008 | struct mm_struct *mm, | |
1009 | unsigned long start, | |
1010 | unsigned long nr_pages, | |
f0818f47 AA |
1011 | struct page **pages, |
1012 | struct vm_area_struct **vmas, | |
e716712f | 1013 | int *locked, |
0fd71a56 | 1014 | unsigned int flags) |
f0818f47 | 1015 | { |
f0818f47 AA |
1016 | long ret, pages_done; |
1017 | bool lock_dropped; | |
1018 | ||
1019 | if (locked) { | |
1020 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1021 | BUG_ON(vmas); | |
1022 | /* check caller initialized locked */ | |
1023 | BUG_ON(*locked != 1); | |
1024 | } | |
1025 | ||
1026 | if (pages) | |
1027 | flags |= FOLL_GET; | |
f0818f47 AA |
1028 | |
1029 | pages_done = 0; | |
1030 | lock_dropped = false; | |
1031 | for (;;) { | |
1032 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
1033 | vmas, locked); | |
1034 | if (!locked) | |
1035 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1036 | return ret; | |
1037 | ||
1038 | /* VM_FAULT_RETRY cannot return errors */ | |
1039 | if (!*locked) { | |
1040 | BUG_ON(ret < 0); | |
1041 | BUG_ON(ret >= nr_pages); | |
1042 | } | |
1043 | ||
1044 | if (!pages) | |
1045 | /* If it's a prefault don't insist harder */ | |
1046 | return ret; | |
1047 | ||
1048 | if (ret > 0) { | |
1049 | nr_pages -= ret; | |
1050 | pages_done += ret; | |
1051 | if (!nr_pages) | |
1052 | break; | |
1053 | } | |
1054 | if (*locked) { | |
96312e61 AA |
1055 | /* |
1056 | * VM_FAULT_RETRY didn't trigger or it was a | |
1057 | * FOLL_NOWAIT. | |
1058 | */ | |
f0818f47 AA |
1059 | if (!pages_done) |
1060 | pages_done = ret; | |
1061 | break; | |
1062 | } | |
1063 | /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ | |
1064 | pages += ret; | |
1065 | start += ret << PAGE_SHIFT; | |
1066 | ||
1067 | /* | |
1068 | * Repeat on the address that fired VM_FAULT_RETRY | |
1069 | * without FAULT_FLAG_ALLOW_RETRY but with | |
1070 | * FAULT_FLAG_TRIED. | |
1071 | */ | |
1072 | *locked = 1; | |
1073 | lock_dropped = true; | |
1074 | down_read(&mm->mmap_sem); | |
1075 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
1076 | pages, NULL, NULL); | |
1077 | if (ret != 1) { | |
1078 | BUG_ON(ret > 1); | |
1079 | if (!pages_done) | |
1080 | pages_done = ret; | |
1081 | break; | |
1082 | } | |
1083 | nr_pages--; | |
1084 | pages_done++; | |
1085 | if (!nr_pages) | |
1086 | break; | |
1087 | pages++; | |
1088 | start += PAGE_SIZE; | |
1089 | } | |
e716712f | 1090 | if (lock_dropped && *locked) { |
f0818f47 AA |
1091 | /* |
1092 | * We must let the caller know we temporarily dropped the lock | |
1093 | * and so the critical section protected by it was lost. | |
1094 | */ | |
1095 | up_read(&mm->mmap_sem); | |
1096 | *locked = 0; | |
1097 | } | |
1098 | return pages_done; | |
1099 | } | |
1100 | ||
1101 | /* | |
1102 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
1103 | * paths better by using either get_user_pages_locked() or | |
1104 | * get_user_pages_unlocked(). | |
1105 | * | |
1106 | * get_user_pages_locked() is suitable to replace the form: | |
1107 | * | |
1108 | * down_read(&mm->mmap_sem); | |
1109 | * do_something() | |
1110 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1111 | * up_read(&mm->mmap_sem); | |
1112 | * | |
1113 | * to: | |
1114 | * | |
1115 | * int locked = 1; | |
1116 | * down_read(&mm->mmap_sem); | |
1117 | * do_something() | |
1118 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
1119 | * if (locked) | |
1120 | * up_read(&mm->mmap_sem); | |
1121 | */ | |
c12d2da5 | 1122 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
3b913179 | 1123 | unsigned int gup_flags, struct page **pages, |
f0818f47 AA |
1124 | int *locked) |
1125 | { | |
932f4a63 IW |
1126 | /* |
1127 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1128 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1129 | * vmas. As there are no users of this flag in this call we simply | |
1130 | * disallow this option for now. | |
1131 | */ | |
1132 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1133 | return -EINVAL; | |
1134 | ||
cde70140 | 1135 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 1136 | pages, NULL, locked, |
3b913179 | 1137 | gup_flags | FOLL_TOUCH); |
f0818f47 | 1138 | } |
c12d2da5 | 1139 | EXPORT_SYMBOL(get_user_pages_locked); |
f0818f47 AA |
1140 | |
1141 | /* | |
1142 | * get_user_pages_unlocked() is suitable to replace the form: | |
1143 | * | |
1144 | * down_read(&mm->mmap_sem); | |
1145 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1146 | * up_read(&mm->mmap_sem); | |
1147 | * | |
1148 | * with: | |
1149 | * | |
1150 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
1151 | * | |
1152 | * It is functionally equivalent to get_user_pages_fast so | |
80a79516 LS |
1153 | * get_user_pages_fast should be used instead if specific gup_flags |
1154 | * (e.g. FOLL_FORCE) are not required. | |
f0818f47 | 1155 | */ |
c12d2da5 | 1156 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
c164154f | 1157 | struct page **pages, unsigned int gup_flags) |
f0818f47 | 1158 | { |
c803c9c6 AV |
1159 | struct mm_struct *mm = current->mm; |
1160 | int locked = 1; | |
1161 | long ret; | |
1162 | ||
932f4a63 IW |
1163 | /* |
1164 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1165 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1166 | * vmas. As there are no users of this flag in this call we simply | |
1167 | * disallow this option for now. | |
1168 | */ | |
1169 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1170 | return -EINVAL; | |
1171 | ||
c803c9c6 AV |
1172 | down_read(&mm->mmap_sem); |
1173 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
e716712f | 1174 | &locked, gup_flags | FOLL_TOUCH); |
c803c9c6 AV |
1175 | if (locked) |
