]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
e905a9ed | 10 | * Jens Laas <[email protected]> Swedish University of |
19baf839 | 11 | * Agricultural Sciences. |
e905a9ed | 12 | * |
19baf839 RO |
13 | * Hans Liss <[email protected]> Uppsala Universitet |
14 | * | |
25985edc | 15 | * This work is based on the LPC-trie which is originally described in: |
e905a9ed | 16 | * |
19baf839 RO |
17 | * An experimental study of compression methods for dynamic tries |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
631dd1a8 | 19 | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
19baf839 RO |
20 | * |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
19baf839 RO |
25 | * |
26 | * Code from fib_hash has been reused which includes the following header: | |
27 | * | |
28 | * | |
29 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
30 | * operating system. INET is implemented using the BSD Socket | |
31 | * interface as the means of communication with the user level. | |
32 | * | |
33 | * IPv4 FIB: lookup engine and maintenance routines. | |
34 | * | |
35 | * | |
36 | * Authors: Alexey Kuznetsov, <[email protected]> | |
37 | * | |
38 | * This program is free software; you can redistribute it and/or | |
39 | * modify it under the terms of the GNU General Public License | |
40 | * as published by the Free Software Foundation; either version | |
41 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
42 | * |
43 | * Substantial contributions to this work comes from: | |
44 | * | |
45 | * David S. Miller, <[email protected]> | |
46 | * Stephen Hemminger <[email protected]> | |
47 | * Paul E. McKenney <[email protected]> | |
48 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
49 | */ |
50 | ||
80b71b80 | 51 | #define VERSION "0.409" |
19baf839 | 52 | |
7c0f6ba6 | 53 | #include <linux/uaccess.h> |
1977f032 | 54 | #include <linux/bitops.h> |
19baf839 RO |
55 | #include <linux/types.h> |
56 | #include <linux/kernel.h> | |
19baf839 RO |
57 | #include <linux/mm.h> |
58 | #include <linux/string.h> | |
59 | #include <linux/socket.h> | |
60 | #include <linux/sockios.h> | |
61 | #include <linux/errno.h> | |
62 | #include <linux/in.h> | |
63 | #include <linux/inet.h> | |
cd8787ab | 64 | #include <linux/inetdevice.h> |
19baf839 RO |
65 | #include <linux/netdevice.h> |
66 | #include <linux/if_arp.h> | |
67 | #include <linux/proc_fs.h> | |
2373ce1c | 68 | #include <linux/rcupdate.h> |
19baf839 RO |
69 | #include <linux/skbuff.h> |
70 | #include <linux/netlink.h> | |
71 | #include <linux/init.h> | |
72 | #include <linux/list.h> | |
5a0e3ad6 | 73 | #include <linux/slab.h> |
bc3b2d7f | 74 | #include <linux/export.h> |
ffa915d0 | 75 | #include <linux/vmalloc.h> |
b90eb754 | 76 | #include <linux/notifier.h> |
457c4cbc | 77 | #include <net/net_namespace.h> |
19baf839 RO |
78 | #include <net/ip.h> |
79 | #include <net/protocol.h> | |
80 | #include <net/route.h> | |
81 | #include <net/tcp.h> | |
82 | #include <net/sock.h> | |
83 | #include <net/ip_fib.h> | |
f6d3c192 | 84 | #include <trace/events/fib.h> |
19baf839 RO |
85 | #include "fib_lookup.h" |
86 | ||
c3852ef7 IS |
87 | static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, |
88 | enum fib_event_type event_type, u32 dst, | |
89 | int dst_len, struct fib_info *fi, | |
2f3a5272 | 90 | u8 tos, u8 type, u32 tb_id) |
c3852ef7 IS |
91 | { |
92 | struct fib_entry_notifier_info info = { | |
93 | .dst = dst, | |
94 | .dst_len = dst_len, | |
95 | .fi = fi, | |
96 | .tos = tos, | |
97 | .type = type, | |
98 | .tb_id = tb_id, | |
c3852ef7 IS |
99 | }; |
100 | return call_fib_notifier(nb, net, event_type, &info.info); | |
101 | } | |
102 | ||
b90eb754 JP |
103 | static int call_fib_entry_notifiers(struct net *net, |
104 | enum fib_event_type event_type, u32 dst, | |
105 | int dst_len, struct fib_info *fi, | |
2f3a5272 | 106 | u8 tos, u8 type, u32 tb_id) |
b90eb754 JP |
107 | { |
108 | struct fib_entry_notifier_info info = { | |
109 | .dst = dst, | |
110 | .dst_len = dst_len, | |
111 | .fi = fi, | |
112 | .tos = tos, | |
113 | .type = type, | |
114 | .tb_id = tb_id, | |
b90eb754 JP |
115 | }; |
116 | return call_fib_notifiers(net, event_type, &info.info); | |
117 | } | |
118 | ||
06ef921d | 119 | #define MAX_STAT_DEPTH 32 |
19baf839 | 120 | |
95f60ea3 AD |
121 | #define KEYLENGTH (8*sizeof(t_key)) |
122 | #define KEY_MAX ((t_key)~0) | |
19baf839 | 123 | |
19baf839 RO |
124 | typedef unsigned int t_key; |
125 | ||
88bae714 AD |
126 | #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) |
127 | #define IS_TNODE(n) ((n)->bits) | |
128 | #define IS_LEAF(n) (!(n)->bits) | |
2373ce1c | 129 | |
35c6edac | 130 | struct key_vector { |
64c9b6fb | 131 | t_key key; |
64c9b6fb | 132 | unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
41b489fd | 133 | unsigned char bits; /* 2log(KEYLENGTH) bits needed */ |
5405afd1 | 134 | unsigned char slen; |
adaf9816 | 135 | union { |
41b489fd | 136 | /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ |
79e5ad2c | 137 | struct hlist_head leaf; |
41b489fd | 138 | /* This array is valid if (pos | bits) > 0 (TNODE) */ |
35c6edac | 139 | struct key_vector __rcu *tnode[0]; |
adaf9816 | 140 | }; |
19baf839 RO |
141 | }; |
142 | ||
dc35dbed | 143 | struct tnode { |
56ca2adf | 144 | struct rcu_head rcu; |
6e22d174 AD |
145 | t_key empty_children; /* KEYLENGTH bits needed */ |
146 | t_key full_children; /* KEYLENGTH bits needed */ | |
f23e59fb | 147 | struct key_vector __rcu *parent; |
dc35dbed | 148 | struct key_vector kv[1]; |
56ca2adf | 149 | #define tn_bits kv[0].bits |
dc35dbed AD |
150 | }; |
151 | ||
152 | #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) | |
41b489fd AD |
153 | #define LEAF_SIZE TNODE_SIZE(1) |
154 | ||
19baf839 RO |
155 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
156 | struct trie_use_stats { | |
157 | unsigned int gets; | |
158 | unsigned int backtrack; | |
159 | unsigned int semantic_match_passed; | |
160 | unsigned int semantic_match_miss; | |
161 | unsigned int null_node_hit; | |
2f36895a | 162 | unsigned int resize_node_skipped; |
19baf839 RO |
163 | }; |
164 | #endif | |
165 | ||
166 | struct trie_stat { | |
167 | unsigned int totdepth; | |
168 | unsigned int maxdepth; | |
169 | unsigned int tnodes; | |
170 | unsigned int leaves; | |
171 | unsigned int nullpointers; | |
93672292 | 172 | unsigned int prefixes; |
06ef921d | 173 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 174 | }; |
19baf839 RO |
175 | |
176 | struct trie { | |
88bae714 | 177 | struct key_vector kv[1]; |
19baf839 | 178 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
8274a97a | 179 | struct trie_use_stats __percpu *stats; |
19baf839 | 180 | #endif |
19baf839 RO |
181 | }; |
182 | ||
88bae714 | 183 | static struct key_vector *resize(struct trie *t, struct key_vector *tn); |
c3059477 JP |
184 | static size_t tnode_free_size; |
185 | ||
186 | /* | |
187 | * synchronize_rcu after call_rcu for that many pages; it should be especially | |
188 | * useful before resizing the root node with PREEMPT_NONE configs; the value was | |
189 | * obtained experimentally, aiming to avoid visible slowdown. | |
190 | */ | |
191 | static const int sync_pages = 128; | |
19baf839 | 192 | |
e18b890b | 193 | static struct kmem_cache *fn_alias_kmem __read_mostly; |
bc3c8c1e | 194 | static struct kmem_cache *trie_leaf_kmem __read_mostly; |
19baf839 | 195 | |
56ca2adf AD |
196 | static inline struct tnode *tn_info(struct key_vector *kv) |
197 | { | |
198 | return container_of(kv, struct tnode, kv[0]); | |
199 | } | |
200 | ||
64c9b6fb | 201 | /* caller must hold RTNL */ |
f23e59fb | 202 | #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) |
754baf8d | 203 | #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) |
0a5c0475 | 204 | |
64c9b6fb | 205 | /* caller must hold RCU read lock or RTNL */ |
f23e59fb | 206 | #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) |
754baf8d | 207 | #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) |
0a5c0475 | 208 | |
64c9b6fb | 209 | /* wrapper for rcu_assign_pointer */ |
35c6edac | 210 | static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) |
b59cfbf7 | 211 | { |
adaf9816 | 212 | if (n) |
f23e59fb | 213 | rcu_assign_pointer(tn_info(n)->parent, tp); |
06801916 SH |
214 | } |
215 | ||
f23e59fb | 216 | #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) |
64c9b6fb AD |
217 | |
218 | /* This provides us with the number of children in this node, in the case of a | |
219 | * leaf this will return 0 meaning none of the children are accessible. | |
6440cc9e | 220 | */ |
2e1ac88a | 221 | static inline unsigned long child_length(const struct key_vector *tn) |
06801916 | 222 | { |
64c9b6fb | 223 | return (1ul << tn->bits) & ~(1ul); |
06801916 | 224 | } |
2373ce1c | 225 | |
88bae714 AD |
226 | #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) |
227 | ||
2e1ac88a AD |
228 | static inline unsigned long get_index(t_key key, struct key_vector *kv) |
229 | { | |
230 | unsigned long index = key ^ kv->key; | |
231 | ||
88bae714 AD |
232 | if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) |
233 | return 0; | |
234 | ||
2e1ac88a AD |
235 | return index >> kv->pos; |
236 | } | |
237 | ||
e9b44019 AD |
238 | /* To understand this stuff, an understanding of keys and all their bits is |
239 | * necessary. Every node in the trie has a key associated with it, but not | |
240 | * all of the bits in that key are significant. | |
241 | * | |
242 | * Consider a node 'n' and its parent 'tp'. | |
243 | * | |
244 | * If n is a leaf, every bit in its key is significant. Its presence is | |
245 | * necessitated by path compression, since during a tree traversal (when | |
246 | * searching for a leaf - unless we are doing an insertion) we will completely | |
247 | * ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
248 | * a potentially successful search, that we have indeed been walking the | |
249 | * correct key path. | |
250 | * | |
251 | * Note that we can never "miss" the correct key in the tree if present by | |
252 | * following the wrong path. Path compression ensures that segments of the key | |
253 | * that are the same for all keys with a given prefix are skipped, but the | |
254 | * skipped part *is* identical for each node in the subtrie below the skipped | |
255 | * bit! trie_insert() in this implementation takes care of that. | |
256 | * | |
257 | * if n is an internal node - a 'tnode' here, the various parts of its key | |
258 | * have many different meanings. | |
259 | * | |
260 | * Example: | |
261 | * _________________________________________________________________ | |
262 | * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
263 | * ----------------------------------------------------------------- | |
264 | * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 | |
265 | * | |
266 | * _________________________________________________________________ | |
267 | * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
268 | * ----------------------------------------------------------------- | |
269 | * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | |
270 | * | |
271 | * tp->pos = 22 | |
272 | * tp->bits = 3 | |
273 | * n->pos = 13 | |
274 | * n->bits = 4 | |
275 | * | |
276 | * First, let's just ignore the bits that come before the parent tp, that is | |
277 | * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this | |
278 | * point we do not use them for anything. | |
279 | * | |
280 | * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
281 | * index into the parent's child array. That is, they will be used to find | |
282 | * 'n' among tp's children. | |
283 | * | |
98a384ec | 284 | * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits |
e9b44019 AD |
285 | * for the node n. |
286 | * | |
287 | * All the bits we have seen so far are significant to the node n. The rest | |
288 | * of the bits are really not needed or indeed known in n->key. | |
289 | * | |
290 | * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | |
291 | * n's child array, and will of course be different for each child. | |
292 | * | |
98a384ec | 293 | * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown |
e9b44019 AD |
294 | * at this point. |
295 | */ | |
19baf839 | 296 | |
f5026fab DL |
297 | static const int halve_threshold = 25; |
298 | static const int inflate_threshold = 50; | |
345aa031 | 299 | static const int halve_threshold_root = 15; |
80b71b80 | 300 | static const int inflate_threshold_root = 30; |
2373ce1c RO |
301 | |
302 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 303 | { |
2373ce1c RO |
304 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
305 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
306 | } |
307 | ||
2373ce1c | 308 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 309 | { |
2373ce1c RO |
310 | call_rcu(&fa->rcu, __alias_free_mem); |
311 | } | |
91b9a277 | 312 | |
37fd30f2 | 313 | #define TNODE_KMALLOC_MAX \ |
35c6edac | 314 | ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
1de3d87b | 315 | #define TNODE_VMALLOC_MAX \ |
