]>
Commit | Line | Data |
---|---|---|
b20a3503 CL |
1 | /* |
2 | * Memory Migration functionality - linux/mm/migration.c | |
3 | * | |
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
5 | * | |
6 | * Page migration was first developed in the context of the memory hotplug | |
7 | * project. The main authors of the migration code are: | |
8 | * | |
9 | * IWAMOTO Toshihiro <[email protected]> | |
10 | * Hirokazu Takahashi <[email protected]> | |
11 | * Dave Hansen <[email protected]> | |
12 | * Christoph Lameter <[email protected]> | |
13 | */ | |
14 | ||
15 | #include <linux/migrate.h> | |
16 | #include <linux/module.h> | |
17 | #include <linux/swap.h> | |
0697212a | 18 | #include <linux/swapops.h> |
b20a3503 | 19 | #include <linux/pagemap.h> |
e23ca00b | 20 | #include <linux/buffer_head.h> |
b20a3503 CL |
21 | #include <linux/mm_inline.h> |
22 | #include <linux/pagevec.h> | |
23 | #include <linux/rmap.h> | |
24 | #include <linux/topology.h> | |
25 | #include <linux/cpu.h> | |
26 | #include <linux/cpuset.h> | |
04e62a29 | 27 | #include <linux/writeback.h> |
742755a1 CL |
28 | #include <linux/mempolicy.h> |
29 | #include <linux/vmalloc.h> | |
86c3a764 | 30 | #include <linux/security.h> |
b20a3503 CL |
31 | |
32 | #include "internal.h" | |
33 | ||
b20a3503 CL |
34 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
35 | ||
36 | /* | |
37 | * Isolate one page from the LRU lists. If successful put it onto | |
38 | * the indicated list with elevated page count. | |
39 | * | |
40 | * Result: | |
41 | * -EBUSY: page not on LRU list | |
42 | * 0: page removed from LRU list and added to the specified list. | |
43 | */ | |
44 | int isolate_lru_page(struct page *page, struct list_head *pagelist) | |
45 | { | |
46 | int ret = -EBUSY; | |
47 | ||
48 | if (PageLRU(page)) { | |
49 | struct zone *zone = page_zone(page); | |
50 | ||
51 | spin_lock_irq(&zone->lru_lock); | |
52 | if (PageLRU(page)) { | |
53 | ret = 0; | |
54 | get_page(page); | |
55 | ClearPageLRU(page); | |
56 | if (PageActive(page)) | |
57 | del_page_from_active_list(zone, page); | |
58 | else | |
59 | del_page_from_inactive_list(zone, page); | |
60 | list_add_tail(&page->lru, pagelist); | |
61 | } | |
62 | spin_unlock_irq(&zone->lru_lock); | |
63 | } | |
64 | return ret; | |
65 | } | |
66 | ||
67 | /* | |
742755a1 CL |
68 | * migrate_prep() needs to be called before we start compiling a list of pages |
69 | * to be migrated using isolate_lru_page(). | |
b20a3503 CL |
70 | */ |
71 | int migrate_prep(void) | |
72 | { | |
b20a3503 CL |
73 | /* |
74 | * Clear the LRU lists so pages can be isolated. | |
75 | * Note that pages may be moved off the LRU after we have | |
76 | * drained them. Those pages will fail to migrate like other | |
77 | * pages that may be busy. | |
78 | */ | |
79 | lru_add_drain_all(); | |
80 | ||
81 | return 0; | |
82 | } | |
83 | ||
84 | static inline void move_to_lru(struct page *page) | |
85 | { | |
b20a3503 CL |
86 | if (PageActive(page)) { |
87 | /* | |
88 | * lru_cache_add_active checks that | |
89 | * the PG_active bit is off. | |
90 | */ | |
91 | ClearPageActive(page); | |
92 | lru_cache_add_active(page); | |
93 | } else { | |
94 | lru_cache_add(page); | |
95 | } | |
96 | put_page(page); | |
97 | } | |
98 | ||
99 | /* | |
100 | * Add isolated pages on the list back to the LRU. | |
101 | * | |
102 | * returns the number of pages put back. | |
103 | */ | |
104 | int putback_lru_pages(struct list_head *l) | |
105 | { | |
106 | struct page *page; | |
107 | struct page *page2; | |
108 | int count = 0; | |
109 | ||
110 | list_for_each_entry_safe(page, page2, l, lru) { | |
e24f0b8f | 111 | list_del(&page->lru); |
b20a3503 CL |
112 | move_to_lru(page); |
113 | count++; | |
114 | } | |
115 | return count; | |
116 | } | |
117 | ||
0697212a CL |
118 | static inline int is_swap_pte(pte_t pte) |
119 | { | |
120 | return !pte_none(pte) && !pte_present(pte) && !pte_file(pte); | |
121 | } | |
122 | ||
123 | /* | |
124 | * Restore a potential migration pte to a working pte entry | |
