]>
Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
3e57ecf6 | 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
7b718769 | 4 | * All Rights Reserved. |
1da177e4 | 5 | */ |
40ebd81d | 6 | #include <linux/log2.h> |
f0e28280 | 7 | #include <linux/iversion.h> |
40ebd81d | 8 | |
1da177e4 | 9 | #include "xfs.h" |
a844f451 | 10 | #include "xfs_fs.h" |
70a9883c | 11 | #include "xfs_shared.h" |
239880ef DC |
12 | #include "xfs_format.h" |
13 | #include "xfs_log_format.h" | |
14 | #include "xfs_trans_resv.h" | |
1da177e4 | 15 | #include "xfs_sb.h" |
1da177e4 | 16 | #include "xfs_mount.h" |
3ab78df2 | 17 | #include "xfs_defer.h" |
a4fbe6ab | 18 | #include "xfs_inode.h" |
57062787 | 19 | #include "xfs_da_format.h" |
c24b5dfa | 20 | #include "xfs_da_btree.h" |
c24b5dfa | 21 | #include "xfs_dir2.h" |
a844f451 | 22 | #include "xfs_attr_sf.h" |
c24b5dfa | 23 | #include "xfs_attr.h" |
239880ef DC |
24 | #include "xfs_trans_space.h" |
25 | #include "xfs_trans.h" | |
1da177e4 | 26 | #include "xfs_buf_item.h" |
a844f451 | 27 | #include "xfs_inode_item.h" |
a844f451 NS |
28 | #include "xfs_ialloc.h" |
29 | #include "xfs_bmap.h" | |
68988114 | 30 | #include "xfs_bmap_util.h" |
e9e899a2 | 31 | #include "xfs_errortag.h" |
1da177e4 | 32 | #include "xfs_error.h" |
1da177e4 | 33 | #include "xfs_quota.h" |
2a82b8be | 34 | #include "xfs_filestream.h" |
93848a99 | 35 | #include "xfs_cksum.h" |
0b1b213f | 36 | #include "xfs_trace.h" |
33479e05 | 37 | #include "xfs_icache.h" |
c24b5dfa | 38 | #include "xfs_symlink.h" |
239880ef DC |
39 | #include "xfs_trans_priv.h" |
40 | #include "xfs_log.h" | |
a4fbe6ab | 41 | #include "xfs_bmap_btree.h" |
aa8968f2 | 42 | #include "xfs_reflink.h" |
005c5db8 | 43 | #include "xfs_dir2_priv.h" |
1da177e4 | 44 | |
1da177e4 | 45 | kmem_zone_t *xfs_inode_zone; |
1da177e4 LT |
46 | |
47 | /* | |
8f04c47a | 48 | * Used in xfs_itruncate_extents(). This is the maximum number of extents |
1da177e4 LT |
49 | * freed from a file in a single transaction. |
50 | */ | |
51 | #define XFS_ITRUNC_MAX_EXTENTS 2 | |
52 | ||
54d7b5c1 DC |
53 | STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); |
54 | STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); | |
55 | STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); | |
ab297431 | 56 | |
2a0ec1d9 DC |
57 | /* |
58 | * helper function to extract extent size hint from inode | |
59 | */ | |
60 | xfs_extlen_t | |
61 | xfs_get_extsz_hint( | |
62 | struct xfs_inode *ip) | |
63 | { | |
64 | if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) | |
65 | return ip->i_d.di_extsize; | |
66 | if (XFS_IS_REALTIME_INODE(ip)) | |
67 | return ip->i_mount->m_sb.sb_rextsize; | |
68 | return 0; | |
69 | } | |
70 | ||
f7ca3522 DW |
71 | /* |
72 | * Helper function to extract CoW extent size hint from inode. | |
73 | * Between the extent size hint and the CoW extent size hint, we | |
e153aa79 DW |
74 | * return the greater of the two. If the value is zero (automatic), |
75 | * use the default size. | |
f7ca3522 DW |
76 | */ |
77 | xfs_extlen_t | |
78 | xfs_get_cowextsz_hint( | |
79 | struct xfs_inode *ip) | |
80 | { | |
81 | xfs_extlen_t a, b; | |
82 | ||
83 | a = 0; | |
84 | if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) | |
85 | a = ip->i_d.di_cowextsize; | |
86 | b = xfs_get_extsz_hint(ip); | |
87 | ||
e153aa79 DW |
88 | a = max(a, b); |
89 | if (a == 0) | |
90 | return XFS_DEFAULT_COWEXTSZ_HINT; | |
91 | return a; | |
f7ca3522 DW |
92 | } |
93 | ||
fa96acad | 94 | /* |
efa70be1 CH |
95 | * These two are wrapper routines around the xfs_ilock() routine used to |
96 | * centralize some grungy code. They are used in places that wish to lock the | |
97 | * inode solely for reading the extents. The reason these places can't just | |
98 | * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to | |
99 | * bringing in of the extents from disk for a file in b-tree format. If the | |
100 | * inode is in b-tree format, then we need to lock the inode exclusively until | |
101 | * the extents are read in. Locking it exclusively all the time would limit | |
102 | * our parallelism unnecessarily, though. What we do instead is check to see | |
103 | * if the extents have been read in yet, and only lock the inode exclusively | |
104 | * if they have not. | |
fa96acad | 105 | * |
efa70be1 | 106 | * The functions return a value which should be given to the corresponding |
01f4f327 | 107 | * xfs_iunlock() call. |
fa96acad DC |
108 | */ |
109 | uint | |
309ecac8 CH |
110 | xfs_ilock_data_map_shared( |
111 | struct xfs_inode *ip) | |
fa96acad | 112 | { |
309ecac8 | 113 | uint lock_mode = XFS_ILOCK_SHARED; |
fa96acad | 114 | |
309ecac8 CH |
115 | if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && |
116 | (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) | |
fa96acad | 117 | lock_mode = XFS_ILOCK_EXCL; |
fa96acad | 118 | xfs_ilock(ip, lock_mode); |
fa96acad DC |
119 | return lock_mode; |
120 | } | |
121 | ||
efa70be1 CH |
122 | uint |
123 | xfs_ilock_attr_map_shared( | |
124 | struct xfs_inode *ip) | |
fa96acad | 125 | { |
efa70be1 CH |
126 | uint lock_mode = XFS_ILOCK_SHARED; |
127 | ||
128 | if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && | |
129 | (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) | |
130 | lock_mode = XFS_ILOCK_EXCL; | |
131 | xfs_ilock(ip, lock_mode); | |
132 | return lock_mode; | |
fa96acad DC |
133 | } |
134 | ||
135 | /* | |
65523218 CH |
136 | * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 |
137 | * multi-reader locks: i_mmap_lock and the i_lock. This routine allows | |
138 | * various combinations of the locks to be obtained. | |
fa96acad | 139 | * |
653c60b6 DC |
140 | * The 3 locks should always be ordered so that the IO lock is obtained first, |
141 | * the mmap lock second and the ilock last in order to prevent deadlock. | |
fa96acad | 142 | * |
653c60b6 DC |
143 | * Basic locking order: |
144 | * | |
65523218 | 145 | * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock |
653c60b6 DC |
146 | * |
147 | * mmap_sem locking order: | |
148 | * | |
65523218 | 149 | * i_rwsem -> page lock -> mmap_sem |
653c60b6 DC |
150 | * mmap_sem -> i_mmap_lock -> page_lock |
151 | * | |
152 | * The difference in mmap_sem locking order mean that we cannot hold the | |
153 | * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can | |
154 | * fault in pages during copy in/out (for buffered IO) or require the mmap_sem | |
155 | * in get_user_pages() to map the user pages into the kernel address space for | |
65523218 | 156 | * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because |
653c60b6 DC |
157 | * page faults already hold the mmap_sem. |
158 | * | |
159 | * Hence to serialise fully against both syscall and mmap based IO, we need to | |
65523218 | 160 | * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both |
653c60b6 DC |
161 | * taken in places where we need to invalidate the page cache in a race |
162 | * free manner (e.g. truncate, hole punch and other extent manipulation | |
163 | * functions). | |
fa96acad DC |
164 | */ |
165 | void | |
166 | xfs_ilock( | |
167 | xfs_inode_t *ip, | |
168 | uint lock_flags) | |
169 | { | |
170 | trace_xfs_ilock(ip, lock_flags, _RET_IP_); | |
171 | ||
172 | /* | |
173 | * You can't set both SHARED and EXCL for the same lock, | |
174 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | |
175 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | |
176 | */ | |
177 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | |
178 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | |
653c60b6 DC |
179 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
180 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | |
fa96acad DC |
181 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
182 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | |
0952c818 | 183 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
fa96acad | 184 | |
65523218 CH |
185 | if (lock_flags & XFS_IOLOCK_EXCL) { |
186 | down_write_nested(&VFS_I(ip)->i_rwsem, | |
187 | XFS_IOLOCK_DEP(lock_flags)); | |
188 | } else if (lock_flags & XFS_IOLOCK_SHARED) { | |
189 | down_read_nested(&VFS_I(ip)->i_rwsem, | |
190 | XFS_IOLOCK_DEP(lock_flags)); | |
191 | } | |
fa96acad | 192 | |
653c60b6 DC |
193 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
194 | mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); | |
195 | else if (lock_flags & XFS_MMAPLOCK_SHARED) | |
196 | mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); | |
197 | ||
fa96acad DC |
198 | if (lock_flags & XFS_ILOCK_EXCL) |
199 | mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | |
200 | else if (lock_flags & XFS_ILOCK_SHARED) | |
201 | mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | |
202 | } | |
203 | ||
204 | /* | |
205 | * This is just like xfs_ilock(), except that the caller | |
206 | * is guaranteed not to sleep. It returns 1 if it gets | |
207 | * the requested locks and 0 otherwise. If the IO lock is | |
208 | * obtained but the inode lock cannot be, then the IO lock | |
209 | * is dropped before returning. | |
210 | * | |
211 | * ip -- the inode being locked | |
212 | * lock_flags -- this parameter indicates the inode's locks to be | |
213 | * to be locked. See the comment for xfs_ilock() for a list | |
214 | * of valid values. | |
215 | */ | |
216 | int | |
217 | xfs_ilock_nowait( | |
218 | xfs_inode_t *ip, | |
219 | uint lock_flags) | |
220 | { | |
221 | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); | |
222 | ||
223 | /* | |
224 | * You can't set both SHARED and EXCL for the same lock, | |
225 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | |
226 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | |
227 | */ | |
228 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | |
229 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | |
653c60b6 DC |
230 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
231 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | |
fa96acad DC |
232 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
233 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | |
0952c818 | 234 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
fa96acad DC |
235 | |
236 | if (lock_flags & XFS_IOLOCK_EXCL) { | |
65523218 | 237 | if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) |
fa96acad DC |
238 | goto out; |
239 | } else if (lock_flags & XFS_IOLOCK_SHARED) { | |
65523218 | 240 | if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) |
fa96acad DC |
241 | goto out; |
242 | } | |
653c60b6 DC |
243 | |
244 | if (lock_flags & XFS_MMAPLOCK_EXCL) { | |
245 | if (!mrtryupdate(&ip->i_mmaplock)) | |
246 | goto out_undo_iolock; | |
247 | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { | |
248 | if (!mrtryaccess(&ip->i_mmaplock)) | |
249 | goto out_undo_iolock; | |
250 | } | |
251 | ||
fa96acad DC |
252 | if (lock_flags & XFS_ILOCK_EXCL) { |
253 | if (!mrtryupdate(&ip->i_lock)) | |
653c60b6 | 254 | goto out_undo_mmaplock; |
fa96acad DC |
255 | } else if (lock_flags & XFS_ILOCK_SHARED) { |
256 | if (!mrtryaccess(&ip->i_lock)) | |
653c60b6 | 257 | goto out_undo_mmaplock; |
fa96acad DC |
258 | } |
259 | return 1; | |
260 | ||
653c60b6 DC |
261 | out_undo_mmaplock: |
262 | if (lock_flags & XFS_MMAPLOCK_EXCL) | |
263 | mrunlock_excl(&ip->i_mmaplock); | |
264 | else if (lock_flags & XFS_MMAPLOCK_SHARED) | |
265 | mrunlock_shared(&ip->i_mmaplock); | |
266 | out_undo_iolock: | |
fa96acad | 267 | if (lock_flags & XFS_IOLOCK_EXCL) |
65523218 | 268 | up_write(&VFS_I(ip)->i_rwsem); |
fa96acad | 269 | else if (lock_flags & XFS_IOLOCK_SHARED) |
65523218 | 270 | up_read(&VFS_I(ip)->i_rwsem); |
653c60b6 | 271 | out: |
fa96acad DC |
272 | return 0; |
273 | } | |
274 | ||
275 | /* | |
276 | * xfs_iunlock() is used to drop the inode locks acquired with | |
277 | * xfs_ilock() and xfs_ilock_nowait(). The caller must pass | |
278 | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | |
279 | * that we know which locks to drop. | |
280 | * | |
281 | * ip -- the inode being unlocked | |
282 | * lock_flags -- this parameter indicates the inode's locks to be | |
283 | * to be unlocked. See the comment for xfs_ilock() for a list | |
284 | * of valid values for this parameter. | |
285 | * | |
286 | */ | |
287 | void | |
288 | xfs_iunlock( | |
289 | xfs_inode_t *ip, | |
290 | uint lock_flags) | |
291 | { | |
292 | /* | |
293 | * You can't set both SHARED and EXCL for the same lock, | |
294 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | |
295 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | |
296 | */ | |
297 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | |
298 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | |
653c60b6 DC |
299 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
300 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | |
fa96acad DC |
301 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
302 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | |
0952c818 | 303 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
fa96acad DC |
304 | ASSERT(lock_flags != 0); |
305 | ||
306 | if (lock_flags & XFS_IOLOCK_EXCL) | |
65523218 | 307 | up_write(&VFS_I(ip)->i_rwsem); |
fa96acad | 308 | else if (lock_flags & XFS_IOLOCK_SHARED) |
65523218 | 309 | up_read(&VFS_I(ip)->i_rwsem); |
fa96acad | 310 | |
653c60b6 DC |
311 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
312 | mrunlock_excl(&ip->i_mmaplock); | |
313 | else if (lock_flags & XFS_MMAPLOCK_SHARED) | |
314 | mrunlock_shared(&ip->i_mmaplock); | |
315 | ||
fa96acad DC |