35c6edac | 316 | ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
91b9a277 | 317 | |
37fd30f2 | 318 | static void __node_free_rcu(struct rcu_head *head) |
387a5487 | 319 | { |
56ca2adf | 320 | struct tnode *n = container_of(head, struct tnode, rcu); |
37fd30f2 | 321 | |
56ca2adf | 322 | if (!n->tn_bits) |
37fd30f2 | 323 | kmem_cache_free(trie_leaf_kmem, n); |
37fd30f2 | 324 | else |
1d5cfdb0 | 325 | kvfree(n); |
387a5487 SH |
326 | } |
327 | ||
56ca2adf | 328 | #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) |
37fd30f2 | 329 | |
dc35dbed | 330 | static struct tnode *tnode_alloc(int bits) |
f0e36f8c | 331 | { |
1de3d87b AD |
332 | size_t size; |
333 | ||
334 | /* verify bits is within bounds */ | |
335 | if (bits > TNODE_VMALLOC_MAX) | |
336 | return NULL; | |
337 | ||
338 | /* determine size and verify it is non-zero and didn't overflow */ | |
339 | size = TNODE_SIZE(1ul << bits); | |
340 | ||
2373ce1c | 341 | if (size <= PAGE_SIZE) |
8d965444 | 342 | return kzalloc(size, GFP_KERNEL); |
15be75cd | 343 | else |
7a1c8e5a | 344 | return vzalloc(size); |
15be75cd | 345 | } |
2373ce1c | 346 | |
35c6edac | 347 | static inline void empty_child_inc(struct key_vector *n) |
95f60ea3 | 348 | { |
6e22d174 | 349 | ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; |
95f60ea3 AD |
350 | } |
351 | ||
35c6edac | 352 | static inline void empty_child_dec(struct key_vector *n) |
95f60ea3 | 353 | { |
6e22d174 | 354 | tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; |
95f60ea3 AD |
355 | } |
356 | ||
35c6edac | 357 | static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) |
2373ce1c | 358 | { |
f38b24c9 FY |
359 | struct key_vector *l; |
360 | struct tnode *kv; | |
dc35dbed | 361 | |
f38b24c9 | 362 | kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
dc35dbed AD |
363 | if (!kv) |
364 | return NULL; | |
365 | ||
366 | /* initialize key vector */ | |
f38b24c9 | 367 | l = kv->kv; |
dc35dbed AD |
368 | l->key = key; |
369 | l->pos = 0; | |
370 | l->bits = 0; | |
371 | l->slen = fa->fa_slen; | |
372 | ||
373 | /* link leaf to fib alias */ | |
374 | INIT_HLIST_HEAD(&l->leaf); | |
375 | hlist_add_head(&fa->fa_list, &l->leaf); | |
376 | ||
2373ce1c RO |
377 | return l; |
378 | } | |
379 | ||
35c6edac | 380 | static struct key_vector *tnode_new(t_key key, int pos, int bits) |
19baf839 | 381 | { |
64c9b6fb | 382 | unsigned int shift = pos + bits; |
f38b24c9 FY |
383 | struct key_vector *tn; |
384 | struct tnode *tnode; | |
64c9b6fb AD |
385 | |
386 | /* verify bits and pos their msb bits clear and values are valid */ | |
387 | BUG_ON(!bits || (shift > KEYLENGTH)); | |
19baf839 | 388 | |
f38b24c9 | 389 | tnode = tnode_alloc(bits); |
dc35dbed AD |
390 | if (!tnode) |
391 | return NULL; | |
392 | ||
f38b24c9 FY |
393 | pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), |
394 | sizeof(struct key_vector *) << bits); | |
395 | ||
dc35dbed | 396 | if (bits == KEYLENGTH) |
6e22d174 | 397 | tnode->full_children = 1; |
dc35dbed | 398 | else |
6e22d174 | 399 | tnode->empty_children = 1ul << bits; |
dc35dbed | 400 | |
f38b24c9 | 401 | tn = tnode->kv; |
dc35dbed AD |
402 | tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; |
403 | tn->pos = pos; | |
404 | tn->bits = bits; | |
405 | tn->slen = pos; | |
406 | ||
19baf839 RO |
407 | return tn; |
408 | } | |
409 | ||
e9b44019 | 410 | /* Check whether a tnode 'n' is "full", i.e. it is an internal node |
19baf839 RO |
411 | * and no bits are skipped. See discussion in dyntree paper p. 6 |
412 | */ | |
35c6edac | 413 | static inline int tnode_full(struct key_vector *tn, struct key_vector *n) |
19baf839 | 414 | { |
e9b44019 | 415 | return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); |
19baf839 RO |
416 | } |
417 | ||
ff181ed8 AD |
418 | /* Add a child at position i overwriting the old value. |
419 | * Update the value of full_children and empty_children. | |
420 | */ | |
35c6edac AD |
421 | static void put_child(struct key_vector *tn, unsigned long i, |
422 | struct key_vector *n) | |
19baf839 | 423 | { |
754baf8d | 424 | struct key_vector *chi = get_child(tn, i); |
ff181ed8 | 425 | int isfull, wasfull; |
19baf839 | 426 | |
2e1ac88a | 427 | BUG_ON(i >= child_length(tn)); |
0c7770c7 | 428 | |
95f60ea3 | 429 | /* update emptyChildren, overflow into fullChildren */ |
00db4124 | 430 | if (!n && chi) |
95f60ea3 | 431 | empty_child_inc(tn); |
00db4124 | 432 | if (n && !chi) |
95f60ea3 | 433 | empty_child_dec(tn); |
c877efb2 | 434 | |
19baf839 | 435 | /* update fullChildren */ |
ff181ed8 | 436 | wasfull = tnode_full(tn, chi); |
19baf839 | 437 | isfull = tnode_full(tn, n); |
ff181ed8 | 438 | |
c877efb2 | 439 | if (wasfull && !isfull) |
6e22d174 | 440 | tn_info(tn)->full_children--; |
c877efb2 | 441 | else if (!wasfull && isfull) |
6e22d174 | 442 | tn_info(tn)->full_children++; |
91b9a277 | 443 | |
5405afd1 AD |
444 | if (n && (tn->slen < n->slen)) |
445 | tn->slen = n->slen; | |
446 | ||
41b489fd | 447 | rcu_assign_pointer(tn->tnode[i], n); |
19baf839 RO |
448 | } |
449 | ||
35c6edac | 450 | static void update_children(struct key_vector *tn) |
69fa57b1 AD |
451 | { |
452 | unsigned long i; | |
453 | ||
454 | /* update all of the child parent pointers */ | |
2e1ac88a | 455 | for (i = child_length(tn); i;) { |
754baf8d | 456 | struct key_vector *inode = get_child(tn, --i); |
69fa57b1 AD |
457 | |
458 | if (!inode) | |
459 | continue; | |
460 | ||
461 | /* Either update the children of a tnode that | |
462 | * already belongs to us or update the child | |
463 | * to point to ourselves. | |
464 | */ | |
465 | if (node_parent(inode) == tn) | |
466 | update_children(inode); | |
467 | else | |
468 | node_set_parent(inode, tn); | |
469 | } | |
470 | } | |
471 | ||
88bae714 AD |
472 | static inline void put_child_root(struct key_vector *tp, t_key key, |
473 | struct key_vector *n) | |
836a0123 | 474 | { |
88bae714 AD |
475 | if (IS_TRIE(tp)) |
476 | rcu_assign_pointer(tp->tnode[0], n); | |
836a0123 | 477 | else |
88bae714 | 478 | put_child(tp, get_index(key, tp), n); |
836a0123 AD |
479 | } |
480 | ||
35c6edac | 481 | static inline void tnode_free_init(struct key_vector *tn) |
0a5c0475 | 482 | { |
56ca2adf | 483 | tn_info(tn)->rcu.next = NULL; |
fc86a93b AD |
484 | } |
485 | ||
35c6edac AD |
486 | static inline void tnode_free_append(struct key_vector *tn, |
487 | struct key_vector *n) | |
fc86a93b | 488 | { |
56ca2adf AD |
489 | tn_info(n)->rcu.next = tn_info(tn)->rcu.next; |
490 | tn_info(tn)->rcu.next = &tn_info(n)->rcu; | |
fc86a93b | 491 | } |
0a5c0475 | 492 | |
35c6edac | 493 | static void tnode_free(struct key_vector *tn) |
fc86a93b | 494 | { |
56ca2adf | 495 | struct callback_head *head = &tn_info(tn)->rcu; |
fc86a93b AD |
496 | |
497 | while (head) { | |
498 | head = head->next; | |
41b489fd | 499 | tnode_free_size += TNODE_SIZE(1ul << tn->bits); |
fc86a93b AD |
500 | node_free(tn); |
501 | ||
56ca2adf | 502 | tn = container_of(head, struct tnode, rcu)->kv; |
fc86a93b AD |
503 | } |
504 | ||
505 | if (tnode_free_size >= PAGE_SIZE * sync_pages) { | |
506 | tnode_free_size = 0; | |
507 | synchronize_rcu(); | |
0a5c0475 | 508 | } |
0a5c0475 ED |
509 | } |
510 | ||
88bae714 AD |
511 | static struct key_vector *replace(struct trie *t, |
512 | struct key_vector *oldtnode, | |
513 | struct key_vector *tn) | |
69fa57b1 | 514 | { |
35c6edac | 515 | struct key_vector *tp = node_parent(oldtnode); |
69fa57b1 AD |
516 | unsigned long i; |
517 | ||
518 | /* setup the parent pointer out of and back into this node */ | |
519 | NODE_INIT_PARENT(tn, tp); | |
88bae714 | 520 | put_child_root(tp, tn->key, tn); |
69fa57b1 AD |
521 | |
522 | /* update all of the child parent pointers */ | |
523 | update_children(tn); | |
524 | ||
525 | /* all pointers should be clean so we are done */ | |
526 | tnode_free(oldtnode); | |
527 | ||
528 | /* resize children now that oldtnode is freed */ | |
2e1ac88a | 529 | for (i = child_length(tn); i;) { |
754baf8d | 530 | struct key_vector *inode = get_child(tn, --i); |
69fa57b1 AD |
531 | |
532 | /* resize child node */ | |
533 | if (tnode_full(tn, inode)) | |
88bae714 | 534 | tn = resize(t, inode); |
69fa57b1 | 535 | } |
8d8e810c | 536 | |
88bae714 | 537 | return tp; |
69fa57b1 AD |
538 | } |
539 | ||
88bae714 AD |
540 | static struct key_vector *inflate(struct trie *t, |
541 | struct key_vector *oldtnode) | |
19baf839 | 542 | { |
35c6edac | 543 | struct key_vector *tn; |
69fa57b1 | 544 | unsigned long i; |
e9b44019 | 545 | t_key m; |
19baf839 | 546 | |
0c7770c7 | 547 | pr_debug("In inflate\n"); |
19baf839 | 548 | |
e9b44019 | 549 | tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); |
0c7770c7 | 550 | if (!tn) |
8d8e810c | 551 | goto notnode; |
2f36895a | 552 | |
69fa57b1 AD |
553 | /* prepare oldtnode to be freed */ |
554 | tnode_free_init(oldtnode); | |
555 | ||
12c081a5 AD |
556 | /* Assemble all of the pointers in our cluster, in this case that |
557 | * represents all of the pointers out of our allocated nodes that | |
558 | * point to existing tnodes and the links between our allocated | |
559 | * nodes. | |
2f36895a | 560 | */ |
2e1ac88a | 561 | for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { |
754baf8d | 562 | struct key_vector *inode = get_child(oldtnode, --i); |
35c6edac | 563 | struct key_vector *node0, *node1; |
69fa57b1 | 564 | unsigned long j, k; |
c877efb2 | 565 | |
19baf839 | 566 | /* An empty child */ |
51456b29 | 567 | if (!inode) |
19baf839 RO |
568 | continue; |
569 | ||
570 | /* A leaf or an internal node with skipped bits */ | |
adaf9816 | 571 | if (!tnode_full(oldtnode, inode)) { |
e9b44019 | 572 | put_child(tn, get_index(inode->key, tn), inode); |
19baf839 RO |
573 | continue; |
574 | } | |
575 | ||
69fa57b1 AD |
576 | /* drop the node in the old tnode free list */ |
577 | tnode_free_append(oldtnode, inode); | |
578 | ||
19baf839 | 579 | /* An internal node with two children */ |
19baf839 | 580 | if (inode->bits == 1) { |
754baf8d AD |
581 | put_child(tn, 2 * i + 1, get_child(inode, 1)); |
582 | put_child(tn, 2 * i, get_child(inode, 0)); | |
91b9a277 | 583 | continue; |
19baf839 RO |
584 | } |
585 | ||
91b9a277 | 586 | /* We will replace this node 'inode' with two new |
12c081a5 | 587 | * ones, 'node0' and 'node1', each with half of the |
91b9a277 OJ |
588 | * original children. The two new nodes will have |
589 | * a position one bit further down the key and this | |
590 | * means that the "significant" part of their keys | |
591 | * (see the discussion near the top of this file) | |
592 | * will differ by one bit, which will be "0" in | |
12c081a5 | 593 | * node0's key and "1" in node1's key. Since we are |
91b9a277 OJ |
594 | * moving the key position by one step, the bit that |
595 | * we are moving away from - the bit at position | |
12c081a5 AD |
596 | * (tn->pos) - is the one that will differ between |
597 | * node0 and node1. So... we synthesize that bit in the | |
598 | * two new keys. | |
91b9a277 | 599 | */ |
12c081a5 AD |
600 | node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); |
601 | if (!node1) | |
602 | goto nomem; | |
69fa57b1 | 603 | node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); |
12c081a5 | 604 | |
69fa57b1 | 605 | tnode_free_append(tn, node1); |
12c081a5 AD |
606 | if (!node0) |
607 | goto nomem; | |
608 | tnode_free_append(tn, node0); | |
609 | ||
610 | /* populate child pointers in new nodes */ | |
2e1ac88a | 611 | for (k = child_length(inode), j = k / 2; j;) { |
754baf8d AD |
612 | put_child(node1, --j, get_child(inode, --k)); |
613 | put_child(node0, j, get_child(inode, j)); | |
614 | put_child(node1, --j, get_child(inode, --k)); | |
615 | put_child(node0, j, get_child(inode, j)); | |
12c081a5 | 616 | } |
19baf839 | 617 | |
12c081a5 AD |
618 | /* link new nodes to parent */ |
619 | NODE_INIT_PARENT(node1, tn); | |
620 | NODE_INIT_PARENT(node0, tn); | |
2f36895a | 621 | |
12c081a5 AD |
622 | /* link parent to nodes */ |
623 | put_child(tn, 2 * i + 1, node1); | |
624 | put_child(tn, 2 * i, node0); | |
625 | } | |
2f36895a | 626 | |
69fa57b1 | 627 | /* setup the parent pointers into and out of this node */ |
8d8e810c | 628 | return replace(t, oldtnode, tn); |
2f80b3c8 | 629 | nomem: |
fc86a93b AD |
630 | /* all pointers should be clean so we are done */ |
631 | tnode_free(tn); | |
8d8e810c AD |
632 | notnode: |
633 | return NULL; | |
19baf839 RO |
634 | } |
635 | ||
88bae714 AD |
636 | static struct key_vector *halve(struct trie *t, |
637 | struct key_vector *oldtnode) | |
19baf839 | 638 | { |
35c6edac | 639 | struct key_vector *tn; |
12c081a5 | 640 | unsigned long i; |
19baf839 | 641 | |
0c7770c7 | 642 | pr_debug("In halve\n"); |
c877efb2 | 643 | |
e9b44019 | 644 | tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); |
2f80b3c8 | 645 | if (!tn) |
8d8e810c | 646 | goto notnode; |
2f36895a | 647 | |
69fa57b1 AD |
648 | /* prepare oldtnode to be freed */ |
649 | tnode_free_init(oldtnode); | |
650 | ||
12c081a5 AD |
651 | /* Assemble all of the pointers in our cluster, in this case that |
652 | * represents all of the pointers out of our allocated nodes that | |