1176 | up_read(&mm->mmap_sem); | |
1177 | return ret; | |
f0818f47 | 1178 | } |
c12d2da5 | 1179 | EXPORT_SYMBOL(get_user_pages_unlocked); |
f0818f47 | 1180 | |
4bbd4c77 | 1181 | /* |
1e987790 | 1182 | * get_user_pages_remote() - pin user pages in memory |
4bbd4c77 KS |
1183 | * @tsk: the task_struct to use for page fault accounting, or |
1184 | * NULL if faults are not to be recorded. | |
1185 | * @mm: mm_struct of target mm | |
1186 | * @start: starting user address | |
1187 | * @nr_pages: number of pages from start to pin | |
9beae1ea | 1188 | * @gup_flags: flags modifying lookup behaviour |
4bbd4c77 KS |
1189 | * @pages: array that receives pointers to the pages pinned. |
1190 | * Should be at least nr_pages long. Or NULL, if caller | |
1191 | * only intends to ensure the pages are faulted in. | |
1192 | * @vmas: array of pointers to vmas corresponding to each page. | |
1193 | * Or NULL if the caller does not require them. | |
5b56d49f LS |
1194 | * @locked: pointer to lock flag indicating whether lock is held and |
1195 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1196 | * utilised. Lock must initially be held. | |
4bbd4c77 KS |
1197 | * |
1198 | * Returns number of pages pinned. This may be fewer than the number | |
1199 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1200 | * were pinned, returns -errno. Each page returned must be released | |
1201 | * with a put_page() call when it is finished with. vmas will only | |
1202 | * remain valid while mmap_sem is held. | |
1203 | * | |
1204 | * Must be called with mmap_sem held for read or write. | |
1205 | * | |
1206 | * get_user_pages walks a process's page tables and takes a reference to | |
1207 | * each struct page that each user address corresponds to at a given | |
1208 | * instant. That is, it takes the page that would be accessed if a user | |
1209 | * thread accesses the given user virtual address at that instant. | |
1210 | * | |
1211 | * This does not guarantee that the page exists in the user mappings when | |
1212 | * get_user_pages returns, and there may even be a completely different | |
1213 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1214 | * and subsequently re faulted). However it does guarantee that the page | |
1215 | * won't be freed completely. And mostly callers simply care that the page | |
1216 | * contains data that was valid *at some point in time*. Typically, an IO | |
1217 | * or similar operation cannot guarantee anything stronger anyway because | |
1218 | * locks can't be held over the syscall boundary. | |
1219 | * | |
9beae1ea LS |
1220 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
1221 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1222 | * be called after the page is finished with, and before put_page is called. | |
4bbd4c77 KS |
1223 | * |
1224 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1225 | * handle on the memory by some means other than accesses via the user virtual | |
1226 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1227 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1228 | * use the correct cache flushing APIs. | |
1229 | * | |
1230 | * See also get_user_pages_fast, for performance critical applications. | |
f0818f47 AA |
1231 | * |
1232 | * get_user_pages should be phased out in favor of | |
1233 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1234 | * should use get_user_pages because it cannot pass | |
1235 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
4bbd4c77 | 1236 | */ |
1e987790 DH |
1237 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1238 | unsigned long start, unsigned long nr_pages, | |
9beae1ea | 1239 | unsigned int gup_flags, struct page **pages, |
5b56d49f | 1240 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1241 | { |
932f4a63 IW |
1242 | /* |
1243 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1244 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1245 | * vmas. As there are no users of this flag in this call we simply | |
1246 | * disallow this option for now. | |
1247 | */ | |
1248 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1249 | return -EINVAL; | |
1250 | ||
859110d7 | 1251 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, |
e716712f | 1252 | locked, |
9beae1ea | 1253 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); |
1e987790 DH |
1254 | } |
1255 | EXPORT_SYMBOL(get_user_pages_remote); | |
1256 | ||
9a4e9f3b | 1257 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
9a4e9f3b AK |
1258 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1259 | { | |
1260 | long i; | |
1261 | struct vm_area_struct *vma_prev = NULL; | |
1262 | ||
1263 | for (i = 0; i < nr_pages; i++) { | |
1264 | struct vm_area_struct *vma = vmas[i]; | |
1265 | ||
1266 | if (vma == vma_prev) | |
1267 | continue; | |
1268 | ||
1269 | vma_prev = vma; | |
1270 | ||
1271 | if (vma_is_fsdax(vma)) | |
1272 | return true; | |
1273 | } | |
1274 | return false; | |
1275 | } | |
9a4e9f3b AK |
1276 | |
1277 | #ifdef CONFIG_CMA | |
1278 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | |
1279 | { | |
1280 | /* | |
1281 | * We want to make sure we allocate the new page from the same node | |
1282 | * as the source page. | |
1283 | */ | |
1284 | int nid = page_to_nid(page); | |
1285 | /* | |
1286 | * Trying to allocate a page for migration. Ignore allocation | |
1287 | * failure warnings. We don't force __GFP_THISNODE here because | |
1288 | * this node here is the node where we have CMA reservation and | |
1289 | * in some case these nodes will have really less non movable | |
1290 | * allocation memory. | |
1291 | */ | |
1292 | gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | |
1293 | ||
