mm: update get_user_pages_longterm to migrate pages allocated from CMA region
[linux.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same :c:type:`struct stable_node` structure.
86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
1105a2fc
JH
219#define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 /* to mask all the flags */
31dbd01f
IE
221
222/* The stable and unstable tree heads */
ef53d16c
HD
223static struct rb_root one_stable_tree[1] = { RB_ROOT };
224static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225static struct rb_root *root_stable_tree = one_stable_tree;
226static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 227
4146d2d6
HD
228/* Recently migrated nodes of stable tree, pending proper placement */
229static LIST_HEAD(migrate_nodes);
2c653d0e 230#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 231
4ca3a69b
SL
232#define MM_SLOTS_HASH_BITS 10
233static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
234
235static struct mm_slot ksm_mm_head = {
236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237};
238static struct ksm_scan ksm_scan = {
239 .mm_slot = &ksm_mm_head,
240};
241
242static struct kmem_cache *rmap_item_cache;
7b6ba2c7 243static struct kmem_cache *stable_node_cache;
31dbd01f
IE
244static struct kmem_cache *mm_slot_cache;
245
246/* The number of nodes in the stable tree */
b4028260 247static unsigned long ksm_pages_shared;
31dbd01f 248
e178dfde 249/* The number of page slots additionally sharing those nodes */
b4028260 250static unsigned long ksm_pages_sharing;
31dbd01f 251
473b0ce4
HD
252/* The number of nodes in the unstable tree */
253static unsigned long ksm_pages_unshared;
254
255/* The number of rmap_items in use: to calculate pages_volatile */
256static unsigned long ksm_rmap_items;
257
2c653d0e
AA
258/* The number of stable_node chains */
259static unsigned long ksm_stable_node_chains;
260
261/* The number of stable_node dups linked to the stable_node chains */
262static unsigned long ksm_stable_node_dups;
263
264/* Delay in pruning stale stable_node_dups in the stable_node_chains */
265static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267/* Maximum number of page slots sharing a stable node */
268static int ksm_max_page_sharing = 256;
269
31dbd01f 270/* Number of pages ksmd should scan in one batch */
2c6854fd 271static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
272
273/* Milliseconds ksmd should sleep between batches */
2ffd8679 274static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 275
e86c59b1
CI
276/* Checksum of an empty (zeroed) page */
277static unsigned int zero_checksum __read_mostly;
278
279/* Whether to merge empty (zeroed) pages with actual zero pages */
280static bool ksm_use_zero_pages __read_mostly;
281
e850dcf5 282#ifdef CONFIG_NUMA
90bd6fd3
PH
283/* Zeroed when merging across nodes is not allowed */
284static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 285static int ksm_nr_node_ids = 1;
e850dcf5
HD
286#else
287#define ksm_merge_across_nodes 1U
ef53d16c 288#define ksm_nr_node_ids 1
e850dcf5 289#endif
90bd6fd3 290
31dbd01f
IE
291#define KSM_RUN_STOP 0
292#define KSM_RUN_MERGE 1
293#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
294#define KSM_RUN_OFFLINE 4
295static unsigned long ksm_run = KSM_RUN_STOP;
296static void wait_while_offlining(void);
31dbd01f
IE
297
298static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 299static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
300static DEFINE_MUTEX(ksm_thread_mutex);
301static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 sizeof(struct __struct), __alignof__(struct __struct),\
305 (__flags), NULL)
306
307static int __init ksm_slab_init(void)
308{
309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 if (!rmap_item_cache)
311 goto out;
312
7b6ba2c7
HD
313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 if (!stable_node_cache)
315 goto out_free1;
316
31dbd01f
IE
317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 if (!mm_slot_cache)
7b6ba2c7 319 goto out_free2;
31dbd01f
IE
320
321 return 0;
322
7b6ba2c7
HD
323out_free2:
324 kmem_cache_destroy(stable_node_cache);
325out_free1:
31dbd01f
IE
326 kmem_cache_destroy(rmap_item_cache);
327out:
328 return -ENOMEM;
329}
330
331static void __init ksm_slab_free(void)
332{
333 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 334 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
335 kmem_cache_destroy(rmap_item_cache);
336 mm_slot_cache = NULL;
337}
338
2c653d0e
AA
339static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340{
341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342}
343
344static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345{
346 return dup->head == STABLE_NODE_DUP_HEAD;
347}
348
349static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 struct stable_node *chain)
351{
352 VM_BUG_ON(is_stable_node_dup(dup));
353 dup->head = STABLE_NODE_DUP_HEAD;
354 VM_BUG_ON(!is_stable_node_chain(chain));
355 hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 ksm_stable_node_dups++;
357}
358
359static inline void __stable_node_dup_del(struct stable_node *dup)
360{
b4fecc67 361 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
362 hlist_del(&dup->hlist_dup);
363 ksm_stable_node_dups--;
364}
365
366static inline void stable_node_dup_del(struct stable_node *dup)
367{
368 VM_BUG_ON(is_stable_node_chain(dup));
369 if (is_stable_node_dup(dup))
370 __stable_node_dup_del(dup);
371 else
372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373#ifdef CONFIG_DEBUG_VM
374 dup->head = NULL;
375#endif
376}
377
31dbd01f
IE
378static inline struct rmap_item *alloc_rmap_item(void)
379{
473b0ce4
HD
380 struct rmap_item *rmap_item;
381
5b398e41 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
384 if (rmap_item)
385 ksm_rmap_items++;
386 return rmap_item;
31dbd01f
IE
387}
388
389static inline void free_rmap_item(struct rmap_item *rmap_item)
390{
473b0ce4 391 ksm_rmap_items--;
31dbd01f
IE
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
394}
395
7b6ba2c7
HD
396static inline struct stable_node *alloc_stable_node(void)
397{
6213055f 398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
404}
405
406static inline void free_stable_node(struct stable_node *stable_node)
407{
2c653d0e
AA
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
410 kmem_cache_free(stable_node_cache, stable_node);
411}
412
31dbd01f
IE
413static inline struct mm_slot *alloc_mm_slot(void)
414{
415 if (!mm_slot_cache) /* initialization failed */
416 return NULL;
417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418}
419
420static inline void free_mm_slot(struct mm_slot *mm_slot)
421{
422 kmem_cache_free(mm_slot_cache, mm_slot);
423}
424
31dbd01f
IE
425static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426{
4ca3a69b
SL
427 struct mm_slot *slot;
428
b67bfe0d 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
430 if (slot->mm == mm)
431 return slot;
31dbd01f 432
31dbd01f
IE
433 return NULL;
434}
435
436static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 struct mm_slot *mm_slot)
438{
31dbd01f 439 mm_slot->mm = mm;
4ca3a69b 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
441}
442
a913e182
HD
443/*
444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445 * page tables after it has passed through ksm_exit() - which, if necessary,
446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
447 * a special flag: they can just back out as soon as mm_users goes to zero.
448 * ksm_test_exit() is used throughout to make this test for exit: in some
449 * places for correctness, in some places just to avoid unnecessary work.
450 */
451static inline bool ksm_test_exit(struct mm_struct *mm)
452{
453 return atomic_read(&mm->mm_users) == 0;
454}
455
31dbd01f
IE
456/*
457 * We use break_ksm to break COW on a ksm page: it's a stripped down
458 *
d4edcf0d 459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
460 * put_page(page);
461 *
462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463 * in case the application has unmapped and remapped mm,addr meanwhile.
464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
466 *
467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468 * of the process that owns 'vma'. We also do not want to enforce
469 * protection keys here anyway.
31dbd01f 470 */
d952b791 471static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
472{
473 struct page *page;
50a7ca3c 474 vm_fault_t ret = 0;
31dbd01f
IE
475
476 do {
477 cond_resched();
1b2ee126
DH
478 page = follow_page(vma, addr,
479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 480 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
481 break;
482 if (PageKsm(page))
dcddffd4
KS
483 ret = handle_mm_fault(vma, addr,
484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
485 else
486 ret = VM_FAULT_WRITE;
487 put_page(page);
33692f27 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
489 /*
490 * We must loop because handle_mm_fault() may back out if there's
491 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 *
493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 * COW has been broken, even if the vma does not permit VM_WRITE;
495 * but note that a concurrent fault might break PageKsm for us.
496 *
497 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 * backing file, which also invalidates anonymous pages: that's
499 * okay, that truncation will have unmapped the PageKsm for us.
500 *
501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 * to user; and ksmd, having no mm, would never be chosen for that.
505 *
506 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 * even ksmd can fail in this way - though it's usually breaking ksm
509 * just to undo a merge it made a moment before, so unlikely to oom.
510 *
511 * That's a pity: we might therefore have more kernel pages allocated
512 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 * will retry to break_cow on each pass, so should recover the page
514 * in due course. The important thing is to not let VM_MERGEABLE
515 * be cleared while any such pages might remain in the area.
516 */
517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
518}
519
ef694222
BL
520static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 unsigned long addr)
522{
523 struct vm_area_struct *vma;
524 if (ksm_test_exit(mm))
525 return NULL;
526 vma = find_vma(mm, addr);
527 if (!vma || vma->vm_start > addr)
528 return NULL;
529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 return NULL;
531 return vma;
532}
533
8dd3557a 534static void break_cow(struct rmap_item *rmap_item)
31dbd01f 535{
8dd3557a
HD
536 struct mm_struct *mm = rmap_item->mm;
537 unsigned long addr = rmap_item->address;
31dbd01f
IE
538 struct vm_area_struct *vma;
539
4035c07a
HD
540 /*
541 * It is not an accident that whenever we want to break COW
542 * to undo, we also need to drop a reference to the anon_vma.
543 */
9e60109f 544 put_anon_vma(rmap_item->anon_vma);
4035c07a 545
81464e30 546 down_read(&mm->mmap_sem);
ef694222
BL
547 vma = find_mergeable_vma(mm, addr);
548 if (vma)
549 break_ksm(vma, addr);
31dbd01f
IE
550 up_read(&mm->mmap_sem);
551}
552
553static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554{
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
557 struct vm_area_struct *vma;
558 struct page *page;
559
560 down_read(&mm->mmap_sem);
ef694222
BL
561 vma = find_mergeable_vma(mm, addr);
562 if (!vma)
31dbd01f
IE
563 goto out;
564
565 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 566 if (IS_ERR_OR_NULL(page))
31dbd01f 567 goto out;
f765f540 568 if (PageAnon(page)) {
31dbd01f
IE
569 flush_anon_page(vma, page, addr);
570 flush_dcache_page(page);
571 } else {
572 put_page(page);
c8f95ed1
AA
573out:
574 page = NULL;
31dbd01f
IE
575 }
576 up_read(&mm->mmap_sem);
577 return page;
578}
579
90bd6fd3
PH
580/*
581 * This helper is used for getting right index into array of tree roots.
582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584 * every node has its own stable and unstable tree.
585 */
586static inline int get_kpfn_nid(unsigned long kpfn)
587{
d8fc16a8 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
589}
590
2c653d0e
AA
591static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 struct rb_root *root)
593{
594 struct stable_node *chain = alloc_stable_node();
595 VM_BUG_ON(is_stable_node_chain(dup));
596 if (likely(chain)) {
597 INIT_HLIST_HEAD(&chain->hlist);
598 chain->chain_prune_time = jiffies;
599 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 601 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
602#endif
603 ksm_stable_node_chains++;
604
605 /*
606 * Put the stable node chain in the first dimension of
607 * the stable tree and at the same time remove the old
608 * stable node.
609 */
610 rb_replace_node(&dup->node, &chain->node, root);
611
612 /*
613 * Move the old stable node to the second dimension
614 * queued in the hlist_dup. The invariant is that all
615 * dup stable_nodes in the chain->hlist point to pages
616 * that are wrprotected and have the exact same
617 * content.
618 */
619 stable_node_chain_add_dup(dup, chain);
620 }
621 return chain;
622}
623
624static inline void free_stable_node_chain(struct stable_node *chain,
625 struct rb_root *root)
626{
627 rb_erase(&chain->node, root);
628 free_stable_node(chain);
629 ksm_stable_node_chains--;
630}
631
4035c07a
HD
632static void remove_node_from_stable_tree(struct stable_node *stable_node)
633{
634 struct rmap_item *rmap_item;
4035c07a 635
2c653d0e
AA
636 /* check it's not STABLE_NODE_CHAIN or negative */
637 BUG_ON(stable_node->rmap_hlist_len < 0);
638
b67bfe0d 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
640 if (rmap_item->hlist.next)
641 ksm_pages_sharing--;
642 else
643 ksm_pages_shared--;
2c653d0e
AA
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
9e60109f 646 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
2c653d0e
AA
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 657 */
815f0ddb 658#if defined(GCC_VERSION) && GCC_VERSION >= 40903
2c653d0e
AA
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661#endif
662
4146d2d6
HD
663 if (stable_node->head == &migrate_nodes)
664 list_del(&stable_node->list);
665 else
2c653d0e 666 stable_node_dup_del(stable_node);
4035c07a
HD
667 free_stable_node(stable_node);
668}
669
670/*
671 * get_ksm_page: checks if the page indicated by the stable node
672 * is still its ksm page, despite having held no reference to it.