653 | * point to existing tnodes and the links between our allocated | |
654 | * nodes. | |
2f36895a | 655 | */ |
2e1ac88a | 656 | for (i = child_length(oldtnode); i;) { |
754baf8d AD |
657 | struct key_vector *node1 = get_child(oldtnode, --i); |
658 | struct key_vector *node0 = get_child(oldtnode, --i); | |
35c6edac | 659 | struct key_vector *inode; |
2f36895a | 660 | |
12c081a5 AD |
661 | /* At least one of the children is empty */ |
662 | if (!node1 || !node0) { | |
663 | put_child(tn, i / 2, node1 ? : node0); | |
664 | continue; | |
665 | } | |
c877efb2 | 666 | |
2f36895a | 667 | /* Two nonempty children */ |
12c081a5 | 668 | inode = tnode_new(node0->key, oldtnode->pos, 1); |
8d8e810c AD |
669 | if (!inode) |
670 | goto nomem; | |
12c081a5 | 671 | tnode_free_append(tn, inode); |
2f36895a | 672 | |
12c081a5 AD |
673 | /* initialize pointers out of node */ |
674 | put_child(inode, 1, node1); | |
675 | put_child(inode, 0, node0); | |
676 | NODE_INIT_PARENT(inode, tn); | |
677 | ||
678 | /* link parent to node */ | |
679 | put_child(tn, i / 2, inode); | |
2f36895a | 680 | } |
19baf839 | 681 | |
69fa57b1 | 682 | /* setup the parent pointers into and out of this node */ |
8d8e810c AD |
683 | return replace(t, oldtnode, tn); |
684 | nomem: | |
685 | /* all pointers should be clean so we are done */ | |
686 | tnode_free(tn); | |
687 | notnode: | |
688 | return NULL; | |
19baf839 RO |
689 | } |
690 | ||
88bae714 AD |
691 | static struct key_vector *collapse(struct trie *t, |
692 | struct key_vector *oldtnode) | |
95f60ea3 | 693 | { |
35c6edac | 694 | struct key_vector *n, *tp; |
95f60ea3 AD |
695 | unsigned long i; |
696 | ||
697 | /* scan the tnode looking for that one child that might still exist */ | |
2e1ac88a | 698 | for (n = NULL, i = child_length(oldtnode); !n && i;) |
754baf8d | 699 | n = get_child(oldtnode, --i); |
95f60ea3 AD |
700 | |
701 | /* compress one level */ | |
702 | tp = node_parent(oldtnode); | |
88bae714 | 703 | put_child_root(tp, oldtnode->key, n); |
95f60ea3 AD |
704 | node_set_parent(n, tp); |
705 | ||
706 | /* drop dead node */ | |
707 | node_free(oldtnode); | |
88bae714 AD |
708 | |
709 | return tp; | |
95f60ea3 AD |
710 | } |
711 | ||
35c6edac | 712 | static unsigned char update_suffix(struct key_vector *tn) |
5405afd1 AD |
713 | { |
714 | unsigned char slen = tn->pos; | |
715 | unsigned long stride, i; | |
a52ca62c AD |
716 | unsigned char slen_max; |
717 | ||
718 | /* only vector 0 can have a suffix length greater than or equal to | |
719 | * tn->pos + tn->bits, the second highest node will have a suffix | |
720 | * length at most of tn->pos + tn->bits - 1 | |
721 | */ | |
722 | slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); | |
5405afd1 AD |
723 | |
724 | /* search though the list of children looking for nodes that might | |
725 | * have a suffix greater than the one we currently have. This is | |
726 | * why we start with a stride of 2 since a stride of 1 would | |
727 | * represent the nodes with suffix length equal to tn->pos | |
728 | */ | |
2e1ac88a | 729 | for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { |
754baf8d | 730 | struct key_vector *n = get_child(tn, i); |
5405afd1 AD |
731 | |
732 | if (!n || (n->slen <= slen)) | |
733 | continue; | |
734 | ||
735 | /* update stride and slen based on new value */ | |
736 | stride <<= (n->slen - slen); | |
737 | slen = n->slen; | |
738 | i &= ~(stride - 1); | |
739 | ||
a52ca62c AD |
740 | /* stop searching if we have hit the maximum possible value */ |
741 | if (slen >= slen_max) | |
5405afd1 AD |
742 | break; |
743 | } | |
744 | ||
745 | tn->slen = slen; | |
746 | ||
747 | return slen; | |
748 | } | |
749 | ||
f05a4819 AD |
750 | /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
751 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
752 | * Telecommunications, page 6: | |
753 | * "A node is doubled if the ratio of non-empty children to all | |
754 | * children in the *doubled* node is at least 'high'." | |
755 | * | |
756 | * 'high' in this instance is the variable 'inflate_threshold'. It | |
757 | * is expressed as a percentage, so we multiply it with | |
2e1ac88a | 758 | * child_length() and instead of multiplying by 2 (since the |
f05a4819 AD |
759 | * child array will be doubled by inflate()) and multiplying |
760 | * the left-hand side by 100 (to handle the percentage thing) we | |
761 | * multiply the left-hand side by 50. | |
762 | * | |
2e1ac88a | 763 | * The left-hand side may look a bit weird: child_length(tn) |
f05a4819 AD |
764 | * - tn->empty_children is of course the number of non-null children |
765 | * in the current node. tn->full_children is the number of "full" | |
766 | * children, that is non-null tnodes with a skip value of 0. | |
767 | * All of those will be doubled in the resulting inflated tnode, so | |
768 | * we just count them one extra time here. | |
769 | * | |
770 | * A clearer way to write this would be: | |
771 | * | |
772 | * to_be_doubled = tn->full_children; | |
2e1ac88a | 773 | * not_to_be_doubled = child_length(tn) - tn->empty_children - |
f05a4819 AD |
774 | * tn->full_children; |
775 | * | |
2e1ac88a | 776 | * new_child_length = child_length(tn) * 2; |
f05a4819 AD |
777 | * |
778 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / | |
779 | * new_child_length; | |
780 | * if (new_fill_factor >= inflate_threshold) | |
781 | * | |
782 | * ...and so on, tho it would mess up the while () loop. | |
783 | * | |
784 | * anyway, | |
785 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
786 | * inflate_threshold | |
787 | * | |
788 | * avoid a division: | |
789 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
790 | * inflate_threshold * new_child_length | |
791 | * | |
792 | * expand not_to_be_doubled and to_be_doubled, and shorten: | |
2e1ac88a | 793 | * 100 * (child_length(tn) - tn->empty_children + |
f05a4819 AD |
794 | * tn->full_children) >= inflate_threshold * new_child_length |
795 | * | |
796 | * expand new_child_length: | |
2e1ac88a | 797 | * 100 * (child_length(tn) - tn->empty_children + |
f05a4819 | 798 | * tn->full_children) >= |
2e1ac88a | 799 | * inflate_threshold * child_length(tn) * 2 |
f05a4819 AD |
800 | * |
801 | * shorten again: | |
2e1ac88a | 802 | * 50 * (tn->full_children + child_length(tn) - |
f05a4819 | 803 | * tn->empty_children) >= inflate_threshold * |
2e1ac88a | 804 | * child_length(tn) |
f05a4819 AD |
805 | * |
806 | */ | |
35c6edac | 807 | static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) |
f05a4819 | 808 | { |
2e1ac88a | 809 | unsigned long used = child_length(tn); |
f05a4819 AD |
810 | unsigned long threshold = used; |
811 | ||
812 | /* Keep root node larger */ | |
88bae714 | 813 | threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; |
6e22d174 AD |
814 | used -= tn_info(tn)->empty_children; |
815 | used += tn_info(tn)->full_children; | |
f05a4819 | 816 | |
95f60ea3 AD |
817 | /* if bits == KEYLENGTH then pos = 0, and will fail below */ |
818 | ||
819 | return (used > 1) && tn->pos && ((50 * used) >= threshold); | |
f05a4819 AD |
820 | } |
821 | ||
35c6edac | 822 | static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) |
f05a4819 | 823 | { |
2e1ac88a | 824 | unsigned long used = child_length(tn); |
f05a4819 AD |
825 | unsigned long threshold = used; |
826 | ||
827 | /* Keep root node larger */ | |
88bae714 | 828 | threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; |
6e22d174 | 829 | used -= tn_info(tn)->empty_children; |
f05a4819 | 830 | |
95f60ea3 AD |
831 | /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ |
832 | ||
833 | return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); | |
834 | } | |
835 | ||
35c6edac | 836 | static inline bool should_collapse(struct key_vector *tn) |
95f60ea3 | 837 | { |
2e1ac88a | 838 | unsigned long used = child_length(tn); |
95f60ea3 | 839 | |
6e22d174 | 840 | used -= tn_info(tn)->empty_children; |
95f60ea3 AD |
841 | |
842 | /* account for bits == KEYLENGTH case */ | |
6e22d174 | 843 | if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) |
95f60ea3 AD |
844 | used -= KEY_MAX; |
845 | ||
846 | /* One child or none, time to drop us from the trie */ | |
847 | return used < 2; | |
f05a4819 AD |
848 | } |
849 | ||
cf3637bb | 850 | #define MAX_WORK 10 |
88bae714 | 851 | static struct key_vector *resize(struct trie *t, struct key_vector *tn) |
cf3637bb | 852 | { |
8d8e810c AD |
853 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
854 | struct trie_use_stats __percpu *stats = t->stats; | |
855 | #endif | |
35c6edac | 856 | struct key_vector *tp = node_parent(tn); |
88bae714 | 857 | unsigned long cindex = get_index(tn->key, tp); |
a80e89d4 | 858 | int max_work = MAX_WORK; |
cf3637bb | 859 | |
cf3637bb AD |
860 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
861 | tn, inflate_threshold, halve_threshold); | |
862 | ||
ff181ed8 AD |
863 | /* track the tnode via the pointer from the parent instead of |
864 | * doing it ourselves. This way we can let RCU fully do its | |
865 | * thing without us interfering | |
866 | */ | |
88bae714 | 867 | BUG_ON(tn != get_child(tp, cindex)); |
ff181ed8 | 868 | |
f05a4819 AD |
869 | /* Double as long as the resulting node has a number of |
870 | * nonempty nodes that are above the threshold. | |
cf3637bb | 871 | */ |
b6f15f82 | 872 | while (should_inflate(tp, tn) && max_work) { |
88bae714 AD |
873 | tp = inflate(t, tn); |
874 | if (!tp) { | |
cf3637bb | 875 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
8d8e810c | 876 | this_cpu_inc(stats->resize_node_skipped); |
cf3637bb AD |
877 | #endif |
878 | break; | |
879 | } | |
ff181ed8 | 880 | |
b6f15f82 | 881 | max_work--; |
88bae714 | 882 | tn = get_child(tp, cindex); |
cf3637bb AD |
883 | } |
884 | ||
b6f15f82 AD |
885 | /* update parent in case inflate failed */ |
886 | tp = node_parent(tn); | |
887 | ||
cf3637bb AD |
888 | /* Return if at least one inflate is run */ |
889 | if (max_work != MAX_WORK) | |
b6f15f82 | 890 | return tp; |
cf3637bb | 891 | |
f05a4819 | 892 | /* Halve as long as the number of empty children in this |
cf3637bb AD |
893 | * node is above threshold. |
894 | */ | |
b6f15f82 | 895 | while (should_halve(tp, tn) && max_work) { |
88bae714 AD |
896 | tp = halve(t, tn); |
897 | if (!tp) { | |
cf3637bb | 898 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
8d8e810c | 899 | this_cpu_inc(stats->resize_node_skipped); |
cf3637bb AD |
900 | #endif |
901 | break; | |
902 | } | |
cf3637bb | 903 | |
b6f15f82 | 904 | max_work--; |
88bae714 | 905 | tn = get_child(tp, cindex); |
ff181ed8 | 906 | } |
cf3637bb AD |
907 | |
908 | /* Only one child remains */ | |
88bae714 AD |
909 | if (should_collapse(tn)) |
910 | return collapse(t, tn); | |
911 | ||
b6f15f82 | 912 | /* update parent in case halve failed */ |
a52ca62c | 913 | return node_parent(tn); |
cf3637bb AD |
914 | } |
915 | ||
1a239173 | 916 | static void node_pull_suffix(struct key_vector *tn, unsigned char slen) |
5405afd1 | 917 | { |
1a239173 AD |
918 | unsigned char node_slen = tn->slen; |
919 | ||
920 | while ((node_slen > tn->pos) && (node_slen > slen)) { | |
921 | slen = update_suffix(tn); | |
922 | if (node_slen == slen) | |
5405afd1 | 923 | break; |
1a239173 AD |
924 | |
925 | tn = node_parent(tn); | |
926 | node_slen = tn->slen; | |
5405afd1 AD |
927 | } |
928 | } | |
929 | ||
1a239173 | 930 | static void node_push_suffix(struct key_vector *tn, unsigned char slen) |
19baf839 | 931 | { |
1a239173 AD |
932 | while (tn->slen < slen) { |
933 | tn->slen = slen; | |
5405afd1 AD |
934 | tn = node_parent(tn); |
935 | } | |
936 | } | |
937 | ||
2373ce1c | 938 | /* rcu_read_lock needs to be hold by caller from readside */ |
35c6edac AD |
939 | static struct key_vector *fib_find_node(struct trie *t, |
940 | struct key_vector **tp, u32 key) | |
19baf839 | 941 | { |
88bae714 AD |
942 | struct key_vector *pn, *n = t->kv; |
943 | unsigned long index = 0; | |
944 | ||
945 | do { | |
946 | pn = n; | |
947 | n = get_child_rcu(n, index); | |
948 | ||
949 | if (!n) | |
950 | break; | |
939afb06 | 951 | |
88bae714 | 952 | index = get_cindex(key, n); |
939afb06 AD |
953 | |
954 | /* This bit of code is a bit tricky but it combines multiple | |
955 | * checks into a single check. The prefix consists of the | |
956 | * prefix plus zeros for the bits in the cindex. The index | |
957 | * is the difference between the key and this value. From | |
958 | * this we can actually derive several pieces of data. | |
d4a975e8 | 959 | * if (index >= (1ul << bits)) |
939afb06 | 960 | * we have a mismatch in skip bits and failed |
b3832117 AD |
961 | * else |
962 | * we know the value is cindex | |
d4a975e8 AD |
963 | * |
964 | * This check is safe even if bits == KEYLENGTH due to the | |
965 | * fact that we can only allocate a node with 32 bits if a | |
966 | * long is greater than 32 bits. | |
939afb06 | 967 | */ |
d4a975e8 AD |
968 | if (index >= (1ul << n->bits)) { |
969 | n = NULL; | |
970 | break; | |
971 | } | |
939afb06 | 972 | |
88bae714 AD |
973 | /* keep searching until we find a perfect match leaf or NULL */ |