1294 | if (PageHighMem(page)) | |
1295 | gfp_mask |= __GFP_HIGHMEM; | |
1296 | ||
1297 | #ifdef CONFIG_HUGETLB_PAGE | |
1298 | if (PageHuge(page)) { | |
1299 | struct hstate *h = page_hstate(page); | |
1300 | /* | |
1301 | * We don't want to dequeue from the pool because pool pages will | |
1302 | * mostly be from the CMA region. | |
1303 | */ | |
1304 | return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | |
1305 | } | |
1306 | #endif | |
1307 | if (PageTransHuge(page)) { | |
1308 | struct page *thp; | |
1309 | /* | |
1310 | * ignore allocation failure warnings | |
1311 | */ | |
1312 | gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | |
1313 | ||
1314 | /* | |
1315 | * Remove the movable mask so that we don't allocate from | |
1316 | * CMA area again. | |
1317 | */ | |
1318 | thp_gfpmask &= ~__GFP_MOVABLE; | |
1319 | thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | |
1320 | if (!thp) | |
1321 | return NULL; | |
1322 | prep_transhuge_page(thp); | |
1323 | return thp; | |
1324 | } | |
1325 | ||
1326 | return __alloc_pages_node(nid, gfp_mask, 0); | |
1327 | } | |
1328 | ||
932f4a63 IW |
1329 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1330 | struct mm_struct *mm, | |
1331 | unsigned long start, | |
1332 | unsigned long nr_pages, | |
9a4e9f3b | 1333 | struct page **pages, |
932f4a63 IW |
1334 | struct vm_area_struct **vmas, |
1335 | unsigned int gup_flags) | |
9a4e9f3b AK |
1336 | { |
1337 | long i; | |
1338 | bool drain_allow = true; | |
1339 | bool migrate_allow = true; | |
1340 | LIST_HEAD(cma_page_list); | |
1341 | ||
1342 | check_again: | |
1343 | for (i = 0; i < nr_pages; i++) { | |
1344 | /* | |
1345 | * If we get a page from the CMA zone, since we are going to | |
1346 | * be pinning these entries, we might as well move them out | |
1347 | * of the CMA zone if possible. | |
1348 | */ | |
1349 | if (is_migrate_cma_page(pages[i])) { | |
1350 | ||
1351 | struct page *head = compound_head(pages[i]); | |
1352 | ||
1353 | if (PageHuge(head)) { | |
1354 | isolate_huge_page(head, &cma_page_list); | |
1355 | } else { | |
1356 | if (!PageLRU(head) && drain_allow) { | |
1357 | lru_add_drain_all(); | |
1358 | drain_allow = false; | |
1359 | } | |
1360 | ||
1361 | if (!isolate_lru_page(head)) { | |
1362 | list_add_tail(&head->lru, &cma_page_list); | |
1363 | mod_node_page_state(page_pgdat(head), | |
1364 | NR_ISOLATED_ANON + | |
1365 | page_is_file_cache(head), | |
1366 | hpage_nr_pages(head)); | |
1367 | } | |
1368 | } | |
1369 | } | |
1370 | } | |
1371 | ||
1372 | if (!list_empty(&cma_page_list)) { | |
1373 | /* | |
1374 | * drop the above get_user_pages reference. | |
1375 | */ | |
1376 | for (i = 0; i < nr_pages; i++) | |
1377 | put_page(pages[i]); | |
1378 | ||
1379 | if (migrate_pages(&cma_page_list, new_non_cma_page, | |
1380 | NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
1381 | /* | |
1382 | * some of the pages failed migration. Do get_user_pages | |
1383 | * without migration. | |
1384 | */ | |
1385 | migrate_allow = false; | |
1386 | ||
1387 | if (!list_empty(&cma_page_list)) | |
1388 | putback_movable_pages(&cma_page_list); | |
1389 | } | |
1390 | /* | |
932f4a63 IW |
1391 | * We did migrate all the pages, Try to get the page references |
1392 | * again migrating any new CMA pages which we failed to isolate | |
1393 | * earlier. | |
9a4e9f3b | 1394 | */ |
932f4a63 IW |
1395 | nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages, |
1396 | pages, vmas, NULL, | |
1397 | gup_flags); | |
1398 | ||
9a4e9f3b AK |
1399 | if ((nr_pages > 0) && migrate_allow) { |
1400 | drain_allow = true; | |
1401 | goto check_again; | |
1402 | } | |
1403 | } | |
1404 | ||
1405 | return nr_pages; | |
1406 | } | |
1407 | #else | |
932f4a63 IW |
1408 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1409 | struct mm_struct *mm, | |
1410 | unsigned long start, | |
1411 | unsigned long nr_pages, | |
1412 | struct page **pages, | |
1413 | struct vm_area_struct **vmas, | |
1414 | unsigned int gup_flags) | |
9a4e9f3b AK |
1415 | { |
1416 | return nr_pages; | |
1417 | } | |
1418 | #endif | |
1419 | ||
2bb6d283 | 1420 | /* |
932f4a63 IW |
1421 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1422 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1423 | */ |
932f4a63 IW |
1424 | static long __gup_longterm_locked(struct task_struct *tsk, |
1425 | struct mm_struct *mm, | |
1426 | unsigned long start, | |
1427 | unsigned long nr_pages, | |
1428 | struct page **pages, | |
1429 | struct vm_area_struct **vmas, | |
1430 | unsigned int gup_flags) | |
2bb6d283 | 1431 | { |
932f4a63 IW |
1432 | struct vm_area_struct **vmas_tmp = vmas; |
1433 | unsigned long flags = 0; | |
2bb6d283 DW |
1434 | long rc, i; |
1435 | ||
932f4a63 IW |
1436 | if (gup_flags & FOLL_LONGTERM) { |
1437 | if (!pages) | |
1438 | return -EINVAL; | |
1439 | ||
1440 | if (!vmas_tmp) { | |
1441 | vmas_tmp = kcalloc(nr_pages, | |
1442 | sizeof(struct vm_area_struct *), | |
1443 | GFP_KERNEL); | |
1444 | if (!vmas_tmp) | |
1445 | return -ENOMEM; | |
1446 | } | |
1447 | flags = memalloc_nocma_save(); | |
2bb6d283 DW |
1448 | } |
1449 | ||
932f4a63 IW |
1450 | rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, |
1451 | vmas_tmp, NULL, gup_flags); | |
2bb6d283 | 1452 | |
932f4a63 IW |
1453 | if (gup_flags & FOLL_LONGTERM) { |
1454 | memalloc_nocma_restore(flags); | |
1455 | if (rc < 0) | |
1456 | goto out; | |
1457 | ||
1458 | if (check_dax_vmas(vmas_tmp, rc)) { | |
1459 | for (i = 0; i < rc; i++) | |
1460 | put_page(pages[i]); | |
1461 | rc = -EOPNOTSUPP; | |
1462 | goto out; | |
1463 | } | |
1464 | ||
1465 | rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, | |
1466 | vmas_tmp, gup_flags); | |