673 * In which case we can trust the content of the page, and it
674 * returns the gotten page; but if the page has now been zapped,
675 * remove the stale node from the stable tree and return NULL.
c8d6553b 676 * But beware, the stable node's page might be being migrated.
4035c07a
HD
677 *
678 * You would expect the stable_node to hold a reference to the ksm page.
679 * But if it increments the page's count, swapping out has to wait for
680 * ksmd to come around again before it can free the page, which may take
681 * seconds or even minutes: much too unresponsive. So instead we use a
682 * "keyhole reference": access to the ksm page from the stable node peeps
683 * out through its keyhole to see if that page still holds the right key,
684 * pointing back to this stable node. This relies on freeing a PageAnon
685 * page to reset its page->mapping to NULL, and relies on no other use of
686 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
687 * is on its way to being freed; but it is an anomaly to bear in mind.
688 */
8fdb3dbf 689static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
690{
691 struct page *page;
692 void *expected_mapping;
c8d6553b 693 unsigned long kpfn;
4035c07a 694
bda807d4
MK
695 expected_mapping = (void *)((unsigned long)stable_node |
696 PAGE_MAPPING_KSM);
c8d6553b 697again:
08df4774 698 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 699 page = pfn_to_page(kpfn);
4db0c3c2 700 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 701 goto stale;
c8d6553b
HD
702
703 /*
704 * We cannot do anything with the page while its refcount is 0.
705 * Usually 0 means free, or tail of a higher-order page: in which
706 * case this node is no longer referenced, and should be freed;
1c4c3b99 707 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 708 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606
KT
709 * the same is in reuse_ksm_page() case; but if page is swapcache
710 * in migrate_page_move_mapping(), it might still be our page,
711 * in which case it's essential to keep the node.
c8d6553b
HD
712 */
713 while (!get_page_unless_zero(page)) {
714 /*
715 * Another check for page->mapping != expected_mapping would
716 * work here too. We have chosen the !PageSwapCache test to
717 * optimize the common case, when the page is or is about to
718 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 719 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
720 * page->mapping reset to NULL later, in free_pages_prepare().
721 */
722 if (!PageSwapCache(page))
723 goto stale;
724 cpu_relax();
725 }
726
4db0c3c2 727 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
728 put_page(page);
729 goto stale;
730 }
c8d6553b 731
8fdb3dbf 732 if (lock_it) {
8aafa6a4 733 lock_page(page);
4db0c3c2 734 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
735 unlock_page(page);
736 put_page(page);
737 goto stale;
738 }
739 }
4035c07a 740 return page;
c8d6553b 741
4035c07a 742stale:
c8d6553b
HD
743 /*
744 * We come here from above when page->mapping or !PageSwapCache
745 * suggests that the node is stale; but it might be under migration.
746 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
747 * before checking whether node->kpfn has been changed.
748 */
749 smp_rmb();
4db0c3c2 750 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 751 goto again;
4035c07a
HD
752 remove_node_from_stable_tree(stable_node);
753 return NULL;
754}
755
31dbd01f
IE
756/*
757 * Removing rmap_item from stable or unstable tree.
758 * This function will clean the information from the stable/unstable tree.
759 */
760static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
761{
7b6ba2c7
HD
762 if (rmap_item->address & STABLE_FLAG) {
763 struct stable_node *stable_node;
5ad64688 764 struct page *page;
31dbd01f 765
7b6ba2c7 766 stable_node = rmap_item->head;
8aafa6a4 767 page = get_ksm_page(stable_node, true);
4035c07a
HD
768 if (!page)
769 goto out;
5ad64688 770
7b6ba2c7 771 hlist_del(&rmap_item->hlist);
4035c07a
HD
772 unlock_page(page);
773 put_page(page);
08beca44 774
98666f8a 775 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
776 ksm_pages_sharing--;
777 else
7b6ba2c7 778 ksm_pages_shared--;
2c653d0e
AA
779 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
780 stable_node->rmap_hlist_len--;
31dbd01f 781
9e60109f 782 put_anon_vma(rmap_item->anon_vma);
93d17715 783 rmap_item->address &= PAGE_MASK;
31dbd01f 784
7b6ba2c7 785 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
786 unsigned char age;
787 /*
9ba69294 788 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 789 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
790 * But be careful when an mm is exiting: do the rb_erase
791 * if this rmap_item was inserted by this scan, rather
792 * than left over from before.
31dbd01f
IE
793 */
794 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 795 BUG_ON(age > 1);
31dbd01f 796 if (!age)
90bd6fd3 797 rb_erase(&rmap_item->node,
ef53d16c 798 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 799 ksm_pages_unshared--;
93d17715 800 rmap_item->address &= PAGE_MASK;
31dbd01f 801 }
4035c07a 802out:
31dbd01f
IE
803 cond_resched(); /* we're called from many long loops */
804}
805
31dbd01f 806static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 807 struct rmap_item **rmap_list)
31dbd01f 808{
6514d511
HD
809 while (*rmap_list) {
810 struct rmap_item *rmap_item = *rmap_list;
811 *rmap_list = rmap_item->rmap_list;
31dbd01f 812 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
813 free_rmap_item(rmap_item);
814 }
815}
816
817/*
e850dcf5 818 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
819 * than check every pte of a given vma, the locking doesn't quite work for
820 * that - an rmap_item is assigned to the stable tree after inserting ksm
821 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
822 * rmap_items from parent to child at fork time (so as not to waste time
823 * if exit comes before the next scan reaches it).
81464e30
HD
824 *
825 * Similarly, although we'd like to remove rmap_items (so updating counts
826 * and freeing memory) when unmerging an area, it's easier to leave that
827 * to the next pass of ksmd - consider, for example, how ksmd might be
828 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 829 */
d952b791
HD
830static int unmerge_ksm_pages(struct vm_area_struct *vma,
831 unsigned long start, unsigned long end)
31dbd01f
IE
832{
833 unsigned long addr;
d952b791 834 int err = 0;
31dbd01f 835
d952b791 836 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
837 if (ksm_test_exit(vma->vm_mm))
838 break;
d952b791
HD
839 if (signal_pending(current))
840 err = -ERESTARTSYS;
841 else
842 err = break_ksm(vma, addr);
843 }
844 return err;
31dbd01f
IE
845}
846
88484826
MR
847static inline struct stable_node *page_stable_node(struct page *page)
848{
849 return PageKsm(page) ? page_rmapping(page) : NULL;
850}
851
852static inline void set_page_stable_node(struct page *page,
853 struct stable_node *stable_node)
854{
855 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
856}
857
2ffd8679
HD
858#ifdef CONFIG_SYSFS
859/*
860 * Only called through the sysfs control interface:
861 */
cbf86cfe
HD
862static int remove_stable_node(struct stable_node *stable_node)
863{
864 struct page *page;
865 int err;
866
867 page = get_ksm_page(stable_node, true);
868 if (!page) {
869 /*
870 * get_ksm_page did remove_node_from_stable_tree itself.
871 */
872 return 0;
873 }
874
8fdb3dbf
HD
875 if (WARN_ON_ONCE(page_mapped(page))) {
876 /*
877 * This should not happen: but if it does, just refuse to let
878 * merge_across_nodes be switched - there is no need to panic.
879 */
cbf86cfe 880 err = -EBUSY;
8fdb3dbf 881 } else {
cbf86cfe 882 /*
8fdb3dbf
HD
883 * The stable node did not yet appear stale to get_ksm_page(),
884 * since that allows for an unmapped ksm page to be recognized
885 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
886 * This page might be in a pagevec waiting to be freed,
887 * or it might be PageSwapCache (perhaps under writeback),
888 * or it might have been removed from swapcache a moment ago.
889 */
890 set_page_stable_node(page, NULL);
891 remove_node_from_stable_tree(stable_node);
892 err = 0;
893 }
894
895 unlock_page(page);
896 put_page(page);
897 return err;
898}
899
2c653d0e
AA
900static int remove_stable_node_chain(struct stable_node *stable_node,
901 struct rb_root *root)
902{
903 struct stable_node *dup;
904 struct hlist_node *hlist_safe;
905
906 if (!is_stable_node_chain(stable_node)) {
907 VM_BUG_ON(is_stable_node_dup(stable_node));
908 if (remove_stable_node(stable_node))
909 return true;
910 else
911 return false;
912 }
913
914 hlist_for_each_entry_safe(dup, hlist_safe,
915 &stable_node->hlist, hlist_dup) {
916 VM_BUG_ON(!is_stable_node_dup(dup));
917 if (remove_stable_node(dup))
918 return true;
919 }
920 BUG_ON(!hlist_empty(&stable_node->hlist));
921 free_stable_node_chain(stable_node, root);
922 return false;
923}
924
cbf86cfe
HD
925static int remove_all_stable_nodes(void)
926{
03640418 927 struct stable_node *stable_node, *next;
cbf86cfe
HD
928 int nid;
929 int err = 0;
930
ef53d16c 931 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
932 while (root_stable_tree[nid].rb_node) {
933 stable_node = rb_entry(root_stable_tree[nid].rb_node,
934 struct stable_node, node);
2c653d0e
AA
935 if (remove_stable_node_chain(stable_node,
936 root_stable_tree + nid)) {
cbf86cfe
HD
937 err = -EBUSY;
938 break; /* proceed to next nid */
939 }
940 cond_resched();
941 }
942 }
03640418 943 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
944 if (remove_stable_node(stable_node))
945 err = -EBUSY;
946 cond_resched();
947 }
cbf86cfe
HD
948 return err;
949}
950
d952b791 951static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
952{
953 struct mm_slot *mm_slot;
954 struct mm_struct *mm;
955 struct vm_area_struct *vma;
d952b791
HD
956 int err = 0;
957
958 spin_lock(&ksm_mmlist_lock);
9ba69294 959 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
960 struct mm_slot, mm_list);
961 spin_unlock(&ksm_mmlist_lock);
31dbd01f 962
9ba69294
HD
963 for (mm_slot = ksm_scan.mm_slot;
964 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
965 mm = mm_slot->mm;
966 down_read(&mm->mmap_sem);
967 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
968 if (ksm_test_exit(mm))
969 break;
31dbd01f
IE
970 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
971 continue;
d952b791
HD
972 err = unmerge_ksm_pages(vma,
973 vma->vm_start, vma->vm_end);
9ba69294
HD
974 if (err)
975 goto error;
31dbd01f 976 }
9ba69294 977
6514d511 978 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 979 up_read(&mm->mmap_sem);
d952b791
HD
980
981 spin_lock(&ksm_mmlist_lock);
9ba69294 982 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 983 struct mm_slot, mm_list);
9ba69294 984 if (ksm_test_exit(mm)) {
4ca3a69b 985 hash_del(&mm_slot->link);
9ba69294
HD
986 list_del(&mm_slot->mm_list);
987 spin_unlock(&ksm_mmlist_lock);
988
989 free_mm_slot(mm_slot);
990 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 991 mmdrop(mm);
7496fea9 992 } else
9ba69294 993 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
994 }
995
cbf86cfe
HD
996 /* Clean up stable nodes, but don't worry if some are still busy */
997 remove_all_stable_nodes();
d952b791 998 ksm_scan.seqnr = 0;
9ba69294
HD
999 return 0;
1000
1001error:
1002 up_read(&mm->mmap_sem);
31dbd01f 1003 spin_lock(&ksm_mmlist_lock);
d952b791 1004 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1005 spin_unlock(&ksm_mmlist_lock);
d952b791 1006 return err;
31dbd01f 1007}
2ffd8679 1008#endif /* CONFIG_SYSFS */
31dbd01f 1009
31dbd01f
IE
1010static u32 calc_checksum(struct page *page)
1011{
1012 u32 checksum;
9b04c5fe 1013 void *addr = kmap_atomic(page);
59e1a2f4 1014 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1015 kunmap_atomic(addr);
31dbd01f
IE
1016 return checksum;
1017}
1018
1019static int memcmp_pages(struct page *page1, struct page *page2)
1020{
1021 char *addr1, *addr2;
1022 int ret;
1023
9b04c5fe
CW
1024 addr1 = kmap_atomic(page1);
1025 addr2 = kmap_atomic(page2);
31dbd01f 1026 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1027 kunmap_atomic(addr2);
1028 kunmap_atomic(addr1);
31dbd01f
IE
1029 return ret;
1030}
1031
1032static inline int pages_identical(struct page *page1, struct page *page2)
1033{
1034 return !memcmp_pages(page1, page2);
1035}
1036
1037static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1038 pte_t *orig_pte)
1039{
1040 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1041 struct page_vma_mapped_walk pvmw = {
1042 .page = page,
1043 .vma = vma,
1044 };
31dbd01f
IE
1045 int swapped;
1046 int err = -EFAULT;
ac46d4f3 1047 struct mmu_notifier_range range;
31dbd01f 1048
36eaff33
KS
1049 pvmw.address = page_address_in_vma(page, vma);
1050 if (pvmw.address == -EFAULT)
31dbd01f
IE
1051 goto out;
1052
29ad768c 1053 BUG_ON(PageTransCompound(page));
6bdb913f 1054
ac46d4f3
JG
1055 mmu_notifier_range_init(&range, mm, pvmw.address,
1056 pvmw.address + PAGE_SIZE);
1057 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1058
36eaff33 1059 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1060 goto out_mn;
36eaff33
KS
1061 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1062 goto out_unlock;
31dbd01f 1063
595cd8f2 1064 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1065 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1066 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1067 pte_t entry;
1068
1069 swapped = PageSwapCache(page);
36eaff33 1070 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1071 /*
25985edc 1072 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1073 * take any lock, therefore the check that we are going to make
1074 * with the pagecount against the mapcount is racey and
1075 * O_DIRECT can happen right after the check.