125 | */ | |
04e62a29 | 126 | static void remove_migration_pte(struct vm_area_struct *vma, |
0697212a CL |
127 | struct page *old, struct page *new) |
128 | { | |
129 | struct mm_struct *mm = vma->vm_mm; | |
130 | swp_entry_t entry; | |
131 | pgd_t *pgd; | |
132 | pud_t *pud; | |
133 | pmd_t *pmd; | |
134 | pte_t *ptep, pte; | |
135 | spinlock_t *ptl; | |
04e62a29 CL |
136 | unsigned long addr = page_address_in_vma(new, vma); |
137 | ||
138 | if (addr == -EFAULT) | |
139 | return; | |
0697212a CL |
140 | |
141 | pgd = pgd_offset(mm, addr); | |
142 | if (!pgd_present(*pgd)) | |
143 | return; | |
144 | ||
145 | pud = pud_offset(pgd, addr); | |
146 | if (!pud_present(*pud)) | |
147 | return; | |
148 | ||
149 | pmd = pmd_offset(pud, addr); | |
150 | if (!pmd_present(*pmd)) | |
151 | return; | |
152 | ||
153 | ptep = pte_offset_map(pmd, addr); | |
154 | ||
155 | if (!is_swap_pte(*ptep)) { | |
156 | pte_unmap(ptep); | |
157 | return; | |
158 | } | |
159 | ||
160 | ptl = pte_lockptr(mm, pmd); | |
161 | spin_lock(ptl); | |
162 | pte = *ptep; | |
163 | if (!is_swap_pte(pte)) | |
164 | goto out; | |
165 | ||
166 | entry = pte_to_swp_entry(pte); | |
167 | ||
168 | if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) | |
169 | goto out; | |
170 | ||
0697212a CL |
171 | get_page(new); |
172 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | |
173 | if (is_write_migration_entry(entry)) | |
174 | pte = pte_mkwrite(pte); | |
175 | set_pte_at(mm, addr, ptep, pte); | |
04e62a29 CL |
176 | |
177 | if (PageAnon(new)) | |
178 | page_add_anon_rmap(new, vma, addr); | |
179 | else | |
180 | page_add_file_rmap(new); | |
181 | ||
182 | /* No need to invalidate - it was non-present before */ | |
183 | update_mmu_cache(vma, addr, pte); | |
184 | lazy_mmu_prot_update(pte); | |
185 | ||
0697212a CL |
186 | out: |
187 | pte_unmap_unlock(ptep, ptl); | |
188 | } | |
189 | ||
190 | /* | |
04e62a29 CL |
191 | * Note that remove_file_migration_ptes will only work on regular mappings, |
192 | * Nonlinear mappings do not use migration entries. | |
193 | */ | |
194 | static void remove_file_migration_ptes(struct page *old, struct page *new) | |
195 | { | |
196 | struct vm_area_struct *vma; | |
197 | struct address_space *mapping = page_mapping(new); | |
198 | struct prio_tree_iter iter; | |
199 | pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
200 | ||
201 | if (!mapping) | |
202 | return; | |
203 | ||
204 | spin_lock(&mapping->i_mmap_lock); | |
205 | ||
206 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) | |
207 | remove_migration_pte(vma, old, new); | |
208 | ||
209 | spin_unlock(&mapping->i_mmap_lock); | |
210 | } | |
211 | ||
212 | /* | |
0697212a CL |
213 | * Must hold mmap_sem lock on at least one of the vmas containing |
214 | * the page so that the anon_vma cannot vanish. | |
215 | */ | |
04e62a29 | 216 | static void remove_anon_migration_ptes(struct page *old, struct page *new) |
0697212a CL |
217 | { |
218 | struct anon_vma *anon_vma; | |
219 | struct vm_area_struct *vma; | |
220 | unsigned long mapping; | |
221 | ||
222 | mapping = (unsigned long)new->mapping; | |
223 | ||
224 | if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) | |
225 | return; | |
226 | ||
227 | /* | |
228 | * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. | |
229 | */ | |
230 | anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); | |
231 | spin_lock(&anon_vma->lock); | |
232 | ||
233 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) | |
04e62a29 | 234 | remove_migration_pte(vma, old, new); |
0697212a CL |
235 | |
236 | spin_unlock(&anon_vma->lock); | |
237 | } | |
238 | ||
04e62a29 CL |
239 | /* |
240 | * Get rid of all migration entries and replace them by | |
241 | * references to the indicated page. | |
242 | */ | |
243 | static void remove_migration_ptes(struct page *old, struct page *new) | |
244 | { | |
245 | if (PageAnon(new)) | |
246 | remove_anon_migration_ptes(old, new); | |
247 | else | |