974 | } while (IS_TNODE(n)); | |
91b9a277 | 975 | |
35c6edac | 976 | *tp = pn; |
d4a975e8 | 977 | |
939afb06 | 978 | return n; |
19baf839 RO |
979 | } |
980 | ||
02525368 AD |
981 | /* Return the first fib alias matching TOS with |
982 | * priority less than or equal to PRIO. | |
983 | */ | |
79e5ad2c | 984 | static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, |
0b65bd97 | 985 | u8 tos, u32 prio, u32 tb_id) |
02525368 AD |
986 | { |
987 | struct fib_alias *fa; | |
988 | ||
989 | if (!fah) | |
990 | return NULL; | |
991 | ||
56315f9e | 992 | hlist_for_each_entry(fa, fah, fa_list) { |
79e5ad2c AD |
993 | if (fa->fa_slen < slen) |
994 | continue; | |
995 | if (fa->fa_slen != slen) | |
996 | break; | |
0b65bd97 AD |
997 | if (fa->tb_id > tb_id) |
998 | continue; | |
999 | if (fa->tb_id != tb_id) | |
1000 | break; | |
02525368 AD |
1001 | if (fa->fa_tos > tos) |
1002 | continue; | |
1003 | if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) | |
1004 | return fa; | |
1005 | } | |
1006 | ||
1007 | return NULL; | |
1008 | } | |
1009 | ||
35c6edac | 1010 | static void trie_rebalance(struct trie *t, struct key_vector *tn) |
19baf839 | 1011 | { |
88bae714 AD |
1012 | while (!IS_TRIE(tn)) |
1013 | tn = resize(t, tn); | |
19baf839 RO |
1014 | } |
1015 | ||
35c6edac | 1016 | static int fib_insert_node(struct trie *t, struct key_vector *tp, |
d5d6487c | 1017 | struct fib_alias *new, t_key key) |
19baf839 | 1018 | { |
35c6edac | 1019 | struct key_vector *n, *l; |
19baf839 | 1020 | |
d5d6487c | 1021 | l = leaf_new(key, new); |
79e5ad2c | 1022 | if (!l) |
8d8e810c | 1023 | goto noleaf; |
d5d6487c AD |
1024 | |
1025 | /* retrieve child from parent node */ | |
88bae714 | 1026 | n = get_child(tp, get_index(key, tp)); |
19baf839 | 1027 | |
836a0123 AD |
1028 | /* Case 2: n is a LEAF or a TNODE and the key doesn't match. |
1029 | * | |
1030 | * Add a new tnode here | |
1031 | * first tnode need some special handling | |
1032 | * leaves us in position for handling as case 3 | |
1033 | */ | |
1034 | if (n) { | |
35c6edac | 1035 | struct key_vector *tn; |
19baf839 | 1036 | |
e9b44019 | 1037 | tn = tnode_new(key, __fls(key ^ n->key), 1); |
8d8e810c AD |
1038 | if (!tn) |
1039 | goto notnode; | |
91b9a277 | 1040 | |
836a0123 AD |
1041 | /* initialize routes out of node */ |
1042 | NODE_INIT_PARENT(tn, tp); | |
1043 | put_child(tn, get_index(key, tn) ^ 1, n); | |
19baf839 | 1044 | |
836a0123 | 1045 | /* start adding routes into the node */ |
88bae714 | 1046 | put_child_root(tp, key, tn); |
836a0123 | 1047 | node_set_parent(n, tn); |
e962f302 | 1048 | |
836a0123 | 1049 | /* parent now has a NULL spot where the leaf can go */ |
e962f302 | 1050 | tp = tn; |
19baf839 | 1051 | } |
91b9a277 | 1052 | |
836a0123 | 1053 | /* Case 3: n is NULL, and will just insert a new leaf */ |
a52ca62c | 1054 | node_push_suffix(tp, new->fa_slen); |
d5d6487c | 1055 | NODE_INIT_PARENT(l, tp); |
88bae714 | 1056 | put_child_root(tp, key, l); |
d5d6487c AD |
1057 | trie_rebalance(t, tp); |
1058 | ||
1059 | return 0; | |
8d8e810c AD |
1060 | notnode: |
1061 | node_free(l); | |
1062 | noleaf: | |
1063 | return -ENOMEM; | |
d5d6487c AD |
1064 | } |
1065 | ||
35c6edac AD |
1066 | static int fib_insert_alias(struct trie *t, struct key_vector *tp, |
1067 | struct key_vector *l, struct fib_alias *new, | |
d5d6487c AD |
1068 | struct fib_alias *fa, t_key key) |
1069 | { | |
1070 | if (!l) | |
1071 | return fib_insert_node(t, tp, new, key); | |
1072 | ||
1073 | if (fa) { | |
1074 | hlist_add_before_rcu(&new->fa_list, &fa->fa_list); | |
836a0123 | 1075 | } else { |
d5d6487c AD |
1076 | struct fib_alias *last; |
1077 | ||
1078 | hlist_for_each_entry(last, &l->leaf, fa_list) { | |
1079 | if (new->fa_slen < last->fa_slen) | |
1080 | break; | |
0b65bd97 AD |
1081 | if ((new->fa_slen == last->fa_slen) && |
1082 | (new->tb_id > last->tb_id)) | |
1083 | break; | |
d5d6487c AD |
1084 | fa = last; |
1085 | } | |
1086 | ||
1087 | if (fa) | |
1088 | hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); | |
1089 | else | |
1090 | hlist_add_head_rcu(&new->fa_list, &l->leaf); | |
836a0123 | 1091 | } |
2373ce1c | 1092 | |
d5d6487c AD |
1093 | /* if we added to the tail node then we need to update slen */ |
1094 | if (l->slen < new->fa_slen) { | |
1095 | l->slen = new->fa_slen; | |
1a239173 | 1096 | node_push_suffix(tp, new->fa_slen); |
d5d6487c AD |
1097 | } |
1098 | ||
1099 | return 0; | |
19baf839 RO |
1100 | } |
1101 | ||
78055998 | 1102 | static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) |
ba277e8e | 1103 | { |
78055998 DA |
1104 | if (plen > KEYLENGTH) { |
1105 | NL_SET_ERR_MSG(extack, "Invalid prefix length"); | |
ba277e8e | 1106 | return false; |
78055998 | 1107 | } |
ba277e8e | 1108 | |
78055998 DA |
1109 | if ((plen < KEYLENGTH) && (key << plen)) { |
1110 | NL_SET_ERR_MSG(extack, | |
1111 | "Invalid prefix for given prefix length"); | |
ba277e8e | 1112 | return false; |
78055998 | 1113 | } |
ba277e8e DA |
1114 | |
1115 | return true; | |
1116 | } | |
1117 | ||
d5d6487c | 1118 | /* Caller must hold RTNL. */ |
b90eb754 | 1119 | int fib_table_insert(struct net *net, struct fib_table *tb, |
6d8422a1 | 1120 | struct fib_config *cfg, struct netlink_ext_ack *extack) |
19baf839 | 1121 | { |
2f3a5272 | 1122 | enum fib_event_type event = FIB_EVENT_ENTRY_ADD; |
d4a975e8 | 1123 | struct trie *t = (struct trie *)tb->tb_data; |
19baf839 | 1124 | struct fib_alias *fa, *new_fa; |
35c6edac | 1125 | struct key_vector *l, *tp; |
b93e1fa7 | 1126 | u16 nlflags = NLM_F_EXCL; |
19baf839 | 1127 | struct fib_info *fi; |
79e5ad2c AD |
1128 | u8 plen = cfg->fc_dst_len; |
1129 | u8 slen = KEYLENGTH - plen; | |
4e902c57 | 1130 | u8 tos = cfg->fc_tos; |
d4a975e8 | 1131 | u32 key; |
19baf839 | 1132 | int err; |
19baf839 | 1133 | |
4e902c57 | 1134 | key = ntohl(cfg->fc_dst); |
19baf839 | 1135 | |
78055998 | 1136 | if (!fib_valid_key_len(key, plen, extack)) |
19baf839 RO |
1137 | return -EINVAL; |
1138 | ||
ba277e8e DA |
1139 | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
1140 | ||
6d8422a1 | 1141 | fi = fib_create_info(cfg, extack); |
4e902c57 TG |
1142 | if (IS_ERR(fi)) { |
1143 | err = PTR_ERR(fi); | |
19baf839 | 1144 | goto err; |
4e902c57 | 1145 | } |
19baf839 | 1146 | |
d4a975e8 | 1147 | l = fib_find_node(t, &tp, key); |
0b65bd97 AD |
1148 | fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, |
1149 | tb->tb_id) : NULL; | |
19baf839 RO |
1150 | |
1151 | /* Now fa, if non-NULL, points to the first fib alias | |
1152 | * with the same keys [prefix,tos,priority], if such key already | |
1153 | * exists or to the node before which we will insert new one. | |
1154 | * | |
1155 | * If fa is NULL, we will need to allocate a new one and | |
56315f9e AD |
1156 | * insert to the tail of the section matching the suffix length |
1157 | * of the new alias. | |
19baf839 RO |
1158 | */ |
1159 | ||
936f6f8e JA |
1160 | if (fa && fa->fa_tos == tos && |
1161 | fa->fa_info->fib_priority == fi->fib_priority) { | |
1162 | struct fib_alias *fa_first, *fa_match; | |
19baf839 RO |
1163 | |
1164 | err = -EEXIST; | |
4e902c57 | 1165 | if (cfg->fc_nlflags & NLM_F_EXCL) |
19baf839 RO |
1166 | goto out; |
1167 | ||
b93e1fa7 GN |
1168 | nlflags &= ~NLM_F_EXCL; |
1169 | ||
936f6f8e JA |
1170 | /* We have 2 goals: |
1171 | * 1. Find exact match for type, scope, fib_info to avoid | |
1172 | * duplicate routes | |
1173 | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | |
1174 | */ | |
1175 | fa_match = NULL; | |
1176 | fa_first = fa; | |
56315f9e | 1177 | hlist_for_each_entry_from(fa, fa_list) { |
0b65bd97 AD |
1178 | if ((fa->fa_slen != slen) || |
1179 | (fa->tb_id != tb->tb_id) || | |
1180 | (fa->fa_tos != tos)) | |
936f6f8e JA |
1181 | break; |
1182 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1183 | break; | |
1184 | if (fa->fa_type == cfg->fc_type && | |
936f6f8e JA |
1185 | fa->fa_info == fi) { |
1186 | fa_match = fa; | |
1187 | break; | |
1188 | } | |
1189 | } | |
1190 | ||
4e902c57 | 1191 | if (cfg->fc_nlflags & NLM_F_REPLACE) { |
19baf839 RO |
1192 | struct fib_info *fi_drop; |
1193 | u8 state; | |
1194 | ||
b93e1fa7 | 1195 | nlflags |= NLM_F_REPLACE; |
936f6f8e JA |
1196 | fa = fa_first; |
1197 | if (fa_match) { | |
1198 | if (fa == fa_match) | |
1199 | err = 0; | |
6725033f | 1200 | goto out; |
936f6f8e | 1201 | } |
2373ce1c | 1202 | err = -ENOBUFS; |
e94b1766 | 1203 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
51456b29 | 1204 | if (!new_fa) |
2373ce1c | 1205 | goto out; |
19baf839 RO |
1206 | |
1207 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1208 | new_fa->fa_tos = fa->fa_tos; |
1209 | new_fa->fa_info = fi; | |
4e902c57 | 1210 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1211 | state = fa->fa_state; |
936f6f8e | 1212 | new_fa->fa_state = state & ~FA_S_ACCESSED; |
9b6ebad5 | 1213 | new_fa->fa_slen = fa->fa_slen; |
d4e64c29 | 1214 | new_fa->tb_id = tb->tb_id; |
2392debc | 1215 | new_fa->fa_default = -1; |
19baf839 | 1216 | |
2f3a5272 | 1217 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, |
5b7d616d IS |
1218 | key, plen, fi, |
1219 | new_fa->fa_tos, cfg->fc_type, | |
2f3a5272 | 1220 | tb->tb_id); |
5b7d616d IS |
1221 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
1222 | tb->tb_id, &cfg->fc_nlinfo, nlflags); | |
1223 | ||
56315f9e | 1224 | hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
8e05fd71 | 1225 | |
2373ce1c | 1226 | alias_free_mem_rcu(fa); |
19baf839 RO |
1227 | |
1228 | fib_release_info(fi_drop); | |
1229 | if (state & FA_S_ACCESSED) | |
4ccfe6d4 | 1230 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
b90eb754 | 1231 | |
91b9a277 | 1232 | goto succeeded; |
19baf839 RO |
1233 | } |
1234 | /* Error if we find a perfect match which | |
1235 | * uses the same scope, type, and nexthop | |
1236 | * information. | |
1237 | */ | |
936f6f8e JA |
1238 | if (fa_match) |
1239 | goto out; | |
a07f5f50 | 1240 | |
2f3a5272 IS |
1241 | if (cfg->fc_nlflags & NLM_F_APPEND) { |
1242 | event = FIB_EVENT_ENTRY_APPEND; | |
b93e1fa7 | 1243 | nlflags |= NLM_F_APPEND; |
2f3a5272 | 1244 | } else { |
936f6f8e | 1245 | fa = fa_first; |
2f3a5272 | 1246 | } |
19baf839 RO |
1247 | } |
1248 | err = -ENOENT; | |
4e902c57 | 1249 | if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
19baf839 RO |
1250 | goto out; |
1251 | ||
b93e1fa7 | 1252 | nlflags |= NLM_F_CREATE; |
19baf839 | 1253 | err = -ENOBUFS; |
e94b1766 | 1254 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
51456b29 | 1255 | if (!new_fa) |
19baf839 RO |
1256 | goto out; |
1257 | ||
1258 | new_fa->fa_info = fi; | |
1259 | new_fa->fa_tos = tos; | |
4e902c57 | 1260 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1261 | new_fa->fa_state = 0; |
79e5ad2c | 1262 | new_fa->fa_slen = slen; |
0ddcf43d | 1263 | new_fa->tb_id = tb->tb_id; |
2392debc | 1264 | new_fa->fa_default = -1; |
19baf839 | 1265 | |
9b6ebad5 | 1266 | /* Insert new entry to the list. */ |
d5d6487c AD |
1267 | err = fib_insert_alias(t, tp, l, new_fa, fa, key); |
1268 | if (err) | |
347e3b28 | 1269 | goto out_free_new_fa; |
19baf839 | 1270 | |
21d8c49e DM |
1271 | if (!plen) |
1272 | tb->tb_num_default++; | |
1273 | ||
4ccfe6d4 | 1274 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
2f3a5272 IS |
1275 | call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type, |
1276 | tb->tb_id); | |
0ddcf43d | 1277 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, |
a2bb6d7d | 1278 | &cfg->fc_nlinfo, nlflags); |
19baf839 RO |
1279 | succeeded: |
1280 | return 0; | |
f835e471 RO |
1281 | |
1282 | out_free_new_fa: | |
1283 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1284 | out: |
1285 | fib_release_info(fi); | |
91b9a277 | 1286 | err: |
19baf839 RO |
1287 | return err; |
1288 | } | |
1289 | ||
35c6edac | 1290 | static inline t_key prefix_mismatch(t_key key, struct key_vector *n) |
9f9e636d AD |
1291 | { |
1292 | t_key prefix = n->key; | |
1293 | ||
1294 | return (key ^ prefix) & (prefix | -prefix); | |
1295 | } | |
1296 | ||
345e9b54 | 1297 | /* should be called with rcu_read_lock */ |
22bd5b9b | 1298 | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
ebc0ffae | 1299 | struct fib_result *res, int fib_flags) |
19baf839 | 1300 | { |
0ddcf43d | 1301 | struct trie *t = (struct trie *) tb->tb_data; |
8274a97a AD |
1302 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1303 | struct trie_use_stats __percpu *stats = t->stats; | |
1304 | #endif | |
9f9e636d | 1305 | const t_key key = ntohl(flp->daddr); |
35c6edac | 1306 | struct key_vector *n, *pn; |
79e5ad2c | 1307 | struct fib_alias *fa; |
71e8b67d | 1308 | unsigned long index; |
9f9e636d | 1309 | t_key cindex; |
91b9a277 | 1310 | |
f6d3c192 DA |
1311 | trace_fib_table_lookup(tb->tb_id, flp); |
1312 | ||
88bae714 AD |
1313 | pn = t->kv; |
1314 | cindex = 0; | |
1315 | ||
1316 | n = get_child_rcu(pn, cindex); | |
c877efb2 | 1317 | if (!n) |
345e9b54 | 1318 | return -EAGAIN; |
19baf839 RO |
1319 | |
1320 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
8274a97a | 1321 | this_cpu_inc(stats->gets); |
19baf839 RO |
1322 | #endif |
1323 | ||
9f9e636d AD |