316 | if (lock_flags & XFS_ILOCK_EXCL) |
317 | mrunlock_excl(&ip->i_lock); | |
318 | else if (lock_flags & XFS_ILOCK_SHARED) | |
319 | mrunlock_shared(&ip->i_lock); | |
320 | ||
321 | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); | |
322 | } | |
323 | ||
324 | /* | |
325 | * give up write locks. the i/o lock cannot be held nested | |
326 | * if it is being demoted. | |
327 | */ | |
328 | void | |
329 | xfs_ilock_demote( | |
330 | xfs_inode_t *ip, | |
331 | uint lock_flags) | |
332 | { | |
653c60b6 DC |
333 | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); |
334 | ASSERT((lock_flags & | |
335 | ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | |
fa96acad DC |
336 | |
337 | if (lock_flags & XFS_ILOCK_EXCL) | |
338 | mrdemote(&ip->i_lock); | |
653c60b6 DC |
339 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
340 | mrdemote(&ip->i_mmaplock); | |
fa96acad | 341 | if (lock_flags & XFS_IOLOCK_EXCL) |
65523218 | 342 | downgrade_write(&VFS_I(ip)->i_rwsem); |
fa96acad DC |
343 | |
344 | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); | |
345 | } | |
346 | ||
742ae1e3 | 347 | #if defined(DEBUG) || defined(XFS_WARN) |
fa96acad DC |
348 | int |
349 | xfs_isilocked( | |
350 | xfs_inode_t *ip, | |
351 | uint lock_flags) | |
352 | { | |
353 | if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { | |
354 | if (!(lock_flags & XFS_ILOCK_SHARED)) | |
355 | return !!ip->i_lock.mr_writer; | |
356 | return rwsem_is_locked(&ip->i_lock.mr_lock); | |
357 | } | |
358 | ||
653c60b6 DC |
359 | if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { |
360 | if (!(lock_flags & XFS_MMAPLOCK_SHARED)) | |
361 | return !!ip->i_mmaplock.mr_writer; | |
362 | return rwsem_is_locked(&ip->i_mmaplock.mr_lock); | |
363 | } | |
364 | ||
fa96acad DC |
365 | if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { |
366 | if (!(lock_flags & XFS_IOLOCK_SHARED)) | |
65523218 CH |
367 | return !debug_locks || |
368 | lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); | |
369 | return rwsem_is_locked(&VFS_I(ip)->i_rwsem); | |
fa96acad DC |
370 | } |
371 | ||
372 | ASSERT(0); | |
373 | return 0; | |
374 | } | |
375 | #endif | |
376 | ||
b6a9947e DC |
377 | /* |
378 | * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when | |
379 | * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined | |
380 | * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build | |
381 | * errors and warnings. | |
382 | */ | |
383 | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) | |
3403ccc0 DC |
384 | static bool |
385 | xfs_lockdep_subclass_ok( | |
386 | int subclass) | |
387 | { | |
388 | return subclass < MAX_LOCKDEP_SUBCLASSES; | |
389 | } | |
390 | #else | |
391 | #define xfs_lockdep_subclass_ok(subclass) (true) | |
392 | #endif | |
393 | ||
c24b5dfa | 394 | /* |
653c60b6 | 395 | * Bump the subclass so xfs_lock_inodes() acquires each lock with a different |
0952c818 DC |
396 | * value. This can be called for any type of inode lock combination, including |
397 | * parent locking. Care must be taken to ensure we don't overrun the subclass | |
398 | * storage fields in the class mask we build. | |
c24b5dfa DC |
399 | */ |
400 | static inline int | |
401 | xfs_lock_inumorder(int lock_mode, int subclass) | |
402 | { | |
0952c818 DC |
403 | int class = 0; |
404 | ||
405 | ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | | |
406 | XFS_ILOCK_RTSUM))); | |
3403ccc0 | 407 | ASSERT(xfs_lockdep_subclass_ok(subclass)); |
0952c818 | 408 | |
653c60b6 | 409 | if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { |
0952c818 | 410 | ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); |
0952c818 | 411 | class += subclass << XFS_IOLOCK_SHIFT; |
653c60b6 DC |
412 | } |
413 | ||
414 | if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { | |
0952c818 DC |
415 | ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); |
416 | class += subclass << XFS_MMAPLOCK_SHIFT; | |
653c60b6 DC |
417 | } |
418 | ||
0952c818 DC |
419 | if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { |
420 | ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); | |
421 | class += subclass << XFS_ILOCK_SHIFT; | |
422 | } | |
c24b5dfa | 423 | |
0952c818 | 424 | return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; |
c24b5dfa DC |
425 | } |
426 | ||
427 | /* | |
95afcf5c DC |
428 | * The following routine will lock n inodes in exclusive mode. We assume the |
429 | * caller calls us with the inodes in i_ino order. | |
c24b5dfa | 430 | * |
95afcf5c DC |
431 | * We need to detect deadlock where an inode that we lock is in the AIL and we |
432 | * start waiting for another inode that is locked by a thread in a long running | |
433 | * transaction (such as truncate). This can result in deadlock since the long | |
434 | * running trans might need to wait for the inode we just locked in order to | |
435 | * push the tail and free space in the log. | |
0952c818 DC |
436 | * |
437 | * xfs_lock_inodes() can only be used to lock one type of lock at a time - | |
438 | * the iolock, the mmaplock or the ilock, but not more than one at a time. If we | |
439 | * lock more than one at a time, lockdep will report false positives saying we | |
440 | * have violated locking orders. | |
c24b5dfa | 441 | */ |
0d5a75e9 | 442 | static void |
c24b5dfa DC |
443 | xfs_lock_inodes( |
444 | xfs_inode_t **ips, | |
445 | int inodes, | |
446 | uint lock_mode) | |
447 | { | |
448 | int attempts = 0, i, j, try_lock; | |
449 | xfs_log_item_t *lp; | |
450 | ||
0952c818 DC |
451 | /* |
452 | * Currently supports between 2 and 5 inodes with exclusive locking. We | |
453 | * support an arbitrary depth of locking here, but absolute limits on | |
454 | * inodes depend on the the type of locking and the limits placed by | |
455 | * lockdep annotations in xfs_lock_inumorder. These are all checked by | |
456 | * the asserts. | |
457 | */ | |
95afcf5c | 458 | ASSERT(ips && inodes >= 2 && inodes <= 5); |
0952c818 DC |
459 | ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | |
460 | XFS_ILOCK_EXCL)); | |
461 | ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | | |
462 | XFS_ILOCK_SHARED))); | |
0952c818 DC |
463 | ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || |
464 | inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); | |
465 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || | |
466 | inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); | |
467 | ||
468 | if (lock_mode & XFS_IOLOCK_EXCL) { | |
469 | ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); | |
470 | } else if (lock_mode & XFS_MMAPLOCK_EXCL) | |
471 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); | |
c24b5dfa DC |
472 | |
473 | try_lock = 0; | |
474 | i = 0; | |
c24b5dfa DC |
475 | again: |
476 | for (; i < inodes; i++) { | |
477 | ASSERT(ips[i]); | |
478 | ||
95afcf5c | 479 | if (i && (ips[i] == ips[i - 1])) /* Already locked */ |
c24b5dfa DC |
480 | continue; |
481 | ||
482 | /* | |
95afcf5c DC |
483 | * If try_lock is not set yet, make sure all locked inodes are |
484 | * not in the AIL. If any are, set try_lock to be used later. | |
c24b5dfa | 485 | */ |
c24b5dfa DC |
486 | if (!try_lock) { |
487 | for (j = (i - 1); j >= 0 && !try_lock; j--) { | |
488 | lp = (xfs_log_item_t *)ips[j]->i_itemp; | |
22525c17 | 489 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) |
c24b5dfa | 490 | try_lock++; |
c24b5dfa DC |
491 | } |
492 | } | |
493 | ||
494 | /* | |
495 | * If any of the previous locks we have locked is in the AIL, | |
496 | * we must TRY to get the second and subsequent locks. If | |
497 | * we can't get any, we must release all we have | |
498 | * and try again. | |
499 | */ | |
95afcf5c DC |
500 | if (!try_lock) { |
501 | xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); | |
502 | continue; | |
503 | } | |
504 | ||
505 | /* try_lock means we have an inode locked that is in the AIL. */ | |
506 | ASSERT(i != 0); | |
507 | if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) | |
508 | continue; | |
c24b5dfa | 509 | |
95afcf5c DC |
510 | /* |
511 | * Unlock all previous guys and try again. xfs_iunlock will try | |
512 | * to push the tail if the inode is in the AIL. | |
513 | */ | |
514 | attempts++; | |
515 | for (j = i - 1; j >= 0; j--) { | |
c24b5dfa | 516 | /* |
95afcf5c DC |
517 | * Check to see if we've already unlocked this one. Not |
518 | * the first one going back, and the inode ptr is the | |
519 | * same. | |
c24b5dfa | 520 | */ |
95afcf5c DC |
521 | if (j != (i - 1) && ips[j] == ips[j + 1]) |
522 | continue; | |
c24b5dfa | 523 | |
95afcf5c DC |
524 | xfs_iunlock(ips[j], lock_mode); |
525 | } | |
c24b5dfa | 526 | |
95afcf5c DC |
527 | if ((attempts % 5) == 0) { |
528 | delay(1); /* Don't just spin the CPU */ | |
c24b5dfa | 529 | } |
95afcf5c DC |
530 | i = 0; |
531 | try_lock = 0; | |
532 | goto again; | |
c24b5dfa | 533 | } |
c24b5dfa DC |
534 | } |
535 | ||
536 | /* | |
653c60b6 | 537 | * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - |
7c2d238a DW |
538 | * the mmaplock or the ilock, but not more than one type at a time. If we lock |
539 | * more than one at a time, lockdep will report false positives saying we have | |
540 | * violated locking orders. The iolock must be double-locked separately since | |
541 | * we use i_rwsem for that. We now support taking one lock EXCL and the other | |
542 | * SHARED. | |
c24b5dfa DC |
543 | */ |
544 | void | |
545 | xfs_lock_two_inodes( | |
7c2d238a DW |
546 | struct xfs_inode *ip0, |
547 | uint ip0_mode, | |
548 | struct xfs_inode *ip1, | |
549 | uint ip1_mode) | |
c24b5dfa | 550 | { |
7c2d238a DW |
551 | struct xfs_inode *temp; |
552 | uint mode_temp; | |
c24b5dfa DC |
553 | int attempts = 0; |
554 | xfs_log_item_t *lp; | |
555 | ||
7c2d238a DW |
556 | ASSERT(hweight32(ip0_mode) == 1); |
557 | ASSERT(hweight32(ip1_mode) == 1); | |
558 | ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | |
559 | ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | |
560 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | |
561 | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | |
562 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | |
563 | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | |
564 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | |
565 | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | |
566 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | |
567 | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | |
653c60b6 | 568 | |
c24b5dfa DC |
569 | ASSERT(ip0->i_ino != ip1->i_ino); |
570 | ||
571 | if (ip0->i_ino > ip1->i_ino) { | |
572 | temp = ip0; | |
573 | ip0 = ip1; | |
574 | ip1 = temp; | |
7c2d238a DW |
575 | mode_temp = ip0_mode; |
576 | ip0_mode = ip1_mode; | |
577 | ip1_mode = mode_temp; | |
c24b5dfa DC |
578 | } |
579 | ||
580 | again: | |
7c2d238a | 581 | xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); |
c24b5dfa DC |
582 | |
583 | /* | |
584 | * If the first lock we have locked is in the AIL, we must TRY to get | |
585 | * the second lock. If we can't get it, we must release the first one | |
586 | * and try again. | |
587 | */ | |
588 | lp = (xfs_log_item_t *)ip0->i_itemp; | |
22525c17 | 589 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { |
7c2d238a DW |
590 | if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { |
591 | xfs_iunlock(ip0, ip0_mode); | |
c24b5dfa DC |
592 | if ((++attempts % 5) == 0) |
593 | delay(1); /* Don't just spin the CPU */ | |
594 | goto again; | |
595 | } | |
596 | } else { | |
7c2d238a | 597 | xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); |
c24b5dfa DC |
598 | } |
599 | } | |
600 | ||
fa96acad DC |
601 | void |
602 | __xfs_iflock( | |
603 | struct xfs_inode *ip) | |
604 | { | |
605 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); | |
606 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); | |
607 | ||
608 | do { | |
21417136 | 609 | prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
fa96acad DC |
610 | if (xfs_isiflocked(ip)) |
611 | io_schedule(); | |
612 | } while (!xfs_iflock_nowait(ip)); | |
613 | ||
21417136 | 614 | finish_wait(wq, &wait.wq_entry); |
fa96acad DC |
615 | } |
616 | ||
1da177e4 LT |
617 | STATIC uint |
618 | _xfs_dic2xflags( | |
c8ce540d | 619 | uint16_t di_flags, |
58f88ca2 DC |
620 | uint64_t di_flags2, |
621 | bool has_attr) | |
1da177e4 LT |
622 | { |
623 | uint flags = 0; | |
624 | ||
625 | if (di_flags & XFS_DIFLAG_ANY) { | |
626 | if (di_flags & XFS_DIFLAG_REALTIME) | |
e7b89481 | 627 | flags |= FS_XFLAG_REALTIME; |
1da177e4 | 628 | if (di_flags & XFS_DIFLAG_PREALLOC) |
e7b89481 | 629 | flags |= FS_XFLAG_PREALLOC; |
1da177e4 | 630 | if (di_flags & XFS_DIFLAG_IMMUTABLE) |
e7b89481 | 631 | flags |= FS_XFLAG_IMMUTABLE; |
1da177e4 | 632 | if (di_flags & XFS_DIFLAG_APPEND) |
e7b89481 | 633 | flags |= FS_XFLAG_APPEND; |
1da177e4 | 634 | if (di_flags & XFS_DIFLAG_SYNC) |
e7b89481 | 635 | flags |= FS_XFLAG_SYNC; |
1da177e4 | 636 | if (di_flags & XFS_DIFLAG_NOATIME) |
e7b89481 | 637 | flags |= FS_XFLAG_NOATIME; |
1da177e4 | 638 | if (di_flags & XFS_DIFLAG_NODUMP) |
e7b89481 | 639 | flags |= FS_XFLAG_NODUMP; |
1da177e4 | 640 | if (di_flags & XFS_DIFLAG_RTINHERIT) |
e7b89481 | 641 | flags |= FS_XFLAG_RTINHERIT; |
1da177e4 | 642 | if (di_flags & XFS_DIFLAG_PROJINHERIT) |
e7b89481 | 643 | flags |= FS_XFLAG_PROJINHERIT; |
1da177e4 | 644 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) |
e7b89481 | 645 | flags |= FS_XFLAG_NOSYMLINKS; |
dd9f438e | 646 | if (di_flags & XFS_DIFLAG_EXTSIZE) |
e7b89481 | 647 | flags |= FS_XFLAG_EXTSIZE; |
dd9f438e | 648 | if (di_flags & XFS_DIFLAG_EXTSZINHERIT) |