1076 * So we clear the pte and flush the tlb before the check
1077 * this assure us that no O_DIRECT can happen after the check
1078 * or in the middle of the check.
0f10851e
JG
1079 *
1080 * No need to notify as we are downgrading page table to read
1081 * only not changing it to point to a new page.
1082 *
ad56b738 1083 * See Documentation/vm/mmu_notifier.rst
31dbd01f 1084 */
0f10851e 1085 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1086 /*
1087 * Check that no O_DIRECT or similar I/O is in progress on the
1088 * page
1089 */
31e855ea 1090 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1091 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1092 goto out_unlock;
1093 }
4e31635c
HD
1094 if (pte_dirty(entry))
1095 set_page_dirty(page);
595cd8f2
AK
1096
1097 if (pte_protnone(entry))
1098 entry = pte_mkclean(pte_clear_savedwrite(entry));
1099 else
1100 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1101 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1102 }
36eaff33 1103 *orig_pte = *pvmw.pte;
31dbd01f
IE
1104 err = 0;
1105
1106out_unlock:
36eaff33 1107 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1108out_mn:
ac46d4f3 1109 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1110out:
1111 return err;
1112}
1113
1114/**
1115 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1116 * @vma: vma that holds the pte pointing to page
1117 * @page: the page we are replacing by kpage
1118 * @kpage: the ksm page we replace page by
31dbd01f
IE
1119 * @orig_pte: the original value of the pte
1120 *
1121 * Returns 0 on success, -EFAULT on failure.
1122 */
8dd3557a
HD
1123static int replace_page(struct vm_area_struct *vma, struct page *page,
1124 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1125{
1126 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1127 pmd_t *pmd;
1128 pte_t *ptep;
e86c59b1 1129 pte_t newpte;
31dbd01f
IE
1130 spinlock_t *ptl;
1131 unsigned long addr;
31dbd01f 1132 int err = -EFAULT;
ac46d4f3 1133 struct mmu_notifier_range range;
31dbd01f 1134
8dd3557a 1135 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1136 if (addr == -EFAULT)
1137 goto out;
1138
6219049a
BL
1139 pmd = mm_find_pmd(mm, addr);
1140 if (!pmd)
31dbd01f 1141 goto out;
31dbd01f 1142
ac46d4f3
JG
1143 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1144 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1145
31dbd01f
IE
1146 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1147 if (!pte_same(*ptep, orig_pte)) {
1148 pte_unmap_unlock(ptep, ptl);
6bdb913f 1149 goto out_mn;
31dbd01f
IE
1150 }
1151
e86c59b1
CI
1152 /*
1153 * No need to check ksm_use_zero_pages here: we can only have a
1154 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1155 */
1156 if (!is_zero_pfn(page_to_pfn(kpage))) {
1157 get_page(kpage);
1158 page_add_anon_rmap(kpage, vma, addr, false);
1159 newpte = mk_pte(kpage, vma->vm_page_prot);
1160 } else {
1161 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162 vma->vm_page_prot));
a38c015f
CI
1163 /*
1164 * We're replacing an anonymous page with a zero page, which is
1165 * not anonymous. We need to do proper accounting otherwise we
1166 * will get wrong values in /proc, and a BUG message in dmesg
1167 * when tearing down the mm.
1168 */
1169 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1170 }
31dbd01f
IE
1171
1172 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1173 /*
1174 * No need to notify as we are replacing a read only page with another
1175 * read only page with the same content.
1176 *
ad56b738 1177 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1178 */
1179 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1180 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1181
d281ee61 1182 page_remove_rmap(page, false);
ae52a2ad
HD
1183 if (!page_mapped(page))
1184 try_to_free_swap(page);
8dd3557a 1185 put_page(page);
31dbd01f
IE
1186
1187 pte_unmap_unlock(ptep, ptl);
1188 err = 0;
6bdb913f 1189out_mn:
ac46d4f3 1190 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1191out:
1192 return err;
1193}
1194
1195/*
1196 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1197 * @vma: the vma that holds the pte pointing to page
1198 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1199 * @kpage: the PageKsm page that we want to map instead of page,
1200 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1201 *
1202 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203 */
1204static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1205 struct page *page, struct page *kpage)
31dbd01f
IE
1206{
1207 pte_t orig_pte = __pte(0);
1208 int err = -EFAULT;
1209
db114b83
HD
1210 if (page == kpage) /* ksm page forked */
1211 return 0;
1212
8dd3557a 1213 if (!PageAnon(page))
31dbd01f
IE
1214 goto out;
1215
31dbd01f
IE
1216 /*
1217 * We need the page lock to read a stable PageSwapCache in
1218 * write_protect_page(). We use trylock_page() instead of
1219 * lock_page() because we don't want to wait here - we
1220 * prefer to continue scanning and merging different pages,
1221 * then come back to this page when it is unlocked.
1222 */
8dd3557a 1223 if (!trylock_page(page))
31e855ea 1224 goto out;
f765f540
KS
1225
1226 if (PageTransCompound(page)) {
a7306c34 1227 if (split_huge_page(page))
f765f540
KS
1228 goto out_unlock;
1229 }
1230
31dbd01f
IE
1231 /*
1232 * If this anonymous page is mapped only here, its pte may need
1233 * to be write-protected. If it's mapped elsewhere, all of its
1234 * ptes are necessarily already write-protected. But in either
1235 * case, we need to lock and check page_count is not raised.
1236 */
80e14822
HD
1237 if (write_protect_page(vma, page, &orig_pte) == 0) {
1238 if (!kpage) {
1239 /*
1240 * While we hold page lock, upgrade page from
1241 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1242 * stable_tree_insert() will update stable_node.
1243 */
1244 set_page_stable_node(page, NULL);
1245 mark_page_accessed(page);
337ed7eb
MK
1246 /*
1247 * Page reclaim just frees a clean page with no dirty
1248 * ptes: make sure that the ksm page would be swapped.
1249 */
1250 if (!PageDirty(page))
1251 SetPageDirty(page);
80e14822
HD
1252 err = 0;
1253 } else if (pages_identical(page, kpage))
1254 err = replace_page(vma, page, kpage, orig_pte);
1255 }
31dbd01f 1256
80e14822 1257 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1258 munlock_vma_page(page);
5ad64688
HD
1259 if (!PageMlocked(kpage)) {
1260 unlock_page(page);
5ad64688
HD
1261 lock_page(kpage);
1262 mlock_vma_page(kpage);
1263 page = kpage; /* for final unlock */
1264 }
1265 }
73848b46 1266
f765f540 1267out_unlock:
8dd3557a 1268 unlock_page(page);
31dbd01f
IE
1269out:
1270 return err;
1271}
1272
81464e30
HD
1273/*
1274 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1275 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1276 *
1277 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1278 */
8dd3557a
HD
1279static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1280 struct page *page, struct page *kpage)
81464e30 1281{
8dd3557a 1282 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1283 struct vm_area_struct *vma;
1284 int err = -EFAULT;
1285
8dd3557a 1286 down_read(&mm->mmap_sem);
85c6e8dd
AA
1287 vma = find_mergeable_vma(mm, rmap_item->address);
1288 if (!vma)
81464e30
HD
1289 goto out;
1290
8dd3557a 1291 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1292 if (err)
1293 goto out;
1294
bc56620b
HD
1295 /* Unstable nid is in union with stable anon_vma: remove first */
1296 remove_rmap_item_from_tree(rmap_item);
1297
db114b83 1298 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1299 rmap_item->anon_vma = vma->anon_vma;
1300 get_anon_vma(vma->anon_vma);
81464e30 1301out:
8dd3557a 1302 up_read(&mm->mmap_sem);
81464e30
HD
1303 return err;
1304}
1305
31dbd01f
IE
1306/*
1307 * try_to_merge_two_pages - take two identical pages and prepare them
1308 * to be merged into one page.
1309 *
8dd3557a
HD
1310 * This function returns the kpage if we successfully merged two identical
1311 * pages into one ksm page, NULL otherwise.
31dbd01f 1312 *
80e14822 1313 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1314 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1315 */
8dd3557a
HD
1316static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1317 struct page *page,
1318 struct rmap_item *tree_rmap_item,
1319 struct page *tree_page)
31dbd01f 1320{
80e14822 1321 int err;
31dbd01f 1322
80e14822 1323 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1324 if (!err) {
8dd3557a 1325 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1326 tree_page, page);
31dbd01f 1327 /*
81464e30
HD
1328 * If that fails, we have a ksm page with only one pte
1329 * pointing to it: so break it.
31dbd01f 1330 */
4035c07a 1331 if (err)
8dd3557a 1332 break_cow(rmap_item);
31dbd01f 1333 }
80e14822 1334 return err ? NULL : page;
31dbd01f
IE
1335}
1336
2c653d0e
AA
1337static __always_inline
1338bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1339{
1340 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1341 /*
1342 * Check that at least one mapping still exists, otherwise
1343 * there's no much point to merge and share with this
1344 * stable_node, as the underlying tree_page of the other
1345 * sharer is going to be freed soon.
1346 */
1347 return stable_node->rmap_hlist_len &&
1348 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1349}
1350
1351static __always_inline
1352bool is_page_sharing_candidate(struct stable_node *stable_node)
1353{
1354 return __is_page_sharing_candidate(stable_node, 0);
1355}
1356
c01f0b54
CIK
1357static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1358 struct stable_node **_stable_node,
1359 struct rb_root *root,
1360 bool prune_stale_stable_nodes)
2c653d0e 1361{
b4fecc67 1362 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1363 struct hlist_node *hlist_safe;
8dc5ffcd 1364 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1365 int nr = 0;
1366 int found_rmap_hlist_len;
1367
1368 if (!prune_stale_stable_nodes ||
1369 time_before(jiffies, stable_node->chain_prune_time +
1370 msecs_to_jiffies(
1371 ksm_stable_node_chains_prune_millisecs)))
1372 prune_stale_stable_nodes = false;
1373 else
1374 stable_node->chain_prune_time = jiffies;
1375
1376 hlist_for_each_entry_safe(dup, hlist_safe,
1377 &stable_node->hlist, hlist_dup) {
1378 cond_resched();
1379 /*
1380 * We must walk all stable_node_dup to prune the stale
1381 * stable nodes during lookup.
1382 *
1383 * get_ksm_page can drop the nodes from the
1384 * stable_node->hlist if they point to freed pages
1385 * (that's why we do a _safe walk). The "dup"
1386 * stable_node parameter itself will be freed from
1387 * under us if it returns NULL.