248 | remove_file_migration_ptes(old, new); | |
249 | } | |
250 | ||
0697212a CL |
251 | /* |
252 | * Something used the pte of a page under migration. We need to | |
253 | * get to the page and wait until migration is finished. | |
254 | * When we return from this function the fault will be retried. | |
255 | * | |
256 | * This function is called from do_swap_page(). | |
257 | */ | |
258 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | |
259 | unsigned long address) | |
260 | { | |
261 | pte_t *ptep, pte; | |
262 | spinlock_t *ptl; | |
263 | swp_entry_t entry; | |
264 | struct page *page; | |
265 | ||
266 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
267 | pte = *ptep; | |
268 | if (!is_swap_pte(pte)) | |
269 | goto out; | |
270 | ||
271 | entry = pte_to_swp_entry(pte); | |
272 | if (!is_migration_entry(entry)) | |
273 | goto out; | |
274 | ||
275 | page = migration_entry_to_page(entry); | |
276 | ||
277 | get_page(page); | |
278 | pte_unmap_unlock(ptep, ptl); | |
279 | wait_on_page_locked(page); | |
280 | put_page(page); | |
281 | return; | |
282 | out: | |
283 | pte_unmap_unlock(ptep, ptl); | |
284 | } | |
285 | ||
b20a3503 | 286 | /* |
c3fcf8a5 | 287 | * Replace the page in the mapping. |
5b5c7120 CL |
288 | * |
289 | * The number of remaining references must be: | |
290 | * 1 for anonymous pages without a mapping | |
291 | * 2 for pages with a mapping | |
292 | * 3 for pages with a mapping and PagePrivate set. | |
b20a3503 | 293 | */ |
2d1db3b1 CL |
294 | static int migrate_page_move_mapping(struct address_space *mapping, |
295 | struct page *newpage, struct page *page) | |
b20a3503 | 296 | { |
7cf9c2c7 | 297 | void **pslot; |
b20a3503 | 298 | |
6c5240ae CL |
299 | if (!mapping) { |
300 | /* Anonymous page */ | |
301 | if (page_count(page) != 1) | |
302 | return -EAGAIN; | |
303 | return 0; | |
304 | } | |
305 | ||
b20a3503 CL |
306 | write_lock_irq(&mapping->tree_lock); |
307 | ||
7cf9c2c7 NP |
308 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
309 | page_index(page)); | |
b20a3503 | 310 | |
6c5240ae | 311 | if (page_count(page) != 2 + !!PagePrivate(page) || |
7cf9c2c7 | 312 | (struct page *)radix_tree_deref_slot(pslot) != page) { |
b20a3503 | 313 | write_unlock_irq(&mapping->tree_lock); |
e23ca00b | 314 | return -EAGAIN; |
b20a3503 CL |
315 | } |
316 | ||
317 | /* | |
318 | * Now we know that no one else is looking at the page. | |
b20a3503 | 319 | */ |
7cf9c2c7 | 320 | get_page(newpage); /* add cache reference */ |
6c5240ae | 321 | #ifdef CONFIG_SWAP |
b20a3503 CL |
322 | if (PageSwapCache(page)) { |
323 | SetPageSwapCache(newpage); | |
324 | set_page_private(newpage, page_private(page)); | |
325 | } | |
6c5240ae | 326 | #endif |
b20a3503 | 327 | |
7cf9c2c7 NP |
328 | radix_tree_replace_slot(pslot, newpage); |
329 | ||
330 | /* | |
331 | * Drop cache reference from old page. | |
332 | * We know this isn't the last reference. | |
333 | */ | |
b20a3503 | 334 | __put_page(page); |
7cf9c2c7 | 335 | |
b20a3503 CL |
336 | write_unlock_irq(&mapping->tree_lock); |
337 | ||
338 | return 0; | |
339 | } | |
b20a3503 CL |
340 | |
341 | /* | |
342 | * Copy the page to its new location | |
343 | */ | |
e7340f73 | 344 | static void migrate_page_copy(struct page *newpage, struct page *page) |
b20a3503 CL |
345 | { |
346 | copy_highpage(newpage, page); | |
347 | ||
348 | if (PageError(page)) | |
349 | SetPageError(newpage); | |
350 | if (PageReferenced(page)) | |
351 | SetPageReferenced(newpage); | |
352 | if (PageUptodate(page)) | |
353 | SetPageUptodate(newpage); | |
354 | if (PageActive(page)) | |
355 | SetPageActive(newpage); | |
356 | if (PageChecked(page)) | |
357 | SetPageChecked(newpage); | |
358 | if (PageMappedToDisk(page)) | |
359 | SetPageMappedToDisk(newpage); | |
360 | ||
361 | if (PageDirty(page)) { | |
362 | clear_page_dirty_for_io(page); | |
363 | set_page_dirty(newpage); | |
364 | } | |
365 | ||
6c5240ae | 366 | #ifdef CONFIG_SWAP |
b20a3503 | 367 | ClearPageSwapCache(page); |
6c5240ae | 368 | #endif |
b20a3503 CL |