e7b89481 | 649 | flags |= FS_XFLAG_EXTSZINHERIT; |
d3446eac | 650 | if (di_flags & XFS_DIFLAG_NODEFRAG) |
e7b89481 | 651 | flags |= FS_XFLAG_NODEFRAG; |
2a82b8be | 652 | if (di_flags & XFS_DIFLAG_FILESTREAM) |
e7b89481 | 653 | flags |= FS_XFLAG_FILESTREAM; |
1da177e4 LT |
654 | } |
655 | ||
58f88ca2 DC |
656 | if (di_flags2 & XFS_DIFLAG2_ANY) { |
657 | if (di_flags2 & XFS_DIFLAG2_DAX) | |
658 | flags |= FS_XFLAG_DAX; | |
f7ca3522 DW |
659 | if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
660 | flags |= FS_XFLAG_COWEXTSIZE; | |
58f88ca2 DC |
661 | } |
662 | ||
663 | if (has_attr) | |
664 | flags |= FS_XFLAG_HASATTR; | |
665 | ||
1da177e4 LT |
666 | return flags; |
667 | } | |
668 | ||
669 | uint | |
670 | xfs_ip2xflags( | |
58f88ca2 | 671 | struct xfs_inode *ip) |
1da177e4 | 672 | { |
58f88ca2 | 673 | struct xfs_icdinode *dic = &ip->i_d; |
1da177e4 | 674 | |
58f88ca2 | 675 | return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); |
1da177e4 LT |
676 | } |
677 | ||
c24b5dfa DC |
678 | /* |
679 | * Lookups up an inode from "name". If ci_name is not NULL, then a CI match | |
680 | * is allowed, otherwise it has to be an exact match. If a CI match is found, | |
681 | * ci_name->name will point to a the actual name (caller must free) or | |
682 | * will be set to NULL if an exact match is found. | |
683 | */ | |
684 | int | |
685 | xfs_lookup( | |
686 | xfs_inode_t *dp, | |
687 | struct xfs_name *name, | |
688 | xfs_inode_t **ipp, | |
689 | struct xfs_name *ci_name) | |
690 | { | |
691 | xfs_ino_t inum; | |
692 | int error; | |
c24b5dfa DC |
693 | |
694 | trace_xfs_lookup(dp, name); | |
695 | ||
696 | if (XFS_FORCED_SHUTDOWN(dp->i_mount)) | |
2451337d | 697 | return -EIO; |
c24b5dfa | 698 | |
c24b5dfa | 699 | error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); |
c24b5dfa | 700 | if (error) |
dbad7c99 | 701 | goto out_unlock; |
c24b5dfa DC |
702 | |
703 | error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); | |
704 | if (error) | |
705 | goto out_free_name; | |
706 | ||
707 | return 0; | |
708 | ||
709 | out_free_name: | |
710 | if (ci_name) | |
711 | kmem_free(ci_name->name); | |
dbad7c99 | 712 | out_unlock: |
c24b5dfa DC |
713 | *ipp = NULL; |
714 | return error; | |
715 | } | |
716 | ||
1da177e4 LT |
717 | /* |
718 | * Allocate an inode on disk and return a copy of its in-core version. | |
719 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev | |
720 | * appropriately within the inode. The uid and gid for the inode are | |
721 | * set according to the contents of the given cred structure. | |
722 | * | |
723 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | |
cd856db6 CM |
724 | * has a free inode available, call xfs_iget() to obtain the in-core |
725 | * version of the allocated inode. Finally, fill in the inode and | |
726 | * log its initial contents. In this case, ialloc_context would be | |
727 | * set to NULL. | |
1da177e4 | 728 | * |
cd856db6 CM |
729 | * If xfs_dialloc() does not have an available inode, it will replenish |
730 | * its supply by doing an allocation. Since we can only do one | |
731 | * allocation within a transaction without deadlocks, we must commit | |
732 | * the current transaction before returning the inode itself. | |
733 | * In this case, therefore, we will set ialloc_context and return. | |
1da177e4 LT |
734 | * The caller should then commit the current transaction, start a new |
735 | * transaction, and call xfs_ialloc() again to actually get the inode. | |
736 | * | |
737 | * To ensure that some other process does not grab the inode that | |
738 | * was allocated during the first call to xfs_ialloc(), this routine | |
739 | * also returns the [locked] bp pointing to the head of the freelist | |
740 | * as ialloc_context. The caller should hold this buffer across | |
741 | * the commit and pass it back into this routine on the second call. | |
b11f94d5 DC |
742 | * |
743 | * If we are allocating quota inodes, we do not have a parent inode | |
744 | * to attach to or associate with (i.e. pip == NULL) because they | |
745 | * are not linked into the directory structure - they are attached | |
746 | * directly to the superblock - and so have no parent. | |
1da177e4 | 747 | */ |
0d5a75e9 | 748 | static int |
1da177e4 LT |
749 | xfs_ialloc( |
750 | xfs_trans_t *tp, | |
751 | xfs_inode_t *pip, | |
576b1d67 | 752 | umode_t mode, |
31b084ae | 753 | xfs_nlink_t nlink, |
66f36464 | 754 | dev_t rdev, |
6743099c | 755 | prid_t prid, |
1da177e4 | 756 | xfs_buf_t **ialloc_context, |
1da177e4 LT |
757 | xfs_inode_t **ipp) |
758 | { | |
93848a99 | 759 | struct xfs_mount *mp = tp->t_mountp; |
1da177e4 LT |
760 | xfs_ino_t ino; |
761 | xfs_inode_t *ip; | |
1da177e4 LT |
762 | uint flags; |
763 | int error; | |
95582b00 | 764 | struct timespec64 tv; |
3987848c | 765 | struct inode *inode; |
1da177e4 LT |
766 | |
767 | /* | |
768 | * Call the space management code to pick | |
769 | * the on-disk inode to be allocated. | |
770 | */ | |
f59cf5c2 | 771 | error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, |
08358906 | 772 | ialloc_context, &ino); |
bf904248 | 773 | if (error) |
1da177e4 | 774 | return error; |
08358906 | 775 | if (*ialloc_context || ino == NULLFSINO) { |
1da177e4 LT |
776 | *ipp = NULL; |
777 | return 0; | |
778 | } | |
779 | ASSERT(*ialloc_context == NULL); | |
780 | ||
8b26984d DC |
781 | /* |
782 | * Protect against obviously corrupt allocation btree records. Later | |
783 | * xfs_iget checks will catch re-allocation of other active in-memory | |
784 | * and on-disk inodes. If we don't catch reallocating the parent inode | |
785 | * here we will deadlock in xfs_iget() so we have to do these checks | |
786 | * first. | |
787 | */ | |
788 | if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { | |
789 | xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); | |
790 | return -EFSCORRUPTED; | |
791 | } | |
792 | ||
1da177e4 LT |
793 | /* |
794 | * Get the in-core inode with the lock held exclusively. | |
795 | * This is because we're setting fields here we need | |
796 | * to prevent others from looking at until we're done. | |
797 | */ | |
93848a99 | 798 | error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, |
ec3ba85f | 799 | XFS_ILOCK_EXCL, &ip); |
bf904248 | 800 | if (error) |
1da177e4 | 801 | return error; |
1da177e4 | 802 | ASSERT(ip != NULL); |
3987848c | 803 | inode = VFS_I(ip); |
1da177e4 | 804 | |
263997a6 DC |
805 | /* |
806 | * We always convert v1 inodes to v2 now - we only support filesystems | |
807 | * with >= v2 inode capability, so there is no reason for ever leaving | |
808 | * an inode in v1 format. | |
809 | */ | |
810 | if (ip->i_d.di_version == 1) | |
811 | ip->i_d.di_version = 2; | |
812 | ||
c19b3b05 | 813 | inode->i_mode = mode; |
54d7b5c1 | 814 | set_nlink(inode, nlink); |
7aab1b28 DE |
815 | ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); |
816 | ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); | |
66f36464 | 817 | inode->i_rdev = rdev; |
6743099c | 818 | xfs_set_projid(ip, prid); |
1da177e4 | 819 | |
bd186aa9 | 820 | if (pip && XFS_INHERIT_GID(pip)) { |
1da177e4 | 821 | ip->i_d.di_gid = pip->i_d.di_gid; |
c19b3b05 DC |
822 | if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) |
823 | inode->i_mode |= S_ISGID; | |
1da177e4 LT |
824 | } |
825 | ||
826 | /* | |
827 | * If the group ID of the new file does not match the effective group | |
828 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | |
829 | * (and only if the irix_sgid_inherit compatibility variable is set). | |
830 | */ | |
831 | if ((irix_sgid_inherit) && | |
c19b3b05 DC |
832 | (inode->i_mode & S_ISGID) && |
833 | (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) | |
834 | inode->i_mode &= ~S_ISGID; | |
1da177e4 LT |
835 | |
836 | ip->i_d.di_size = 0; | |
837 | ip->i_d.di_nextents = 0; | |
838 | ASSERT(ip->i_d.di_nblocks == 0); | |
dff35fd4 | 839 | |
c2050a45 | 840 | tv = current_time(inode); |
3987848c DC |
841 | inode->i_mtime = tv; |
842 | inode->i_atime = tv; | |
843 | inode->i_ctime = tv; | |
dff35fd4 | 844 | |
1da177e4 LT |
845 | ip->i_d.di_extsize = 0; |
846 | ip->i_d.di_dmevmask = 0; | |
847 | ip->i_d.di_dmstate = 0; | |
848 | ip->i_d.di_flags = 0; | |
93848a99 CH |
849 | |
850 | if (ip->i_d.di_version == 3) { | |
f0e28280 | 851 | inode_set_iversion(inode, 1); |
93848a99 | 852 | ip->i_d.di_flags2 = 0; |
f7ca3522 | 853 | ip->i_d.di_cowextsize = 0; |
c8ce540d DW |
854 | ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; |
855 | ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; | |
93848a99 CH |
856 | } |
857 | ||
858 | ||
1da177e4 LT |
859 | flags = XFS_ILOG_CORE; |
860 | switch (mode & S_IFMT) { | |
861 | case S_IFIFO: | |
862 | case S_IFCHR: | |
863 | case S_IFBLK: | |
864 | case S_IFSOCK: | |
865 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; | |
1da177e4 LT |
866 | ip->i_df.if_flags = 0; |
867 | flags |= XFS_ILOG_DEV; | |
868 | break; | |
869 | case S_IFREG: | |
870 | case S_IFDIR: | |
b11f94d5 | 871 | if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
58f88ca2 | 872 | uint di_flags = 0; |
365ca83d | 873 | |
abbede1b | 874 | if (S_ISDIR(mode)) { |
365ca83d NS |
875 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
876 | di_flags |= XFS_DIFLAG_RTINHERIT; | |
dd9f438e NS |
877 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
878 | di_flags |= XFS_DIFLAG_EXTSZINHERIT; | |
879 | ip->i_d.di_extsize = pip->i_d.di_extsize; | |
880 | } | |
9336e3a7 DC |
881 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) |
882 | di_flags |= XFS_DIFLAG_PROJINHERIT; | |
abbede1b | 883 | } else if (S_ISREG(mode)) { |
613d7043 | 884 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
365ca83d | 885 | di_flags |= XFS_DIFLAG_REALTIME; |
dd9f438e NS |
886 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
887 | di_flags |= XFS_DIFLAG_EXTSIZE; | |
888 | ip->i_d.di_extsize = pip->i_d.di_extsize; | |
889 | } | |
1da177e4 LT |
890 | } |
891 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | |
892 | xfs_inherit_noatime) | |
365ca83d | 893 | di_flags |= XFS_DIFLAG_NOATIME; |
1da177e4 LT |
894 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
895 | xfs_inherit_nodump) | |
365ca83d | 896 | di_flags |= XFS_DIFLAG_NODUMP; |
1da177e4 LT |
897 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
898 | xfs_inherit_sync) | |
365ca83d | 899 | di_flags |= XFS_DIFLAG_SYNC; |
1da177e4 LT |
900 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
901 | xfs_inherit_nosymlinks) | |
365ca83d | 902 | di_flags |= XFS_DIFLAG_NOSYMLINKS; |
d3446eac BN |
903 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
904 | xfs_inherit_nodefrag) | |
905 | di_flags |= XFS_DIFLAG_NODEFRAG; | |
2a82b8be DC |
906 | if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
907 | di_flags |= XFS_DIFLAG_FILESTREAM; | |
58f88ca2 | 908 | |
365ca83d | 909 | ip->i_d.di_flags |= di_flags; |
1da177e4 | 910 | } |
f7ca3522 DW |
911 | if (pip && |
912 | (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && | |
913 | pip->i_d.di_version == 3 && | |
914 | ip->i_d.di_version == 3) { | |
56bdf855 LC |
915 | uint64_t di_flags2 = 0; |
916 | ||
f7ca3522 | 917 | if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { |
56bdf855 | 918 | di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; |
f7ca3522 DW |
919 | ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; |
920 | } | |
56bdf855 LC |
921 | if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) |
922 | di_flags2 |= XFS_DIFLAG2_DAX; | |
923 | ||
924 | ip->i_d.di_flags2 |= di_flags2; | |
f7ca3522 | 925 | } |
1da177e4 LT |
926 | /* FALLTHROUGH */ |
927 | case S_IFLNK: | |
928 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | |
929 | ip->i_df.if_flags = XFS_IFEXTENTS; | |
fcacbc3f | 930 | ip->i_df.if_bytes = 0; |
6bdcf26a | 931 | ip->i_df.if_u1.if_root = NULL; |
1da177e4 LT |
932 | break; |
933 | default: | |
934 | ASSERT(0); | |
935 | } | |
936 | /* | |
937 | * Attribute fork settings for new inode. | |
938 | */ | |
939 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
940 | ip->i_d.di_anextents = 0; | |
941 | ||
942 | /* | |
943 | * Log the new values stuffed into the inode. | |
944 | */ | |
ddc3415a | 945 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
1da177e4 LT |
946 | xfs_trans_log_inode(tp, ip, flags); |
947 | ||
58c90473 | 948 | /* now that we have an i_mode we can setup the inode structure */ |
41be8bed | 949 | xfs_setup_inode(ip); |
1da177e4 LT |
950 | |
951 | *ipp = ip; | |
952 | return 0; | |
953 | } | |
954 | ||
e546cb79 DC |
955 | /* |
956 | * Allocates a new inode from disk and return a pointer to the | |
957 | * incore copy. This routine will internally commit the current | |
958 | * transaction and allocate a new one if the Space Manager needed | |
959 | * to do an allocation to replenish the inode free-list. | |
960 | * | |
961 | * This routine is designed to be called from xfs_create and | |
962 | * xfs_create_dir. | |
963 | * | |
964 | */ | |
965 | int | |
966 | xfs_dir_ialloc( | |
967 | xfs_trans_t **tpp, /* input: current transaction; | |
968 | output: may be a new transaction. */ | |
969 | xfs_inode_t *dp, /* directory within whose allocate | |
970 | the inode. */ | |
971 | umode_t mode, | |
972 | xfs_nlink_t nlink, | |
66f36464 | 973 | dev_t rdev, |
e546cb79 | 974 | prid_t prid, /* project id */ |
c959025e | 975 | xfs_inode_t **ipp) /* pointer to inode; it will be |
e546cb79 | 976 | locked. */ |
e546cb79 DC |
977 | { |
978 | xfs_trans_t *tp; | |
e546cb79 DC |
979 | xfs_inode_t *ip; |