1324 | /* Step 1: Travel to the longest prefix match in the trie */ |
1325 | for (;;) { | |
88bae714 | 1326 | index = get_cindex(key, n); |
9f9e636d AD |
1327 | |
1328 | /* This bit of code is a bit tricky but it combines multiple | |
1329 | * checks into a single check. The prefix consists of the | |
1330 | * prefix plus zeros for the "bits" in the prefix. The index | |
1331 | * is the difference between the key and this value. From | |
1332 | * this we can actually derive several pieces of data. | |
71e8b67d | 1333 | * if (index >= (1ul << bits)) |
9f9e636d | 1334 | * we have a mismatch in skip bits and failed |
b3832117 AD |
1335 | * else |
1336 | * we know the value is cindex | |
71e8b67d AD |
1337 | * |
1338 | * This check is safe even if bits == KEYLENGTH due to the | |
1339 | * fact that we can only allocate a node with 32 bits if a | |
1340 | * long is greater than 32 bits. | |
9f9e636d | 1341 | */ |
71e8b67d | 1342 | if (index >= (1ul << n->bits)) |
9f9e636d | 1343 | break; |
19baf839 | 1344 | |
9f9e636d AD |
1345 | /* we have found a leaf. Prefixes have already been compared */ |
1346 | if (IS_LEAF(n)) | |
a07f5f50 | 1347 | goto found; |
19baf839 | 1348 | |
9f9e636d AD |
1349 | /* only record pn and cindex if we are going to be chopping |
1350 | * bits later. Otherwise we are just wasting cycles. | |
91b9a277 | 1351 | */ |
5405afd1 | 1352 | if (n->slen > n->pos) { |
9f9e636d AD |
1353 | pn = n; |
1354 | cindex = index; | |
91b9a277 | 1355 | } |
19baf839 | 1356 | |
754baf8d | 1357 | n = get_child_rcu(n, index); |
9f9e636d AD |
1358 | if (unlikely(!n)) |
1359 | goto backtrace; | |
1360 | } | |
19baf839 | 1361 | |
9f9e636d AD |
1362 | /* Step 2: Sort out leaves and begin backtracing for longest prefix */ |
1363 | for (;;) { | |
1364 | /* record the pointer where our next node pointer is stored */ | |
35c6edac | 1365 | struct key_vector __rcu **cptr = n->tnode; |
19baf839 | 1366 | |
9f9e636d AD |
1367 | /* This test verifies that none of the bits that differ |
1368 | * between the key and the prefix exist in the region of | |
1369 | * the lsb and higher in the prefix. | |
91b9a277 | 1370 | */ |
5405afd1 | 1371 | if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) |
9f9e636d | 1372 | goto backtrace; |
91b9a277 | 1373 | |
9f9e636d AD |
1374 | /* exit out and process leaf */ |
1375 | if (unlikely(IS_LEAF(n))) | |
1376 | break; | |
91b9a277 | 1377 | |
9f9e636d AD |
1378 | /* Don't bother recording parent info. Since we are in |
1379 | * prefix match mode we will have to come back to wherever | |
1380 | * we started this traversal anyway | |
91b9a277 | 1381 | */ |
91b9a277 | 1382 | |
9f9e636d | 1383 | while ((n = rcu_dereference(*cptr)) == NULL) { |
19baf839 | 1384 | backtrace: |
19baf839 | 1385 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
9f9e636d AD |
1386 | if (!n) |
1387 | this_cpu_inc(stats->null_node_hit); | |
19baf839 | 1388 | #endif |
9f9e636d AD |
1389 | /* If we are at cindex 0 there are no more bits for |
1390 | * us to strip at this level so we must ascend back | |
1391 | * up one level to see if there are any more bits to | |
1392 | * be stripped there. | |
1393 | */ | |
1394 | while (!cindex) { | |
1395 | t_key pkey = pn->key; | |
1396 | ||
88bae714 AD |
1397 | /* If we don't have a parent then there is |
1398 | * nothing for us to do as we do not have any | |
1399 | * further nodes to parse. | |
1400 | */ | |
1401 | if (IS_TRIE(pn)) | |
345e9b54 | 1402 | return -EAGAIN; |
9f9e636d AD |
1403 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1404 | this_cpu_inc(stats->backtrack); | |
1405 | #endif | |
1406 | /* Get Child's index */ | |
88bae714 | 1407 | pn = node_parent_rcu(pn); |
9f9e636d AD |
1408 | cindex = get_index(pkey, pn); |
1409 | } | |
1410 | ||
1411 | /* strip the least significant bit from the cindex */ | |
1412 | cindex &= cindex - 1; | |
1413 | ||
1414 | /* grab pointer for next child node */ | |
41b489fd | 1415 | cptr = &pn->tnode[cindex]; |
c877efb2 | 1416 | } |
19baf839 | 1417 | } |
9f9e636d | 1418 | |
19baf839 | 1419 | found: |
71e8b67d AD |
1420 | /* this line carries forward the xor from earlier in the function */ |
1421 | index = key ^ n->key; | |
1422 | ||
9f9e636d | 1423 | /* Step 3: Process the leaf, if that fails fall back to backtracing */ |
79e5ad2c AD |
1424 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
1425 | struct fib_info *fi = fa->fa_info; | |
1426 | int nhsel, err; | |
345e9b54 | 1427 | |
a5829f53 AD |
1428 | if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { |
1429 | if (index >= (1ul << fa->fa_slen)) | |
1430 | continue; | |
1431 | } | |
79e5ad2c AD |
1432 | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
1433 | continue; | |
1434 | if (fi->fib_dead) | |
1435 | continue; | |
1436 | if (fa->fa_info->fib_scope < flp->flowi4_scope) | |
1437 | continue; | |
1438 | fib_alias_accessed(fa); | |
1439 | err = fib_props[fa->fa_type].error; | |
1440 | if (unlikely(err < 0)) { | |
345e9b54 | 1441 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
79e5ad2c | 1442 | this_cpu_inc(stats->semantic_match_passed); |
345e9b54 | 1443 | #endif |
79e5ad2c AD |
1444 | return err; |
1445 | } | |
1446 | if (fi->fib_flags & RTNH_F_DEAD) | |
1447 | continue; | |
1448 | for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { | |
1449 | const struct fib_nh *nh = &fi->fib_nh[nhsel]; | |
0eeb075f | 1450 | struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); |
79e5ad2c AD |
1451 | |
1452 | if (nh->nh_flags & RTNH_F_DEAD) | |
1453 | continue; | |
0eeb075f AG |
1454 | if (in_dev && |
1455 | IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && | |
1456 | nh->nh_flags & RTNH_F_LINKDOWN && | |
1457 | !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) | |
1458 | continue; | |
58189ca7 | 1459 | if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { |
613d09b3 DA |
1460 | if (flp->flowi4_oif && |
1461 | flp->flowi4_oif != nh->nh_oif) | |
1462 | continue; | |
1463 | } | |
79e5ad2c AD |
1464 | |
1465 | if (!(fib_flags & FIB_LOOKUP_NOREF)) | |
1466 | atomic_inc(&fi->fib_clntref); | |
1467 | ||
6ffd9034 | 1468 | res->prefix = htonl(n->key); |
79e5ad2c AD |
1469 | res->prefixlen = KEYLENGTH - fa->fa_slen; |
1470 | res->nh_sel = nhsel; | |
1471 | res->type = fa->fa_type; | |
1472 | res->scope = fi->fib_scope; | |
1473 | res->fi = fi; | |
1474 | res->table = tb; | |
1475 | res->fa_head = &n->leaf; | |
345e9b54 | 1476 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
79e5ad2c | 1477 | this_cpu_inc(stats->semantic_match_passed); |
345e9b54 | 1478 | #endif |
f6d3c192 DA |
1479 | trace_fib_table_lookup_nh(nh); |
1480 | ||
79e5ad2c | 1481 | return err; |
345e9b54 | 1482 | } |
9b6ebad5 | 1483 | } |
345e9b54 | 1484 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
9b6ebad5 | 1485 | this_cpu_inc(stats->semantic_match_miss); |
345e9b54 | 1486 | #endif |
345e9b54 | 1487 | goto backtrace; |
19baf839 | 1488 | } |
6fc01438 | 1489 | EXPORT_SYMBOL_GPL(fib_table_lookup); |
19baf839 | 1490 | |
35c6edac AD |
1491 | static void fib_remove_alias(struct trie *t, struct key_vector *tp, |
1492 | struct key_vector *l, struct fib_alias *old) | |
d5d6487c AD |
1493 | { |
1494 | /* record the location of the previous list_info entry */ | |
1495 | struct hlist_node **pprev = old->fa_list.pprev; | |
1496 | struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); | |
1497 | ||
1498 | /* remove the fib_alias from the list */ | |
1499 | hlist_del_rcu(&old->fa_list); | |
1500 | ||
1501 | /* if we emptied the list this leaf will be freed and we can sort | |
1502 | * out parent suffix lengths as a part of trie_rebalance | |
1503 | */ | |
1504 | if (hlist_empty(&l->leaf)) { | |
a52ca62c AD |
1505 | if (tp->slen == l->slen) |
1506 | node_pull_suffix(tp, tp->pos); | |
88bae714 | 1507 | put_child_root(tp, l->key, NULL); |
d5d6487c AD |
1508 | node_free(l); |
1509 | trie_rebalance(t, tp); | |
1510 | return; | |
1511 | } | |
1512 | ||
1513 | /* only access fa if it is pointing at the last valid hlist_node */ | |
1514 | if (*pprev) | |
1515 | return; | |
1516 | ||
1517 | /* update the trie with the latest suffix length */ | |
1518 | l->slen = fa->fa_slen; | |
1a239173 | 1519 | node_pull_suffix(tp, fa->fa_slen); |
d5d6487c AD |
1520 | } |
1521 | ||
1522 | /* Caller must hold RTNL. */ | |
b90eb754 | 1523 | int fib_table_delete(struct net *net, struct fib_table *tb, |
78055998 | 1524 | struct fib_config *cfg, struct netlink_ext_ack *extack) |
19baf839 RO |
1525 | { |
1526 | struct trie *t = (struct trie *) tb->tb_data; | |
19baf839 | 1527 | struct fib_alias *fa, *fa_to_delete; |
35c6edac | 1528 | struct key_vector *l, *tp; |
79e5ad2c | 1529 | u8 plen = cfg->fc_dst_len; |
79e5ad2c | 1530 | u8 slen = KEYLENGTH - plen; |
d4a975e8 AD |
1531 | u8 tos = cfg->fc_tos; |
1532 | u32 key; | |
91b9a277 | 1533 | |
4e902c57 | 1534 | key = ntohl(cfg->fc_dst); |
19baf839 | 1535 | |
78055998 | 1536 | if (!fib_valid_key_len(key, plen, extack)) |
19baf839 RO |
1537 | return -EINVAL; |
1538 | ||
d4a975e8 | 1539 | l = fib_find_node(t, &tp, key); |
c877efb2 | 1540 | if (!l) |
19baf839 RO |
1541 | return -ESRCH; |
1542 | ||
0b65bd97 | 1543 | fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); |
19baf839 RO |
1544 | if (!fa) |
1545 | return -ESRCH; | |
1546 | ||
0c7770c7 | 1547 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1548 | |
1549 | fa_to_delete = NULL; | |
56315f9e | 1550 | hlist_for_each_entry_from(fa, fa_list) { |
19baf839 RO |
1551 | struct fib_info *fi = fa->fa_info; |
1552 | ||
0b65bd97 AD |
1553 | if ((fa->fa_slen != slen) || |
1554 | (fa->tb_id != tb->tb_id) || | |
1555 | (fa->fa_tos != tos)) | |
19baf839 RO |
1556 | break; |
1557 | ||
4e902c57 TG |
1558 | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
1559 | (cfg->fc_scope == RT_SCOPE_NOWHERE || | |
37e826c5 | 1560 | fa->fa_info->fib_scope == cfg->fc_scope) && |
74cb3c10 JA |
1561 | (!cfg->fc_prefsrc || |
1562 | fi->fib_prefsrc == cfg->fc_prefsrc) && | |
4e902c57 TG |
1563 | (!cfg->fc_protocol || |
1564 | fi->fib_protocol == cfg->fc_protocol) && | |
9ae28727 | 1565 | fib_nh_match(cfg, fi, extack) == 0) { |
19baf839 RO |
1566 | fa_to_delete = fa; |
1567 | break; | |
1568 | } | |
1569 | } | |
1570 | ||
91b9a277 OJ |
1571 | if (!fa_to_delete) |
1572 | return -ESRCH; | |
19baf839 | 1573 | |
b90eb754 | 1574 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, |
42d5aa76 | 1575 | fa_to_delete->fa_info, tos, |
2f3a5272 | 1576 | fa_to_delete->fa_type, tb->tb_id); |
d5d6487c | 1577 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, |
b8f55831 | 1578 | &cfg->fc_nlinfo, 0); |
91b9a277 | 1579 | |
21d8c49e DM |
1580 | if (!plen) |
1581 | tb->tb_num_default--; | |
1582 | ||
d5d6487c | 1583 | fib_remove_alias(t, tp, l, fa_to_delete); |
19baf839 | 1584 | |
d5d6487c | 1585 | if (fa_to_delete->fa_state & FA_S_ACCESSED) |
4ccfe6d4 | 1586 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
19baf839 | 1587 | |
d5d6487c AD |
1588 | fib_release_info(fa_to_delete->fa_info); |
1589 | alias_free_mem_rcu(fa_to_delete); | |
91b9a277 | 1590 | return 0; |
19baf839 RO |
1591 | } |
1592 | ||
8be33e95 | 1593 | /* Scan for the next leaf starting at the provided key value */ |
35c6edac | 1594 | static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) |
19baf839 | 1595 | { |
35c6edac | 1596 | struct key_vector *pn, *n = *tn; |
8be33e95 | 1597 | unsigned long cindex; |
82cfbb00 | 1598 | |
8be33e95 | 1599 | /* this loop is meant to try and find the key in the trie */ |
88bae714 | 1600 | do { |
8be33e95 AD |
1601 | /* record parent and next child index */ |
1602 | pn = n; | |
c2229fe1 | 1603 | cindex = (key > pn->key) ? get_index(key, pn) : 0; |
88bae714 AD |
1604 | |
1605 | if (cindex >> pn->bits) | |
1606 | break; | |
82cfbb00 | 1607 | |
8be33e95 | 1608 | /* descend into the next child */ |
754baf8d | 1609 | n = get_child_rcu(pn, cindex++); |
88bae714 AD |
1610 | if (!n) |
1611 | break; | |
1612 | ||
1613 | /* guarantee forward progress on the keys */ | |
1614 | if (IS_LEAF(n) && (n->key >= key)) | |
1615 | goto found; | |
1616 | } while (IS_TNODE(n)); | |
82cfbb00 | 1617 | |
8be33e95 | 1618 | /* this loop will search for the next leaf with a greater key */ |
88bae714 | 1619 | while (!IS_TRIE(pn)) { |
8be33e95 AD |
1620 | /* if we exhausted the parent node we will need to climb */ |
1621 | if (cindex >= (1ul << pn->bits)) { | |
1622 | t_key pkey = pn->key; | |
82cfbb00 | 1623 | |
8be33e95 | 1624 | pn = node_parent_rcu(pn); |
8be33e95 AD |
1625 | cindex = get_index(pkey, pn) + 1; |
1626 | continue; | |
1627 | } | |
82cfbb00 | 1628 | |
8be33e95 | 1629 | /* grab the next available node */ |
754baf8d | 1630 | n = get_child_rcu(pn, cindex++); |
8be33e95 AD |
1631 | if (!n) |
1632 | continue; | |
19baf839 | 1633 | |
8be33e95 AD |
1634 | /* no need to compare keys since we bumped the index */ |
1635 | if (IS_LEAF(n)) | |
1636 | goto found; | |
71d67e66 | 1637 | |
8be33e95 AD |
1638 | /* Rescan start scanning in new node */ |
1639 | pn = n; | |
1640 | cindex = 0; | |
1641 | } | |
ec28cf73 | 1642 | |
8be33e95 AD |
1643 | *tn = pn; |
1644 | return NULL; /* Root of trie */ | |