369 | ClearPageActive(page); |
370 | ClearPagePrivate(page); | |
371 | set_page_private(page, 0); | |
372 | page->mapping = NULL; | |
373 | ||
374 | /* | |
375 | * If any waiters have accumulated on the new page then | |
376 | * wake them up. | |
377 | */ | |
378 | if (PageWriteback(newpage)) | |
379 | end_page_writeback(newpage); | |
380 | } | |
b20a3503 | 381 | |
1d8b85cc CL |
382 | /************************************************************ |
383 | * Migration functions | |
384 | ***********************************************************/ | |
385 | ||
386 | /* Always fail migration. Used for mappings that are not movable */ | |
2d1db3b1 CL |
387 | int fail_migrate_page(struct address_space *mapping, |
388 | struct page *newpage, struct page *page) | |
1d8b85cc CL |
389 | { |
390 | return -EIO; | |
391 | } | |
392 | EXPORT_SYMBOL(fail_migrate_page); | |
393 | ||
b20a3503 CL |
394 | /* |
395 | * Common logic to directly migrate a single page suitable for | |
396 | * pages that do not use PagePrivate. | |
397 | * | |
398 | * Pages are locked upon entry and exit. | |
399 | */ | |
2d1db3b1 CL |
400 | int migrate_page(struct address_space *mapping, |
401 | struct page *newpage, struct page *page) | |
b20a3503 CL |
402 | { |
403 | int rc; | |
404 | ||
405 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
406 | ||
2d1db3b1 | 407 | rc = migrate_page_move_mapping(mapping, newpage, page); |
b20a3503 CL |
408 | |
409 | if (rc) | |
410 | return rc; | |
411 | ||
412 | migrate_page_copy(newpage, page); | |
b20a3503 CL |
413 | return 0; |
414 | } | |
415 | EXPORT_SYMBOL(migrate_page); | |
416 | ||
9361401e | 417 | #ifdef CONFIG_BLOCK |
1d8b85cc CL |
418 | /* |
419 | * Migration function for pages with buffers. This function can only be used | |
420 | * if the underlying filesystem guarantees that no other references to "page" | |
421 | * exist. | |
422 | */ | |
2d1db3b1 CL |
423 | int buffer_migrate_page(struct address_space *mapping, |
424 | struct page *newpage, struct page *page) | |
1d8b85cc | 425 | { |
1d8b85cc CL |
426 | struct buffer_head *bh, *head; |
427 | int rc; | |
428 | ||
1d8b85cc | 429 | if (!page_has_buffers(page)) |
2d1db3b1 | 430 | return migrate_page(mapping, newpage, page); |
1d8b85cc CL |
431 | |
432 | head = page_buffers(page); | |
433 | ||
2d1db3b1 | 434 | rc = migrate_page_move_mapping(mapping, newpage, page); |
1d8b85cc CL |
435 | |
436 | if (rc) | |
437 | return rc; | |
438 | ||
439 | bh = head; | |
440 | do { | |
441 | get_bh(bh); | |
442 | lock_buffer(bh); | |
443 | bh = bh->b_this_page; | |
444 | ||
445 | } while (bh != head); | |
446 | ||
447 | ClearPagePrivate(page); | |
448 | set_page_private(newpage, page_private(page)); | |
449 | set_page_private(page, 0); | |
450 | put_page(page); | |
451 | get_page(newpage); | |
452 | ||
453 | bh = head; | |
454 | do { | |
455 | set_bh_page(bh, newpage, bh_offset(bh)); | |
456 | bh = bh->b_this_page; | |
457 | ||
458 | } while (bh != head); | |
459 | ||
460 | SetPagePrivate(newpage); | |
461 | ||
462 | migrate_page_copy(newpage, page); | |
463 | ||
464 | bh = head; | |
465 | do { | |
466 | unlock_buffer(bh); | |
467 | put_bh(bh); | |
468 | bh = bh->b_this_page; | |
469 | ||
470 | } while (bh != head); | |
471 | ||
472 | return 0; | |
473 | } | |
474 | EXPORT_SYMBOL(buffer_migrate_page); | |
9361401e | 475 | #endif |
1d8b85cc | 476 | |
04e62a29 CL |
477 | /* |
478 | * Writeback a page to clean the dirty state | |
479 | */ | |
480 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 481 | { |
04e62a29 CL |
482 | struct writeback_control wbc = { |
483 | .sync_mode = WB_SYNC_NONE, | |
484 | .nr_to_write = 1, | |
485 | .range_start = 0, | |
486 | .range_end = LLONG_MAX, | |
487 | .nonblocking = 1, | |
488 | .for_reclaim = 1 | |
489 | }; | |
490 | int rc; | |
491 | ||
492 | if (!mapping->a_ops->writepage) | |
493 | /* No write method for the address space */ | |
494 | return -EINVAL; | |
495 | ||
496 | if (!clear_page_dirty_for_io(page)) | |
497 | /* Someone else already triggered a write */ | |