980 | xfs_buf_t *ialloc_context = NULL; | |
981 | int code; | |
e546cb79 DC |
982 | void *dqinfo; |
983 | uint tflags; | |
984 | ||
985 | tp = *tpp; | |
986 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | |
987 | ||
988 | /* | |
989 | * xfs_ialloc will return a pointer to an incore inode if | |
990 | * the Space Manager has an available inode on the free | |
991 | * list. Otherwise, it will do an allocation and replenish | |
992 | * the freelist. Since we can only do one allocation per | |
993 | * transaction without deadlocks, we will need to commit the | |
994 | * current transaction and start a new one. We will then | |
995 | * need to call xfs_ialloc again to get the inode. | |
996 | * | |
997 | * If xfs_ialloc did an allocation to replenish the freelist, | |
998 | * it returns the bp containing the head of the freelist as | |
999 | * ialloc_context. We will hold a lock on it across the | |
1000 | * transaction commit so that no other process can steal | |
1001 | * the inode(s) that we've just allocated. | |
1002 | */ | |
f59cf5c2 CH |
1003 | code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, |
1004 | &ip); | |
e546cb79 DC |
1005 | |
1006 | /* | |
1007 | * Return an error if we were unable to allocate a new inode. | |
1008 | * This should only happen if we run out of space on disk or | |
1009 | * encounter a disk error. | |
1010 | */ | |
1011 | if (code) { | |
1012 | *ipp = NULL; | |
1013 | return code; | |
1014 | } | |
1015 | if (!ialloc_context && !ip) { | |
1016 | *ipp = NULL; | |
2451337d | 1017 | return -ENOSPC; |
e546cb79 DC |
1018 | } |
1019 | ||
1020 | /* | |
1021 | * If the AGI buffer is non-NULL, then we were unable to get an | |
1022 | * inode in one operation. We need to commit the current | |
1023 | * transaction and call xfs_ialloc() again. It is guaranteed | |
1024 | * to succeed the second time. | |
1025 | */ | |
1026 | if (ialloc_context) { | |
1027 | /* | |
1028 | * Normally, xfs_trans_commit releases all the locks. | |
1029 | * We call bhold to hang on to the ialloc_context across | |
1030 | * the commit. Holding this buffer prevents any other | |
1031 | * processes from doing any allocations in this | |
1032 | * allocation group. | |
1033 | */ | |
1034 | xfs_trans_bhold(tp, ialloc_context); | |
e546cb79 DC |
1035 | |
1036 | /* | |
1037 | * We want the quota changes to be associated with the next | |
1038 | * transaction, NOT this one. So, detach the dqinfo from this | |
1039 | * and attach it to the next transaction. | |
1040 | */ | |
1041 | dqinfo = NULL; | |
1042 | tflags = 0; | |
1043 | if (tp->t_dqinfo) { | |
1044 | dqinfo = (void *)tp->t_dqinfo; | |
1045 | tp->t_dqinfo = NULL; | |
1046 | tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; | |
1047 | tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); | |
1048 | } | |
1049 | ||
411350df | 1050 | code = xfs_trans_roll(&tp); |
3d3c8b52 | 1051 | |
e546cb79 DC |
1052 | /* |
1053 | * Re-attach the quota info that we detached from prev trx. | |
1054 | */ | |
1055 | if (dqinfo) { | |
1056 | tp->t_dqinfo = dqinfo; | |
1057 | tp->t_flags |= tflags; | |
1058 | } | |
1059 | ||
1060 | if (code) { | |
1061 | xfs_buf_relse(ialloc_context); | |
2e6db6c4 | 1062 | *tpp = tp; |
e546cb79 DC |
1063 | *ipp = NULL; |
1064 | return code; | |
1065 | } | |
1066 | xfs_trans_bjoin(tp, ialloc_context); | |
1067 | ||
1068 | /* | |
1069 | * Call ialloc again. Since we've locked out all | |
1070 | * other allocations in this allocation group, | |
1071 | * this call should always succeed. | |
1072 | */ | |
1073 | code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, | |
f59cf5c2 | 1074 | &ialloc_context, &ip); |
e546cb79 DC |
1075 | |
1076 | /* | |
1077 | * If we get an error at this point, return to the caller | |
1078 | * so that the current transaction can be aborted. | |
1079 | */ | |
1080 | if (code) { | |
1081 | *tpp = tp; | |
1082 | *ipp = NULL; | |
1083 | return code; | |
1084 | } | |
1085 | ASSERT(!ialloc_context && ip); | |
1086 | ||
e546cb79 DC |
1087 | } |
1088 | ||
1089 | *ipp = ip; | |
1090 | *tpp = tp; | |
1091 | ||
1092 | return 0; | |
1093 | } | |
1094 | ||
1095 | /* | |
54d7b5c1 DC |
1096 | * Decrement the link count on an inode & log the change. If this causes the |
1097 | * link count to go to zero, move the inode to AGI unlinked list so that it can | |
1098 | * be freed when the last active reference goes away via xfs_inactive(). | |
e546cb79 | 1099 | */ |
0d5a75e9 | 1100 | static int /* error */ |
e546cb79 DC |
1101 | xfs_droplink( |
1102 | xfs_trans_t *tp, | |
1103 | xfs_inode_t *ip) | |
1104 | { | |
e546cb79 DC |
1105 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
1106 | ||
e546cb79 DC |
1107 | drop_nlink(VFS_I(ip)); |
1108 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
1109 | ||
54d7b5c1 DC |
1110 | if (VFS_I(ip)->i_nlink) |
1111 | return 0; | |
1112 | ||
1113 | return xfs_iunlink(tp, ip); | |
e546cb79 DC |
1114 | } |
1115 | ||
e546cb79 DC |
1116 | /* |
1117 | * Increment the link count on an inode & log the change. | |
1118 | */ | |
0d5a75e9 | 1119 | static int |
e546cb79 DC |
1120 | xfs_bumplink( |
1121 | xfs_trans_t *tp, | |
1122 | xfs_inode_t *ip) | |
1123 | { | |
1124 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | |
1125 | ||
263997a6 | 1126 | ASSERT(ip->i_d.di_version > 1); |
e546cb79 | 1127 | inc_nlink(VFS_I(ip)); |
e546cb79 DC |
1128 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
1129 | return 0; | |
1130 | } | |
1131 | ||
c24b5dfa DC |
1132 | int |
1133 | xfs_create( | |
1134 | xfs_inode_t *dp, | |
1135 | struct xfs_name *name, | |
1136 | umode_t mode, | |
66f36464 | 1137 | dev_t rdev, |
c24b5dfa DC |
1138 | xfs_inode_t **ipp) |
1139 | { | |
1140 | int is_dir = S_ISDIR(mode); | |
1141 | struct xfs_mount *mp = dp->i_mount; | |
1142 | struct xfs_inode *ip = NULL; | |
1143 | struct xfs_trans *tp = NULL; | |
1144 | int error; | |
c24b5dfa | 1145 | bool unlock_dp_on_error = false; |
c24b5dfa DC |
1146 | prid_t prid; |
1147 | struct xfs_dquot *udqp = NULL; | |
1148 | struct xfs_dquot *gdqp = NULL; | |
1149 | struct xfs_dquot *pdqp = NULL; | |
062647a8 | 1150 | struct xfs_trans_res *tres; |
c24b5dfa | 1151 | uint resblks; |
c24b5dfa DC |
1152 | |
1153 | trace_xfs_create(dp, name); | |
1154 | ||
1155 | if (XFS_FORCED_SHUTDOWN(mp)) | |
2451337d | 1156 | return -EIO; |
c24b5dfa | 1157 | |
163467d3 | 1158 | prid = xfs_get_initial_prid(dp); |
c24b5dfa DC |
1159 | |
1160 | /* | |
1161 | * Make sure that we have allocated dquot(s) on disk. | |
1162 | */ | |
7aab1b28 DE |
1163 | error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
1164 | xfs_kgid_to_gid(current_fsgid()), prid, | |
c24b5dfa DC |
1165 | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
1166 | &udqp, &gdqp, &pdqp); | |
1167 | if (error) | |
1168 | return error; | |
1169 | ||
1170 | if (is_dir) { | |
c24b5dfa | 1171 | resblks = XFS_MKDIR_SPACE_RES(mp, name->len); |
062647a8 | 1172 | tres = &M_RES(mp)->tr_mkdir; |
c24b5dfa DC |
1173 | } else { |
1174 | resblks = XFS_CREATE_SPACE_RES(mp, name->len); | |
062647a8 | 1175 | tres = &M_RES(mp)->tr_create; |
c24b5dfa DC |
1176 | } |
1177 | ||
c24b5dfa DC |
1178 | /* |
1179 | * Initially assume that the file does not exist and | |
1180 | * reserve the resources for that case. If that is not | |
1181 | * the case we'll drop the one we have and get a more | |
1182 | * appropriate transaction later. | |
1183 | */ | |
253f4911 | 1184 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
2451337d | 1185 | if (error == -ENOSPC) { |
c24b5dfa DC |
1186 | /* flush outstanding delalloc blocks and retry */ |
1187 | xfs_flush_inodes(mp); | |
253f4911 | 1188 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
c24b5dfa | 1189 | } |
4906e215 | 1190 | if (error) |
253f4911 | 1191 | goto out_release_inode; |
c24b5dfa | 1192 | |
65523218 | 1193 | xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
c24b5dfa DC |
1194 | unlock_dp_on_error = true; |
1195 | ||
c24b5dfa DC |
1196 | /* |
1197 | * Reserve disk quota and the inode. | |
1198 | */ | |
1199 | error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, | |
1200 | pdqp, resblks, 1, 0); | |
1201 | if (error) | |
1202 | goto out_trans_cancel; | |
1203 | ||
c24b5dfa DC |
1204 | /* |
1205 | * A newly created regular or special file just has one directory | |
1206 | * entry pointing to them, but a directory also the "." entry | |
1207 | * pointing to itself. | |
1208 | */ | |
c959025e | 1209 | error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); |
d6077aa3 | 1210 | if (error) |
4906e215 | 1211 | goto out_trans_cancel; |
c24b5dfa DC |
1212 | |
1213 | /* | |
1214 | * Now we join the directory inode to the transaction. We do not do it | |
1215 | * earlier because xfs_dir_ialloc might commit the previous transaction | |
1216 | * (and release all the locks). An error from here on will result in | |
1217 | * the transaction cancel unlocking dp so don't do it explicitly in the | |
1218 | * error path. | |
1219 | */ | |
65523218 | 1220 | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
c24b5dfa DC |
1221 | unlock_dp_on_error = false; |
1222 | ||
381eee69 | 1223 | error = xfs_dir_createname(tp, dp, name, ip->i_ino, |
c9cfdb38 | 1224 | resblks ? |
c24b5dfa DC |
1225 | resblks - XFS_IALLOC_SPACE_RES(mp) : 0); |
1226 | if (error) { | |
2451337d | 1227 | ASSERT(error != -ENOSPC); |
4906e215 | 1228 | goto out_trans_cancel; |
c24b5dfa DC |
1229 | } |
1230 | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | |
1231 | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | |
1232 | ||
1233 | if (is_dir) { | |
1234 | error = xfs_dir_init(tp, ip, dp); | |
1235 | if (error) | |
c8eac49e | 1236 | goto out_trans_cancel; |
c24b5dfa DC |
1237 | |
1238 | error = xfs_bumplink(tp, dp); | |
1239 | if (error) | |
c8eac49e | 1240 | goto out_trans_cancel; |
c24b5dfa DC |
1241 | } |
1242 | ||
1243 | /* | |
1244 | * If this is a synchronous mount, make sure that the | |
1245 | * create transaction goes to disk before returning to | |
1246 | * the user. | |
1247 | */ | |
1248 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | |
1249 | xfs_trans_set_sync(tp); | |
1250 | ||
1251 | /* | |
1252 | * Attach the dquot(s) to the inodes and modify them incore. | |
1253 | * These ids of the inode couldn't have changed since the new | |
1254 | * inode has been locked ever since it was created. | |
1255 | */ | |
1256 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | |
1257 | ||
70393313 | 1258 | error = xfs_trans_commit(tp); |
c24b5dfa DC |
1259 | if (error) |
1260 | goto out_release_inode; | |
1261 | ||
1262 | xfs_qm_dqrele(udqp); | |
1263 | xfs_qm_dqrele(gdqp); | |
1264 | xfs_qm_dqrele(pdqp); | |
1265 | ||
1266 | *ipp = ip; | |
1267 | return 0; | |
1268 | ||
c24b5dfa | 1269 | out_trans_cancel: |
4906e215 | 1270 | xfs_trans_cancel(tp); |
c24b5dfa DC |
1271 | out_release_inode: |
1272 | /* | |
58c90473 DC |
1273 | * Wait until after the current transaction is aborted to finish the |
1274 | * setup of the inode and release the inode. This prevents recursive | |
1275 | * transactions and deadlocks from xfs_inactive. | |
c24b5dfa | 1276 | */ |
58c90473 DC |
1277 | if (ip) { |
1278 | xfs_finish_inode_setup(ip); | |
44a8736b | 1279 | xfs_irele(ip); |
58c90473 | 1280 | } |
c24b5dfa DC |
1281 | |
1282 | xfs_qm_dqrele(udqp); | |
1283 | xfs_qm_dqrele(gdqp); | |
1284 | xfs_qm_dqrele(pdqp); | |
1285 | ||
1286 | if (unlock_dp_on_error) | |
65523218 | 1287 | xfs_iunlock(dp, XFS_ILOCK_EXCL); |
c24b5dfa DC |
1288 | return error; |
1289 | } | |
1290 | ||
99b6436b ZYW |
1291 | int |
1292 | xfs_create_tmpfile( | |
1293 | struct xfs_inode *dp, | |
330033d6 BF |
1294 | umode_t mode, |
1295 | struct xfs_inode **ipp) | |
99b6436b ZYW |
1296 | { |
1297 | struct xfs_mount *mp = dp->i_mount; | |
1298 | struct xfs_inode *ip = NULL; | |
1299 | struct xfs_trans *tp = NULL; | |
1300 | int error; | |
99b6436b ZYW |
1301 | prid_t prid; |
1302 | struct xfs_dquot *udqp = NULL; | |
1303 | struct xfs_dquot *gdqp = NULL; | |
1304 | struct xfs_dquot *pdqp = NULL; | |
1305 | struct xfs_trans_res *tres; | |
1306 | uint resblks; | |
1307 | ||
1308 | if (XFS_FORCED_SHUTDOWN(mp)) | |
2451337d | 1309 | return -EIO; |
99b6436b ZYW |
1310 | |
1311 | prid = xfs_get_initial_prid(dp); | |
1312 | ||
1313 | /* | |
1314 | * Make sure that we have allocated dquot(s) on disk. | |
1315 | */ | |
1316 | error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), | |
1317 | xfs_kgid_to_gid(current_fsgid()), prid, | |
1318 | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | |
1319 | &udqp, &gdqp, &pdqp); | |
1320 | if (error) | |
1321 | return error; | |
1322 | ||
1323 | resblks = XFS_IALLOC_SPACE_RES(mp); | |
99b6436b | 1324 | tres = &M_RES(mp)->tr_create_tmpfile; |
253f4911 CH |
1325 | |
1326 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); | |
4906e215 | 1327 | if (error) |
253f4911 | 1328 | goto out_release_inode; |
99b6436b ZYW |
1329 | |
1330 | error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, | |
1331 | pdqp, resblks, 1, 0); | |
1332 | if (error) | |
1333 | goto out_trans_cancel; | |
1334 | ||
c4a6bf7f | 1335 | error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); |
d6077aa3 | 1336 | if (error) |
4906e215 | 1337 | goto out_trans_cancel; |
99b6436b ZYW |
1338 | |
1339 | if (mp->m_flags & XFS_MOUNT_WSYNC) | |
1340 | xfs_trans_set_sync(tp); | |
1341 | ||
1342 | /* | |
1343 | * Attach the dquot(s) to the inodes and modify them incore. | |
1344 | * These ids of the inode couldn't have changed since the new | |
1345 | * inode has been locked ever since it was created. | |