1645 | found: | |
1646 | /* if we are at the limit for keys just return NULL for the tnode */ | |
88bae714 | 1647 | *tn = pn; |
8be33e95 | 1648 | return n; |
71d67e66 SH |
1649 | } |
1650 | ||
0ddcf43d AD |
1651 | static void fib_trie_free(struct fib_table *tb) |
1652 | { | |
1653 | struct trie *t = (struct trie *)tb->tb_data; | |
1654 | struct key_vector *pn = t->kv; | |
1655 | unsigned long cindex = 1; | |
1656 | struct hlist_node *tmp; | |
1657 | struct fib_alias *fa; | |
1658 | ||
1659 | /* walk trie in reverse order and free everything */ | |
1660 | for (;;) { | |
1661 | struct key_vector *n; | |
1662 | ||
1663 | if (!(cindex--)) { | |
1664 | t_key pkey = pn->key; | |
1665 | ||
1666 | if (IS_TRIE(pn)) | |
1667 | break; | |
1668 | ||
1669 | n = pn; | |
1670 | pn = node_parent(pn); | |
1671 | ||
1672 | /* drop emptied tnode */ | |
1673 | put_child_root(pn, n->key, NULL); | |
1674 | node_free(n); | |
1675 | ||
1676 | cindex = get_index(pkey, pn); | |
1677 | ||
1678 | continue; | |
1679 | } | |
1680 | ||
1681 | /* grab the next available node */ | |
1682 | n = get_child(pn, cindex); | |
1683 | if (!n) | |
1684 | continue; | |
1685 | ||
1686 | if (IS_TNODE(n)) { | |
1687 | /* record pn and cindex for leaf walking */ | |
1688 | pn = n; | |
1689 | cindex = 1ul << n->bits; | |
1690 | ||
1691 | continue; | |
1692 | } | |
1693 | ||
1694 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | |
1695 | hlist_del_rcu(&fa->fa_list); | |
1696 | alias_free_mem_rcu(fa); | |
1697 | } | |
1698 | ||
1699 | put_child_root(pn, n->key, NULL); | |
1700 | node_free(n); | |
1701 | } | |
1702 | ||
1703 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1704 | free_percpu(t->stats); | |
1705 | #endif | |
1706 | kfree(tb); | |
1707 | } | |
1708 | ||
1709 | struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) | |
1710 | { | |
1711 | struct trie *ot = (struct trie *)oldtb->tb_data; | |
1712 | struct key_vector *l, *tp = ot->kv; | |
1713 | struct fib_table *local_tb; | |
1714 | struct fib_alias *fa; | |
1715 | struct trie *lt; | |
1716 | t_key key = 0; | |
1717 | ||
1718 | if (oldtb->tb_data == oldtb->__data) | |
1719 | return oldtb; | |
1720 | ||
1721 | local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); | |
1722 | if (!local_tb) | |
1723 | return NULL; | |
1724 | ||
1725 | lt = (struct trie *)local_tb->tb_data; | |
1726 | ||
1727 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | |
1728 | struct key_vector *local_l = NULL, *local_tp; | |
1729 | ||
1730 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | |
1731 | struct fib_alias *new_fa; | |
1732 | ||
1733 | if (local_tb->tb_id != fa->tb_id) | |
1734 | continue; | |
1735 | ||
1736 | /* clone fa for new local table */ | |
1737 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | |
1738 | if (!new_fa) | |
1739 | goto out; | |
1740 | ||
1741 | memcpy(new_fa, fa, sizeof(*fa)); | |
1742 | ||
1743 | /* insert clone into table */ | |
1744 | if (!local_l) | |
1745 | local_l = fib_find_node(lt, &local_tp, l->key); | |
1746 | ||
1747 | if (fib_insert_alias(lt, local_tp, local_l, new_fa, | |
3114cdfe AD |
1748 | NULL, l->key)) { |
1749 | kmem_cache_free(fn_alias_kmem, new_fa); | |
0ddcf43d | 1750 | goto out; |
3114cdfe | 1751 | } |
0ddcf43d AD |
1752 | } |
1753 | ||
1754 | /* stop loop if key wrapped back to 0 */ | |
1755 | key = l->key + 1; | |
1756 | if (key < l->key) | |
1757 | break; | |
1758 | } | |
1759 | ||
1760 | return local_tb; | |
1761 | out: | |
1762 | fib_trie_free(local_tb); | |
1763 | ||
1764 | return NULL; | |
1765 | } | |
1766 | ||
3b709334 AD |
1767 | /* Caller must hold RTNL */ |
1768 | void fib_table_flush_external(struct fib_table *tb) | |
1769 | { | |
1770 | struct trie *t = (struct trie *)tb->tb_data; | |
1771 | struct key_vector *pn = t->kv; | |
1772 | unsigned long cindex = 1; | |
1773 | struct hlist_node *tmp; | |
1774 | struct fib_alias *fa; | |
1775 | ||
1776 | /* walk trie in reverse order */ | |
1777 | for (;;) { | |
1778 | unsigned char slen = 0; | |
1779 | struct key_vector *n; | |
1780 | ||
1781 | if (!(cindex--)) { | |
1782 | t_key pkey = pn->key; | |
1783 | ||
1784 | /* cannot resize the trie vector */ | |
1785 | if (IS_TRIE(pn)) | |
1786 | break; | |
1787 | ||
a52ca62c AD |
1788 | /* update the suffix to address pulled leaves */ |
1789 | if (pn->slen > pn->pos) | |
1790 | update_suffix(pn); | |
1791 | ||
3b709334 AD |
1792 | /* resize completed node */ |
1793 | pn = resize(t, pn); | |
1794 | cindex = get_index(pkey, pn); | |
1795 | ||
1796 | continue; | |
1797 | } | |
1798 | ||
1799 | /* grab the next available node */ | |
1800 | n = get_child(pn, cindex); | |
1801 | if (!n) | |
1802 | continue; | |
1803 | ||
1804 | if (IS_TNODE(n)) { | |
1805 | /* record pn and cindex for leaf walking */ | |
1806 | pn = n; | |
1807 | cindex = 1ul << n->bits; | |
1808 | ||
1809 | continue; | |
1810 | } | |
1811 | ||
1812 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | |
1813 | /* if alias was cloned to local then we just | |
1814 | * need to remove the local copy from main | |
1815 | */ | |
1816 | if (tb->tb_id != fa->tb_id) { | |
1817 | hlist_del_rcu(&fa->fa_list); | |
1818 | alias_free_mem_rcu(fa); | |
1819 | continue; | |
1820 | } | |
1821 | ||
1822 | /* record local slen */ | |
1823 | slen = fa->fa_slen; | |
1824 | } | |
1825 | ||
1826 | /* update leaf slen */ | |
1827 | n->slen = slen; | |
1828 | ||
1829 | if (hlist_empty(&n->leaf)) { | |
1830 | put_child_root(pn, n->key, NULL); | |
1831 | node_free(n); | |
1832 | } | |
1833 | } | |
1834 | } | |
1835 | ||
8be33e95 | 1836 | /* Caller must hold RTNL. */ |
b90eb754 | 1837 | int fib_table_flush(struct net *net, struct fib_table *tb) |
19baf839 | 1838 | { |
7289e6dd | 1839 | struct trie *t = (struct trie *)tb->tb_data; |
88bae714 AD |
1840 | struct key_vector *pn = t->kv; |
1841 | unsigned long cindex = 1; | |
7289e6dd AD |
1842 | struct hlist_node *tmp; |
1843 | struct fib_alias *fa; | |
82cfbb00 | 1844 | int found = 0; |
19baf839 | 1845 | |
88bae714 AD |
1846 | /* walk trie in reverse order */ |
1847 | for (;;) { | |
1848 | unsigned char slen = 0; | |
1849 | struct key_vector *n; | |
19baf839 | 1850 | |
88bae714 AD |
1851 | if (!(cindex--)) { |
1852 | t_key pkey = pn->key; | |
7289e6dd | 1853 | |
88bae714 AD |
1854 | /* cannot resize the trie vector */ |
1855 | if (IS_TRIE(pn)) | |
1856 | break; | |
7289e6dd | 1857 | |
a52ca62c AD |
1858 | /* update the suffix to address pulled leaves */ |
1859 | if (pn->slen > pn->pos) | |
1860 | update_suffix(pn); | |
1861 | ||
88bae714 AD |
1862 | /* resize completed node */ |
1863 | pn = resize(t, pn); | |
1864 | cindex = get_index(pkey, pn); | |
7289e6dd | 1865 | |
88bae714 AD |
1866 | continue; |
1867 | } | |
7289e6dd | 1868 | |
88bae714 AD |
1869 | /* grab the next available node */ |
1870 | n = get_child(pn, cindex); | |
1871 | if (!n) | |
1872 | continue; | |
7289e6dd | 1873 | |
88bae714 AD |
1874 | if (IS_TNODE(n)) { |
1875 | /* record pn and cindex for leaf walking */ | |
1876 | pn = n; | |
1877 | cindex = 1ul << n->bits; | |
7289e6dd | 1878 | |
88bae714 AD |
1879 | continue; |
1880 | } | |
7289e6dd | 1881 | |
88bae714 AD |
1882 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
1883 | struct fib_info *fi = fa->fa_info; | |
7289e6dd | 1884 | |
58e3bdd5 IS |
1885 | if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || |
1886 | tb->tb_id != fa->tb_id) { | |
88bae714 AD |
1887 | slen = fa->fa_slen; |
1888 | continue; | |
1889 | } | |
7289e6dd | 1890 | |
b90eb754 JP |
1891 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, |
1892 | n->key, | |
1893 | KEYLENGTH - fa->fa_slen, | |
1894 | fi, fa->fa_tos, fa->fa_type, | |
2f3a5272 | 1895 | tb->tb_id); |
7289e6dd AD |
1896 | hlist_del_rcu(&fa->fa_list); |
1897 | fib_release_info(fa->fa_info); | |
1898 | alias_free_mem_rcu(fa); | |
1899 | found++; | |
64c62723 AD |
1900 | } |
1901 | ||
88bae714 AD |
1902 | /* update leaf slen */ |
1903 | n->slen = slen; | |
7289e6dd | 1904 | |
88bae714 AD |
1905 | if (hlist_empty(&n->leaf)) { |
1906 | put_child_root(pn, n->key, NULL); | |
1907 | node_free(n); | |
88bae714 | 1908 | } |
64c62723 | 1909 | } |
19baf839 | 1910 | |
0c7770c7 | 1911 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1912 | return found; |
1913 | } | |
1914 | ||
c3852ef7 | 1915 | static void fib_leaf_notify(struct net *net, struct key_vector *l, |
d05f7a7d | 1916 | struct fib_table *tb, struct notifier_block *nb) |
c3852ef7 IS |
1917 | { |
1918 | struct fib_alias *fa; | |
1919 | ||
1920 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | |
1921 | struct fib_info *fi = fa->fa_info; | |
1922 | ||
1923 | if (!fi) | |
1924 | continue; | |
1925 | ||
1926 | /* local and main table can share the same trie, | |
1927 | * so don't notify twice for the same entry. | |
1928 | */ | |
1929 | if (tb->tb_id != fa->tb_id) | |
1930 | continue; | |
1931 | ||
d05f7a7d | 1932 | call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, |
c3852ef7 | 1933 | KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, |
2f3a5272 | 1934 | fa->fa_type, fa->tb_id); |
c3852ef7 IS |
1935 | } |
1936 | } | |
1937 | ||
1938 | static void fib_table_notify(struct net *net, struct fib_table *tb, | |
d05f7a7d | 1939 | struct notifier_block *nb) |
c3852ef7 IS |
1940 | { |
1941 | struct trie *t = (struct trie *)tb->tb_data; | |
1942 | struct key_vector *l, *tp = t->kv; | |
1943 | t_key key = 0; | |
1944 | ||
1945 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | |
d05f7a7d | 1946 | fib_leaf_notify(net, l, tb, nb); |
c3852ef7 IS |
1947 | |
1948 | key = l->key + 1; | |
1949 | /* stop in case of wrap around */ | |
1950 | if (key < l->key) | |
1951 | break; | |
1952 | } | |
1953 | } | |
1954 | ||
d05f7a7d | 1955 | void fib_notify(struct net *net, struct notifier_block *nb) |
c3852ef7 IS |
1956 | { |
1957 | unsigned int h; | |
1958 | ||
1959 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | |
1960 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
1961 | struct fib_table *tb; | |
1962 | ||
1963 | hlist_for_each_entry_rcu(tb, head, tb_hlist) | |
d05f7a7d | 1964 | fib_table_notify(net, tb, nb); |
c3852ef7 IS |
1965 | } |
1966 | } | |
1967 | ||
a7e53531 | 1968 | static void __trie_free_rcu(struct rcu_head *head) |
4aa2c466 | 1969 | { |
a7e53531 | 1970 | struct fib_table *tb = container_of(head, struct fib_table, rcu); |
8274a97a AD |
1971 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1972 | struct trie *t = (struct trie *)tb->tb_data; | |
1973 | ||
0ddcf43d AD |
1974 | if (tb->tb_data == tb->__data) |
1975 | free_percpu(t->stats); | |
8274a97a | 1976 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
4aa2c466 PE |
1977 | kfree(tb); |
1978 | } | |
1979 | ||
a7e53531 AD |
1980 | void fib_free_table(struct fib_table *tb) |
1981 | { | |
1982 | call_rcu(&tb->rcu, __trie_free_rcu); | |
1983 | } | |
1984 | ||
35c6edac | 1985 | static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, |
79e5ad2c | 1986 | struct sk_buff *skb, struct netlink_callback *cb) |
19baf839 | 1987 | { |
79e5ad2c | 1988 | __be32 xkey = htonl(l->key); |
19baf839 | 1989 | struct fib_alias *fa; |
79e5ad2c | 1990 | int i, s_i; |
19baf839 | 1991 | |
79e5ad2c | 1992 | s_i = cb->args[4]; |
19baf839 RO |
1993 | i = 0; |
1994 | ||
2373ce1c | 1995 | /* rcu_read_lock is hold by caller */ |
79e5ad2c | 1996 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
f6c5775f DA |
1997 | int err; |
1998 | ||
19baf839 RO |
1999 | if (i < s_i) { |
2000 | i++; | |
2001 | continue; | |
2002 | } | |
19baf839 | 2003 | |
0ddcf43d AD |
2004 | if (tb->tb_id != fa->tb_id) { |
2005 | i++; | |
2006 | continue; | |
2007 | } | |
2008 | ||
f6c5775f DA |
2009 | err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, |
2010 | cb->nlh->nlmsg_seq, RTM_NEWROUTE, | |
2011 | tb->tb_id, fa->fa_type, | |
2012 | xkey, KEYLENGTH - fa->fa_slen, | |
2013 | fa->fa_tos, fa->fa_info, NLM_F_MULTI); | |
2014 | if (err < 0) { | |
71d67e66 | 2015 | cb->args[4] = i; |
f6c5775f | 2016 | return err; |
19baf839 | 2017 | } |
a88ee229 | 2018 | i++; |
19baf839 | 2019 | } |
a88ee229 | 2020 | |
71d67e66 | 2021 | cb->args[4] = i; |
19baf839 RO |
2022 | return skb->len; |
2023 | } | |
2024 | ||
a7e53531 | 2025 | /* rcu_read_lock needs to be hold by caller from readside */ |
16c6cf8b SH |
2026 | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
2027 | struct netlink_callback *cb) | |
19baf839 | 2028 | { |
8be33e95 | 2029 | struct trie *t = (struct trie *)tb->tb_data; |
88bae714 | 2030 | struct key_vector *l, *tp = t->kv; |
d5ce8a0e SH |
2031 | /* Dump starting at last key. |
2032 | * Note: 0.0.0.0/0 (ie default) is first key. | |
2033 | */ | |
8be33e95 AD |
2034 | int count = cb->args[2]; |
2035 | t_key key = cb->args[3]; | |
a88ee229 | 2036 | |
8be33e95 | 2037 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
f6c5775f DA |
2038 | int err; |
2039 | ||
2040 | err = fn_trie_dump_leaf(l, tb, skb, cb); | |
2041 | if (err < 0) { | |
8be33e95 AD |
2042 | cb->args[3] = key; |
2043 | cb->args[2] = count; | |
f6c5775f | 2044 | return err; |
19baf839 | 2045 | } |
d5ce8a0e | 2046 | |