498 | return -EAGAIN; | |
499 | ||
8351a6e4 | 500 | /* |
04e62a29 CL |
501 | * A dirty page may imply that the underlying filesystem has |
502 | * the page on some queue. So the page must be clean for | |
503 | * migration. Writeout may mean we loose the lock and the | |
504 | * page state is no longer what we checked for earlier. | |
505 | * At this point we know that the migration attempt cannot | |
506 | * be successful. | |
8351a6e4 | 507 | */ |
04e62a29 | 508 | remove_migration_ptes(page, page); |
8351a6e4 | 509 | |
04e62a29 CL |
510 | rc = mapping->a_ops->writepage(page, &wbc); |
511 | if (rc < 0) | |
512 | /* I/O Error writing */ | |
513 | return -EIO; | |
8351a6e4 | 514 | |
04e62a29 CL |
515 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
516 | /* unlocked. Relock */ | |
517 | lock_page(page); | |
518 | ||
519 | return -EAGAIN; | |
520 | } | |
521 | ||
522 | /* | |
523 | * Default handling if a filesystem does not provide a migration function. | |
524 | */ | |
525 | static int fallback_migrate_page(struct address_space *mapping, | |
526 | struct page *newpage, struct page *page) | |
527 | { | |
528 | if (PageDirty(page)) | |
529 | return writeout(mapping, page); | |
8351a6e4 CL |
530 | |
531 | /* | |
532 | * Buffers may be managed in a filesystem specific way. | |
533 | * We must have no buffers or drop them. | |
534 | */ | |
b398f6bf | 535 | if (PagePrivate(page) && |
8351a6e4 CL |
536 | !try_to_release_page(page, GFP_KERNEL)) |
537 | return -EAGAIN; | |
538 | ||
539 | return migrate_page(mapping, newpage, page); | |
540 | } | |
541 | ||
e24f0b8f CL |
542 | /* |
543 | * Move a page to a newly allocated page | |
544 | * The page is locked and all ptes have been successfully removed. | |
545 | * | |
546 | * The new page will have replaced the old page if this function | |
547 | * is successful. | |
548 | */ | |
549 | static int move_to_new_page(struct page *newpage, struct page *page) | |
550 | { | |
551 | struct address_space *mapping; | |
552 | int rc; | |
553 | ||
554 | /* | |
555 | * Block others from accessing the page when we get around to | |
556 | * establishing additional references. We are the only one | |
557 | * holding a reference to the new page at this point. | |
558 | */ | |
559 | if (TestSetPageLocked(newpage)) | |
560 | BUG(); | |
561 | ||
562 | /* Prepare mapping for the new page.*/ | |
563 | newpage->index = page->index; | |
564 | newpage->mapping = page->mapping; | |
565 | ||
566 | mapping = page_mapping(page); | |
567 | if (!mapping) | |
568 | rc = migrate_page(mapping, newpage, page); | |
569 | else if (mapping->a_ops->migratepage) | |
570 | /* | |
571 | * Most pages have a mapping and most filesystems | |
572 | * should provide a migration function. Anonymous | |
573 | * pages are part of swap space which also has its | |
574 | * own migration function. This is the most common | |
575 | * path for page migration. | |
576 | */ | |
577 | rc = mapping->a_ops->migratepage(mapping, | |
578 | newpage, page); | |
579 | else | |
580 | rc = fallback_migrate_page(mapping, newpage, page); | |
581 | ||
582 | if (!rc) | |
583 | remove_migration_ptes(page, newpage); | |
584 | else | |
585 | newpage->mapping = NULL; | |
586 | ||
587 | unlock_page(newpage); | |
588 | ||
589 | return rc; | |
590 | } | |
591 | ||
592 | /* | |
593 | * Obtain the lock on page, remove all ptes and migrate the page | |
594 | * to the newly allocated page in newpage. | |
595 | */ | |
95a402c3 CL |
596 | static int unmap_and_move(new_page_t get_new_page, unsigned long private, |
597 | struct page *page, int force) | |
e24f0b8f CL |
598 | { |
599 | int rc = 0; | |
742755a1 CL |
600 | int *result = NULL; |
601 | struct page *newpage = get_new_page(page, private, &result); | |
95a402c3 CL |
602 | |
603 | if (!newpage) | |
604 | return -ENOMEM; | |
e24f0b8f CL |
605 | |
606 | if (page_count(page) == 1) | |
607 | /* page was freed from under us. So we are done. */ | |
95a402c3 | 608 | goto move_newpage; |
e24f0b8f CL |