1388 */
1389 _tree_page = get_ksm_page(dup, false);
1390 if (!_tree_page)
1391 continue;
1392 nr += 1;
1393 if (is_page_sharing_candidate(dup)) {
1394 if (!found ||
1395 dup->rmap_hlist_len > found_rmap_hlist_len) {
1396 if (found)
8dc5ffcd 1397 put_page(tree_page);
2c653d0e
AA
1398 found = dup;
1399 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1400 tree_page = _tree_page;
2c653d0e 1401
8dc5ffcd 1402 /* skip put_page for found dup */
2c653d0e
AA
1403 if (!prune_stale_stable_nodes)
1404 break;
2c653d0e
AA
1405 continue;
1406 }
1407 }
1408 put_page(_tree_page);
1409 }
1410
80b18dfa
AA
1411 if (found) {
1412 /*
1413 * nr is counting all dups in the chain only if
1414 * prune_stale_stable_nodes is true, otherwise we may
1415 * break the loop at nr == 1 even if there are
1416 * multiple entries.
1417 */
1418 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1419 /*
1420 * If there's not just one entry it would
1421 * corrupt memory, better BUG_ON. In KSM
1422 * context with no lock held it's not even
1423 * fatal.
1424 */
1425 BUG_ON(stable_node->hlist.first->next);
1426
1427 /*
1428 * There's just one entry and it is below the
1429 * deduplication limit so drop the chain.
1430 */
1431 rb_replace_node(&stable_node->node, &found->node,
1432 root);
1433 free_stable_node(stable_node);
1434 ksm_stable_node_chains--;
1435 ksm_stable_node_dups--;
b4fecc67 1436 /*
0ba1d0f7
AA
1437 * NOTE: the caller depends on the stable_node
1438 * to be equal to stable_node_dup if the chain
1439 * was collapsed.
b4fecc67 1440 */
0ba1d0f7
AA
1441 *_stable_node = found;
1442 /*
1443 * Just for robustneess as stable_node is
1444 * otherwise left as a stable pointer, the
1445 * compiler shall optimize it away at build
1446 * time.
1447 */
1448 stable_node = NULL;
80b18dfa
AA
1449 } else if (stable_node->hlist.first != &found->hlist_dup &&
1450 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1451 /*
80b18dfa
AA
1452 * If the found stable_node dup can accept one
1453 * more future merge (in addition to the one
1454 * that is underway) and is not at the head of
1455 * the chain, put it there so next search will
1456 * be quicker in the !prune_stale_stable_nodes
1457 * case.
1458 *
1459 * NOTE: it would be inaccurate to use nr > 1
1460 * instead of checking the hlist.first pointer
1461 * directly, because in the
1462 * prune_stale_stable_nodes case "nr" isn't
1463 * the position of the found dup in the chain,
1464 * but the total number of dups in the chain.
2c653d0e
AA
1465 */
1466 hlist_del(&found->hlist_dup);
1467 hlist_add_head(&found->hlist_dup,
1468 &stable_node->hlist);
1469 }
1470 }
1471
8dc5ffcd
AA
1472 *_stable_node_dup = found;
1473 return tree_page;
2c653d0e
AA
1474}
1475
1476static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1477 struct rb_root *root)
1478{
1479 if (!is_stable_node_chain(stable_node))
1480 return stable_node;
1481 if (hlist_empty(&stable_node->hlist)) {
1482 free_stable_node_chain(stable_node, root);
1483 return NULL;
1484 }
1485 return hlist_entry(stable_node->hlist.first,
1486 typeof(*stable_node), hlist_dup);
1487}
1488
8dc5ffcd
AA
1489/*
1490 * Like for get_ksm_page, this function can free the *_stable_node and
1491 * *_stable_node_dup if the returned tree_page is NULL.
1492 *
1493 * It can also free and overwrite *_stable_node with the found
1494 * stable_node_dup if the chain is collapsed (in which case
1495 * *_stable_node will be equal to *_stable_node_dup like if the chain
1496 * never existed). It's up to the caller to verify tree_page is not
1497 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1498 *
1499 * *_stable_node_dup is really a second output parameter of this
1500 * function and will be overwritten in all cases, the caller doesn't
1501 * need to initialize it.
1502 */
1503static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1504 struct stable_node **_stable_node,
1505 struct rb_root *root,
1506 bool prune_stale_stable_nodes)
2c653d0e 1507{
b4fecc67 1508 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1509 if (!is_stable_node_chain(stable_node)) {
1510 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd
AA
1511 *_stable_node_dup = stable_node;
1512 return get_ksm_page(stable_node, false);
2c653d0e 1513 }
8dc5ffcd
AA
1514 /*
1515 * _stable_node_dup set to NULL means the stable_node
1516 * reached the ksm_max_page_sharing limit.
1517 */
1518 *_stable_node_dup = NULL;
2c653d0e
AA
1519 return NULL;
1520 }
8dc5ffcd 1521 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1522 prune_stale_stable_nodes);
1523}
1524
8dc5ffcd
AA
1525static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1526 struct stable_node **s_n,
1527 struct rb_root *root)
2c653d0e 1528{
8dc5ffcd 1529 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1530}
1531
8dc5ffcd
AA
1532static __always_inline struct page *chain(struct stable_node **s_n_d,
1533 struct stable_node *s_n,
1534 struct rb_root *root)
2c653d0e 1535{
8dc5ffcd
AA
1536 struct stable_node *old_stable_node = s_n;
1537 struct page *tree_page;
1538
1539 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1540 /* not pruning dups so s_n cannot have changed */
1541 VM_BUG_ON(s_n != old_stable_node);
1542 return tree_page;
2c653d0e
AA
1543}
1544
31dbd01f 1545/*
8dd3557a 1546 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1547 *
1548 * This function checks if there is a page inside the stable tree
1549 * with identical content to the page that we are scanning right now.
1550 *
7b6ba2c7 1551 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1552 * NULL otherwise.
1553 */
62b61f61 1554static struct page *stable_tree_search(struct page *page)
31dbd01f 1555{
90bd6fd3 1556 int nid;
ef53d16c 1557 struct rb_root *root;
4146d2d6
HD
1558 struct rb_node **new;
1559 struct rb_node *parent;
2c653d0e 1560 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1561 struct stable_node *page_node;
31dbd01f 1562
4146d2d6
HD
1563 page_node = page_stable_node(page);
1564 if (page_node && page_node->head != &migrate_nodes) {
1565 /* ksm page forked */
08beca44 1566 get_page(page);
62b61f61 1567 return page;
08beca44
HD
1568 }
1569
90bd6fd3 1570 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1571 root = root_stable_tree + nid;
4146d2d6 1572again:
ef53d16c 1573 new = &root->rb_node;
4146d2d6 1574 parent = NULL;
90bd6fd3 1575
4146d2d6 1576 while (*new) {
4035c07a 1577 struct page *tree_page;
31dbd01f
IE
1578 int ret;
1579
08beca44 1580 cond_resched();
4146d2d6 1581 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1582 stable_node_any = NULL;
8dc5ffcd 1583 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1584 /*
1585 * NOTE: stable_node may have been freed by
1586 * chain_prune() if the returned stable_node_dup is
1587 * not NULL. stable_node_dup may have been inserted in
1588 * the rbtree instead as a regular stable_node (in
1589 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1590 * stable_node dup was found in it). In such case the
1591 * stable_node is overwritten by the calleee to point
1592 * to the stable_node_dup that was collapsed in the
1593 * stable rbtree and stable_node will be equal to
1594 * stable_node_dup like if the chain never existed.
b4fecc67 1595 */
2c653d0e
AA
1596 if (!stable_node_dup) {
1597 /*
1598 * Either all stable_node dups were full in
1599 * this stable_node chain, or this chain was
1600 * empty and should be rb_erased.
1601 */
1602 stable_node_any = stable_node_dup_any(stable_node,
1603 root);
1604 if (!stable_node_any) {
1605 /* rb_erase just run */
1606 goto again;
1607 }
1608 /*
1609 * Take any of the stable_node dups page of
1610 * this stable_node chain to let the tree walk
1611 * continue. All KSM pages belonging to the
1612 * stable_node dups in a stable_node chain
1613 * have the same content and they're
1614 * wrprotected at all times. Any will work
1615 * fine to continue the walk.
1616 */
1617 tree_page = get_ksm_page(stable_node_any, false);
1618 }
1619 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1620 if (!tree_page) {
1621 /*
1622 * If we walked over a stale stable_node,
1623 * get_ksm_page() will call rb_erase() and it
1624 * may rebalance the tree from under us. So
1625 * restart the search from scratch. Returning
1626 * NULL would be safe too, but we'd generate
1627 * false negative insertions just because some
1628 * stable_node was stale.
1629 */
1630 goto again;
1631 }
31dbd01f 1632
4035c07a 1633 ret = memcmp_pages(page, tree_page);
c8d6553b 1634 put_page(tree_page);
31dbd01f 1635
4146d2d6 1636 parent = *new;
c8d6553b 1637 if (ret < 0)
4146d2d6 1638 new = &parent->rb_left;
c8d6553b 1639 else if (ret > 0)
4146d2d6 1640 new = &parent->rb_right;
c8d6553b 1641 else {
2c653d0e
AA
1642 if (page_node) {
1643 VM_BUG_ON(page_node->head != &migrate_nodes);
1644 /*
1645 * Test if the migrated page should be merged
1646 * into a stable node dup. If the mapcount is
1647 * 1 we can migrate it with another KSM page
1648 * without adding it to the chain.
1649 */
1650 if (page_mapcount(page) > 1)
1651 goto chain_append;
1652 }
1653
1654 if (!stable_node_dup) {
1655 /*
1656 * If the stable_node is a chain and
1657 * we got a payload match in memcmp
1658 * but we cannot merge the scanned
1659 * page in any of the existing
1660 * stable_node dups because they're
1661 * all full, we need to wait the
1662 * scanned page to find itself a match
1663 * in the unstable tree to create a
1664 * brand new KSM page to add later to
1665 * the dups of this stable_node.
1666 */
1667 return NULL;
1668 }
1669
c8d6553b
HD
1670 /*
1671 * Lock and unlock the stable_node's page (which
1672 * might already have been migrated) so that page
1673 * migration is sure to notice its raised count.
1674 * It would be more elegant to return stable_node
1675 * than kpage, but that involves more changes.
1676 */
2c653d0e
AA
1677 tree_page = get_ksm_page(stable_node_dup, true);
1678 if (unlikely(!tree_page))
1679 /*
1680 * The tree may have been rebalanced,
1681 * so re-evaluate parent and new.
1682 */
4146d2d6 1683 goto again;
2c653d0e
AA
1684 unlock_page(tree_page);
1685
1686 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687 NUMA(stable_node_dup->nid)) {
1688 put_page(tree_page);
1689 goto replace;
1690 }
1691 return tree_page;
c8d6553b 1692 }
31dbd01f
IE
1693 }
1694
4146d2d6
HD
1695 if (!page_node)
1696 return NULL;
1697
1698 list_del(&page_node->list);
1699 DO_NUMA(page_node->nid = nid);
1700 rb_link_node(&page_node->node, parent, new);
ef53d16c 1701 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1702out:
1703 if (is_page_sharing_candidate(page_node)) {
1704 get_page(page);
1705 return page;
1706 } else
1707 return NULL;
4146d2d6
HD
1708
1709replace:
b4fecc67
AA
1710 /*
1711 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1712 * stable_node has been updated to be the new regular
1713 * stable_node. A collapse of the chain is indistinguishable
1714 * from the case there was no chain in the stable
1715 * rbtree. Otherwise stable_node is the chain and
1716 * stable_node_dup is the dup to replace.
b4fecc67 1717 */
0ba1d0f7 1718 if (stable_node_dup == stable_node) {
b4fecc67
AA
1719 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1721 /* there is no chain */
1722 if (page_node) {
1723 VM_BUG_ON(page_node->head != &migrate_nodes);
1724 list_del(&page_node->list);
1725 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1726 rb_replace_node(&stable_node_dup->node,
1727 &page_node->node,
2c653d0e
AA
1728 root);
1729 if (is_page_sharing_candidate(page_node))
1730 get_page(page);
1731 else
1732 page = NULL;
1733 } else {
b4fecc67 1734 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1735 page = NULL;
1736 }
4146d2d6 1737 } else {
2c653d0e
AA
1738 VM_BUG_ON(!is_stable_node_chain(stable_node));
1739 __stable_node_dup_del(stable_node_dup);
1740 if (page_node) {
1741 VM_BUG_ON(page_node->head != &migrate_nodes);
1742 list_del(&page_node->list);
1743 DO_NUMA(page_node->nid = nid);
1744 stable_node_chain_add_dup(page_node, stable_node);
1745 if (is_page_sharing_candidate(page_node))
1746 get_page(page);
1747 else
1748 page = NULL;
1749 } else {
1750 page = NULL;
1751 }
4146d2d6 1752 }
2c653d0e
AA
1753 stable_node_dup->head = &migrate_nodes;
1754 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1755 return page;
2c653d0e
AA
1756
1757chain_append:
1758 /* stable_node_dup could be null if it reached the limit */
1759 if (!stable_node_dup)
1760 stable_node_dup = stable_node_any;
b4fecc67
AA
1761 /*
1762 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1763 * stable_node has been updated to be the new regular
1764 * stable_node. A collapse of the chain is indistinguishable
1765 * from the case there was no chain in the stable
1766 * rbtree. Otherwise stable_node is the chain and
1767 * stable_node_dup is the dup to replace.
b4fecc67 1768 */
0ba1d0f7 1769 if (stable_node_dup == stable_node) {
b4fecc67
AA
1770 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1771 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1772 /* chain is missing so create it */
1773 stable_node = alloc_stable_node_chain(stable_node_dup,
1774 root);
1775 if (!stable_node)
1776 return NULL;
1777 }
1778 /*
1779 * Add this stable_node dup that was
1780 * migrated to the stable_node chain
1781 * of the current nid for this page
1782 * content.