9a4e9f3b | 1467 | } |
2bb6d283 | 1468 | |
2bb6d283 | 1469 | out: |
932f4a63 IW |
1470 | if (vmas_tmp != vmas) |
1471 | kfree(vmas_tmp); | |
2bb6d283 DW |
1472 | return rc; |
1473 | } | |
932f4a63 IW |
1474 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ |
1475 | static __always_inline long __gup_longterm_locked(struct task_struct *tsk, | |
1476 | struct mm_struct *mm, | |
1477 | unsigned long start, | |
1478 | unsigned long nr_pages, | |
1479 | struct page **pages, | |
1480 | struct vm_area_struct **vmas, | |
1481 | unsigned int flags) | |
1482 | { | |
1483 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1484 | NULL, flags); | |
1485 | } | |
1486 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | |
1487 | ||
1488 | /* | |
1489 | * This is the same as get_user_pages_remote(), just with a | |
1490 | * less-flexible calling convention where we assume that the task | |
1491 | * and mm being operated on are the current task's and don't allow | |
1492 | * passing of a locked parameter. We also obviously don't pass | |
1493 | * FOLL_REMOTE in here. | |
1494 | */ | |
1495 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
1496 | unsigned int gup_flags, struct page **pages, | |
1497 | struct vm_area_struct **vmas) | |
1498 | { | |
1499 | return __gup_longterm_locked(current, current->mm, start, nr_pages, | |
1500 | pages, vmas, gup_flags | FOLL_TOUCH); | |
1501 | } | |
1502 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 1503 | |
acc3c8d1 KS |
1504 | /** |
1505 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1506 | * @vma: target vma | |
1507 | * @start: start address | |
1508 | * @end: end address | |
1509 | * @nonblocking: | |
1510 | * | |
1511 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1512 | * | |
1513 | * return 0 on success, negative error code on error. | |
1514 | * | |
1515 | * vma->vm_mm->mmap_sem must be held. | |
1516 | * | |
1517 | * If @nonblocking is NULL, it may be held for read or write and will | |
1518 | * be unperturbed. | |
1519 | * | |
1520 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1521 | * released. If it's released, *@nonblocking will be set to 0. | |
1522 | */ | |
1523 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1524 | unsigned long start, unsigned long end, int *nonblocking) | |
1525 | { | |
1526 | struct mm_struct *mm = vma->vm_mm; | |
1527 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1528 | int gup_flags; | |
1529 | ||
1530 | VM_BUG_ON(start & ~PAGE_MASK); | |
1531 | VM_BUG_ON(end & ~PAGE_MASK); | |
1532 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1533 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1534 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1535 | ||
de60f5f1 EM |
1536 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; |
1537 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1538 | gup_flags &= ~FOLL_POPULATE; | |
acc3c8d1 KS |
1539 | /* |
1540 | * We want to touch writable mappings with a write fault in order | |
1541 | * to break COW, except for shared mappings because these don't COW | |
1542 | * and we would not want to dirty them for nothing. | |
1543 | */ | |
1544 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1545 | gup_flags |= FOLL_WRITE; | |
1546 | ||
1547 | /* | |
1548 | * We want mlock to succeed for regions that have any permissions | |
1549 | * other than PROT_NONE. | |
1550 | */ | |
1551 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1552 | gup_flags |= FOLL_FORCE; | |
1553 | ||
1554 | /* | |
1555 | * We made sure addr is within a VMA, so the following will | |
1556 | * not result in a stack expansion that recurses back here. | |
1557 | */ | |
1558 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1559 | NULL, NULL, nonblocking); | |
1560 | } | |
1561 | ||
1562 | /* | |
1563 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1564 | * | |
1565 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1566 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1567 | * mmap_sem must not be held. | |
1568 | */ | |
1569 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1570 | { | |
1571 | struct mm_struct *mm = current->mm; | |
1572 | unsigned long end, nstart, nend; | |
1573 | struct vm_area_struct *vma = NULL; | |
1574 | int locked = 0; | |
1575 | long ret = 0; | |
1576 | ||
acc3c8d1 KS |
1577 | end = start + len; |
1578 | ||
1579 | for (nstart = start; nstart < end; nstart = nend) { | |
1580 | /* | |
1581 | * We want to fault in pages for [nstart; end) address range. | |
1582 | * Find first corresponding VMA. | |
1583 | */ | |
1584 | if (!locked) { | |
1585 | locked = 1; | |
1586 | down_read(&mm->mmap_sem); | |
1587 | vma = find_vma(mm, nstart); | |
1588 | } else if (nstart >= vma->vm_end) | |
1589 | vma = vma->vm_next; | |
1590 | if (!vma || vma->vm_start >= end) | |
1591 | break; | |
1592 | /* | |
1593 | * Set [nstart; nend) to intersection of desired address | |
1594 | * range with the first VMA. Also, skip undesirable VMA types. | |
1595 | */ | |
1596 | nend = min(end, vma->vm_end); | |
1597 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1598 | continue; | |
1599 | if (nstart < vma->vm_start) | |
1600 | nstart = vma->vm_start; | |
1601 | /* | |
1602 | * Now fault in a range of pages. populate_vma_page_range() | |
1603 | * double checks the vma flags, so that it won't mlock pages | |
1604 | * if the vma was already munlocked. | |
1605 | */ | |
1606 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1607 | if (ret < 0) { | |
1608 | if (ignore_errors) { | |
1609 | ret = 0; | |
1610 | continue; /* continue at next VMA */ | |
1611 | } | |
1612 | break; | |
1613 | } | |
1614 | nend = nstart + ret * PAGE_SIZE; | |
1615 | ret = 0; | |
1616 | } | |