609 | |
610 | rc = -EAGAIN; | |
611 | if (TestSetPageLocked(page)) { | |
612 | if (!force) | |
95a402c3 | 613 | goto move_newpage; |
e24f0b8f CL |
614 | lock_page(page); |
615 | } | |
616 | ||
617 | if (PageWriteback(page)) { | |
618 | if (!force) | |
619 | goto unlock; | |
620 | wait_on_page_writeback(page); | |
621 | } | |
622 | ||
623 | /* | |
624 | * Establish migration ptes or remove ptes | |
625 | */ | |
e6a1530d CL |
626 | try_to_unmap(page, 1); |
627 | if (!page_mapped(page)) | |
628 | rc = move_to_new_page(newpage, page); | |
e24f0b8f CL |
629 | |
630 | if (rc) | |
631 | remove_migration_ptes(page, page); | |
e6a1530d | 632 | |
e24f0b8f CL |
633 | unlock: |
634 | unlock_page(page); | |
95a402c3 | 635 | |
e24f0b8f | 636 | if (rc != -EAGAIN) { |
aaa994b3 CL |
637 | /* |
638 | * A page that has been migrated has all references | |
639 | * removed and will be freed. A page that has not been | |
640 | * migrated will have kepts its references and be | |
641 | * restored. | |
642 | */ | |
643 | list_del(&page->lru); | |
644 | move_to_lru(page); | |
e24f0b8f | 645 | } |
95a402c3 CL |
646 | |
647 | move_newpage: | |
648 | /* | |
649 | * Move the new page to the LRU. If migration was not successful | |
650 | * then this will free the page. | |
651 | */ | |
652 | move_to_lru(newpage); | |
742755a1 CL |
653 | if (result) { |
654 | if (rc) | |
655 | *result = rc; | |
656 | else | |
657 | *result = page_to_nid(newpage); | |
658 | } | |
e24f0b8f CL |
659 | return rc; |
660 | } | |
661 | ||
b20a3503 CL |
662 | /* |
663 | * migrate_pages | |
664 | * | |
95a402c3 CL |
665 | * The function takes one list of pages to migrate and a function |
666 | * that determines from the page to be migrated and the private data | |
667 | * the target of the move and allocates the page. | |
b20a3503 CL |
668 | * |
669 | * The function returns after 10 attempts or if no pages | |
670 | * are movable anymore because to has become empty | |
aaa994b3 CL |
671 | * or no retryable pages exist anymore. All pages will be |
672 | * retruned to the LRU or freed. | |
b20a3503 | 673 | * |
95a402c3 | 674 | * Return: Number of pages not migrated or error code. |
b20a3503 | 675 | */ |
95a402c3 CL |
676 | int migrate_pages(struct list_head *from, |
677 | new_page_t get_new_page, unsigned long private) | |
b20a3503 | 678 | { |
e24f0b8f | 679 | int retry = 1; |
b20a3503 CL |
680 | int nr_failed = 0; |
681 | int pass = 0; | |
682 | struct page *page; | |
683 | struct page *page2; | |
684 | int swapwrite = current->flags & PF_SWAPWRITE; | |
685 | int rc; | |
686 | ||
687 | if (!swapwrite) | |
688 | current->flags |= PF_SWAPWRITE; | |
689 | ||
e24f0b8f CL |
690 | for(pass = 0; pass < 10 && retry; pass++) { |
691 | retry = 0; | |
b20a3503 | 692 | |
e24f0b8f | 693 | list_for_each_entry_safe(page, page2, from, lru) { |
e24f0b8f | 694 | cond_resched(); |
2d1db3b1 | 695 | |
95a402c3 CL |
696 | rc = unmap_and_move(get_new_page, private, |
697 | page, pass > 2); | |
2d1db3b1 | 698 | |
e24f0b8f | 699 | switch(rc) { |
95a402c3 CL |
700 | case -ENOMEM: |
701 | goto out; | |
e24f0b8f | 702 | case -EAGAIN: |
2d1db3b1 | 703 | retry++; |
e24f0b8f CL |
704 | break; |
705 | case 0: | |
e24f0b8f CL |
706 | break; |
707 | default: | |
2d1db3b1 | 708 | /* Permanent failure */ |
2d1db3b1 | 709 | nr_failed++; |
e24f0b8f | 710 | break; |
2d1db3b1 | 711 | } |
b20a3503 CL |
712 | } |
713 | } | |
95a402c3 CL |
714 | rc = 0; |
715 | out: | |
b20a3503 CL |
716 | if (!swapwrite) |
717 | current->flags &= ~PF_SWAPWRITE; | |
718 | ||
aaa994b3 | 719 | putback_lru_pages(from); |
b20a3503 | 720 | |
95a402c3 CL |
721 | if (rc) |
722 | return rc; | |
b20a3503 | 723 | |
95a402c3 | 724 | return nr_failed + retry; |
b20a3503 | 725 | } |
95a402c3 | 726 | |
742755a1 CL |
727 | #ifdef CONFIG_NUMA |
728 | /* | |
729 | * Move a list of individual pages | |
730 | */ | |
731 | struct page_to_node { | |
732 | unsigned long addr; | |
733 | struct page *page; | |
734 | int node; | |
735 | int status; | |
736 | }; | |