1783 */
b4fecc67
AA
1784 VM_BUG_ON(!is_stable_node_chain(stable_node));
1785 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1786 VM_BUG_ON(page_node->head != &migrate_nodes);
1787 list_del(&page_node->list);
1788 DO_NUMA(page_node->nid = nid);
1789 stable_node_chain_add_dup(page_node, stable_node);
1790 goto out;
31dbd01f
IE
1791}
1792
1793/*
e850dcf5 1794 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1795 * into the stable tree.
1796 *
7b6ba2c7
HD
1797 * This function returns the stable tree node just allocated on success,
1798 * NULL otherwise.
31dbd01f 1799 */
7b6ba2c7 1800static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1801{
90bd6fd3
PH
1802 int nid;
1803 unsigned long kpfn;
ef53d16c 1804 struct rb_root *root;
90bd6fd3 1805 struct rb_node **new;
f2e5ff85 1806 struct rb_node *parent;
2c653d0e
AA
1807 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1808 bool need_chain = false;
31dbd01f 1809
90bd6fd3
PH
1810 kpfn = page_to_pfn(kpage);
1811 nid = get_kpfn_nid(kpfn);
ef53d16c 1812 root = root_stable_tree + nid;
f2e5ff85
AA
1813again:
1814 parent = NULL;
ef53d16c 1815 new = &root->rb_node;
90bd6fd3 1816
31dbd01f 1817 while (*new) {
4035c07a 1818 struct page *tree_page;
31dbd01f
IE
1819 int ret;
1820
08beca44 1821 cond_resched();
7b6ba2c7 1822 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1823 stable_node_any = NULL;
8dc5ffcd 1824 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1825 if (!stable_node_dup) {
1826 /*
1827 * Either all stable_node dups were full in
1828 * this stable_node chain, or this chain was
1829 * empty and should be rb_erased.
1830 */
1831 stable_node_any = stable_node_dup_any(stable_node,
1832 root);
1833 if (!stable_node_any) {
1834 /* rb_erase just run */
1835 goto again;
1836 }
1837 /*
1838 * Take any of the stable_node dups page of
1839 * this stable_node chain to let the tree walk
1840 * continue. All KSM pages belonging to the
1841 * stable_node dups in a stable_node chain
1842 * have the same content and they're
1843 * wrprotected at all times. Any will work
1844 * fine to continue the walk.
1845 */
1846 tree_page = get_ksm_page(stable_node_any, false);
1847 }
1848 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1849 if (!tree_page) {
1850 /*
1851 * If we walked over a stale stable_node,
1852 * get_ksm_page() will call rb_erase() and it
1853 * may rebalance the tree from under us. So
1854 * restart the search from scratch. Returning
1855 * NULL would be safe too, but we'd generate
1856 * false negative insertions just because some
1857 * stable_node was stale.
1858 */
1859 goto again;
1860 }
31dbd01f 1861
4035c07a
HD
1862 ret = memcmp_pages(kpage, tree_page);
1863 put_page(tree_page);
31dbd01f
IE
1864
1865 parent = *new;
1866 if (ret < 0)
1867 new = &parent->rb_left;
1868 else if (ret > 0)
1869 new = &parent->rb_right;
1870 else {
2c653d0e
AA
1871 need_chain = true;
1872 break;
31dbd01f
IE
1873 }
1874 }
1875
2c653d0e
AA
1876 stable_node_dup = alloc_stable_node();
1877 if (!stable_node_dup)
7b6ba2c7 1878 return NULL;
31dbd01f 1879
2c653d0e
AA
1880 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1881 stable_node_dup->kpfn = kpfn;
1882 set_page_stable_node(kpage, stable_node_dup);
1883 stable_node_dup->rmap_hlist_len = 0;
1884 DO_NUMA(stable_node_dup->nid = nid);
1885 if (!need_chain) {
1886 rb_link_node(&stable_node_dup->node, parent, new);
1887 rb_insert_color(&stable_node_dup->node, root);
1888 } else {
1889 if (!is_stable_node_chain(stable_node)) {
1890 struct stable_node *orig = stable_node;
1891 /* chain is missing so create it */
1892 stable_node = alloc_stable_node_chain(orig, root);
1893 if (!stable_node) {
1894 free_stable_node(stable_node_dup);
1895 return NULL;
1896 }
1897 }
1898 stable_node_chain_add_dup(stable_node_dup, stable_node);
1899 }
08beca44 1900
2c653d0e 1901 return stable_node_dup;
31dbd01f
IE
1902}
1903
1904/*
8dd3557a
HD
1905 * unstable_tree_search_insert - search for identical page,
1906 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1907 *
1908 * This function searches for a page in the unstable tree identical to the
1909 * page currently being scanned; and if no identical page is found in the
1910 * tree, we insert rmap_item as a new object into the unstable tree.
1911 *
1912 * This function returns pointer to rmap_item found to be identical
1913 * to the currently scanned page, NULL otherwise.
1914 *
1915 * This function does both searching and inserting, because they share
1916 * the same walking algorithm in an rbtree.
1917 */
8dd3557a
HD
1918static
1919struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1920 struct page *page,
1921 struct page **tree_pagep)
31dbd01f 1922{
90bd6fd3
PH
1923 struct rb_node **new;
1924 struct rb_root *root;
31dbd01f 1925 struct rb_node *parent = NULL;
90bd6fd3
PH
1926 int nid;
1927
1928 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1929 root = root_unstable_tree + nid;
90bd6fd3 1930 new = &root->rb_node;
31dbd01f
IE
1931
1932 while (*new) {
1933 struct rmap_item *tree_rmap_item;
8dd3557a 1934 struct page *tree_page;
31dbd01f
IE
1935 int ret;
1936
d178f27f 1937 cond_resched();
31dbd01f 1938 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1939 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1940 if (!tree_page)
31dbd01f
IE
1941 return NULL;
1942
1943 /*
8dd3557a 1944 * Don't substitute a ksm page for a forked page.
31dbd01f 1945 */
8dd3557a
HD
1946 if (page == tree_page) {
1947 put_page(tree_page);
31dbd01f
IE
1948 return NULL;
1949 }
1950
8dd3557a 1951 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1952
1953 parent = *new;
1954 if (ret < 0) {
8dd3557a 1955 put_page(tree_page);
31dbd01f
IE
1956 new = &parent->rb_left;
1957 } else if (ret > 0) {
8dd3557a 1958 put_page(tree_page);
31dbd01f 1959 new = &parent->rb_right;
b599cbdf
HD
1960 } else if (!ksm_merge_across_nodes &&
1961 page_to_nid(tree_page) != nid) {
1962 /*
1963 * If tree_page has been migrated to another NUMA node,
1964 * it will be flushed out and put in the right unstable
1965 * tree next time: only merge with it when across_nodes.
1966 */
1967 put_page(tree_page);
1968 return NULL;
31dbd01f 1969 } else {
8dd3557a 1970 *tree_pagep = tree_page;
31dbd01f
IE
1971 return tree_rmap_item;
1972 }
1973 }
1974
7b6ba2c7 1975 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1976 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1977 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1978 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1979 rb_insert_color(&rmap_item->node, root);
31dbd01f 1980
473b0ce4 1981 ksm_pages_unshared++;
31dbd01f
IE
1982 return NULL;
1983}
1984
1985/*
1986 * stable_tree_append - add another rmap_item to the linked list of
1987 * rmap_items hanging off a given node of the stable tree, all sharing
1988 * the same ksm page.
1989 */
1990static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1991 struct stable_node *stable_node,
1992 bool max_page_sharing_bypass)
31dbd01f 1993{
2c653d0e
AA
1994 /*
1995 * rmap won't find this mapping if we don't insert the
1996 * rmap_item in the right stable_node
1997 * duplicate. page_migration could break later if rmap breaks,
1998 * so we can as well crash here. We really need to check for
1999 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2000 * for other negative values as an undeflow if detected here
2001 * for the first time (and not when decreasing rmap_hlist_len)
2002 * would be sign of memory corruption in the stable_node.
2003 */
2004 BUG_ON(stable_node->rmap_hlist_len < 0);
2005
2006 stable_node->rmap_hlist_len++;
2007 if (!max_page_sharing_bypass)
2008 /* possibly non fatal but unexpected overflow, only warn */
2009 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2010 ksm_max_page_sharing);
2011
7b6ba2c7 2012 rmap_item->head = stable_node;
31dbd01f 2013 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2014 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2015
7b6ba2c7
HD
2016 if (rmap_item->hlist.next)
2017 ksm_pages_sharing++;
2018 else
2019 ksm_pages_shared++;
31dbd01f
IE
2020}
2021
2022/*
81464e30
HD
2023 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2024 * if not, compare checksum to previous and if it's the same, see if page can
2025 * be inserted into the unstable tree, or merged with a page already there and
2026 * both transferred to the stable tree.
31dbd01f
IE
2027 *
2028 * @page: the page that we are searching identical page to.
2029 * @rmap_item: the reverse mapping into the virtual address of this page
2030 */
2031static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2032{
4b22927f 2033 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2034 struct rmap_item *tree_rmap_item;
8dd3557a 2035 struct page *tree_page = NULL;
7b6ba2c7 2036 struct stable_node *stable_node;
8dd3557a 2037 struct page *kpage;
31dbd01f
IE
2038 unsigned int checksum;
2039 int err;
2c653d0e 2040 bool max_page_sharing_bypass = false;
31dbd01f 2041
4146d2d6
HD
2042 stable_node = page_stable_node(page);
2043 if (stable_node) {
2044 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2045 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2046 NUMA(stable_node->nid)) {
2047 stable_node_dup_del(stable_node);
4146d2d6
HD
2048 stable_node->head = &migrate_nodes;
2049 list_add(&stable_node->list, stable_node->head);
2050 }
2051 if (stable_node->head != &migrate_nodes &&
2052 rmap_item->head == stable_node)
2053 return;
2c653d0e
AA
2054 /*
2055 * If it's a KSM fork, allow it to go over the sharing limit
2056 * without warnings.
2057 */
2058 if (!is_page_sharing_candidate(stable_node))
2059 max_page_sharing_bypass = true;
4146d2d6 2060 }
31dbd01f
IE
2061
2062 /* We first start with searching the page inside the stable tree */
62b61f61 2063 kpage = stable_tree_search(page);
4146d2d6
HD
2064 if (kpage == page && rmap_item->head == stable_node) {
2065 put_page(kpage);
2066 return;
2067 }
2068
2069 remove_rmap_item_from_tree(rmap_item);
2070
62b61f61 2071 if (kpage) {
08beca44 2072 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2073 if (!err) {
2074 /*
2075 * The page was successfully merged:
2076 * add its rmap_item to the stable tree.
2077 */
5ad64688 2078 lock_page(kpage);
2c653d0e
AA
2079 stable_tree_append(rmap_item, page_stable_node(kpage),
2080 max_page_sharing_bypass);
5ad64688 2081 unlock_page(kpage);
31dbd01f 2082 }
8dd3557a 2083 put_page(kpage);
31dbd01f
IE
2084 return;
2085 }
2086
2087 /*
4035c07a
HD
2088 * If the hash value of the page has changed from the last time
2089 * we calculated it, this page is changing frequently: therefore we
2090 * don't want to insert it in the unstable tree, and we don't want
2091 * to waste our time searching for something identical to it there.