1617 | if (locked) | |
1618 | up_read(&mm->mmap_sem); | |
1619 | return ret; /* 0 or negative error code */ | |
1620 | } | |
1621 | ||
4bbd4c77 KS |
1622 | /** |
1623 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1624 | * @addr: user address | |
1625 | * | |
1626 | * Returns struct page pointer of user page pinned for dump, | |
ea1754a0 | 1627 | * to be freed afterwards by put_page(). |
4bbd4c77 KS |
1628 | * |
1629 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1630 | * the corefile, to preserve alignment with its headers; and also returns | |
1631 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1632 | * allowing a hole to be left in the corefile to save diskspace. | |
1633 | * | |
1634 | * Called without mmap_sem, but after all other threads have been killed. | |
1635 | */ | |
1636 | #ifdef CONFIG_ELF_CORE | |
1637 | struct page *get_dump_page(unsigned long addr) | |
1638 | { | |
1639 | struct vm_area_struct *vma; | |
1640 | struct page *page; | |
1641 | ||
1642 | if (__get_user_pages(current, current->mm, addr, 1, | |
1643 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1644 | NULL) < 1) | |
1645 | return NULL; | |
1646 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1647 | return page; | |
1648 | } | |
1649 | #endif /* CONFIG_ELF_CORE */ | |
2667f50e SC |
1650 | |
1651 | /* | |
e585513b | 1652 | * Generic Fast GUP |
2667f50e SC |
1653 | * |
1654 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1655 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1656 | * protected from page table pages being freed from under it, and should | |
1657 | * block any THP splits. | |
1658 | * | |
1659 | * One way to achieve this is to have the walker disable interrupts, and | |
1660 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1661 | * pages are freed. This is unsuitable for architectures that do not need | |
1662 | * to broadcast an IPI when invalidating TLBs. | |
1663 | * | |
1664 | * Another way to achieve this is to batch up page table containing pages | |
1665 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1666 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1667 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1668 | * (which is a relatively rare event). The code below adopts this strategy. | |
1669 | * | |
1670 | * Before activating this code, please be aware that the following assumptions | |
1671 | * are currently made: | |
1672 | * | |
e585513b KS |
1673 | * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
1674 | * free pages containing page tables or TLB flushing requires IPI broadcast. | |
2667f50e | 1675 | * |
2667f50e SC |
1676 | * *) ptes can be read atomically by the architecture. |
1677 | * | |
1678 | * *) access_ok is sufficient to validate userspace address ranges. | |
1679 | * | |
1680 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1681 | * | |
1682 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1683 | */ | |
e585513b | 1684 | #ifdef CONFIG_HAVE_GENERIC_GUP |
2667f50e | 1685 | |
0005d20b KS |
1686 | #ifndef gup_get_pte |
1687 | /* | |
1688 | * We assume that the PTE can be read atomically. If this is not the case for | |
1689 | * your architecture, please provide the helper. | |
1690 | */ | |
1691 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1692 | { | |
1693 | return READ_ONCE(*ptep); | |
1694 | } | |
1695 | #endif | |
1696 | ||
b59f65fa KS |
1697 | static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) |
1698 | { | |
1699 | while ((*nr) - nr_start) { | |
1700 | struct page *page = pages[--(*nr)]; | |
1701 | ||
1702 | ClearPageReferenced(page); | |
1703 | put_page(page); | |
1704 | } | |
1705 | } | |
1706 | ||
8fde12ca LT |
1707 | /* |
1708 | * Return the compund head page with ref appropriately incremented, | |
1709 | * or NULL if that failed. | |
1710 | */ | |
1711 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
1712 | { | |
1713 | struct page *head = compound_head(page); | |
1714 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
1715 | return NULL; | |
1716 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
1717 | return NULL; | |
1718 | return head; | |
1719 | } | |
1720 | ||
3010a5ea | 1721 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 1722 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 1723 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 1724 | { |
b59f65fa KS |
1725 | struct dev_pagemap *pgmap = NULL; |
1726 | int nr_start = *nr, ret = 0; | |
2667f50e | 1727 | pte_t *ptep, *ptem; |
2667f50e SC |
1728 | |
1729 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1730 | do { | |
0005d20b | 1731 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1732 | struct page *head, *page; |
2667f50e SC |
1733 | |
1734 | /* | |
1735 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1736 | * path using the pte_protnone check. |
2667f50e | 1737 | */ |
e7884f8e KS |
1738 | if (pte_protnone(pte)) |
1739 | goto pte_unmap; | |
1740 | ||
b798bec4 | 1741 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
1742 | goto pte_unmap; |
1743 | ||
b59f65fa | 1744 | if (pte_devmap(pte)) { |
7af75561 IW |
1745 | if (unlikely(flags & FOLL_LONGTERM)) |
1746 | goto pte_unmap; | |
1747 | ||
b59f65fa KS |
1748 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
1749 | if (unlikely(!pgmap)) { | |
1750 | undo_dev_pagemap(nr, nr_start, pages); | |
1751 | goto pte_unmap; | |
1752 | } | |
1753 | } else if (pte_special(pte)) | |
2667f50e SC |
1754 | goto pte_unmap; |
1755 | ||
1756 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1757 | page = pte_page(pte); | |
1758 | ||
8fde12ca LT |
1759 | head = try_get_compound_head(page, 1); |
1760 | if (!head) | |
2667f50e SC |
1761 | goto pte_unmap; |