71d67e66 | 2047 | ++count; |
8be33e95 AD |
2048 | key = l->key + 1; |
2049 | ||
71d67e66 SH |
2050 | memset(&cb->args[4], 0, |
2051 | sizeof(cb->args) - 4*sizeof(cb->args[0])); | |
8be33e95 AD |
2052 | |
2053 | /* stop loop if key wrapped back to 0 */ | |
2054 | if (key < l->key) | |
2055 | break; | |
19baf839 | 2056 | } |
8be33e95 | 2057 | |
8be33e95 AD |
2058 | cb->args[3] = key; |
2059 | cb->args[2] = count; | |
2060 | ||
19baf839 | 2061 | return skb->len; |
19baf839 RO |
2062 | } |
2063 | ||
5348ba85 | 2064 | void __init fib_trie_init(void) |
7f9b8052 | 2065 | { |
a07f5f50 SH |
2066 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
2067 | sizeof(struct fib_alias), | |
bc3c8c1e SH |
2068 | 0, SLAB_PANIC, NULL); |
2069 | ||
2070 | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | |
41b489fd | 2071 | LEAF_SIZE, |
bc3c8c1e | 2072 | 0, SLAB_PANIC, NULL); |
7f9b8052 | 2073 | } |
19baf839 | 2074 | |
0ddcf43d | 2075 | struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) |
19baf839 RO |
2076 | { |
2077 | struct fib_table *tb; | |
2078 | struct trie *t; | |
0ddcf43d AD |
2079 | size_t sz = sizeof(*tb); |
2080 | ||
2081 | if (!alias) | |
2082 | sz += sizeof(struct trie); | |
19baf839 | 2083 | |
0ddcf43d | 2084 | tb = kzalloc(sz, GFP_KERNEL); |
51456b29 | 2085 | if (!tb) |
19baf839 RO |
2086 | return NULL; |
2087 | ||
2088 | tb->tb_id = id; | |
21d8c49e | 2089 | tb->tb_num_default = 0; |
0ddcf43d AD |
2090 | tb->tb_data = (alias ? alias->__data : tb->__data); |
2091 | ||
2092 | if (alias) | |
2093 | return tb; | |
19baf839 RO |
2094 | |
2095 | t = (struct trie *) tb->tb_data; | |
88bae714 AD |
2096 | t->kv[0].pos = KEYLENGTH; |
2097 | t->kv[0].slen = KEYLENGTH; | |
8274a97a AD |
2098 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
2099 | t->stats = alloc_percpu(struct trie_use_stats); | |
2100 | if (!t->stats) { | |
2101 | kfree(tb); | |
2102 | tb = NULL; | |
2103 | } | |
2104 | #endif | |
19baf839 | 2105 | |
19baf839 RO |
2106 | return tb; |
2107 | } | |
2108 | ||
cb7b593c SH |
2109 | #ifdef CONFIG_PROC_FS |
2110 | /* Depth first Trie walk iterator */ | |
2111 | struct fib_trie_iter { | |
1c340b2f | 2112 | struct seq_net_private p; |
3d3b2d25 | 2113 | struct fib_table *tb; |
35c6edac | 2114 | struct key_vector *tnode; |
a034ee3c ED |
2115 | unsigned int index; |
2116 | unsigned int depth; | |
cb7b593c | 2117 | }; |
19baf839 | 2118 | |
35c6edac | 2119 | static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 2120 | { |
98293e8d | 2121 | unsigned long cindex = iter->index; |
88bae714 AD |
2122 | struct key_vector *pn = iter->tnode; |
2123 | t_key pkey; | |
6640e697 | 2124 | |
cb7b593c SH |
2125 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2126 | iter->tnode, iter->index, iter->depth); | |
19baf839 | 2127 | |
88bae714 AD |
2128 | while (!IS_TRIE(pn)) { |
2129 | while (cindex < child_length(pn)) { | |
2130 | struct key_vector *n = get_child_rcu(pn, cindex++); | |
2131 | ||
2132 | if (!n) | |
2133 | continue; | |
2134 | ||
cb7b593c | 2135 | if (IS_LEAF(n)) { |
88bae714 AD |
2136 | iter->tnode = pn; |
2137 | iter->index = cindex; | |
cb7b593c SH |
2138 | } else { |
2139 | /* push down one level */ | |
adaf9816 | 2140 | iter->tnode = n; |
cb7b593c SH |
2141 | iter->index = 0; |
2142 | ++iter->depth; | |
2143 | } | |
88bae714 | 2144 | |
cb7b593c SH |
2145 | return n; |
2146 | } | |
19baf839 | 2147 | |
88bae714 AD |
2148 | /* Current node exhausted, pop back up */ |
2149 | pkey = pn->key; | |
2150 | pn = node_parent_rcu(pn); | |
2151 | cindex = get_index(pkey, pn) + 1; | |
cb7b593c | 2152 | --iter->depth; |
19baf839 | 2153 | } |
cb7b593c | 2154 | |
88bae714 AD |
2155 | /* record root node so further searches know we are done */ |
2156 | iter->tnode = pn; | |
2157 | iter->index = 0; | |
2158 | ||
cb7b593c | 2159 | return NULL; |
19baf839 RO |
2160 | } |
2161 | ||
35c6edac AD |
2162 | static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, |
2163 | struct trie *t) | |
19baf839 | 2164 | { |
f38b24c9 | 2165 | struct key_vector *n, *pn; |
5ddf0eb2 | 2166 | |
132adf54 | 2167 | if (!t) |
5ddf0eb2 RO |
2168 | return NULL; |
2169 | ||
f38b24c9 | 2170 | pn = t->kv; |
88bae714 | 2171 | n = rcu_dereference(pn->tnode[0]); |
3d3b2d25 | 2172 | if (!n) |
5ddf0eb2 | 2173 | return NULL; |
19baf839 | 2174 | |
3d3b2d25 | 2175 | if (IS_TNODE(n)) { |
adaf9816 | 2176 | iter->tnode = n; |
3d3b2d25 SH |
2177 | iter->index = 0; |
2178 | iter->depth = 1; | |
2179 | } else { | |
88bae714 | 2180 | iter->tnode = pn; |
3d3b2d25 SH |
2181 | iter->index = 0; |
2182 | iter->depth = 0; | |
91b9a277 | 2183 | } |
3d3b2d25 SH |
2184 | |
2185 | return n; | |
cb7b593c | 2186 | } |
91b9a277 | 2187 | |
cb7b593c SH |
2188 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2189 | { | |
35c6edac | 2190 | struct key_vector *n; |
cb7b593c | 2191 | struct fib_trie_iter iter; |
91b9a277 | 2192 | |
cb7b593c | 2193 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2194 | |
cb7b593c | 2195 | rcu_read_lock(); |
3d3b2d25 | 2196 | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
cb7b593c | 2197 | if (IS_LEAF(n)) { |
79e5ad2c | 2198 | struct fib_alias *fa; |
93672292 | 2199 | |
cb7b593c SH |
2200 | s->leaves++; |
2201 | s->totdepth += iter.depth; | |
2202 | if (iter.depth > s->maxdepth) | |
2203 | s->maxdepth = iter.depth; | |
93672292 | 2204 | |
79e5ad2c | 2205 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) |
93672292 | 2206 | ++s->prefixes; |
cb7b593c | 2207 | } else { |
cb7b593c | 2208 | s->tnodes++; |
adaf9816 AD |
2209 | if (n->bits < MAX_STAT_DEPTH) |
2210 | s->nodesizes[n->bits]++; | |
6e22d174 | 2211 | s->nullpointers += tn_info(n)->empty_children; |
19baf839 | 2212 | } |
19baf839 | 2213 | } |
2373ce1c | 2214 | rcu_read_unlock(); |
19baf839 RO |
2215 | } |
2216 | ||
cb7b593c SH |
2217 | /* |
2218 | * This outputs /proc/net/fib_triestats | |
2219 | */ | |
2220 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2221 | { |
a034ee3c | 2222 | unsigned int i, max, pointers, bytes, avdepth; |
c877efb2 | 2223 | |
cb7b593c SH |
2224 | if (stat->leaves) |
2225 | avdepth = stat->totdepth*100 / stat->leaves; | |
2226 | else | |
2227 | avdepth = 0; | |
91b9a277 | 2228 | |
a07f5f50 SH |
2229 | seq_printf(seq, "\tAver depth: %u.%02d\n", |
2230 | avdepth / 100, avdepth % 100); | |
cb7b593c | 2231 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
91b9a277 | 2232 | |
cb7b593c | 2233 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
41b489fd | 2234 | bytes = LEAF_SIZE * stat->leaves; |
93672292 SH |
2235 | |
2236 | seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); | |
79e5ad2c | 2237 | bytes += sizeof(struct fib_alias) * stat->prefixes; |
93672292 | 2238 | |
187b5188 | 2239 | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
41b489fd | 2240 | bytes += TNODE_SIZE(0) * stat->tnodes; |
19baf839 | 2241 | |
06ef921d RO |
2242 | max = MAX_STAT_DEPTH; |
2243 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2244 | max--; |
19baf839 | 2245 | |
cb7b593c | 2246 | pointers = 0; |
f585a991 | 2247 | for (i = 1; i < max; i++) |
cb7b593c | 2248 | if (stat->nodesizes[i] != 0) { |
187b5188 | 2249 | seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
cb7b593c SH |
2250 | pointers += (1<<i) * stat->nodesizes[i]; |
2251 | } | |
2252 | seq_putc(seq, '\n'); | |
187b5188 | 2253 | seq_printf(seq, "\tPointers: %u\n", pointers); |
2373ce1c | 2254 | |
35c6edac | 2255 | bytes += sizeof(struct key_vector *) * pointers; |
187b5188 SH |
2256 | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
2257 | seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); | |
66a2f7fd | 2258 | } |
2373ce1c | 2259 | |
cb7b593c | 2260 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
66a2f7fd | 2261 | static void trie_show_usage(struct seq_file *seq, |
8274a97a | 2262 | const struct trie_use_stats __percpu *stats) |
66a2f7fd | 2263 | { |
8274a97a AD |
2264 | struct trie_use_stats s = { 0 }; |
2265 | int cpu; | |
2266 | ||
2267 | /* loop through all of the CPUs and gather up the stats */ | |
2268 | for_each_possible_cpu(cpu) { | |
2269 | const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); | |
2270 | ||
2271 | s.gets += pcpu->gets; | |
2272 | s.backtrack += pcpu->backtrack; | |
2273 | s.semantic_match_passed += pcpu->semantic_match_passed; | |
2274 | s.semantic_match_miss += pcpu->semantic_match_miss; | |
2275 | s.null_node_hit += pcpu->null_node_hit; | |
2276 | s.resize_node_skipped += pcpu->resize_node_skipped; | |
2277 | } | |
2278 | ||
66a2f7fd | 2279 | seq_printf(seq, "\nCounters:\n---------\n"); |
8274a97a AD |
2280 | seq_printf(seq, "gets = %u\n", s.gets); |
2281 | seq_printf(seq, "backtracks = %u\n", s.backtrack); | |
a07f5f50 | 2282 | seq_printf(seq, "semantic match passed = %u\n", |
8274a97a AD |
2283 | s.semantic_match_passed); |
2284 | seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); | |
2285 | seq_printf(seq, "null node hit= %u\n", s.null_node_hit); | |
2286 | seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); | |
cb7b593c | 2287 | } |
66a2f7fd SH |
2288 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
2289 | ||
3d3b2d25 | 2290 | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
d717a9a6 | 2291 | { |
3d3b2d25 SH |
2292 | if (tb->tb_id == RT_TABLE_LOCAL) |
2293 | seq_puts(seq, "Local:\n"); | |
2294 | else if (tb->tb_id == RT_TABLE_MAIN) | |
2295 | seq_puts(seq, "Main:\n"); | |
2296 | else | |
2297 | seq_printf(seq, "Id %d:\n", tb->tb_id); | |
d717a9a6 | 2298 | } |
19baf839 | 2299 | |
3d3b2d25 | 2300 | |
cb7b593c SH |
2301 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2302 | { | |
1c340b2f | 2303 | struct net *net = (struct net *)seq->private; |
3d3b2d25 | 2304 | unsigned int h; |
877a9bff | 2305 | |
d717a9a6 | 2306 | seq_printf(seq, |
a07f5f50 | 2307 | "Basic info: size of leaf:" |
5b5e0928 | 2308 | " %zd bytes, size of tnode: %zd bytes.\n", |
41b489fd | 2309 | LEAF_SIZE, TNODE_SIZE(0)); |
d717a9a6 | 2310 | |
3d3b2d25 SH |
2311 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2312 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
3d3b2d25 SH |
2313 | struct fib_table *tb; |
2314 | ||
b67bfe0d | 2315 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
3d3b2d25 SH |
2316 | struct trie *t = (struct trie *) tb->tb_data; |
2317 | struct trie_stat stat; | |
877a9bff | 2318 | |
3d3b2d25 SH |
2319 | if (!t) |
2320 | continue; | |
2321 | ||
2322 | fib_table_print(seq, tb); | |
2323 | ||
2324 | trie_collect_stats(t, &stat); | |
2325 | trie_show_stats(seq, &stat); | |
2326 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
8274a97a | 2327 | trie_show_usage(seq, t->stats); |
3d3b2d25 SH |
2328 | #endif |
2329 | } | |
2330 | } | |
19baf839 | 2331 | |
cb7b593c | 2332 | return 0; |
19baf839 RO |
2333 | } |
2334 | ||
cb7b593c | 2335 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2336 | { |
de05c557 | 2337 | return single_open_net(inode, file, fib_triestat_seq_show); |
1c340b2f DL |
2338 | } |
2339 | ||
9a32144e | 2340 | static const struct file_operations fib_triestat_fops = { |
cb7b593c SH |
2341 | .owner = THIS_MODULE, |
2342 | .open = fib_triestat_seq_open, | |
2343 | .read = seq_read, | |
2344 | .llseek = seq_lseek, | |
b6fcbdb4 | 2345 | .release = single_release_net, |
cb7b593c SH |
2346 | }; |
2347 | ||
35c6edac | 2348 | static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
19baf839 | 2349 | { |
1218854a YH |
2350 | struct fib_trie_iter *iter = seq->private; |
2351 | struct net *net = seq_file_net(seq); | |
cb7b593c | 2352 | loff_t idx = 0; |
3d3b2d25 | 2353 | unsigned int h; |
cb7b593c | 2354 | |
3d3b2d25 SH |
2355 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2356 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
3d3b2d25 | 2357 | struct fib_table *tb; |
cb7b593c | 2358 | |
b67bfe0d | 2359 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
35c6edac | 2360 | struct key_vector *n; |
3d3b2d25 SH |
2361 | |
2362 | for (n = fib_trie_get_first(iter, | |
2363 | (struct trie *) tb->tb_data); | |
2364 | n; n = fib_trie_get_next(iter)) | |
2365 | if (pos == idx++) { | |
2366 | iter->tb = tb; | |
2367 | return n; | |
2368 | } | |
2369 | } | |
cb7b593c | 2370 | } |
3d3b2d25 | 2371 | |
19baf839 RO |
2372 | return NULL; |
2373 | } | |
2374 | ||
cb7b593c | 2375 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
c95aaf9a | 2376 | __acquires(RCU) |
19baf839 | 2377 | { |
cb7b593c | 2378 | rcu_read_lock(); |
1218854a | 2379 | return fib_trie_get_idx(seq, *pos); |
19baf839 RO |
2380 | } |
2381 | ||
cb7b593c | 2382 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2383 | { |
cb7b593c | 2384 | struct fib_trie_iter *iter = seq->private; |
1218854a | 2385 | struct net *net = seq_file_net(seq); |
3d3b2d25 SH |
2386 | struct fib_table *tb = iter->tb; |
2387 | struct hlist_node *tb_node; | |
2388 | unsigned int h; | |
35c6edac | 2389 | struct key_vector *n; |
cb7b593c | 2390 | |
19baf839 | 2391 | ++*pos; |
3d3b2d25 SH |
2392 | /* next node in same table */ |
2393 | n = fib_trie_get_next(iter); | |
2394 | if (n) | |
2395 | return n; | |
19baf839 | 2396 | |
3d3b2d25 SH |