31dbd01f
IE
2092 */
2093 checksum = calc_checksum(page);
2094 if (rmap_item->oldchecksum != checksum) {
2095 rmap_item->oldchecksum = checksum;
2096 return;
2097 }
2098
e86c59b1
CI
2099 /*
2100 * Same checksum as an empty page. We attempt to merge it with the
2101 * appropriate zero page if the user enabled this via sysfs.
2102 */
2103 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104 struct vm_area_struct *vma;
2105
4b22927f
KT
2106 down_read(&mm->mmap_sem);
2107 vma = find_mergeable_vma(mm, rmap_item->address);
e86c59b1
CI
2108 err = try_to_merge_one_page(vma, page,
2109 ZERO_PAGE(rmap_item->address));
4b22927f 2110 up_read(&mm->mmap_sem);
e86c59b1
CI
2111 /*
2112 * In case of failure, the page was not really empty, so we
2113 * need to continue. Otherwise we're done.
2114 */
2115 if (!err)
2116 return;
2117 }
8dd3557a
HD
2118 tree_rmap_item =
2119 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2120 if (tree_rmap_item) {
77da2ba0
CI
2121 bool split;
2122
8dd3557a
HD
2123 kpage = try_to_merge_two_pages(rmap_item, page,
2124 tree_rmap_item, tree_page);
77da2ba0
CI
2125 /*
2126 * If both pages we tried to merge belong to the same compound
2127 * page, then we actually ended up increasing the reference
2128 * count of the same compound page twice, and split_huge_page
2129 * failed.
2130 * Here we set a flag if that happened, and we use it later to
2131 * try split_huge_page again. Since we call put_page right
2132 * afterwards, the reference count will be correct and
2133 * split_huge_page should succeed.
2134 */
2135 split = PageTransCompound(page)
2136 && compound_head(page) == compound_head(tree_page);
8dd3557a 2137 put_page(tree_page);
8dd3557a 2138 if (kpage) {
bc56620b
HD
2139 /*
2140 * The pages were successfully merged: insert new
2141 * node in the stable tree and add both rmap_items.
2142 */
5ad64688 2143 lock_page(kpage);
7b6ba2c7
HD
2144 stable_node = stable_tree_insert(kpage);
2145 if (stable_node) {
2c653d0e
AA
2146 stable_tree_append(tree_rmap_item, stable_node,
2147 false);
2148 stable_tree_append(rmap_item, stable_node,
2149 false);
7b6ba2c7 2150 }
5ad64688 2151 unlock_page(kpage);
7b6ba2c7 2152
31dbd01f
IE
2153 /*
2154 * If we fail to insert the page into the stable tree,
2155 * we will have 2 virtual addresses that are pointing
2156 * to a ksm page left outside the stable tree,
2157 * in which case we need to break_cow on both.
2158 */
7b6ba2c7 2159 if (!stable_node) {
8dd3557a
HD
2160 break_cow(tree_rmap_item);
2161 break_cow(rmap_item);
31dbd01f 2162 }
77da2ba0
CI
2163 } else if (split) {
2164 /*
2165 * We are here if we tried to merge two pages and
2166 * failed because they both belonged to the same
2167 * compound page. We will split the page now, but no
2168 * merging will take place.
2169 * We do not want to add the cost of a full lock; if
2170 * the page is locked, it is better to skip it and
2171 * perhaps try again later.
2172 */
2173 if (!trylock_page(page))
2174 return;
2175 split_huge_page(page);
2176 unlock_page(page);
31dbd01f 2177 }
31dbd01f
IE
2178 }
2179}
2180
2181static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2182 struct rmap_item **rmap_list,
31dbd01f
IE
2183 unsigned long addr)
2184{
2185 struct rmap_item *rmap_item;
2186
6514d511
HD
2187 while (*rmap_list) {
2188 rmap_item = *rmap_list;
93d17715 2189 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2190 return rmap_item;
31dbd01f
IE
2191 if (rmap_item->address > addr)
2192 break;
6514d511 2193 *rmap_list = rmap_item->rmap_list;
31dbd01f 2194 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2195 free_rmap_item(rmap_item);
2196 }
2197
2198 rmap_item = alloc_rmap_item();
2199 if (rmap_item) {
2200 /* It has already been zeroed */
2201 rmap_item->mm = mm_slot->mm;
2202 rmap_item->address = addr;
6514d511
HD
2203 rmap_item->rmap_list = *rmap_list;
2204 *rmap_list = rmap_item;
31dbd01f
IE
2205 }
2206 return rmap_item;
2207}
2208
2209static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2210{
2211 struct mm_struct *mm;
2212 struct mm_slot *slot;
2213 struct vm_area_struct *vma;
2214 struct rmap_item *rmap_item;
90bd6fd3 2215 int nid;
31dbd01f
IE
2216
2217 if (list_empty(&ksm_mm_head.mm_list))
2218 return NULL;
2219
2220 slot = ksm_scan.mm_slot;
2221 if (slot == &ksm_mm_head) {
2919bfd0
HD
2222 /*
2223 * A number of pages can hang around indefinitely on per-cpu
2224 * pagevecs, raised page count preventing write_protect_page
2225 * from merging them. Though it doesn't really matter much,
2226 * it is puzzling to see some stuck in pages_volatile until
2227 * other activity jostles them out, and they also prevented
2228 * LTP's KSM test from succeeding deterministically; so drain
2229 * them here (here rather than on entry to ksm_do_scan(),
2230 * so we don't IPI too often when pages_to_scan is set low).
2231 */
2232 lru_add_drain_all();
2233
4146d2d6
HD
2234 /*
2235 * Whereas stale stable_nodes on the stable_tree itself
2236 * get pruned in the regular course of stable_tree_search(),
2237 * those moved out to the migrate_nodes list can accumulate:
2238 * so prune them once before each full scan.
2239 */
2240 if (!ksm_merge_across_nodes) {
03640418 2241 struct stable_node *stable_node, *next;
4146d2d6
HD
2242 struct page *page;
2243
03640418
GT
2244 list_for_each_entry_safe(stable_node, next,
2245 &migrate_nodes, list) {
4146d2d6
HD
2246 page = get_ksm_page(stable_node, false);
2247 if (page)
2248 put_page(page);
2249 cond_resched();
2250 }
2251 }
2252
ef53d16c 2253 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2254 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2255
2256 spin_lock(&ksm_mmlist_lock);
2257 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2258 ksm_scan.mm_slot = slot;
2259 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2260 /*
2261 * Although we tested list_empty() above, a racing __ksm_exit
2262 * of the last mm on the list may have removed it since then.
2263 */
2264 if (slot == &ksm_mm_head)
2265 return NULL;
31dbd01f
IE
2266next_mm:
2267 ksm_scan.address = 0;
6514d511 2268 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2269 }
2270
2271 mm = slot->mm;
2272 down_read(&mm->mmap_sem);
9ba69294
HD
2273 if (ksm_test_exit(mm))
2274 vma = NULL;
2275 else
2276 vma = find_vma(mm, ksm_scan.address);
2277
2278 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2279 if (!(vma->vm_flags & VM_MERGEABLE))
2280 continue;
2281 if (ksm_scan.address < vma->vm_start)
2282 ksm_scan.address = vma->vm_start;
2283 if (!vma->anon_vma)
2284 ksm_scan.address = vma->vm_end;
2285
2286 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2287 if (ksm_test_exit(mm))
2288 break;
31dbd01f 2289 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2290 if (IS_ERR_OR_NULL(*page)) {
2291 ksm_scan.address += PAGE_SIZE;
2292 cond_resched();
2293 continue;
2294 }
f765f540 2295 if (PageAnon(*page)) {
31dbd01f
IE
2296 flush_anon_page(vma, *page, ksm_scan.address);
2297 flush_dcache_page(*page);
2298 rmap_item = get_next_rmap_item(slot,
6514d511 2299 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2300 if (rmap_item) {
6514d511
HD
2301 ksm_scan.rmap_list =
2302 &rmap_item->rmap_list;
31dbd01f
IE
2303 ksm_scan.address += PAGE_SIZE;
2304 } else
2305 put_page(*page);
2306 up_read(&mm->mmap_sem);
2307 return rmap_item;
2308 }
21ae5b01 2309 put_page(*page);
31dbd01f
IE
2310 ksm_scan.address += PAGE_SIZE;
2311 cond_resched();
2312 }
2313 }
2314
9ba69294
HD
2315 if (ksm_test_exit(mm)) {
2316 ksm_scan.address = 0;
6514d511 2317 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2318 }
31dbd01f
IE
2319 /*
2320 * Nuke all the rmap_items that are above this current rmap:
2321 * because there were no VM_MERGEABLE vmas with such addresses.
2322 */
6514d511 2323 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2324
2325 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2326 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2327 struct mm_slot, mm_list);
2328 if (ksm_scan.address == 0) {
2329 /*
2330 * We've completed a full scan of all vmas, holding mmap_sem
2331 * throughout, and found no VM_MERGEABLE: so do the same as
2332 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2333 * This applies either when cleaning up after __ksm_exit
2334 * (but beware: we can reach here even before __ksm_exit),
2335 * or when all VM_MERGEABLE areas have been unmapped (and
2336 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2337 */
4ca3a69b 2338 hash_del(&slot->link);
cd551f97 2339 list_del(&slot->mm_list);
9ba69294
HD
2340 spin_unlock(&ksm_mmlist_lock);
2341
cd551f97
HD
2342 free_mm_slot(slot);
2343 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2344 up_read(&mm->mmap_sem);
2345 mmdrop(mm);
2346 } else {
9ba69294 2347 up_read(&mm->mmap_sem);
7496fea9
ZC
2348 /*
2349 * up_read(&mm->mmap_sem) first because after
2350 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2351 * already have been freed under us by __ksm_exit()
2352 * because the "mm_slot" is still hashed and
2353 * ksm_scan.mm_slot doesn't point to it anymore.
2354 */
2355 spin_unlock(&ksm_mmlist_lock);
cd551f97 2356 }
31dbd01f
IE
2357
2358 /* Repeat until we've completed scanning the whole list */
cd551f97 2359 slot = ksm_scan.mm_slot;
31dbd01f
IE
2360 if (slot != &ksm_mm_head)
2361 goto next_mm;
2362
31dbd01f
IE
2363 ksm_scan.seqnr++;
2364 return NULL;
2365}
2366
2367/**
2368 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2369 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2370 */
2371static void ksm_do_scan(unsigned int scan_npages)
2372{
2373 struct rmap_item *rmap_item;
22eccdd7 2374 struct page *uninitialized_var(page);
31dbd01f 2375
878aee7d 2376 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2377 cond_resched();
2378 rmap_item = scan_get_next_rmap_item(&page);
2379 if (!rmap_item)
2380 return;
4146d2d6 2381 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2382 put_page(page);
2383 }
2384}
2385
6e158384
HD
2386static int ksmd_should_run(void)
2387{
2388 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2389}
2390
31dbd01f
IE
2391static int ksm_scan_thread(void *nothing)
2392{
fcf9a0ef
KT
2393 unsigned int sleep_ms;
2394
878aee7d 2395 set_freezable();
339aa624 2396 set_user_nice(current, 5);
31dbd01f
IE
2397
2398 while (!kthread_should_stop()) {
6e158384 2399 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2400 wait_while_offlining();
6e158384 2401 if (ksmd_should_run())
31dbd01f 2402 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2403 mutex_unlock(&ksm_thread_mutex);
2404
878aee7d
AA
2405 try_to_freeze();
2406
6e158384 2407 if (ksmd_should_run()) {
fcf9a0ef
KT
2408 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2409 wait_event_interruptible_timeout(ksm_iter_wait,
2410 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2411 msecs_to_jiffies(sleep_ms));
31dbd01f 2412 } else {
878aee7d 2413 wait_event_freezable(ksm_thread_wait,
6e158384 2414 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2415 }
2416 }
2417 return 0;
2418}
2419
f8af4da3
HD
2420int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2421 unsigned long end, int advice, unsigned long *vm_flags)
2422{
2423 struct mm_struct *mm = vma->vm_mm;
d952b791 2424 int err;
f8af4da3
HD
2425
2426 switch (advice) {
2427 case MADV_MERGEABLE:
2428 /*
2429 * Be somewhat over-protective for now!