737 | ||
738 | static struct page *new_page_node(struct page *p, unsigned long private, | |
739 | int **result) | |
740 | { | |
741 | struct page_to_node *pm = (struct page_to_node *)private; | |
742 | ||
743 | while (pm->node != MAX_NUMNODES && pm->page != p) | |
744 | pm++; | |
745 | ||
746 | if (pm->node == MAX_NUMNODES) | |
747 | return NULL; | |
748 | ||
749 | *result = &pm->status; | |
750 | ||
980128f2 | 751 | return alloc_pages_node(pm->node, GFP_HIGHUSER | GFP_THISNODE, 0); |
742755a1 CL |
752 | } |
753 | ||
754 | /* | |
755 | * Move a set of pages as indicated in the pm array. The addr | |
756 | * field must be set to the virtual address of the page to be moved | |
757 | * and the node number must contain a valid target node. | |
758 | */ | |
759 | static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, | |
760 | int migrate_all) | |
761 | { | |
762 | int err; | |
763 | struct page_to_node *pp; | |
764 | LIST_HEAD(pagelist); | |
765 | ||
766 | down_read(&mm->mmap_sem); | |
767 | ||
768 | /* | |
769 | * Build a list of pages to migrate | |
770 | */ | |
771 | migrate_prep(); | |
772 | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { | |
773 | struct vm_area_struct *vma; | |
774 | struct page *page; | |
775 | ||
776 | /* | |
777 | * A valid page pointer that will not match any of the | |
778 | * pages that will be moved. | |
779 | */ | |
780 | pp->page = ZERO_PAGE(0); | |
781 | ||
782 | err = -EFAULT; | |
783 | vma = find_vma(mm, pp->addr); | |
784 | if (!vma) | |
785 | goto set_status; | |
786 | ||
787 | page = follow_page(vma, pp->addr, FOLL_GET); | |
788 | err = -ENOENT; | |
789 | if (!page) | |
790 | goto set_status; | |
791 | ||
792 | if (PageReserved(page)) /* Check for zero page */ | |
793 | goto put_and_set; | |
794 | ||
795 | pp->page = page; | |
796 | err = page_to_nid(page); | |
797 | ||
798 | if (err == pp->node) | |
799 | /* | |
800 | * Node already in the right place | |
801 | */ | |
802 | goto put_and_set; | |
803 | ||
804 | err = -EACCES; | |
805 | if (page_mapcount(page) > 1 && | |
806 | !migrate_all) | |
807 | goto put_and_set; | |
808 | ||
809 | err = isolate_lru_page(page, &pagelist); | |
810 | put_and_set: | |
811 | /* | |
812 | * Either remove the duplicate refcount from | |
813 | * isolate_lru_page() or drop the page ref if it was | |
814 | * not isolated. | |
815 | */ | |
816 | put_page(page); | |
817 | set_status: | |
818 | pp->status = err; | |
819 | } | |
820 | ||
821 | if (!list_empty(&pagelist)) | |
822 | err = migrate_pages(&pagelist, new_page_node, | |
823 | (unsigned long)pm); | |
824 | else | |
825 | err = -ENOENT; | |
826 | ||
827 | up_read(&mm->mmap_sem); | |
828 | return err; | |
829 | } | |
830 | ||
831 | /* | |
832 | * Determine the nodes of a list of pages. The addr in the pm array | |
833 | * must have been set to the virtual address of which we want to determine | |
834 | * the node number. | |
835 | */ | |
836 | static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) | |
837 | { | |
838 | down_read(&mm->mmap_sem); | |
839 | ||
840 | for ( ; pm->node != MAX_NUMNODES; pm++) { | |
841 | struct vm_area_struct *vma; | |
842 | struct page *page; | |
843 | int err; | |
844 | ||
845 | err = -EFAULT; | |
846 | vma = find_vma(mm, pm->addr); | |
847 | if (!vma) | |
848 | goto set_status; | |
849 | ||
850 | page = follow_page(vma, pm->addr, 0); | |
851 | err = -ENOENT; | |
852 | /* Use PageReserved to check for zero page */ | |
853 | if (!page || PageReserved(page)) | |
854 | goto set_status; | |
855 | ||
856 | err = page_to_nid(page); | |
857 | set_status: | |
858 | pm->status = err; | |
859 | } | |
860 | ||
861 | up_read(&mm->mmap_sem); | |
862 | return 0; | |
863 | } | |
864 | ||
865 | /* | |
866 | * Move a list of pages in the address space of the currently executing | |
867 | * process. | |
868 | */ | |
869 | asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, | |
870 | const void __user * __user *pages, | |
871 | const int __user *nodes, | |
872 | int __user *status, int flags) | |