1346 | */ | |
1347 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | |
1348 | ||
99b6436b ZYW |
1349 | error = xfs_iunlink(tp, ip); |
1350 | if (error) | |
4906e215 | 1351 | goto out_trans_cancel; |
99b6436b | 1352 | |
70393313 | 1353 | error = xfs_trans_commit(tp); |
99b6436b ZYW |
1354 | if (error) |
1355 | goto out_release_inode; | |
1356 | ||
1357 | xfs_qm_dqrele(udqp); | |
1358 | xfs_qm_dqrele(gdqp); | |
1359 | xfs_qm_dqrele(pdqp); | |
1360 | ||
330033d6 | 1361 | *ipp = ip; |
99b6436b ZYW |
1362 | return 0; |
1363 | ||
99b6436b | 1364 | out_trans_cancel: |
4906e215 | 1365 | xfs_trans_cancel(tp); |
99b6436b ZYW |
1366 | out_release_inode: |
1367 | /* | |
58c90473 DC |
1368 | * Wait until after the current transaction is aborted to finish the |
1369 | * setup of the inode and release the inode. This prevents recursive | |
1370 | * transactions and deadlocks from xfs_inactive. | |
99b6436b | 1371 | */ |
58c90473 DC |
1372 | if (ip) { |
1373 | xfs_finish_inode_setup(ip); | |
44a8736b | 1374 | xfs_irele(ip); |
58c90473 | 1375 | } |
99b6436b ZYW |
1376 | |
1377 | xfs_qm_dqrele(udqp); | |
1378 | xfs_qm_dqrele(gdqp); | |
1379 | xfs_qm_dqrele(pdqp); | |
1380 | ||
1381 | return error; | |
1382 | } | |
1383 | ||
c24b5dfa DC |
1384 | int |
1385 | xfs_link( | |
1386 | xfs_inode_t *tdp, | |
1387 | xfs_inode_t *sip, | |
1388 | struct xfs_name *target_name) | |
1389 | { | |
1390 | xfs_mount_t *mp = tdp->i_mount; | |
1391 | xfs_trans_t *tp; | |
1392 | int error; | |
c24b5dfa DC |
1393 | int resblks; |
1394 | ||
1395 | trace_xfs_link(tdp, target_name); | |
1396 | ||
c19b3b05 | 1397 | ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); |
c24b5dfa DC |
1398 | |
1399 | if (XFS_FORCED_SHUTDOWN(mp)) | |
2451337d | 1400 | return -EIO; |
c24b5dfa | 1401 | |
c14cfcca | 1402 | error = xfs_qm_dqattach(sip); |
c24b5dfa DC |
1403 | if (error) |
1404 | goto std_return; | |
1405 | ||
c14cfcca | 1406 | error = xfs_qm_dqattach(tdp); |
c24b5dfa DC |
1407 | if (error) |
1408 | goto std_return; | |
1409 | ||
c24b5dfa | 1410 | resblks = XFS_LINK_SPACE_RES(mp, target_name->len); |
253f4911 | 1411 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); |
2451337d | 1412 | if (error == -ENOSPC) { |
c24b5dfa | 1413 | resblks = 0; |
253f4911 | 1414 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); |
c24b5dfa | 1415 | } |
4906e215 | 1416 | if (error) |
253f4911 | 1417 | goto std_return; |
c24b5dfa | 1418 | |
7c2d238a | 1419 | xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); |
c24b5dfa DC |
1420 | |
1421 | xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); | |
65523218 | 1422 | xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); |
c24b5dfa DC |
1423 | |
1424 | /* | |
1425 | * If we are using project inheritance, we only allow hard link | |
1426 | * creation in our tree when the project IDs are the same; else | |
1427 | * the tree quota mechanism could be circumvented. | |
1428 | */ | |
1429 | if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && | |
1430 | (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { | |
2451337d | 1431 | error = -EXDEV; |
c24b5dfa DC |
1432 | goto error_return; |
1433 | } | |
1434 | ||
94f3cad5 ES |
1435 | if (!resblks) { |
1436 | error = xfs_dir_canenter(tp, tdp, target_name); | |
1437 | if (error) | |
1438 | goto error_return; | |
1439 | } | |
c24b5dfa | 1440 | |
54d7b5c1 DC |
1441 | /* |
1442 | * Handle initial link state of O_TMPFILE inode | |
1443 | */ | |
1444 | if (VFS_I(sip)->i_nlink == 0) { | |
ab297431 ZYW |
1445 | error = xfs_iunlink_remove(tp, sip); |
1446 | if (error) | |
4906e215 | 1447 | goto error_return; |
ab297431 ZYW |
1448 | } |
1449 | ||
c24b5dfa | 1450 | error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, |
381eee69 | 1451 | resblks); |
c24b5dfa | 1452 | if (error) |
4906e215 | 1453 | goto error_return; |
c24b5dfa DC |
1454 | xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
1455 | xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); | |
1456 | ||
1457 | error = xfs_bumplink(tp, sip); | |
1458 | if (error) | |
4906e215 | 1459 | goto error_return; |
c24b5dfa DC |
1460 | |
1461 | /* | |
1462 | * If this is a synchronous mount, make sure that the | |
1463 | * link transaction goes to disk before returning to | |
1464 | * the user. | |
1465 | */ | |
f6106efa | 1466 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
c24b5dfa | 1467 | xfs_trans_set_sync(tp); |
c24b5dfa | 1468 | |
70393313 | 1469 | return xfs_trans_commit(tp); |
c24b5dfa | 1470 | |
c24b5dfa | 1471 | error_return: |
4906e215 | 1472 | xfs_trans_cancel(tp); |
c24b5dfa DC |
1473 | std_return: |
1474 | return error; | |
1475 | } | |
1476 | ||
363e59ba DW |
1477 | /* Clear the reflink flag and the cowblocks tag if possible. */ |
1478 | static void | |
1479 | xfs_itruncate_clear_reflink_flags( | |
1480 | struct xfs_inode *ip) | |
1481 | { | |
1482 | struct xfs_ifork *dfork; | |
1483 | struct xfs_ifork *cfork; | |
1484 | ||
1485 | if (!xfs_is_reflink_inode(ip)) | |
1486 | return; | |
1487 | dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); | |
1488 | cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); | |
1489 | if (dfork->if_bytes == 0 && cfork->if_bytes == 0) | |
1490 | ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; | |
1491 | if (cfork->if_bytes == 0) | |
1492 | xfs_inode_clear_cowblocks_tag(ip); | |
1493 | } | |
1494 | ||
1da177e4 | 1495 | /* |
8f04c47a CH |
1496 | * Free up the underlying blocks past new_size. The new size must be smaller |
1497 | * than the current size. This routine can be used both for the attribute and | |
1498 | * data fork, and does not modify the inode size, which is left to the caller. | |
1da177e4 | 1499 | * |
f6485057 DC |
1500 | * The transaction passed to this routine must have made a permanent log |
1501 | * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the | |
1502 | * given transaction and start new ones, so make sure everything involved in | |
1503 | * the transaction is tidy before calling here. Some transaction will be | |
1504 | * returned to the caller to be committed. The incoming transaction must | |
1505 | * already include the inode, and both inode locks must be held exclusively. | |
1506 | * The inode must also be "held" within the transaction. On return the inode | |
1507 | * will be "held" within the returned transaction. This routine does NOT | |
1508 | * require any disk space to be reserved for it within the transaction. | |
1da177e4 | 1509 | * |
f6485057 DC |
1510 | * If we get an error, we must return with the inode locked and linked into the |
1511 | * current transaction. This keeps things simple for the higher level code, | |
1512 | * because it always knows that the inode is locked and held in the transaction | |
1513 | * that returns to it whether errors occur or not. We don't mark the inode | |
1514 | * dirty on error so that transactions can be easily aborted if possible. | |
1da177e4 LT |
1515 | */ |
1516 | int | |
4e529339 | 1517 | xfs_itruncate_extents_flags( |
8f04c47a CH |
1518 | struct xfs_trans **tpp, |
1519 | struct xfs_inode *ip, | |
1520 | int whichfork, | |
13b86fc3 | 1521 | xfs_fsize_t new_size, |
4e529339 | 1522 | int flags) |
1da177e4 | 1523 | { |
8f04c47a CH |
1524 | struct xfs_mount *mp = ip->i_mount; |
1525 | struct xfs_trans *tp = *tpp; | |
8f04c47a CH |
1526 | xfs_fileoff_t first_unmap_block; |
1527 | xfs_fileoff_t last_block; | |
1528 | xfs_filblks_t unmap_len; | |
8f04c47a CH |
1529 | int error = 0; |
1530 | int done = 0; | |
1da177e4 | 1531 | |
0b56185b CH |
1532 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
1533 | ASSERT(!atomic_read(&VFS_I(ip)->i_count) || | |
1534 | xfs_isilocked(ip, XFS_IOLOCK_EXCL)); | |
ce7ae151 | 1535 | ASSERT(new_size <= XFS_ISIZE(ip)); |
8f04c47a | 1536 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
1da177e4 | 1537 | ASSERT(ip->i_itemp != NULL); |
898621d5 | 1538 | ASSERT(ip->i_itemp->ili_lock_flags == 0); |
8f04c47a | 1539 | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
1da177e4 | 1540 | |
673e8e59 CH |
1541 | trace_xfs_itruncate_extents_start(ip, new_size); |
1542 | ||
4e529339 | 1543 | flags |= xfs_bmapi_aflag(whichfork); |
13b86fc3 | 1544 | |
1da177e4 LT |
1545 | /* |
1546 | * Since it is possible for space to become allocated beyond | |
1547 | * the end of the file (in a crash where the space is allocated | |
1548 | * but the inode size is not yet updated), simply remove any | |
1549 | * blocks which show up between the new EOF and the maximum | |
1550 | * possible file size. If the first block to be removed is | |
1551 | * beyond the maximum file size (ie it is the same as last_block), | |
1552 | * then there is nothing to do. | |
1553 | */ | |
8f04c47a | 1554 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
32972383 | 1555 | last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); |
8f04c47a CH |
1556 | if (first_unmap_block == last_block) |
1557 | return 0; | |
1558 | ||
1559 | ASSERT(first_unmap_block < last_block); | |
1560 | unmap_len = last_block - first_unmap_block + 1; | |
1da177e4 | 1561 | while (!done) { |
02dff7bf | 1562 | ASSERT(tp->t_firstblock == NULLFSBLOCK); |
13b86fc3 | 1563 | error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, |
2af52842 | 1564 | XFS_ITRUNC_MAX_EXTENTS, &done); |
8f04c47a | 1565 | if (error) |
d5a2e289 | 1566 | goto out; |
1da177e4 LT |
1567 | |
1568 | /* | |
1569 | * Duplicate the transaction that has the permanent | |
1570 | * reservation and commit the old transaction. | |
1571 | */ | |
9e28a242 | 1572 | error = xfs_defer_finish(&tp); |
8f04c47a | 1573 | if (error) |
9b1f4e98 | 1574 | goto out; |
1da177e4 | 1575 | |
411350df | 1576 | error = xfs_trans_roll_inode(&tp, ip); |
f6485057 | 1577 | if (error) |
8f04c47a | 1578 | goto out; |
1da177e4 | 1579 | } |
8f04c47a | 1580 | |
4919d42a DW |
1581 | if (whichfork == XFS_DATA_FORK) { |
1582 | /* Remove all pending CoW reservations. */ | |
1583 | error = xfs_reflink_cancel_cow_blocks(ip, &tp, | |
1584 | first_unmap_block, last_block, true); | |
1585 | if (error) | |
1586 | goto out; | |
aa8968f2 | 1587 | |
4919d42a DW |
1588 | xfs_itruncate_clear_reflink_flags(ip); |
1589 | } | |
aa8968f2 | 1590 | |
673e8e59 CH |
1591 | /* |
1592 | * Always re-log the inode so that our permanent transaction can keep | |
1593 | * on rolling it forward in the log. | |
1594 | */ | |
1595 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
1596 | ||
1597 | trace_xfs_itruncate_extents_end(ip, new_size); | |
1598 | ||
8f04c47a CH |
1599 | out: |
1600 | *tpp = tp; | |
1601 | return error; | |
8f04c47a CH |
1602 | } |
1603 | ||
c24b5dfa DC |
1604 | int |
1605 | xfs_release( | |
1606 | xfs_inode_t *ip) | |
1607 | { | |
1608 | xfs_mount_t *mp = ip->i_mount; | |
1609 | int error; | |
1610 | ||
c19b3b05 | 1611 | if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) |
c24b5dfa DC |
1612 | return 0; |
1613 | ||
1614 | /* If this is a read-only mount, don't do this (would generate I/O) */ | |
1615 | if (mp->m_flags & XFS_MOUNT_RDONLY) | |
1616 | return 0; | |
1617 | ||
1618 | if (!XFS_FORCED_SHUTDOWN(mp)) { | |
1619 | int truncated; | |
1620 | ||
c24b5dfa DC |
1621 | /* |
1622 | * If we previously truncated this file and removed old data | |
1623 | * in the process, we want to initiate "early" writeout on | |
1624 | * the last close. This is an attempt to combat the notorious | |
1625 | * NULL files problem which is particularly noticeable from a | |
1626 | * truncate down, buffered (re-)write (delalloc), followed by | |
1627 | * a crash. What we are effectively doing here is | |
1628 | * significantly reducing the time window where we'd otherwise | |
1629 | * be exposed to that problem. | |
1630 | */ | |
1631 | truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); | |
1632 | if (truncated) { | |
1633 | xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); | |
eac152b4 | 1634 | if (ip->i_delayed_blks > 0) { |
2451337d | 1635 | error = filemap_flush(VFS_I(ip)->i_mapping); |
c24b5dfa DC |
1636 | if (error) |
1637 | return error; | |
1638 | } | |
1639 | } | |
1640 | } | |
1641 | ||
54d7b5c1 | 1642 | if (VFS_I(ip)->i_nlink == 0) |
c24b5dfa DC |
1643 | return 0; |
1644 | ||
1645 | if (xfs_can_free_eofblocks(ip, false)) { | |
1646 | ||
a36b9261 BF |
1647 | /* |
1648 | * Check if the inode is being opened, written and closed | |
1649 | * frequently and we have delayed allocation blocks outstanding | |
1650 | * (e.g. streaming writes from the NFS server), truncating the | |
1651 | * blocks past EOF will cause fragmentation to occur. | |
1652 | * | |
1653 | * In this case don't do the truncation, but we have to be | |
1654 | * careful how we detect this case. Blocks beyond EOF show up as | |
1655 | * i_delayed_blks even when the inode is clean, so we need to | |
1656 | * truncate them away first before checking for a dirty release. | |
1657 | * Hence on the first dirty close we will still remove the | |
1658 | * speculative allocation, but after that we will leave it in | |
1659 | * place. | |
1660 | */ | |
1661 | if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) | |
1662 | return 0; | |
c24b5dfa DC |
1663 | /* |
1664 | * If we can't get the iolock just skip truncating the blocks | |
1665 | * past EOF because we could deadlock with the mmap_sem | |
a36b9261 | 1666 | * otherwise. We'll get another chance to drop them once the |
c24b5dfa DC |
1667 | * last reference to the inode is dropped, so we'll never leak |
1668 | * blocks permanently. | |
c24b5dfa | 1669 | */ |
a36b9261 BF |
1670 | if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