2430 */
2431 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2432 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2433 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2434 return 0; /* just ignore the advice */
2435
e1fb4a08
DJ
2436 if (vma_is_dax(vma))
2437 return 0;
2438
cc2383ec
KK
2439#ifdef VM_SAO
2440 if (*vm_flags & VM_SAO)
2441 return 0;
2442#endif
74a04967
KA
2443#ifdef VM_SPARC_ADI
2444 if (*vm_flags & VM_SPARC_ADI)
2445 return 0;
2446#endif
cc2383ec 2447
d952b791
HD
2448 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2449 err = __ksm_enter(mm);
2450 if (err)
2451 return err;
2452 }
f8af4da3
HD
2453
2454 *vm_flags |= VM_MERGEABLE;
2455 break;
2456
2457 case MADV_UNMERGEABLE:
2458 if (!(*vm_flags & VM_MERGEABLE))
2459 return 0; /* just ignore the advice */
2460
d952b791
HD
2461 if (vma->anon_vma) {
2462 err = unmerge_ksm_pages(vma, start, end);
2463 if (err)
2464 return err;
2465 }
f8af4da3
HD
2466
2467 *vm_flags &= ~VM_MERGEABLE;
2468 break;
2469 }
2470
2471 return 0;
2472}
2473
2474int __ksm_enter(struct mm_struct *mm)
2475{
6e158384
HD
2476 struct mm_slot *mm_slot;
2477 int needs_wakeup;
2478
2479 mm_slot = alloc_mm_slot();
31dbd01f
IE
2480 if (!mm_slot)
2481 return -ENOMEM;
2482
6e158384
HD
2483 /* Check ksm_run too? Would need tighter locking */
2484 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2485
31dbd01f
IE
2486 spin_lock(&ksm_mmlist_lock);
2487 insert_to_mm_slots_hash(mm, mm_slot);
2488 /*
cbf86cfe
HD
2489 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2490 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2491 * down a little; when fork is followed by immediate exec, we don't
2492 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2493 *
2494 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2495 * scanning cursor, otherwise KSM pages in newly forked mms will be
2496 * missed: then we might as well insert at the end of the list.
31dbd01f 2497 */
cbf86cfe
HD
2498 if (ksm_run & KSM_RUN_UNMERGE)
2499 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2500 else
2501 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2502 spin_unlock(&ksm_mmlist_lock);
2503
f8af4da3 2504 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2505 mmgrab(mm);
6e158384
HD
2506
2507 if (needs_wakeup)
2508 wake_up_interruptible(&ksm_thread_wait);
2509
f8af4da3
HD
2510 return 0;
2511}
2512
1c2fb7a4 2513void __ksm_exit(struct mm_struct *mm)
f8af4da3 2514{
cd551f97 2515 struct mm_slot *mm_slot;
9ba69294 2516 int easy_to_free = 0;
cd551f97 2517
31dbd01f 2518 /*
9ba69294
HD
2519 * This process is exiting: if it's straightforward (as is the
2520 * case when ksmd was never running), free mm_slot immediately.
2521 * But if it's at the cursor or has rmap_items linked to it, use
2522 * mmap_sem to synchronize with any break_cows before pagetables
2523 * are freed, and leave the mm_slot on the list for ksmd to free.
2524 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2525 */
9ba69294 2526
cd551f97
HD
2527 spin_lock(&ksm_mmlist_lock);
2528 mm_slot = get_mm_slot(mm);
9ba69294 2529 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2530 if (!mm_slot->rmap_list) {
4ca3a69b 2531 hash_del(&mm_slot->link);
9ba69294
HD
2532 list_del(&mm_slot->mm_list);
2533 easy_to_free = 1;
2534 } else {
2535 list_move(&mm_slot->mm_list,
2536 &ksm_scan.mm_slot->mm_list);
2537 }
cd551f97 2538 }
cd551f97
HD
2539 spin_unlock(&ksm_mmlist_lock);
2540
9ba69294
HD
2541 if (easy_to_free) {
2542 free_mm_slot(mm_slot);
2543 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2544 mmdrop(mm);
2545 } else if (mm_slot) {
9ba69294
HD
2546 down_write(&mm->mmap_sem);
2547 up_write(&mm->mmap_sem);
9ba69294 2548 }
31dbd01f
IE
2549}
2550
cbf86cfe 2551struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2552 struct vm_area_struct *vma, unsigned long address)
2553{
cbf86cfe 2554 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2555 struct page *new_page;
2556
cbf86cfe
HD
2557 if (PageKsm(page)) {
2558 if (page_stable_node(page) &&
2559 !(ksm_run & KSM_RUN_UNMERGE))
2560 return page; /* no need to copy it */
2561 } else if (!anon_vma) {
2562 return page; /* no need to copy it */
2563 } else if (anon_vma->root == vma->anon_vma->root &&
2564 page->index == linear_page_index(vma, address)) {
2565 return page; /* still no need to copy it */
2566 }
2567 if (!PageUptodate(page))
2568 return page; /* let do_swap_page report the error */
2569
5ad64688
HD
2570 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2571 if (new_page) {
2572 copy_user_highpage(new_page, page, address, vma);
2573
2574 SetPageDirty(new_page);
2575 __SetPageUptodate(new_page);
48c935ad 2576 __SetPageLocked(new_page);
5ad64688
HD
2577 }
2578
5ad64688
HD
2579 return new_page;
2580}
2581
1df631ae 2582void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2583{
2584 struct stable_node *stable_node;
e9995ef9 2585 struct rmap_item *rmap_item;
e9995ef9
HD
2586 int search_new_forks = 0;
2587
309381fe 2588 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2589
2590 /*
2591 * Rely on the page lock to protect against concurrent modifications
2592 * to that page's node of the stable tree.
2593 */
309381fe 2594 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2595
2596 stable_node = page_stable_node(page);
2597 if (!stable_node)
1df631ae 2598 return;
e9995ef9 2599again:
b67bfe0d 2600 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2601 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2602 struct anon_vma_chain *vmac;
e9995ef9
HD
2603 struct vm_area_struct *vma;
2604
ad12695f 2605 cond_resched();
b6b19f25 2606 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2607 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2608 0, ULONG_MAX) {
1105a2fc
JH
2609 unsigned long addr;
2610
ad12695f 2611 cond_resched();
5beb4930 2612 vma = vmac->vma;
1105a2fc
JH
2613
2614 /* Ignore the stable/unstable/sqnr flags */
2615 addr = rmap_item->address & ~KSM_FLAG_MASK;
2616
2617 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2618 continue;
2619 /*
2620 * Initially we examine only the vma which covers this
2621 * rmap_item; but later, if there is still work to do,
2622 * we examine covering vmas in other mms: in case they
2623 * were forked from the original since ksmd passed.
2624 */
2625 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2626 continue;
2627
0dd1c7bb
JK
2628 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2629 continue;
2630
1105a2fc 2631 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
b6b19f25 2632 anon_vma_unlock_read(anon_vma);
1df631ae 2633 return;
e9995ef9 2634 }
0dd1c7bb
JK
2635 if (rwc->done && rwc->done(page)) {
2636 anon_vma_unlock_read(anon_vma);
1df631ae 2637 return;
0dd1c7bb 2638 }
e9995ef9 2639 }
b6b19f25 2640 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2641 }
2642 if (!search_new_forks++)
2643 goto again;
e9995ef9
HD
2644}
2645
52d1e606
KT
2646bool reuse_ksm_page(struct page *page,
2647 struct vm_area_struct *vma,
2648 unsigned long address)
2649{
2650#ifdef CONFIG_DEBUG_VM
2651 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2652 WARN_ON(!page_mapped(page)) ||
2653 WARN_ON(!PageLocked(page))) {
2654 dump_page(page, "reuse_ksm_page");
2655 return false;
2656 }
2657#endif
2658
2659 if (PageSwapCache(page) || !page_stable_node(page))
2660 return false;
2661 /* Prohibit parallel get_ksm_page() */
2662 if (!page_ref_freeze(page, 1))
2663 return false;
2664
2665 page_move_anon_rmap(page, vma);
2666 page->index = linear_page_index(vma, address);
2667 page_ref_unfreeze(page, 1);
2668
2669 return true;
2670}
52629506 2671#ifdef CONFIG_MIGRATION
e9995ef9
HD
2672void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2673{
2674 struct stable_node *stable_node;
2675
309381fe
SL
2676 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2677 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2678 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2679
2680 stable_node = page_stable_node(newpage);
2681 if (stable_node) {
309381fe 2682 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2683 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2684 /*
2685 * newpage->mapping was set in advance; now we need smp_wmb()
2686 * to make sure that the new stable_node->kpfn is visible
2687 * to get_ksm_page() before it can see that oldpage->mapping
2688 * has gone stale (or that PageSwapCache has been cleared).
2689 */
2690 smp_wmb();
2691 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2692 }
2693}
2694#endif /* CONFIG_MIGRATION */
2695
62b61f61 2696#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2697static void wait_while_offlining(void)
2698{
2699 while (ksm_run & KSM_RUN_OFFLINE) {
2700 mutex_unlock(&ksm_thread_mutex);
2701 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2702 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2703 mutex_lock(&ksm_thread_mutex);
2704 }
2705}
2706
2c653d0e
AA
2707static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2708 unsigned long start_pfn,
2709 unsigned long end_pfn)
2710{
2711 if (stable_node->kpfn >= start_pfn &&
2712 stable_node->kpfn < end_pfn) {
2713 /*
2714 * Don't get_ksm_page, page has already gone:
2715 * which is why we keep kpfn instead of page*
2716 */
2717 remove_node_from_stable_tree(stable_node);
2718 return true;
2719 }
2720 return false;
2721}
2722
2723static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2724 unsigned long start_pfn,
2725 unsigned long end_pfn,
2726 struct rb_root *root)
2727{
2728 struct stable_node *dup;
2729 struct hlist_node *hlist_safe;
2730
2731 if (!is_stable_node_chain(stable_node)) {
2732 VM_BUG_ON(is_stable_node_dup(stable_node));
2733 return stable_node_dup_remove_range(stable_node, start_pfn,
2734 end_pfn);
2735 }
2736
2737 hlist_for_each_entry_safe(dup, hlist_safe,
2738 &stable_node->hlist, hlist_dup) {
2739 VM_BUG_ON(!is_stable_node_dup(dup));
2740 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2741 }
2742 if (hlist_empty(&stable_node->hlist)) {
2743 free_stable_node_chain(stable_node, root);
2744 return true; /* notify caller that tree was rebalanced */
2745 } else
2746 return false;
2747}
2748
ee0ea59c
HD
2749static void ksm_check_stable_tree(unsigned long start_pfn,
2750 unsigned long end_pfn)
62b61f61 2751{
03640418 2752 struct stable_node *stable_node, *next;
62b61f61 2753 struct rb_node *node;
90bd6fd3 2754 int nid;
62b61f61 2755
ef53d16c
HD
2756 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2757 node = rb_first(root_stable_tree + nid);
ee0ea59c 2758 while (node) {
90bd6fd3 2759 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2760 if (stable_node_chain_remove_range(stable_node,
2761 start_pfn, end_pfn,
2762 root_stable_tree +
2763 nid))
ef53d16c 2764 node = rb_first(root_stable_tree + nid);
2c653d0e 2765 else
ee0ea59c
HD
2766 node = rb_next(node);
2767 cond_resched();
90bd6fd3 2768 }
ee0ea59c 2769 }
03640418 2770 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2771 if (stable_node->kpfn >= start_pfn &&
2772 stable_node->kpfn < end_pfn)
2773 remove_node_from_stable_tree(stable_node);
2774 cond_resched();
2775 }
62b61f61
HD
2776}
2777
2778static int ksm_memory_callback(struct notifier_block *self,
2779 unsigned long action, void *arg)
2780{
2781 struct memory_notify *mn = arg;
62b61f61
HD
2782
2783 switch (action) {
2784 case MEM_GOING_OFFLINE:
2785 /*
ef4d43a8
HD
2786 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2787 * and remove_all_stable_nodes() while memory is going offline:
2788 * it is unsafe for them to touch the stable tree at this time.
2789 * But unmerge_ksm_pages(), rmap lookups and other entry points
2790 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2791 */
ef4d43a8
HD
2792 mutex_lock(&ksm_thread_mutex);
2793 ksm_run |= KSM_RUN_OFFLINE;
2794 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2795 break;
2796
2797 case MEM_OFFLINE:
2798 /*
2799 * Most of the work is done by page migration; but there might
2800 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2801 * pages which have been offlined: prune those from the tree,
2802 * otherwise get_ksm_page() might later try to access a
2803 * non-existent struct page.