873 | { | |
874 | int err = 0; | |
875 | int i; | |
876 | struct task_struct *task; | |
877 | nodemask_t task_nodes; | |
878 | struct mm_struct *mm; | |
879 | struct page_to_node *pm = NULL; | |
880 | ||
881 | /* Check flags */ | |
882 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
883 | return -EINVAL; | |
884 | ||
885 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | |
886 | return -EPERM; | |
887 | ||
888 | /* Find the mm_struct */ | |
889 | read_lock(&tasklist_lock); | |
890 | task = pid ? find_task_by_pid(pid) : current; | |
891 | if (!task) { | |
892 | read_unlock(&tasklist_lock); | |
893 | return -ESRCH; | |
894 | } | |
895 | mm = get_task_mm(task); | |
896 | read_unlock(&tasklist_lock); | |
897 | ||
898 | if (!mm) | |
899 | return -EINVAL; | |
900 | ||
901 | /* | |
902 | * Check if this process has the right to modify the specified | |
903 | * process. The right exists if the process has administrative | |
904 | * capabilities, superuser privileges or the same | |
905 | * userid as the target process. | |
906 | */ | |
907 | if ((current->euid != task->suid) && (current->euid != task->uid) && | |
908 | (current->uid != task->suid) && (current->uid != task->uid) && | |
909 | !capable(CAP_SYS_NICE)) { | |
910 | err = -EPERM; | |
911 | goto out2; | |
912 | } | |
913 | ||
86c3a764 DQ |
914 | err = security_task_movememory(task); |
915 | if (err) | |
916 | goto out2; | |
917 | ||
918 | ||
742755a1 CL |
919 | task_nodes = cpuset_mems_allowed(task); |
920 | ||
921 | /* Limit nr_pages so that the multiplication may not overflow */ | |
922 | if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { | |
923 | err = -E2BIG; | |
924 | goto out2; | |
925 | } | |
926 | ||
927 | pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); | |
928 | if (!pm) { | |
929 | err = -ENOMEM; | |
930 | goto out2; | |
931 | } | |
932 | ||
933 | /* | |
934 | * Get parameters from user space and initialize the pm | |
935 | * array. Return various errors if the user did something wrong. | |
936 | */ | |
937 | for (i = 0; i < nr_pages; i++) { | |
938 | const void *p; | |
939 | ||
940 | err = -EFAULT; | |
941 | if (get_user(p, pages + i)) | |
942 | goto out; | |
943 | ||
944 | pm[i].addr = (unsigned long)p; | |
945 | if (nodes) { | |
946 | int node; | |
947 | ||
948 | if (get_user(node, nodes + i)) | |
949 | goto out; | |
950 | ||
951 | err = -ENODEV; | |
952 | if (!node_online(node)) | |
953 | goto out; | |
954 | ||
955 | err = -EACCES; | |
956 | if (!node_isset(node, task_nodes)) | |
957 | goto out; | |
958 | ||
959 | pm[i].node = node; | |
8ce08464 SR |
960 | } else |
961 | pm[i].node = 0; /* anything to not match MAX_NUMNODES */ | |
742755a1 CL |
962 | } |
963 | /* End marker */ | |
964 | pm[nr_pages].node = MAX_NUMNODES; | |
965 | ||
966 | if (nodes) | |
967 | err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); | |
968 | else | |
969 | err = do_pages_stat(mm, pm); | |
970 | ||
971 | if (err >= 0) | |
972 | /* Return status information */ | |
973 | for (i = 0; i < nr_pages; i++) | |
974 | if (put_user(pm[i].status, status + i)) | |
975 | err = -EFAULT; | |
976 | ||
977 | out: | |
978 | vfree(pm); | |
979 | out2: | |
980 | mmput(mm); | |
981 | return err; | |
982 | } | |
983 | #endif | |
984 | ||
7b2259b3 CL |
985 | /* |
986 | * Call migration functions in the vma_ops that may prepare | |
987 | * memory in a vm for migration. migration functions may perform | |
988 | * the migration for vmas that do not have an underlying page struct. | |
989 | */ | |
990 | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |
991 | const nodemask_t *from, unsigned long flags) | |
992 | { | |
993 | struct vm_area_struct *vma; | |
994 | int err = 0; | |
995 | ||
996 | for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { | |
997 | if (vma->vm_ops && vma->vm_ops->migrate) { | |
998 | err = vma->vm_ops->migrate(vma, to, from, flags); | |
999 | if (err) | |
1000 | break; | |
1001 | } | |
1002 | } | |
1003 | return err; | |
1004 | } |