1762 | ||
1763 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1764 | put_page(head); |
2667f50e SC |
1765 | goto pte_unmap; |
1766 | } | |
1767 | ||
7aef4172 | 1768 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1769 | |
1770 | SetPageReferenced(page); | |
2667f50e SC |
1771 | pages[*nr] = page; |
1772 | (*nr)++; | |
1773 | ||
1774 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1775 | ||
1776 | ret = 1; | |
1777 | ||
1778 | pte_unmap: | |
832d7aa0 CH |
1779 | if (pgmap) |
1780 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1781 | pte_unmap(ptem); |
1782 | return ret; | |
1783 | } | |
1784 | #else | |
1785 | ||
1786 | /* | |
1787 | * If we can't determine whether or not a pte is special, then fail immediately | |
1788 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1789 | * to be special. | |
1790 | * | |
1791 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1792 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1793 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1794 | */ | |
1795 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 1796 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
1797 | { |
1798 | return 0; | |
1799 | } | |
3010a5ea | 1800 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1801 | |
09180ca4 | 1802 | #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1803 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1804 | unsigned long end, struct page **pages, int *nr) | |
1805 | { | |
1806 | int nr_start = *nr; | |
1807 | struct dev_pagemap *pgmap = NULL; | |
1808 | ||
1809 | do { | |
1810 | struct page *page = pfn_to_page(pfn); | |
1811 | ||
1812 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1813 | if (unlikely(!pgmap)) { | |
1814 | undo_dev_pagemap(nr, nr_start, pages); | |
1815 | return 0; | |
1816 | } | |
1817 | SetPageReferenced(page); | |
1818 | pages[*nr] = page; | |
1819 | get_page(page); | |
b59f65fa KS |
1820 | (*nr)++; |
1821 | pfn++; | |
1822 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1823 | |
1824 | if (pgmap) | |
1825 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1826 | return 1; |
1827 | } | |
1828 | ||
a9b6de77 | 1829 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1830 | unsigned long end, struct page **pages, int *nr) |
1831 | { | |
1832 | unsigned long fault_pfn; | |
a9b6de77 DW |
1833 | int nr_start = *nr; |
1834 | ||
1835 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1836 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1837 | return 0; | |
b59f65fa | 1838 | |
a9b6de77 DW |
1839 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1840 | undo_dev_pagemap(nr, nr_start, pages); | |
1841 | return 0; | |
1842 | } | |
1843 | return 1; | |
b59f65fa KS |
1844 | } |
1845 | ||
a9b6de77 | 1846 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1847 | unsigned long end, struct page **pages, int *nr) |
1848 | { | |
1849 | unsigned long fault_pfn; | |
a9b6de77 DW |
1850 | int nr_start = *nr; |
1851 | ||
1852 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
1853 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1854 | return 0; | |
b59f65fa | 1855 | |
a9b6de77 DW |
1856 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
1857 | undo_dev_pagemap(nr, nr_start, pages); | |
1858 | return 0; | |
1859 | } | |
1860 | return 1; | |
b59f65fa KS |
1861 | } |
1862 | #else | |
a9b6de77 | 1863 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1864 | unsigned long end, struct page **pages, int *nr) |
1865 | { | |
1866 | BUILD_BUG(); | |
1867 | return 0; | |
1868 | } | |
1869 | ||
a9b6de77 | 1870 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1871 | unsigned long end, struct page **pages, int *nr) |
1872 | { | |
1873 | BUILD_BUG(); | |
1874 | return 0; | |
1875 | } | |
1876 | #endif | |
1877 | ||
2667f50e | 1878 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b798bec4 | 1879 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 1880 | { |
ddc58f27 | 1881 | struct page *head, *page; |
2667f50e SC |
1882 | int refs; |
1883 | ||
b798bec4 | 1884 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
1885 | return 0; |
1886 | ||
7af75561 IW |
1887 | if (pmd_devmap(orig)) { |
1888 | if (unlikely(flags & FOLL_LONGTERM)) | |
1889 | return 0; | |
a9b6de77 | 1890 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
7af75561 | 1891 | } |
b59f65fa | 1892 | |
2667f50e | 1893 | refs = 0; |
d63206ee | 1894 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2667f50e | 1895 | do { |
2667f50e SC |
1896 | pages[*nr] = page; |
1897 | (*nr)++; | |
1898 | page++; | |
1899 | refs++; | |
1900 | } while (addr += PAGE_SIZE, addr != end); | |
1901 | ||
8fde12ca LT |
1902 | head = try_get_compound_head(pmd_page(orig), refs); |
1903 | if (!head) { | |
2667f50e SC |
1904 | *nr -= refs; |
1905 | return 0; | |
1906 | } | |
1907 | ||
1908 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
1909 | *nr -= refs; | |
1910 | while (refs--) | |
1911 | put_page(head); | |
1912 | return 0; | |
1913 | } | |
1914 | ||
e9348053 | 1915 | SetPageReferenced(head); |
2667f50e SC |
1916 | return 1; |
1917 | } | |
1918 | ||
1919 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
b798bec4 | 1920 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 1921 | { |
ddc58f27 | 1922 | struct page *head, *page; |
2667f50e SC |
1923 | int refs; |
1924 | ||
b798bec4 | 1925 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
1926 | return 0; |
1927 | ||
7af75561 IW |
1928 | if (pud_devmap(orig)) { |
1929 | if (unlikely(flags & FOLL_LONGTERM)) | |
1930 | return 0; | |
a9b6de77 | 1931 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
7af75561 | 1932 | } |
b59f65fa | 1933 | |
2667f50e | 1934 | refs = 0; |