1671 | error = xfs_free_eofblocks(ip); | |
1672 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | |
1673 | if (error) | |
1674 | return error; | |
1675 | } | |
c24b5dfa DC |
1676 | |
1677 | /* delalloc blocks after truncation means it really is dirty */ | |
1678 | if (ip->i_delayed_blks) | |
1679 | xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); | |
1680 | } | |
1681 | return 0; | |
1682 | } | |
1683 | ||
f7be2d7f BF |
1684 | /* |
1685 | * xfs_inactive_truncate | |
1686 | * | |
1687 | * Called to perform a truncate when an inode becomes unlinked. | |
1688 | */ | |
1689 | STATIC int | |
1690 | xfs_inactive_truncate( | |
1691 | struct xfs_inode *ip) | |
1692 | { | |
1693 | struct xfs_mount *mp = ip->i_mount; | |
1694 | struct xfs_trans *tp; | |
1695 | int error; | |
1696 | ||
253f4911 | 1697 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
f7be2d7f BF |
1698 | if (error) { |
1699 | ASSERT(XFS_FORCED_SHUTDOWN(mp)); | |
f7be2d7f BF |
1700 | return error; |
1701 | } | |
f7be2d7f BF |
1702 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
1703 | xfs_trans_ijoin(tp, ip, 0); | |
1704 | ||
1705 | /* | |
1706 | * Log the inode size first to prevent stale data exposure in the event | |
1707 | * of a system crash before the truncate completes. See the related | |
69bca807 | 1708 | * comment in xfs_vn_setattr_size() for details. |
f7be2d7f BF |
1709 | */ |
1710 | ip->i_d.di_size = 0; | |
1711 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
1712 | ||
1713 | error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); | |
1714 | if (error) | |
1715 | goto error_trans_cancel; | |
1716 | ||
1717 | ASSERT(ip->i_d.di_nextents == 0); | |
1718 | ||
70393313 | 1719 | error = xfs_trans_commit(tp); |
f7be2d7f BF |
1720 | if (error) |
1721 | goto error_unlock; | |
1722 | ||
1723 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
1724 | return 0; | |
1725 | ||
1726 | error_trans_cancel: | |
4906e215 | 1727 | xfs_trans_cancel(tp); |
f7be2d7f BF |
1728 | error_unlock: |
1729 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
1730 | return error; | |
1731 | } | |
1732 | ||
88877d2b BF |
1733 | /* |
1734 | * xfs_inactive_ifree() | |
1735 | * | |
1736 | * Perform the inode free when an inode is unlinked. | |
1737 | */ | |
1738 | STATIC int | |
1739 | xfs_inactive_ifree( | |
1740 | struct xfs_inode *ip) | |
1741 | { | |
88877d2b BF |
1742 | struct xfs_mount *mp = ip->i_mount; |
1743 | struct xfs_trans *tp; | |
1744 | int error; | |
1745 | ||
9d43b180 | 1746 | /* |
76d771b4 CH |
1747 | * We try to use a per-AG reservation for any block needed by the finobt |
1748 | * tree, but as the finobt feature predates the per-AG reservation | |
1749 | * support a degraded file system might not have enough space for the | |
1750 | * reservation at mount time. In that case try to dip into the reserved | |
1751 | * pool and pray. | |
9d43b180 BF |
1752 | * |
1753 | * Send a warning if the reservation does happen to fail, as the inode | |
1754 | * now remains allocated and sits on the unlinked list until the fs is | |
1755 | * repaired. | |
1756 | */ | |
e1f6ca11 | 1757 | if (unlikely(mp->m_finobt_nores)) { |
76d771b4 CH |
1758 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, |
1759 | XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, | |
1760 | &tp); | |
1761 | } else { | |
1762 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); | |
1763 | } | |
88877d2b | 1764 | if (error) { |
2451337d | 1765 | if (error == -ENOSPC) { |
9d43b180 BF |
1766 | xfs_warn_ratelimited(mp, |
1767 | "Failed to remove inode(s) from unlinked list. " | |
1768 | "Please free space, unmount and run xfs_repair."); | |
1769 | } else { | |
1770 | ASSERT(XFS_FORCED_SHUTDOWN(mp)); | |
1771 | } | |
88877d2b BF |
1772 | return error; |
1773 | } | |
1774 | ||
1775 | xfs_ilock(ip, XFS_ILOCK_EXCL); | |
1776 | xfs_trans_ijoin(tp, ip, 0); | |
1777 | ||
0e0417f3 | 1778 | error = xfs_ifree(tp, ip); |
88877d2b BF |
1779 | if (error) { |
1780 | /* | |
1781 | * If we fail to free the inode, shut down. The cancel | |
1782 | * might do that, we need to make sure. Otherwise the | |
1783 | * inode might be lost for a long time or forever. | |
1784 | */ | |
1785 | if (!XFS_FORCED_SHUTDOWN(mp)) { | |
1786 | xfs_notice(mp, "%s: xfs_ifree returned error %d", | |
1787 | __func__, error); | |
1788 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | |
1789 | } | |
4906e215 | 1790 | xfs_trans_cancel(tp); |
88877d2b BF |
1791 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1792 | return error; | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | * Credit the quota account(s). The inode is gone. | |
1797 | */ | |
1798 | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); | |
1799 | ||
1800 | /* | |
d4a97a04 BF |
1801 | * Just ignore errors at this point. There is nothing we can do except |
1802 | * to try to keep going. Make sure it's not a silent error. | |
88877d2b | 1803 | */ |
70393313 | 1804 | error = xfs_trans_commit(tp); |
88877d2b BF |
1805 | if (error) |
1806 | xfs_notice(mp, "%s: xfs_trans_commit returned error %d", | |
1807 | __func__, error); | |
1808 | ||
1809 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
1810 | return 0; | |
1811 | } | |
1812 | ||
c24b5dfa DC |
1813 | /* |
1814 | * xfs_inactive | |
1815 | * | |
1816 | * This is called when the vnode reference count for the vnode | |
1817 | * goes to zero. If the file has been unlinked, then it must | |
1818 | * now be truncated. Also, we clear all of the read-ahead state | |
1819 | * kept for the inode here since the file is now closed. | |
1820 | */ | |
74564fb4 | 1821 | void |
c24b5dfa DC |
1822 | xfs_inactive( |
1823 | xfs_inode_t *ip) | |
1824 | { | |
3d3c8b52 | 1825 | struct xfs_mount *mp; |
3d3c8b52 JL |
1826 | int error; |
1827 | int truncate = 0; | |
c24b5dfa DC |
1828 | |
1829 | /* | |
1830 | * If the inode is already free, then there can be nothing | |
1831 | * to clean up here. | |
1832 | */ | |
c19b3b05 | 1833 | if (VFS_I(ip)->i_mode == 0) { |
c24b5dfa | 1834 | ASSERT(ip->i_df.if_broot_bytes == 0); |
74564fb4 | 1835 | return; |
c24b5dfa DC |
1836 | } |
1837 | ||
1838 | mp = ip->i_mount; | |
17c12bcd | 1839 | ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); |
c24b5dfa | 1840 | |
c24b5dfa DC |
1841 | /* If this is a read-only mount, don't do this (would generate I/O) */ |
1842 | if (mp->m_flags & XFS_MOUNT_RDONLY) | |
74564fb4 | 1843 | return; |
c24b5dfa | 1844 | |
6231848c | 1845 | /* Try to clean out the cow blocks if there are any. */ |
51d62690 | 1846 | if (xfs_inode_has_cow_data(ip)) |
6231848c DW |
1847 | xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); |
1848 | ||
54d7b5c1 | 1849 | if (VFS_I(ip)->i_nlink != 0) { |
c24b5dfa DC |
1850 | /* |
1851 | * force is true because we are evicting an inode from the | |
1852 | * cache. Post-eof blocks must be freed, lest we end up with | |
1853 | * broken free space accounting. | |
3b4683c2 BF |
1854 | * |
1855 | * Note: don't bother with iolock here since lockdep complains | |
1856 | * about acquiring it in reclaim context. We have the only | |
1857 | * reference to the inode at this point anyways. | |
c24b5dfa | 1858 | */ |
3b4683c2 | 1859 | if (xfs_can_free_eofblocks(ip, true)) |
a36b9261 | 1860 | xfs_free_eofblocks(ip); |
74564fb4 BF |
1861 | |
1862 | return; | |
c24b5dfa DC |
1863 | } |
1864 | ||
c19b3b05 | 1865 | if (S_ISREG(VFS_I(ip)->i_mode) && |
c24b5dfa DC |
1866 | (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || |
1867 | ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) | |
1868 | truncate = 1; | |
1869 | ||
c14cfcca | 1870 | error = xfs_qm_dqattach(ip); |
c24b5dfa | 1871 | if (error) |
74564fb4 | 1872 | return; |
c24b5dfa | 1873 | |
c19b3b05 | 1874 | if (S_ISLNK(VFS_I(ip)->i_mode)) |
36b21dde | 1875 | error = xfs_inactive_symlink(ip); |
f7be2d7f BF |
1876 | else if (truncate) |
1877 | error = xfs_inactive_truncate(ip); | |
1878 | if (error) | |
74564fb4 | 1879 | return; |
c24b5dfa DC |
1880 | |
1881 | /* | |
1882 | * If there are attributes associated with the file then blow them away | |
1883 | * now. The code calls a routine that recursively deconstructs the | |
6dfe5a04 | 1884 | * attribute fork. If also blows away the in-core attribute fork. |
c24b5dfa | 1885 | */ |
6dfe5a04 | 1886 | if (XFS_IFORK_Q(ip)) { |
c24b5dfa DC |
1887 | error = xfs_attr_inactive(ip); |
1888 | if (error) | |
74564fb4 | 1889 | return; |
c24b5dfa DC |
1890 | } |
1891 | ||
6dfe5a04 | 1892 | ASSERT(!ip->i_afp); |
c24b5dfa | 1893 | ASSERT(ip->i_d.di_anextents == 0); |
6dfe5a04 | 1894 | ASSERT(ip->i_d.di_forkoff == 0); |
c24b5dfa DC |
1895 | |
1896 | /* | |
1897 | * Free the inode. | |
1898 | */ | |
88877d2b BF |
1899 | error = xfs_inactive_ifree(ip); |
1900 | if (error) | |
74564fb4 | 1901 | return; |
c24b5dfa DC |
1902 | |
1903 | /* | |
1904 | * Release the dquots held by inode, if any. | |
1905 | */ | |
1906 | xfs_qm_dqdetach(ip); | |
c24b5dfa DC |
1907 | } |
1908 | ||
9b247179 DW |
1909 | /* |
1910 | * In-Core Unlinked List Lookups | |
1911 | * ============================= | |
1912 | * | |
1913 | * Every inode is supposed to be reachable from some other piece of metadata | |
1914 | * with the exception of the root directory. Inodes with a connection to a | |
1915 | * file descriptor but not linked from anywhere in the on-disk directory tree | |
1916 | * are collectively known as unlinked inodes, though the filesystem itself | |
1917 | * maintains links to these inodes so that on-disk metadata are consistent. | |
1918 | * | |
1919 | * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI | |
1920 | * header contains a number of buckets that point to an inode, and each inode | |
1921 | * record has a pointer to the next inode in the hash chain. This | |
1922 | * singly-linked list causes scaling problems in the iunlink remove function | |
1923 | * because we must walk that list to find the inode that points to the inode | |
1924 | * being removed from the unlinked hash bucket list. | |
1925 | * | |
1926 | * What if we modelled the unlinked list as a collection of records capturing | |
1927 | * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd | |
1928 | * have a fast way to look up unlinked list predecessors, which avoids the | |
1929 | * slow list walk. That's exactly what we do here (in-core) with a per-AG | |
1930 | * rhashtable. | |
1931 | * | |
1932 | * Because this is a backref cache, we ignore operational failures since the | |
1933 | * iunlink code can fall back to the slow bucket walk. The only errors that | |
1934 | * should bubble out are for obviously incorrect situations. | |
1935 | * | |
1936 | * All users of the backref cache MUST hold the AGI buffer lock to serialize | |
1937 | * access or have otherwise provided for concurrency control. | |
1938 | */ | |
1939 | ||
1940 | /* Capture a "X.next_unlinked = Y" relationship. */ | |
1941 | struct xfs_iunlink { | |
1942 | struct rhash_head iu_rhash_head; | |
1943 | xfs_agino_t iu_agino; /* X */ | |
1944 | xfs_agino_t iu_next_unlinked; /* Y */ | |
1945 | }; | |
1946 | ||
1947 | /* Unlinked list predecessor lookup hashtable construction */ | |
1948 | static int | |
1949 | xfs_iunlink_obj_cmpfn( | |
1950 | struct rhashtable_compare_arg *arg, | |
1951 | const void *obj) | |
1952 | { | |
1953 | const xfs_agino_t *key = arg->key; | |
1954 | const struct xfs_iunlink *iu = obj; | |
1955 | ||
1956 | if (iu->iu_next_unlinked != *key) | |
1957 | return 1; | |
1958 | return 0; | |
1959 | } | |
1960 | ||
1961 | static const struct rhashtable_params xfs_iunlink_hash_params = { | |
1962 | .min_size = XFS_AGI_UNLINKED_BUCKETS, | |
1963 | .key_len = sizeof(xfs_agino_t), | |
1964 | .key_offset = offsetof(struct xfs_iunlink, | |
1965 | iu_next_unlinked), | |
1966 | .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), | |
1967 | .automatic_shrinking = true, | |
1968 | .obj_cmpfn = xfs_iunlink_obj_cmpfn, | |
1969 | }; | |
1970 | ||
1971 | /* | |
1972 | * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such | |
1973 | * relation is found. | |
1974 | */ | |
1975 | static xfs_agino_t | |
1976 | xfs_iunlink_lookup_backref( | |
1977 | struct xfs_perag *pag, | |
1978 | xfs_agino_t agino) | |
1979 | { | |
1980 | struct xfs_iunlink *iu; | |
1981 | ||
1982 | iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, | |
1983 | xfs_iunlink_hash_params); | |
1984 | return iu ? iu->iu_agino : NULLAGINO; | |
1985 | } | |
1986 | ||
1987 | /* | |
1988 | * Take ownership of an iunlink cache entry and insert it into the hash table. | |
1989 | * If successful, the entry will be owned by the cache; if not, it is freed. | |
1990 | * Either way, the caller does not own @iu after this call. | |
1991 | */ | |
1992 | static int | |
1993 | xfs_iunlink_insert_backref( | |
1994 | struct xfs_perag *pag, | |
1995 | struct xfs_iunlink *iu) | |
1996 | { | |
1997 | int error; | |
1998 | ||
1999 | error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, | |
2000 | &iu->iu_rhash_head, xfs_iunlink_hash_params); | |
2001 | /* | |
2002 | * Fail loudly if there already was an entry because that's a sign of | |
2003 | * corruption of in-memory data. Also fail loudly if we see an error | |
2004 | * code we didn't anticipate from the rhashtable code. Currently we | |
2005 | * only anticipate ENOMEM. | |
2006 | */ | |
2007 | if (error) { | |
2008 | WARN(error != -ENOMEM, "iunlink cache insert error %d", error); | |
2009 | kmem_free(iu); | |
2010 | } | |
2011 | /* | |
2012 | * Absorb any runtime errors that aren't a result of corruption because | |