62b61f61 2804 */
ee0ea59c
HD
2805 ksm_check_stable_tree(mn->start_pfn,
2806 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2807 /* fallthrough */
2808
2809 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2810 mutex_lock(&ksm_thread_mutex);
2811 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2812 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2813
2814 smp_mb(); /* wake_up_bit advises this */
2815 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2816 break;
2817 }
2818 return NOTIFY_OK;
2819}
ef4d43a8
HD
2820#else
2821static void wait_while_offlining(void)
2822{
2823}
62b61f61
HD
2824#endif /* CONFIG_MEMORY_HOTREMOVE */
2825
2ffd8679
HD
2826#ifdef CONFIG_SYSFS
2827/*
2828 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2829 */
2830
31dbd01f
IE
2831#define KSM_ATTR_RO(_name) \
2832 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2833#define KSM_ATTR(_name) \
2834 static struct kobj_attribute _name##_attr = \
2835 __ATTR(_name, 0644, _name##_show, _name##_store)
2836
2837static ssize_t sleep_millisecs_show(struct kobject *kobj,
2838 struct kobj_attribute *attr, char *buf)
2839{
2840 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2841}
2842
2843static ssize_t sleep_millisecs_store(struct kobject *kobj,
2844 struct kobj_attribute *attr,
2845 const char *buf, size_t count)
2846{
2847 unsigned long msecs;
2848 int err;
2849
3dbb95f7 2850 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2851 if (err || msecs > UINT_MAX)
2852 return -EINVAL;
2853
2854 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2855 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2856
2857 return count;
2858}
2859KSM_ATTR(sleep_millisecs);
2860
2861static ssize_t pages_to_scan_show(struct kobject *kobj,
2862 struct kobj_attribute *attr, char *buf)
2863{
2864 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2865}
2866
2867static ssize_t pages_to_scan_store(struct kobject *kobj,
2868 struct kobj_attribute *attr,
2869 const char *buf, size_t count)
2870{
2871 int err;
2872 unsigned long nr_pages;
2873
3dbb95f7 2874 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2875 if (err || nr_pages > UINT_MAX)
2876 return -EINVAL;
2877
2878 ksm_thread_pages_to_scan = nr_pages;
2879
2880 return count;
2881}
2882KSM_ATTR(pages_to_scan);
2883
2884static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2885 char *buf)
2886{
ef4d43a8 2887 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2888}
2889
2890static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2891 const char *buf, size_t count)
2892{
2893 int err;
2894 unsigned long flags;
2895
3dbb95f7 2896 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2897 if (err || flags > UINT_MAX)
2898 return -EINVAL;
2899 if (flags > KSM_RUN_UNMERGE)
2900 return -EINVAL;
2901
2902 /*
2903 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2904 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2905 * breaking COW to free the pages_shared (but leaves mm_slots
2906 * on the list for when ksmd may be set running again).
31dbd01f
IE
2907 */
2908
2909 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2910 wait_while_offlining();
31dbd01f
IE
2911 if (ksm_run != flags) {
2912 ksm_run = flags;
d952b791 2913 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2914 set_current_oom_origin();
d952b791 2915 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2916 clear_current_oom_origin();
d952b791
HD
2917 if (err) {
2918 ksm_run = KSM_RUN_STOP;
2919 count = err;
2920 }
2921 }
31dbd01f
IE
2922 }
2923 mutex_unlock(&ksm_thread_mutex);
2924
2925 if (flags & KSM_RUN_MERGE)
2926 wake_up_interruptible(&ksm_thread_wait);
2927
2928 return count;
2929}
2930KSM_ATTR(run);
2931
90bd6fd3
PH
2932#ifdef CONFIG_NUMA
2933static ssize_t merge_across_nodes_show(struct kobject *kobj,
2934 struct kobj_attribute *attr, char *buf)
2935{
2936 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2937}
2938
2939static ssize_t merge_across_nodes_store(struct kobject *kobj,
2940 struct kobj_attribute *attr,
2941 const char *buf, size_t count)
2942{
2943 int err;
2944 unsigned long knob;
2945
2946 err = kstrtoul(buf, 10, &knob);
2947 if (err)
2948 return err;
2949 if (knob > 1)
2950 return -EINVAL;
2951
2952 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2953 wait_while_offlining();
90bd6fd3 2954 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2955 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2956 err = -EBUSY;
ef53d16c
HD
2957 else if (root_stable_tree == one_stable_tree) {
2958 struct rb_root *buf;
2959 /*
2960 * This is the first time that we switch away from the
2961 * default of merging across nodes: must now allocate
2962 * a buffer to hold as many roots as may be needed.
2963 * Allocate stable and unstable together:
2964 * MAXSMP NODES_SHIFT 10 will use 16kB.
2965 */
bafe1e14
JP
2966 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2967 GFP_KERNEL);
ef53d16c
HD
2968 /* Let us assume that RB_ROOT is NULL is zero */
2969 if (!buf)
2970 err = -ENOMEM;
2971 else {
2972 root_stable_tree = buf;
2973 root_unstable_tree = buf + nr_node_ids;
2974 /* Stable tree is empty but not the unstable */
2975 root_unstable_tree[0] = one_unstable_tree[0];
2976 }
2977 }
2978 if (!err) {
90bd6fd3 2979 ksm_merge_across_nodes = knob;
ef53d16c
HD
2980 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2981 }
90bd6fd3
PH
2982 }
2983 mutex_unlock(&ksm_thread_mutex);
2984
2985 return err ? err : count;
2986}
2987KSM_ATTR(merge_across_nodes);
2988#endif
2989
e86c59b1
CI
2990static ssize_t use_zero_pages_show(struct kobject *kobj,
2991 struct kobj_attribute *attr, char *buf)
2992{
2993 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2994}
2995static ssize_t use_zero_pages_store(struct kobject *kobj,
2996 struct kobj_attribute *attr,
2997 const char *buf, size_t count)
2998{
2999 int err;
3000 bool value;
3001
3002 err = kstrtobool(buf, &value);
3003 if (err)
3004 return -EINVAL;
3005
3006 ksm_use_zero_pages = value;
3007
3008 return count;
3009}
3010KSM_ATTR(use_zero_pages);
3011
2c653d0e
AA
3012static ssize_t max_page_sharing_show(struct kobject *kobj,
3013 struct kobj_attribute *attr, char *buf)
3014{
3015 return sprintf(buf, "%u\n", ksm_max_page_sharing);
3016}
3017
3018static ssize_t max_page_sharing_store(struct kobject *kobj,
3019 struct kobj_attribute *attr,
3020 const char *buf, size_t count)
3021{
3022 int err;
3023 int knob;
3024
3025 err = kstrtoint(buf, 10, &knob);
3026 if (err)
3027 return err;
3028 /*
3029 * When a KSM page is created it is shared by 2 mappings. This
3030 * being a signed comparison, it implicitly verifies it's not
3031 * negative.
3032 */
3033 if (knob < 2)
3034 return -EINVAL;
3035
3036 if (READ_ONCE(ksm_max_page_sharing) == knob)
3037 return count;
3038
3039 mutex_lock(&ksm_thread_mutex);
3040 wait_while_offlining();
3041 if (ksm_max_page_sharing != knob) {
3042 if (ksm_pages_shared || remove_all_stable_nodes())
3043 err = -EBUSY;
3044 else
3045 ksm_max_page_sharing = knob;
3046 }
3047 mutex_unlock(&ksm_thread_mutex);
3048
3049 return err ? err : count;
3050}
3051KSM_ATTR(max_page_sharing);
3052
b4028260
HD
3053static ssize_t pages_shared_show(struct kobject *kobj,
3054 struct kobj_attribute *attr, char *buf)
3055{
3056 return sprintf(buf, "%lu\n", ksm_pages_shared);
3057}
3058KSM_ATTR_RO(pages_shared);
3059
3060static ssize_t pages_sharing_show(struct kobject *kobj,
3061 struct kobj_attribute *attr, char *buf)
3062{
e178dfde 3063 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3064}
3065KSM_ATTR_RO(pages_sharing);
3066
473b0ce4
HD
3067static ssize_t pages_unshared_show(struct kobject *kobj,
3068 struct kobj_attribute *attr, char *buf)
3069{
3070 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3071}
3072KSM_ATTR_RO(pages_unshared);
3073
3074static ssize_t pages_volatile_show(struct kobject *kobj,
3075 struct kobj_attribute *attr, char *buf)
3076{
3077 long ksm_pages_volatile;
3078
3079 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3080 - ksm_pages_sharing - ksm_pages_unshared;
3081 /*
3082 * It was not worth any locking to calculate that statistic,
3083 * but it might therefore sometimes be negative: conceal that.
3084 */
3085 if (ksm_pages_volatile < 0)
3086 ksm_pages_volatile = 0;
3087 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3088}
3089KSM_ATTR_RO(pages_volatile);
3090
2c653d0e
AA
3091static ssize_t stable_node_dups_show(struct kobject *kobj,
3092 struct kobj_attribute *attr, char *buf)
3093{
3094 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3095}
3096KSM_ATTR_RO(stable_node_dups);
3097
3098static ssize_t stable_node_chains_show(struct kobject *kobj,
3099 struct kobj_attribute *attr, char *buf)
3100{
3101 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3102}
3103KSM_ATTR_RO(stable_node_chains);
3104
3105static ssize_t
3106stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3107 struct kobj_attribute *attr,
3108 char *buf)
3109{
3110 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3111}
3112
3113static ssize_t
3114stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3115 struct kobj_attribute *attr,
3116 const char *buf, size_t count)
3117{
3118 unsigned long msecs;
3119 int err;
3120
3121 err = kstrtoul(buf, 10, &msecs);
3122 if (err || msecs > UINT_MAX)
3123 return -EINVAL;
3124
3125 ksm_stable_node_chains_prune_millisecs = msecs;
3126
3127 return count;
3128}
3129KSM_ATTR(stable_node_chains_prune_millisecs);
3130
473b0ce4
HD
3131static ssize_t full_scans_show(struct kobject *kobj,
3132 struct kobj_attribute *attr, char *buf)
3133{
3134 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3135}
3136KSM_ATTR_RO(full_scans);
3137
31dbd01f
IE
3138static struct attribute *ksm_attrs[] = {
3139 &sleep_millisecs_attr.attr,
3140 &pages_to_scan_attr.attr,
3141 &run_attr.attr,
b4028260
HD
3142 &pages_shared_attr.attr,
3143 &pages_sharing_attr.attr,
473b0ce4
HD
3144 &pages_unshared_attr.attr,
3145 &pages_volatile_attr.attr,
3146 &full_scans_attr.attr,
90bd6fd3
PH
3147#ifdef CONFIG_NUMA
3148 &merge_across_nodes_attr.attr,
3149#endif
2c653d0e
AA
3150 &max_page_sharing_attr.attr,
3151 &stable_node_chains_attr.attr,
3152 &stable_node_dups_attr.attr,
3153 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3154 &use_zero_pages_attr.attr,
31dbd01f
IE
3155 NULL,
3156};
3157
f907c26a 3158static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3159 .attrs = ksm_attrs,
3160 .name = "ksm",
3161};
2ffd8679 3162#endif /* CONFIG_SYSFS */
31dbd01f
IE
3163
3164static int __init ksm_init(void)
3165{
3166 struct task_struct *ksm_thread;
3167 int err;
3168
e86c59b1
CI
3169 /* The correct value depends on page size and endianness */
3170 zero_checksum = calc_checksum(ZERO_PAGE(0));
3171 /* Default to false for backwards compatibility */
3172 ksm_use_zero_pages = false;
3173
31dbd01f
IE
3174 err = ksm_slab_init();
3175 if (err)
3176 goto out;
3177
31dbd01f
IE
3178 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3179 if (IS_ERR(ksm_thread)) {
25acde31 3180 pr_err("ksm: creating kthread failed\n");
31dbd01f 3181 err = PTR_ERR(ksm_thread);
d9f8984c 3182 goto out_free;
31dbd01f
IE
3183 }
3184
2ffd8679 3185#ifdef CONFIG_SYSFS
31dbd01f
IE
3186 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3187 if (err) {
25acde31 3188 pr_err("ksm: register sysfs failed\n");
2ffd8679 3189 kthread_stop(ksm_thread);
d9f8984c 3190 goto out_free;
31dbd01f 3191 }
c73602ad
HD
3192#else
3193 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3194
2ffd8679 3195#endif /* CONFIG_SYSFS */
31dbd01f 3196
62b61f61 3197#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3198 /* There is no significance to this priority 100 */
62b61f61
HD
3199 hotplug_memory_notifier(ksm_memory_callback, 100);
3200#endif
31dbd01f
IE
3201 return 0;
3202
d9f8984c 3203out_free:
31dbd01f
IE
3204 ksm_slab_free();
3205out:
3206 return err;
f8af4da3 3207}
a64fb3cd 3208subsys_initcall(ksm_init);
This page took 1.366283 seconds and 4 git commands to generate.