d63206ee | 1935 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2667f50e | 1936 | do { |
2667f50e SC |
1937 | pages[*nr] = page; |
1938 | (*nr)++; | |
1939 | page++; | |
1940 | refs++; | |
1941 | } while (addr += PAGE_SIZE, addr != end); | |
1942 | ||
8fde12ca LT |
1943 | head = try_get_compound_head(pud_page(orig), refs); |
1944 | if (!head) { | |
2667f50e SC |
1945 | *nr -= refs; |
1946 | return 0; | |
1947 | } | |
1948 | ||
1949 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
1950 | *nr -= refs; | |
1951 | while (refs--) | |
1952 | put_page(head); | |
1953 | return 0; | |
1954 | } | |
1955 | ||
e9348053 | 1956 | SetPageReferenced(head); |
2667f50e SC |
1957 | return 1; |
1958 | } | |
1959 | ||
f30c59e9 | 1960 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 1961 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
1962 | struct page **pages, int *nr) |
1963 | { | |
1964 | int refs; | |
ddc58f27 | 1965 | struct page *head, *page; |
f30c59e9 | 1966 | |
b798bec4 | 1967 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
1968 | return 0; |
1969 | ||
b59f65fa | 1970 | BUILD_BUG_ON(pgd_devmap(orig)); |
f30c59e9 | 1971 | refs = 0; |
d63206ee | 1972 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
f30c59e9 | 1973 | do { |
f30c59e9 AK |
1974 | pages[*nr] = page; |
1975 | (*nr)++; | |
1976 | page++; | |
1977 | refs++; | |
1978 | } while (addr += PAGE_SIZE, addr != end); | |
1979 | ||
8fde12ca LT |
1980 | head = try_get_compound_head(pgd_page(orig), refs); |
1981 | if (!head) { | |
f30c59e9 AK |
1982 | *nr -= refs; |
1983 | return 0; | |
1984 | } | |
1985 | ||
1986 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
1987 | *nr -= refs; | |
1988 | while (refs--) | |
1989 | put_page(head); | |
1990 | return 0; | |
1991 | } | |
1992 | ||
e9348053 | 1993 | SetPageReferenced(head); |
f30c59e9 AK |
1994 | return 1; |
1995 | } | |
1996 | ||
2667f50e | 1997 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 1998 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
1999 | { |
2000 | unsigned long next; | |
2001 | pmd_t *pmdp; | |
2002 | ||
2003 | pmdp = pmd_offset(&pud, addr); | |
2004 | do { | |
38c5ce93 | 2005 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2006 | |
2007 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2008 | if (!pmd_present(pmd)) |
2667f50e SC |
2009 | return 0; |
2010 | ||
414fd080 YZ |
2011 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2012 | pmd_devmap(pmd))) { | |
2667f50e SC |
2013 | /* |
2014 | * NUMA hinting faults need to be handled in the GUP | |
2015 | * slowpath for accounting purposes and so that they | |
2016 | * can be serialised against THP migration. | |
2017 | */ | |
8a0516ed | 2018 | if (pmd_protnone(pmd)) |
2667f50e SC |
2019 | return 0; |
2020 | ||
b798bec4 | 2021 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2022 | pages, nr)) |
2023 | return 0; | |
2024 | ||
f30c59e9 AK |
2025 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2026 | /* | |
2027 | * architecture have different format for hugetlbfs | |
2028 | * pmd format and THP pmd format | |
2029 | */ | |
2030 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2031 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2032 | return 0; |
b798bec4 | 2033 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2034 | return 0; |
2667f50e SC |
2035 | } while (pmdp++, addr = next, addr != end); |
2036 | ||
2037 | return 1; | |
2038 | } | |
2039 | ||
c2febafc | 2040 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2041 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2042 | { |
2043 | unsigned long next; | |
2044 | pud_t *pudp; | |
2045 | ||
c2febafc | 2046 | pudp = pud_offset(&p4d, addr); |
2667f50e | 2047 | do { |
e37c6982 | 2048 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2049 | |
2050 | next = pud_addr_end(addr, end); | |
2051 | if (pud_none(pud)) | |
2052 | return 0; | |
f30c59e9 | 2053 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2054 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2055 | pages, nr)) |
2056 | return 0; | |
2057 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2058 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2059 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2060 | return 0; |
b798bec4 | 2061 | } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2062 | return 0; |
2063 | } while (pudp++, addr = next, addr != end); | |
2064 | ||
2065 | return 1; | |
2066 | } | |
2067 | ||
c2febafc | 2068 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2069 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2070 | { |
2071 | unsigned long next; | |
2072 | p4d_t *p4dp; | |
2073 | ||
2074 | p4dp = p4d_offset(&pgd, addr); | |
2075 | do { | |
2076 | p4d_t p4d = READ_ONCE(*p4dp); | |
2077 | ||
2078 | next = p4d_addr_end(addr, end); | |
2079 | if (p4d_none(p4d)) | |
2080 | return 0; | |
2081 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2082 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2083 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2084 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2085 | return 0; |
b798bec4 | 2086 | } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2087 | return 0; |
2088 | } while (p4dp++, addr = next, addr != end); | |
2089 | ||
2090 | return 1; | |
2091 | } | |
2092 | ||
5b65c467 | 2093 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2094 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2095 | { |
2096 | unsigned long next; | |
2097 | pgd_t *pgdp; | |
2098 | ||
2099 | pgdp = pgd_offset(current->mm, addr); | |
2100 | do { | |
2101 | pgd_t pgd = READ_ONCE(*pgdp); | |
2102 | ||
2103 | next = pgd_addr_end(addr, end); | |
2104 | if (pgd_none(pgd)) | |