2013 | * this is a cache and we can always fall back to bucket list scanning. | |
2014 | */ | |
2015 | if (error != 0 && error != -EEXIST) | |
2016 | error = 0; | |
2017 | return error; | |
2018 | } | |
2019 | ||
2020 | /* Remember that @prev_agino.next_unlinked = @this_agino. */ | |
2021 | static int | |
2022 | xfs_iunlink_add_backref( | |
2023 | struct xfs_perag *pag, | |
2024 | xfs_agino_t prev_agino, | |
2025 | xfs_agino_t this_agino) | |
2026 | { | |
2027 | struct xfs_iunlink *iu; | |
2028 | ||
2029 | if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) | |
2030 | return 0; | |
2031 | ||
2032 | iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS); | |
2033 | iu->iu_agino = prev_agino; | |
2034 | iu->iu_next_unlinked = this_agino; | |
2035 | ||
2036 | return xfs_iunlink_insert_backref(pag, iu); | |
2037 | } | |
2038 | ||
2039 | /* | |
2040 | * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. | |
2041 | * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there | |
2042 | * wasn't any such entry then we don't bother. | |
2043 | */ | |
2044 | static int | |
2045 | xfs_iunlink_change_backref( | |
2046 | struct xfs_perag *pag, | |
2047 | xfs_agino_t agino, | |
2048 | xfs_agino_t next_unlinked) | |
2049 | { | |
2050 | struct xfs_iunlink *iu; | |
2051 | int error; | |
2052 | ||
2053 | /* Look up the old entry; if there wasn't one then exit. */ | |
2054 | iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, | |
2055 | xfs_iunlink_hash_params); | |
2056 | if (!iu) | |
2057 | return 0; | |
2058 | ||
2059 | /* | |
2060 | * Remove the entry. This shouldn't ever return an error, but if we | |
2061 | * couldn't remove the old entry we don't want to add it again to the | |
2062 | * hash table, and if the entry disappeared on us then someone's | |
2063 | * violated the locking rules and we need to fail loudly. Either way | |
2064 | * we cannot remove the inode because internal state is or would have | |
2065 | * been corrupt. | |
2066 | */ | |
2067 | error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, | |
2068 | &iu->iu_rhash_head, xfs_iunlink_hash_params); | |
2069 | if (error) | |
2070 | return error; | |
2071 | ||
2072 | /* If there is no new next entry just free our item and return. */ | |
2073 | if (next_unlinked == NULLAGINO) { | |
2074 | kmem_free(iu); | |
2075 | return 0; | |
2076 | } | |
2077 | ||
2078 | /* Update the entry and re-add it to the hash table. */ | |
2079 | iu->iu_next_unlinked = next_unlinked; | |
2080 | return xfs_iunlink_insert_backref(pag, iu); | |
2081 | } | |
2082 | ||
2083 | /* Set up the in-core predecessor structures. */ | |
2084 | int | |
2085 | xfs_iunlink_init( | |
2086 | struct xfs_perag *pag) | |
2087 | { | |
2088 | return rhashtable_init(&pag->pagi_unlinked_hash, | |
2089 | &xfs_iunlink_hash_params); | |
2090 | } | |
2091 | ||
2092 | /* Free the in-core predecessor structures. */ | |
2093 | static void | |
2094 | xfs_iunlink_free_item( | |
2095 | void *ptr, | |
2096 | void *arg) | |
2097 | { | |
2098 | struct xfs_iunlink *iu = ptr; | |
2099 | bool *freed_anything = arg; | |
2100 | ||
2101 | *freed_anything = true; | |
2102 | kmem_free(iu); | |
2103 | } | |
2104 | ||
2105 | void | |
2106 | xfs_iunlink_destroy( | |
2107 | struct xfs_perag *pag) | |
2108 | { | |
2109 | bool freed_anything = false; | |
2110 | ||
2111 | rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, | |
2112 | xfs_iunlink_free_item, &freed_anything); | |
2113 | ||
2114 | ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); | |
2115 | } | |
2116 | ||
9a4a5118 DW |
2117 | /* |
2118 | * Point the AGI unlinked bucket at an inode and log the results. The caller | |
2119 | * is responsible for validating the old value. | |
2120 | */ | |
2121 | STATIC int | |
2122 | xfs_iunlink_update_bucket( | |
2123 | struct xfs_trans *tp, | |
2124 | xfs_agnumber_t agno, | |
2125 | struct xfs_buf *agibp, | |
2126 | unsigned int bucket_index, | |
2127 | xfs_agino_t new_agino) | |
2128 | { | |
2129 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); | |
2130 | xfs_agino_t old_value; | |
2131 | int offset; | |
2132 | ||
2133 | ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); | |
2134 | ||
2135 | old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); | |
2136 | trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, | |
2137 | old_value, new_agino); | |
2138 | ||
2139 | /* | |
2140 | * We should never find the head of the list already set to the value | |
2141 | * passed in because either we're adding or removing ourselves from the | |
2142 | * head of the list. | |
2143 | */ | |
2144 | if (old_value == new_agino) | |
2145 | return -EFSCORRUPTED; | |
2146 | ||
2147 | agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); | |
2148 | offset = offsetof(struct xfs_agi, agi_unlinked) + | |
2149 | (sizeof(xfs_agino_t) * bucket_index); | |
2150 | xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); | |
2151 | return 0; | |
2152 | } | |
2153 | ||
f2fc16a3 DW |
2154 | /* Set an on-disk inode's next_unlinked pointer. */ |
2155 | STATIC void | |
2156 | xfs_iunlink_update_dinode( | |
2157 | struct xfs_trans *tp, | |
2158 | xfs_agnumber_t agno, | |
2159 | xfs_agino_t agino, | |
2160 | struct xfs_buf *ibp, | |
2161 | struct xfs_dinode *dip, | |
2162 | struct xfs_imap *imap, | |
2163 | xfs_agino_t next_agino) | |
2164 | { | |
2165 | struct xfs_mount *mp = tp->t_mountp; | |
2166 | int offset; | |
2167 | ||
2168 | ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); | |
2169 | ||
2170 | trace_xfs_iunlink_update_dinode(mp, agno, agino, | |
2171 | be32_to_cpu(dip->di_next_unlinked), next_agino); | |
2172 | ||
2173 | dip->di_next_unlinked = cpu_to_be32(next_agino); | |
2174 | offset = imap->im_boffset + | |
2175 | offsetof(struct xfs_dinode, di_next_unlinked); | |
2176 | ||
2177 | /* need to recalc the inode CRC if appropriate */ | |
2178 | xfs_dinode_calc_crc(mp, dip); | |
2179 | xfs_trans_inode_buf(tp, ibp); | |
2180 | xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); | |
2181 | xfs_inobp_check(mp, ibp); | |
2182 | } | |
2183 | ||
2184 | /* Set an in-core inode's unlinked pointer and return the old value. */ | |
2185 | STATIC int | |
2186 | xfs_iunlink_update_inode( | |
2187 | struct xfs_trans *tp, | |
2188 | struct xfs_inode *ip, | |
2189 | xfs_agnumber_t agno, | |
2190 | xfs_agino_t next_agino, | |
2191 | xfs_agino_t *old_next_agino) | |
2192 | { | |
2193 | struct xfs_mount *mp = tp->t_mountp; | |
2194 | struct xfs_dinode *dip; | |
2195 | struct xfs_buf *ibp; | |
2196 | xfs_agino_t old_value; | |
2197 | int error; | |
2198 | ||
2199 | ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); | |
2200 | ||
2201 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); | |
2202 | if (error) | |
2203 | return error; | |
2204 | ||
2205 | /* Make sure the old pointer isn't garbage. */ | |
2206 | old_value = be32_to_cpu(dip->di_next_unlinked); | |
2207 | if (!xfs_verify_agino_or_null(mp, agno, old_value)) { | |
2208 | error = -EFSCORRUPTED; | |
2209 | goto out; | |
2210 | } | |
2211 | ||
2212 | /* | |
2213 | * Since we're updating a linked list, we should never find that the | |
2214 | * current pointer is the same as the new value, unless we're | |
2215 | * terminating the list. | |
2216 | */ | |
2217 | *old_next_agino = old_value; | |
2218 | if (old_value == next_agino) { | |
2219 | if (next_agino != NULLAGINO) | |
2220 | error = -EFSCORRUPTED; | |
2221 | goto out; | |
2222 | } | |
2223 | ||
2224 | /* Ok, update the new pointer. */ | |
2225 | xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), | |
2226 | ibp, dip, &ip->i_imap, next_agino); | |
2227 | return 0; | |
2228 | out: | |
2229 | xfs_trans_brelse(tp, ibp); | |
2230 | return error; | |
2231 | } | |
2232 | ||
1da177e4 | 2233 | /* |
c4a6bf7f DW |
2234 | * This is called when the inode's link count has gone to 0 or we are creating |
2235 | * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. | |
54d7b5c1 DC |
2236 | * |
2237 | * We place the on-disk inode on a list in the AGI. It will be pulled from this | |
2238 | * list when the inode is freed. | |
1da177e4 | 2239 | */ |
54d7b5c1 | 2240 | STATIC int |
1da177e4 | 2241 | xfs_iunlink( |
5837f625 DW |
2242 | struct xfs_trans *tp, |
2243 | struct xfs_inode *ip) | |
1da177e4 | 2244 | { |
5837f625 DW |
2245 | struct xfs_mount *mp = tp->t_mountp; |
2246 | struct xfs_agi *agi; | |
5837f625 | 2247 | struct xfs_buf *agibp; |
86bfd375 | 2248 | xfs_agino_t next_agino; |
5837f625 DW |
2249 | xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
2250 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
2251 | short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
5837f625 | 2252 | int error; |
1da177e4 | 2253 | |
c4a6bf7f | 2254 | ASSERT(VFS_I(ip)->i_nlink == 0); |
c19b3b05 | 2255 | ASSERT(VFS_I(ip)->i_mode != 0); |
4664c66c | 2256 | trace_xfs_iunlink(ip); |
1da177e4 | 2257 | |
5837f625 DW |
2258 | /* Get the agi buffer first. It ensures lock ordering on the list. */ |
2259 | error = xfs_read_agi(mp, tp, agno, &agibp); | |
859d7182 | 2260 | if (error) |
1da177e4 | 2261 | return error; |
1da177e4 | 2262 | agi = XFS_BUF_TO_AGI(agibp); |
5e1be0fb | 2263 | |
1da177e4 | 2264 | /* |
86bfd375 DW |
2265 | * Get the index into the agi hash table for the list this inode will |
2266 | * go on. Make sure the pointer isn't garbage and that this inode | |
2267 | * isn't already on the list. | |
1da177e4 | 2268 | */ |
86bfd375 DW |
2269 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
2270 | if (next_agino == agino || | |
2271 | !xfs_verify_agino_or_null(mp, agno, next_agino)) | |
2272 | return -EFSCORRUPTED; | |
1da177e4 | 2273 | |
86bfd375 | 2274 | if (next_agino != NULLAGINO) { |
9b247179 DW |
2275 | struct xfs_perag *pag; |
2276 | xfs_agino_t old_agino; | |
f2fc16a3 | 2277 | |
1da177e4 | 2278 | /* |
f2fc16a3 DW |
2279 | * There is already another inode in the bucket, so point this |
2280 | * inode to the current head of the list. | |
1da177e4 | 2281 | */ |
f2fc16a3 DW |
2282 | error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, |
2283 | &old_agino); | |
c319b58b VA |
2284 | if (error) |
2285 | return error; | |
f2fc16a3 | 2286 | ASSERT(old_agino == NULLAGINO); |
9b247179 DW |
2287 | |
2288 | /* | |
2289 | * agino has been unlinked, add a backref from the next inode | |
2290 | * back to agino. | |
2291 | */ | |
2292 | pag = xfs_perag_get(mp, agno); | |
2293 | error = xfs_iunlink_add_backref(pag, agino, next_agino); | |
2294 | xfs_perag_put(pag); | |
2295 | if (error) | |
2296 | return error; | |
1da177e4 LT |
2297 | } |
2298 | ||
9a4a5118 DW |
2299 | /* Point the head of the list to point to this inode. */ |
2300 | return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); | |
1da177e4 LT |
2301 | } |
2302 | ||
23ffa52c DW |
2303 | /* Return the imap, dinode pointer, and buffer for an inode. */ |
2304 | STATIC int | |
2305 | xfs_iunlink_map_ino( | |
2306 | struct xfs_trans *tp, | |
2307 | xfs_agnumber_t agno, | |
2308 | xfs_agino_t agino, | |
2309 | struct xfs_imap *imap, | |
2310 | struct xfs_dinode **dipp, | |
2311 | struct xfs_buf **bpp) | |
2312 | { | |
2313 | struct xfs_mount *mp = tp->t_mountp; | |
2314 | int error; | |
2315 | ||
2316 | imap->im_blkno = 0; | |
2317 | error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); | |
2318 | if (error) { | |
2319 | xfs_warn(mp, "%s: xfs_imap returned error %d.", | |
2320 | __func__, error); | |
2321 | return error; | |
2322 | } | |
2323 | ||
2324 | error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); | |
2325 | if (error) { | |
2326 | xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", | |
2327 | __func__, error); | |
2328 | return error; | |
2329 | } | |
2330 | ||
2331 | return 0; | |
2332 | } | |
2333 | ||
2334 | /* | |
2335 | * Walk the unlinked chain from @head_agino until we find the inode that | |
2336 | * points to @target_agino. Return the inode number, map, dinode pointer, | |
2337 | * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. | |
2338 | * | |
2339 | * @tp, @pag, @head_agino, and @target_agino are input parameters. | |
2340 | * @agino, @imap, @dipp, and @bpp are all output parameters. | |
2341 | * | |
2342 | * Do not call this function if @target_agino is the head of the list. | |
2343 | */ | |
2344 | STATIC int | |
2345 | xfs_iunlink_map_prev( | |
2346 | struct xfs_trans *tp, | |
2347 | xfs_agnumber_t agno, | |
2348 | xfs_agino_t head_agino, | |
2349 | xfs_agino_t target_agino, | |
2350 | xfs_agino_t *agino, | |
2351 | struct xfs_imap *imap, | |
2352 | struct xfs_dinode **dipp, | |
9b247179 DW |
2353 | struct xfs_buf **bpp, |
2354 | struct xfs_perag *pag) | |
23ffa52c DW |
2355 | { |
2356 | struct xfs_mount *mp = tp->t_mountp; | |
2357 | xfs_agino_t next_agino; | |
2358 | int error; | |
2359 | ||
2360 | ASSERT(head_agino != target_agino); | |
2361 | *bpp = NULL; | |
2362 | ||
9b247179 DW |
2363 | /* See if our backref cache can find it faster. */ |
2364 | *agino = xfs_iunlink_lookup_backref(pag, target_agino); | |
2365 | if (*agino != NULLAGINO) { | |
2366 | error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); | |
2367 | if (error) | |
2368 | return error; | |
2369 | ||
2370 | if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) | |
2371 | return 0; | |
2372 | ||
2373 | /* | |
2374 | * If we get here the cache contents were corrupt, so drop the | |
2375 | * buffer and fall back to walking the bucket list. | |
2376 | */ | |
2377 | xfs_trans_brelse(tp, *bpp); | |
2378 | *bpp = NULL; | |
2379 | WARN_ON_ONCE(1); | |
2380 | } | |
2381 | ||
2382 | trace_xfs_iunlink_map_prev_fallback(mp, agno); | |