2397 | /* walk rest of this hash chain */ |
2398 | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | |
0a5c0475 | 2399 | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
3d3b2d25 SH |
2400 | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
2401 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2402 | if (n) | |
2403 | goto found; | |
2404 | } | |
19baf839 | 2405 | |
3d3b2d25 SH |
2406 | /* new hash chain */ |
2407 | while (++h < FIB_TABLE_HASHSZ) { | |
2408 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
b67bfe0d | 2409 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
3d3b2d25 SH |
2410 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
2411 | if (n) | |
2412 | goto found; | |
2413 | } | |
2414 | } | |
cb7b593c | 2415 | return NULL; |
3d3b2d25 SH |
2416 | |
2417 | found: | |
2418 | iter->tb = tb; | |
2419 | return n; | |
cb7b593c | 2420 | } |
19baf839 | 2421 | |
cb7b593c | 2422 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
c95aaf9a | 2423 | __releases(RCU) |
19baf839 | 2424 | { |
cb7b593c SH |
2425 | rcu_read_unlock(); |
2426 | } | |
91b9a277 | 2427 | |
cb7b593c SH |
2428 | static void seq_indent(struct seq_file *seq, int n) |
2429 | { | |
a034ee3c ED |
2430 | while (n-- > 0) |
2431 | seq_puts(seq, " "); | |
cb7b593c | 2432 | } |
19baf839 | 2433 | |
28d36e37 | 2434 | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
cb7b593c | 2435 | { |
132adf54 | 2436 | switch (s) { |
cb7b593c SH |
2437 | case RT_SCOPE_UNIVERSE: return "universe"; |
2438 | case RT_SCOPE_SITE: return "site"; | |
2439 | case RT_SCOPE_LINK: return "link"; | |
2440 | case RT_SCOPE_HOST: return "host"; | |
2441 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2442 | default: | |
28d36e37 | 2443 | snprintf(buf, len, "scope=%d", s); |
cb7b593c SH |
2444 | return buf; |
2445 | } | |
2446 | } | |
19baf839 | 2447 | |
36cbd3dc | 2448 | static const char *const rtn_type_names[__RTN_MAX] = { |
cb7b593c SH |
2449 | [RTN_UNSPEC] = "UNSPEC", |
2450 | [RTN_UNICAST] = "UNICAST", | |
2451 | [RTN_LOCAL] = "LOCAL", | |
2452 | [RTN_BROADCAST] = "BROADCAST", | |
2453 | [RTN_ANYCAST] = "ANYCAST", | |
2454 | [RTN_MULTICAST] = "MULTICAST", | |
2455 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2456 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2457 | [RTN_PROHIBIT] = "PROHIBIT", | |
2458 | [RTN_THROW] = "THROW", | |
2459 | [RTN_NAT] = "NAT", | |
2460 | [RTN_XRESOLVE] = "XRESOLVE", | |
2461 | }; | |
19baf839 | 2462 | |
a034ee3c | 2463 | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
cb7b593c | 2464 | { |
cb7b593c SH |
2465 | if (t < __RTN_MAX && rtn_type_names[t]) |
2466 | return rtn_type_names[t]; | |
28d36e37 | 2467 | snprintf(buf, len, "type %u", t); |
cb7b593c | 2468 | return buf; |
19baf839 RO |
2469 | } |
2470 | ||
cb7b593c SH |
2471 | /* Pretty print the trie */ |
2472 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2473 | { |
cb7b593c | 2474 | const struct fib_trie_iter *iter = seq->private; |
35c6edac | 2475 | struct key_vector *n = v; |
c877efb2 | 2476 | |
88bae714 | 2477 | if (IS_TRIE(node_parent_rcu(n))) |
3d3b2d25 | 2478 | fib_table_print(seq, iter->tb); |
095b8501 | 2479 | |
cb7b593c | 2480 | if (IS_TNODE(n)) { |
adaf9816 | 2481 | __be32 prf = htonl(n->key); |
91b9a277 | 2482 | |
e9b44019 AD |
2483 | seq_indent(seq, iter->depth-1); |
2484 | seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", | |
2485 | &prf, KEYLENGTH - n->pos - n->bits, n->bits, | |
6e22d174 AD |
2486 | tn_info(n)->full_children, |
2487 | tn_info(n)->empty_children); | |
cb7b593c | 2488 | } else { |
adaf9816 | 2489 | __be32 val = htonl(n->key); |
79e5ad2c | 2490 | struct fib_alias *fa; |
cb7b593c SH |
2491 | |
2492 | seq_indent(seq, iter->depth); | |
673d57e7 | 2493 | seq_printf(seq, " |-- %pI4\n", &val); |
1328042e | 2494 | |
79e5ad2c AD |
2495 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
2496 | char buf1[32], buf2[32]; | |
2497 | ||
2498 | seq_indent(seq, iter->depth + 1); | |
2499 | seq_printf(seq, " /%zu %s %s", | |
2500 | KEYLENGTH - fa->fa_slen, | |
2501 | rtn_scope(buf1, sizeof(buf1), | |
2502 | fa->fa_info->fib_scope), | |
2503 | rtn_type(buf2, sizeof(buf2), | |
2504 | fa->fa_type)); | |
2505 | if (fa->fa_tos) | |
2506 | seq_printf(seq, " tos=%d", fa->fa_tos); | |
2507 | seq_putc(seq, '\n'); | |
cb7b593c | 2508 | } |
19baf839 | 2509 | } |
cb7b593c | 2510 | |
19baf839 RO |
2511 | return 0; |
2512 | } | |
2513 | ||
f690808e | 2514 | static const struct seq_operations fib_trie_seq_ops = { |
cb7b593c SH |
2515 | .start = fib_trie_seq_start, |
2516 | .next = fib_trie_seq_next, | |
2517 | .stop = fib_trie_seq_stop, | |
2518 | .show = fib_trie_seq_show, | |
19baf839 RO |
2519 | }; |
2520 | ||
cb7b593c | 2521 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2522 | { |
1c340b2f DL |
2523 | return seq_open_net(inode, file, &fib_trie_seq_ops, |
2524 | sizeof(struct fib_trie_iter)); | |
19baf839 RO |
2525 | } |
2526 | ||
9a32144e | 2527 | static const struct file_operations fib_trie_fops = { |
cb7b593c SH |
2528 | .owner = THIS_MODULE, |
2529 | .open = fib_trie_seq_open, | |
2530 | .read = seq_read, | |
2531 | .llseek = seq_lseek, | |
1c340b2f | 2532 | .release = seq_release_net, |
19baf839 RO |
2533 | }; |
2534 | ||
8315f5d8 SH |
2535 | struct fib_route_iter { |
2536 | struct seq_net_private p; | |
8be33e95 | 2537 | struct fib_table *main_tb; |
35c6edac | 2538 | struct key_vector *tnode; |
8315f5d8 SH |
2539 | loff_t pos; |
2540 | t_key key; | |
2541 | }; | |
2542 | ||
35c6edac AD |
2543 | static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, |
2544 | loff_t pos) | |
8315f5d8 | 2545 | { |
35c6edac | 2546 | struct key_vector *l, **tp = &iter->tnode; |
8be33e95 | 2547 | t_key key; |
8315f5d8 | 2548 | |
fd0285a3 | 2549 | /* use cached location of previously found key */ |
8be33e95 | 2550 | if (iter->pos > 0 && pos >= iter->pos) { |
8be33e95 AD |
2551 | key = iter->key; |
2552 | } else { | |
fd0285a3 | 2553 | iter->pos = 1; |
8be33e95 | 2554 | key = 0; |
8315f5d8 SH |
2555 | } |
2556 | ||
fd0285a3 AD |
2557 | pos -= iter->pos; |
2558 | ||
2559 | while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { | |
8be33e95 | 2560 | key = l->key + 1; |
8315f5d8 | 2561 | iter->pos++; |
8be33e95 AD |
2562 | l = NULL; |
2563 | ||
2564 | /* handle unlikely case of a key wrap */ | |
2565 | if (!key) | |
2566 | break; | |
8315f5d8 SH |
2567 | } |
2568 | ||
2569 | if (l) | |
fd0285a3 | 2570 | iter->key = l->key; /* remember it */ |
8315f5d8 SH |
2571 | else |
2572 | iter->pos = 0; /* forget it */ | |
2573 | ||
2574 | return l; | |
2575 | } | |
2576 | ||
2577 | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | |
2578 | __acquires(RCU) | |
2579 | { | |
2580 | struct fib_route_iter *iter = seq->private; | |
2581 | struct fib_table *tb; | |
8be33e95 | 2582 | struct trie *t; |
8315f5d8 SH |
2583 | |
2584 | rcu_read_lock(); | |
8be33e95 | 2585 | |
1218854a | 2586 | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
8315f5d8 SH |
2587 | if (!tb) |
2588 | return NULL; | |
2589 | ||
8be33e95 | 2590 | iter->main_tb = tb; |
94d9f1c5 DF |
2591 | t = (struct trie *)tb->tb_data; |
2592 | iter->tnode = t->kv; | |
8be33e95 AD |
2593 | |
2594 | if (*pos != 0) | |
2595 | return fib_route_get_idx(iter, *pos); | |
2596 | ||
8be33e95 | 2597 | iter->pos = 0; |
fd0285a3 | 2598 | iter->key = KEY_MAX; |
8be33e95 AD |
2599 | |
2600 | return SEQ_START_TOKEN; | |
8315f5d8 SH |
2601 | } |
2602 | ||
2603 | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
2604 | { | |
2605 | struct fib_route_iter *iter = seq->private; | |
35c6edac | 2606 | struct key_vector *l = NULL; |
fd0285a3 | 2607 | t_key key = iter->key + 1; |
8315f5d8 SH |
2608 | |
2609 | ++*pos; | |
8be33e95 AD |
2610 | |
2611 | /* only allow key of 0 for start of sequence */ | |
2612 | if ((v == SEQ_START_TOKEN) || key) | |
2613 | l = leaf_walk_rcu(&iter->tnode, key); | |
2614 | ||
2615 | if (l) { | |
fd0285a3 | 2616 | iter->key = l->key; |
8315f5d8 | 2617 | iter->pos++; |
8be33e95 AD |
2618 | } else { |
2619 | iter->pos = 0; | |
8315f5d8 SH |
2620 | } |
2621 | ||
8315f5d8 SH |
2622 | return l; |
2623 | } | |
2624 | ||
2625 | static void fib_route_seq_stop(struct seq_file *seq, void *v) | |
2626 | __releases(RCU) | |
2627 | { | |
2628 | rcu_read_unlock(); | |
2629 | } | |
2630 | ||
a034ee3c | 2631 | static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) |
19baf839 | 2632 | { |
a034ee3c | 2633 | unsigned int flags = 0; |
19baf839 | 2634 | |
a034ee3c ED |
2635 | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
2636 | flags = RTF_REJECT; | |
cb7b593c SH |
2637 | if (fi && fi->fib_nh->nh_gw) |
2638 | flags |= RTF_GATEWAY; | |
32ab5f80 | 2639 | if (mask == htonl(0xFFFFFFFF)) |
cb7b593c SH |
2640 | flags |= RTF_HOST; |
2641 | flags |= RTF_UP; | |
2642 | return flags; | |
19baf839 RO |
2643 | } |
2644 | ||
cb7b593c SH |
2645 | /* |
2646 | * This outputs /proc/net/route. | |
2647 | * The format of the file is not supposed to be changed | |
a034ee3c | 2648 | * and needs to be same as fib_hash output to avoid breaking |
cb7b593c SH |
2649 | * legacy utilities |
2650 | */ | |
2651 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2652 | { |
654eff45 AD |
2653 | struct fib_route_iter *iter = seq->private; |
2654 | struct fib_table *tb = iter->main_tb; | |
79e5ad2c | 2655 | struct fib_alias *fa; |
35c6edac | 2656 | struct key_vector *l = v; |
9b6ebad5 | 2657 | __be32 prefix; |
19baf839 | 2658 | |
cb7b593c SH |
2659 | if (v == SEQ_START_TOKEN) { |
2660 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2661 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2662 | "\tWindow\tIRTT"); | |
2663 | return 0; | |
2664 | } | |
19baf839 | 2665 | |
9b6ebad5 AD |
2666 | prefix = htonl(l->key); |
2667 | ||
79e5ad2c AD |
2668 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
2669 | const struct fib_info *fi = fa->fa_info; | |
2670 | __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); | |
2671 | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); | |
19baf839 | 2672 | |
79e5ad2c AD |
2673 | if ((fa->fa_type == RTN_BROADCAST) || |
2674 | (fa->fa_type == RTN_MULTICAST)) | |
2675 | continue; | |
19baf839 | 2676 | |
654eff45 AD |
2677 | if (fa->tb_id != tb->tb_id) |
2678 | continue; | |
2679 | ||
79e5ad2c AD |
2680 | seq_setwidth(seq, 127); |
2681 | ||
2682 | if (fi) | |
2683 | seq_printf(seq, | |
2684 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2685 | "%d\t%08X\t%d\t%u\t%u", | |
2686 | fi->fib_dev ? fi->fib_dev->name : "*", | |
2687 | prefix, | |
2688 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2689 | fi->fib_priority, | |
2690 | mask, | |
2691 | (fi->fib_advmss ? | |
2692 | fi->fib_advmss + 40 : 0), | |
2693 | fi->fib_window, | |
2694 | fi->fib_rtt >> 3); | |
2695 | else | |
2696 | seq_printf(seq, | |
2697 | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2698 | "%d\t%08X\t%d\t%u\t%u", | |
2699 | prefix, 0, flags, 0, 0, 0, | |
2700 | mask, 0, 0, 0); | |
19baf839 | 2701 | |
79e5ad2c | 2702 | seq_pad(seq, '\n'); |
19baf839 RO |
2703 | } |
2704 | ||
2705 | return 0; | |
2706 | } | |
2707 | ||
f690808e | 2708 | static const struct seq_operations fib_route_seq_ops = { |
8315f5d8 SH |
2709 | .start = fib_route_seq_start, |
2710 | .next = fib_route_seq_next, | |
2711 | .stop = fib_route_seq_stop, | |
cb7b593c | 2712 | .show = fib_route_seq_show, |
19baf839 RO |
2713 | }; |
2714 | ||
cb7b593c | 2715 | static int fib_route_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2716 | { |
1c340b2f | 2717 | return seq_open_net(inode, file, &fib_route_seq_ops, |
8315f5d8 | 2718 | sizeof(struct fib_route_iter)); |
19baf839 RO |
2719 | } |
2720 | ||
9a32144e | 2721 | static const struct file_operations fib_route_fops = { |
cb7b593c SH |
2722 | .owner = THIS_MODULE, |
2723 | .open = fib_route_seq_open, | |
2724 | .read = seq_read, | |
2725 | .llseek = seq_lseek, | |
1c340b2f | 2726 | .release = seq_release_net, |
19baf839 RO |
2727 | }; |
2728 | ||
61a02653 | 2729 | int __net_init fib_proc_init(struct net *net) |
19baf839 | 2730 | { |
d4beaa66 | 2731 | if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) |
cb7b593c SH |
2732 | goto out1; |
2733 | ||
d4beaa66 G |
2734 | if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, |
2735 | &fib_triestat_fops)) | |
cb7b593c SH |
2736 | goto out2; |
2737 | ||
d4beaa66 | 2738 | if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) |
cb7b593c SH |
2739 | goto out3; |
2740 | ||
19baf839 | 2741 | return 0; |
cb7b593c SH |
2742 | |
2743 | out3: | |
ece31ffd | 2744 | remove_proc_entry("fib_triestat", net->proc_net); |
cb7b593c | 2745 | out2: |
ece31ffd | 2746 | remove_proc_entry("fib_trie", net->proc_net); |
cb7b593c SH |
2747 | out1: |
2748 | return -ENOMEM; | |
19baf839 RO |
2749 | } |
2750 | ||
61a02653 | 2751 | void __net_exit fib_proc_exit(struct net *net) |
19baf839 | 2752 | { |
ece31ffd G |
2753 | remove_proc_entry("fib_trie", net->proc_net); |
2754 | remove_proc_entry("fib_triestat", net->proc_net); | |
2755 | remove_proc_entry("route", net->proc_net); | |
19baf839 RO |
2756 | } |
2757 | ||
2758 | #endif /* CONFIG_PROC_FS */ |