2105 | return; | |
2106 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2107 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2108 | pages, nr)) |
2109 | return; | |
2110 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2111 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2112 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2113 | return; |
b798bec4 | 2114 | } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2115 | return; |
2116 | } while (pgdp++, addr = next, addr != end); | |
2117 | } | |
2118 | ||
2119 | #ifndef gup_fast_permitted | |
2120 | /* | |
2121 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
2122 | * we need to fall back to the slow version: | |
2123 | */ | |
ad8cfb9c | 2124 | bool gup_fast_permitted(unsigned long start, int nr_pages) |
5b65c467 KS |
2125 | { |
2126 | unsigned long len, end; | |
2127 | ||
2128 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2129 | end = start + len; | |
2130 | return end >= start; | |
2131 | } | |
2132 | #endif | |
2133 | ||
2667f50e SC |
2134 | /* |
2135 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
2136 | * the regular GUP. |
2137 | * Note a difference with get_user_pages_fast: this always returns the | |
2138 | * number of pages pinned, 0 if no pages were pinned. | |
2667f50e SC |
2139 | */ |
2140 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
2141 | struct page **pages) | |
2142 | { | |
d4faa402 | 2143 | unsigned long len, end; |
5b65c467 | 2144 | unsigned long flags; |
2667f50e SC |
2145 | int nr = 0; |
2146 | ||
2147 | start &= PAGE_MASK; | |
2667f50e SC |
2148 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
2149 | end = start + len; | |
2150 | ||
96d4f267 | 2151 | if (unlikely(!access_ok((void __user *)start, len))) |
2667f50e SC |
2152 | return 0; |
2153 | ||
2154 | /* | |
2155 | * Disable interrupts. We use the nested form as we can already have | |
2156 | * interrupts disabled by get_futex_key. | |
2157 | * | |
2158 | * With interrupts disabled, we block page table pages from being | |
2ebe8228 FW |
2159 | * freed from under us. See struct mmu_table_batch comments in |
2160 | * include/asm-generic/tlb.h for more details. | |
2667f50e SC |
2161 | * |
2162 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
2163 | * block IPIs that come from THPs splitting. | |
2164 | */ | |
2165 | ||
ad8cfb9c | 2166 | if (gup_fast_permitted(start, nr_pages)) { |
5b65c467 | 2167 | local_irq_save(flags); |
b798bec4 | 2168 | gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); |
5b65c467 KS |
2169 | local_irq_restore(flags); |
2170 | } | |
2667f50e SC |
2171 | |
2172 | return nr; | |
2173 | } | |
2174 | ||
7af75561 IW |
2175 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2176 | unsigned int gup_flags, struct page **pages) | |
2177 | { | |
2178 | int ret; | |
2179 | ||
2180 | /* | |
2181 | * FIXME: FOLL_LONGTERM does not work with | |
2182 | * get_user_pages_unlocked() (see comments in that function) | |
2183 | */ | |
2184 | if (gup_flags & FOLL_LONGTERM) { | |
2185 | down_read(¤t->mm->mmap_sem); | |
2186 | ret = __gup_longterm_locked(current, current->mm, | |
2187 | start, nr_pages, | |
2188 | pages, NULL, gup_flags); | |
2189 | up_read(¤t->mm->mmap_sem); | |
2190 | } else { | |
2191 | ret = get_user_pages_unlocked(start, nr_pages, | |
2192 | pages, gup_flags); | |
2193 | } | |
2194 | ||
2195 | return ret; | |
2196 | } | |
2197 | ||
2667f50e SC |
2198 | /** |
2199 | * get_user_pages_fast() - pin user pages in memory | |
2200 | * @start: starting user address | |
2201 | * @nr_pages: number of pages from start to pin | |
73b0140b | 2202 | * @gup_flags: flags modifying pin behaviour |
2667f50e SC |
2203 | * @pages: array that receives pointers to the pages pinned. |
2204 | * Should be at least nr_pages long. | |
2205 | * | |
2206 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
2207 | * If not successful, it will fall back to taking the lock and | |
2208 | * calling get_user_pages(). | |
2209 | * | |
2210 | * Returns number of pages pinned. This may be fewer than the number | |
2211 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
2212 | * were pinned, returns -errno. | |
2213 | */ | |
73b0140b IW |
2214 | int get_user_pages_fast(unsigned long start, int nr_pages, |
2215 | unsigned int gup_flags, struct page **pages) | |
2667f50e | 2216 | { |
5b65c467 | 2217 | unsigned long addr, len, end; |
73e10a61 | 2218 | int nr = 0, ret = 0; |
2667f50e SC |
2219 | |
2220 | start &= PAGE_MASK; | |
5b65c467 KS |
2221 | addr = start; |
2222 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2223 | end = start + len; | |
2224 | ||
c61611f7 MT |
2225 | if (nr_pages <= 0) |
2226 | return 0; | |
2227 | ||
96d4f267 | 2228 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2229 | return -EFAULT; |
73e10a61 | 2230 | |
ad8cfb9c | 2231 | if (gup_fast_permitted(start, nr_pages)) { |
5b65c467 | 2232 | local_irq_disable(); |
73b0140b | 2233 | gup_pgd_range(addr, end, gup_flags, pages, &nr); |
5b65c467 | 2234 | local_irq_enable(); |
73e10a61 KS |
2235 | ret = nr; |
2236 | } | |
2667f50e SC |
2237 | |
2238 | if (nr < nr_pages) { | |
2239 | /* Try to get the remaining pages with get_user_pages */ | |
2240 | start += nr << PAGE_SHIFT; | |
2241 | pages += nr; | |
2242 | ||
7af75561 IW |
2243 | ret = __gup_longterm_unlocked(start, nr_pages - nr, |
2244 | gup_flags, pages); | |
2667f50e SC |
2245 | |
2246 | /* Have to be a bit careful with return values */ | |
2247 | if (nr > 0) { | |
2248 | if (ret < 0) | |
2249 | ret = nr; | |
2250 | else | |
2251 | ret += nr; | |
2252 | } | |
2253 | } | |
2254 | ||
2255 | return ret; | |
2256 | } | |
2257 | ||
e585513b | 2258 | #endif /* CONFIG_HAVE_GENERIC_GUP */ |