2383 | ||
2384 | /* Otherwise, walk the entire bucket until we find it. */ | |
23ffa52c DW |
2385 | next_agino = head_agino; |
2386 | while (next_agino != target_agino) { | |
2387 | xfs_agino_t unlinked_agino; | |
2388 | ||
2389 | if (*bpp) | |
2390 | xfs_trans_brelse(tp, *bpp); | |
2391 | ||
2392 | *agino = next_agino; | |
2393 | error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, | |
2394 | bpp); | |
2395 | if (error) | |
2396 | return error; | |
2397 | ||
2398 | unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); | |
2399 | /* | |
2400 | * Make sure this pointer is valid and isn't an obvious | |
2401 | * infinite loop. | |
2402 | */ | |
2403 | if (!xfs_verify_agino(mp, agno, unlinked_agino) || | |
2404 | next_agino == unlinked_agino) { | |
2405 | XFS_CORRUPTION_ERROR(__func__, | |
2406 | XFS_ERRLEVEL_LOW, mp, | |
2407 | *dipp, sizeof(**dipp)); | |
2408 | error = -EFSCORRUPTED; | |
2409 | return error; | |
2410 | } | |
2411 | next_agino = unlinked_agino; | |
2412 | } | |
2413 | ||
2414 | return 0; | |
2415 | } | |
2416 | ||
1da177e4 LT |
2417 | /* |
2418 | * Pull the on-disk inode from the AGI unlinked list. | |
2419 | */ | |
2420 | STATIC int | |
2421 | xfs_iunlink_remove( | |
5837f625 DW |
2422 | struct xfs_trans *tp, |
2423 | struct xfs_inode *ip) | |
1da177e4 | 2424 | { |
5837f625 DW |
2425 | struct xfs_mount *mp = tp->t_mountp; |
2426 | struct xfs_agi *agi; | |
5837f625 | 2427 | struct xfs_buf *agibp; |
5837f625 DW |
2428 | struct xfs_buf *last_ibp; |
2429 | struct xfs_dinode *last_dip = NULL; | |
9b247179 | 2430 | struct xfs_perag *pag = NULL; |
5837f625 DW |
2431 | xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
2432 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
2433 | xfs_agino_t next_agino; | |
b1d2a068 | 2434 | xfs_agino_t head_agino; |
5837f625 | 2435 | short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
5837f625 | 2436 | int error; |
1da177e4 | 2437 | |
4664c66c DW |
2438 | trace_xfs_iunlink_remove(ip); |
2439 | ||
5837f625 | 2440 | /* Get the agi buffer first. It ensures lock ordering on the list. */ |
5e1be0fb CH |
2441 | error = xfs_read_agi(mp, tp, agno, &agibp); |
2442 | if (error) | |
1da177e4 | 2443 | return error; |
1da177e4 | 2444 | agi = XFS_BUF_TO_AGI(agibp); |
5e1be0fb | 2445 | |
1da177e4 | 2446 | /* |
86bfd375 DW |
2447 | * Get the index into the agi hash table for the list this inode will |
2448 | * go on. Make sure the head pointer isn't garbage. | |
1da177e4 | 2449 | */ |
b1d2a068 DW |
2450 | head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
2451 | if (!xfs_verify_agino(mp, agno, head_agino)) { | |
d2e73665 DW |
2452 | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
2453 | agi, sizeof(*agi)); | |
2454 | return -EFSCORRUPTED; | |
2455 | } | |
1da177e4 | 2456 | |
b1d2a068 DW |
2457 | /* |
2458 | * Set our inode's next_unlinked pointer to NULL and then return | |
2459 | * the old pointer value so that we can update whatever was previous | |
2460 | * to us in the list to point to whatever was next in the list. | |
2461 | */ | |
2462 | error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); | |
2463 | if (error) | |
2464 | return error; | |
9a4a5118 | 2465 | |
9b247179 DW |
2466 | /* |
2467 | * If there was a backref pointing from the next inode back to this | |
2468 | * one, remove it because we've removed this inode from the list. | |
2469 | * | |
2470 | * Later, if this inode was in the middle of the list we'll update | |
2471 | * this inode's backref to point from the next inode. | |
2472 | */ | |
2473 | if (next_agino != NULLAGINO) { | |
2474 | pag = xfs_perag_get(mp, agno); | |
2475 | error = xfs_iunlink_change_backref(pag, next_agino, | |
2476 | NULLAGINO); | |
2477 | if (error) | |
2478 | goto out; | |
2479 | } | |
2480 | ||
b1d2a068 | 2481 | if (head_agino == agino) { |
9a4a5118 DW |
2482 | /* Point the head of the list to the next unlinked inode. */ |
2483 | error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, | |
2484 | next_agino); | |
2485 | if (error) | |
9b247179 | 2486 | goto out; |
1da177e4 | 2487 | } else { |
f2fc16a3 DW |
2488 | struct xfs_imap imap; |
2489 | xfs_agino_t prev_agino; | |
2490 | ||
9b247179 DW |
2491 | if (!pag) |
2492 | pag = xfs_perag_get(mp, agno); | |
2493 | ||
23ffa52c | 2494 | /* We need to search the list for the inode being freed. */ |
b1d2a068 | 2495 | error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, |
9b247179 DW |
2496 | &prev_agino, &imap, &last_dip, &last_ibp, |
2497 | pag); | |
23ffa52c | 2498 | if (error) |
9b247179 | 2499 | goto out; |
475ee413 | 2500 | |
f2fc16a3 DW |
2501 | /* Point the previous inode on the list to the next inode. */ |
2502 | xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, | |
2503 | last_dip, &imap, next_agino); | |
9b247179 DW |
2504 | |
2505 | /* | |
2506 | * Now we deal with the backref for this inode. If this inode | |
2507 | * pointed at a real inode, change the backref that pointed to | |
2508 | * us to point to our old next. If this inode was the end of | |
2509 | * the list, delete the backref that pointed to us. Note that | |
2510 | * change_backref takes care of deleting the backref if | |
2511 | * next_agino is NULLAGINO. | |
2512 | */ | |
2513 | error = xfs_iunlink_change_backref(pag, agino, next_agino); | |
2514 | if (error) | |
2515 | goto out; | |
1da177e4 | 2516 | } |
9b247179 DW |
2517 | |
2518 | out: | |
2519 | if (pag) | |
2520 | xfs_perag_put(pag); | |
2521 | return error; | |
1da177e4 LT |
2522 | } |
2523 | ||
5b3eed75 | 2524 | /* |
0b8182db | 2525 | * A big issue when freeing the inode cluster is that we _cannot_ skip any |
5b3eed75 DC |
2526 | * inodes that are in memory - they all must be marked stale and attached to |
2527 | * the cluster buffer. | |
2528 | */ | |
2a30f36d | 2529 | STATIC int |
1da177e4 | 2530 | xfs_ifree_cluster( |
09b56604 BF |
2531 | xfs_inode_t *free_ip, |
2532 | xfs_trans_t *tp, | |
2533 | struct xfs_icluster *xic) | |
1da177e4 LT |
2534 | { |
2535 | xfs_mount_t *mp = free_ip->i_mount; | |
1da177e4 | 2536 | int nbufs; |
5b257b4a | 2537 | int i, j; |
3cdaa189 | 2538 | int ioffset; |
1da177e4 LT |
2539 | xfs_daddr_t blkno; |
2540 | xfs_buf_t *bp; | |
5b257b4a | 2541 | xfs_inode_t *ip; |
1da177e4 | 2542 | xfs_inode_log_item_t *iip; |
643c8c05 | 2543 | struct xfs_log_item *lip; |
5017e97d | 2544 | struct xfs_perag *pag; |
09b56604 | 2545 | xfs_ino_t inum; |
1da177e4 | 2546 | |
09b56604 | 2547 | inum = xic->first_ino; |
5017e97d | 2548 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
83dcdb44 | 2549 | nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster; |
1da177e4 | 2550 | |
83dcdb44 | 2551 | for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) { |
09b56604 BF |
2552 | /* |
2553 | * The allocation bitmap tells us which inodes of the chunk were | |
2554 | * physically allocated. Skip the cluster if an inode falls into | |
2555 | * a sparse region. | |
2556 | */ | |
3cdaa189 BF |
2557 | ioffset = inum - xic->first_ino; |
2558 | if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { | |
83dcdb44 | 2559 | ASSERT(ioffset % mp->m_inodes_per_cluster == 0); |
09b56604 BF |
2560 | continue; |
2561 | } | |
2562 | ||
1da177e4 LT |
2563 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
2564 | XFS_INO_TO_AGBNO(mp, inum)); | |
2565 | ||
5b257b4a DC |
2566 | /* |
2567 | * We obtain and lock the backing buffer first in the process | |
2568 | * here, as we have to ensure that any dirty inode that we | |
2569 | * can't get the flush lock on is attached to the buffer. | |
2570 | * If we scan the in-memory inodes first, then buffer IO can | |
2571 | * complete before we get a lock on it, and hence we may fail | |
2572 | * to mark all the active inodes on the buffer stale. | |
2573 | */ | |
2574 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | |
83dcdb44 | 2575 | mp->m_bsize * mp->m_blocks_per_cluster, |
b6aff29f | 2576 | XBF_UNMAPPED); |
5b257b4a | 2577 | |
2a30f36d | 2578 | if (!bp) |
2451337d | 2579 | return -ENOMEM; |
b0f539de DC |
2580 | |
2581 | /* | |
2582 | * This buffer may not have been correctly initialised as we | |
2583 | * didn't read it from disk. That's not important because we are | |
2584 | * only using to mark the buffer as stale in the log, and to | |
2585 | * attach stale cached inodes on it. That means it will never be | |
2586 | * dispatched for IO. If it is, we want to know about it, and we | |
2587 | * want it to fail. We can acheive this by adding a write | |
2588 | * verifier to the buffer. | |
2589 | */ | |
8c4ce794 | 2590 | bp->b_ops = &xfs_inode_buf_ops; |
b0f539de | 2591 | |
5b257b4a DC |
2592 | /* |
2593 | * Walk the inodes already attached to the buffer and mark them | |
2594 | * stale. These will all have the flush locks held, so an | |
5b3eed75 DC |
2595 | * in-memory inode walk can't lock them. By marking them all |
2596 | * stale first, we will not attempt to lock them in the loop | |
2597 | * below as the XFS_ISTALE flag will be set. | |
5b257b4a | 2598 | */ |
643c8c05 | 2599 | list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { |
5b257b4a DC |
2600 | if (lip->li_type == XFS_LI_INODE) { |
2601 | iip = (xfs_inode_log_item_t *)lip; | |
2602 | ASSERT(iip->ili_logged == 1); | |
ca30b2a7 | 2603 | lip->li_cb = xfs_istale_done; |
5b257b4a DC |
2604 | xfs_trans_ail_copy_lsn(mp->m_ail, |
2605 | &iip->ili_flush_lsn, | |
2606 | &iip->ili_item.li_lsn); | |
2607 | xfs_iflags_set(iip->ili_inode, XFS_ISTALE); | |
5b257b4a | 2608 | } |
5b257b4a | 2609 | } |
1da177e4 | 2610 | |
5b3eed75 | 2611 | |
1da177e4 | 2612 | /* |
5b257b4a DC |
2613 | * For each inode in memory attempt to add it to the inode |
2614 | * buffer and set it up for being staled on buffer IO | |
2615 | * completion. This is safe as we've locked out tail pushing | |
2616 | * and flushing by locking the buffer. | |
1da177e4 | 2617 | * |
5b257b4a DC |
2618 | * We have already marked every inode that was part of a |
2619 | * transaction stale above, which means there is no point in | |
2620 | * even trying to lock them. | |
1da177e4 | 2621 | */ |
83dcdb44 | 2622 | for (i = 0; i < mp->m_inodes_per_cluster; i++) { |
5b3eed75 | 2623 | retry: |
1a3e8f3d | 2624 | rcu_read_lock(); |
da353b0d DC |
2625 | ip = radix_tree_lookup(&pag->pag_ici_root, |
2626 | XFS_INO_TO_AGINO(mp, (inum + i))); | |
1da177e4 | 2627 | |
1a3e8f3d DC |
2628 | /* Inode not in memory, nothing to do */ |
2629 | if (!ip) { | |
2630 | rcu_read_unlock(); | |
1da177e4 LT |
2631 | continue; |
2632 | } | |
2633 | ||
1a3e8f3d DC |
2634 | /* |
2635 | * because this is an RCU protected lookup, we could | |
2636 | * find a recently freed or even reallocated inode | |
2637 | * during the lookup. We need to check under the | |
2638 | * i_flags_lock for a valid inode here. Skip it if it | |
2639 | * is not valid, the wrong inode or stale. | |
2640 | */ | |
2641 | spin_lock(&ip->i_flags_lock); | |
2642 | if (ip->i_ino != inum + i || | |
2643 | __xfs_iflags_test(ip, XFS_ISTALE)) { | |
2644 | spin_unlock(&ip->i_flags_lock); | |
2645 | rcu_read_unlock(); | |
2646 | continue; | |
2647 | } | |
2648 | spin_unlock(&ip->i_flags_lock); | |
2649 | ||
5b3eed75 DC |
2650 | /* |
2651 | * Don't try to lock/unlock the current inode, but we | |
2652 | * _cannot_ skip the other inodes that we did not find | |
2653 | * in the list attached to the buffer and are not | |
2654 | * already marked stale. If we can't lock it, back off | |
2655 | * and retry. | |
2656 | */ | |
f2e9ad21 OS |
2657 | if (ip != free_ip) { |
2658 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | |
2659 | rcu_read_unlock(); | |
2660 | delay(1); | |
2661 | goto retry; | |
2662 | } | |
2663 | ||
2664 | /* | |
2665 | * Check the inode number again in case we're | |
2666 | * racing with freeing in xfs_reclaim_inode(). | |
2667 | * See the comments in that function for more | |
2668 | * information as to why the initial check is | |
2669 | * not sufficient. | |
2670 | */ | |
2671 | if (ip->i_ino != inum + i) { | |
2672 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
962cc1ad | 2673 | rcu_read_unlock(); |
f2e9ad21 OS |
2674 | continue; |
2675 | } | |
1da177e4 | 2676 | } |
1a3e8f3d | 2677 | rcu_read_unlock(); |
1da177e4 | 2678 | |
5b3eed75 | 2679 | xfs_iflock(ip); |
5b257b4a | 2680 | xfs_iflags_set(ip, XFS_ISTALE); |
1da177e4 | 2681 | |
5b3eed75 DC |
2682 | /* |
2683 | * we don't need to attach clean inodes or those only | |
2684 | * with unlogged changes (which we throw away, anyway). | |
2685 | */ | |
1da177e4 | 2686 | iip = ip->i_itemp; |
5b3eed75 | 2687 | if (!iip || xfs_inode_clean(ip)) { |
5b257b4a | 2688 | ASSERT(ip != free_ip); |
1da177e4 LT |
2689 | xfs_ifunlock(ip); |
2690 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
2691 | continue; | |
2692 | } | |
2693 | ||
f5d8d5c4 CH |
2694 | iip->ili_last_fields = iip->ili_fields; |
2695 | iip->ili_fields = 0; | |
fc0561ce | 2696 | iip->ili_fsync_fields = 0; |
1da177e4 | 2697 | iip->ili_logged = 1; |
7b2e2a31 DC |
2698 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
2699 | &iip->ili_item.li_lsn); | |
1da177e4 | 2700 | |
ca30b2a7 CH |
2701 | xfs_buf_attach_iodone(bp, xfs_istale_done, |
2702 | &iip->ili_item); | |
5b257b4a DC |
2703 | |
2704 | if (ip != free_ip) | |
1da177e4 | 2705 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1da177e4 LT |
2706 | } |
2707 | ||
5b3eed75 | 2708 | xfs_trans_stale_inode_buf(tp, bp); |
1da177e4 LT |
2709 | xfs_trans_binval(tp, bp); |
2710 | } | |
2711 | ||
5017e97d | 2712 | xfs_perag_put(pag); |
2a30f36d | 2713 | return 0; |
1da177e4 LT |
2714 | } |
2715 | ||
98c4f78d DW |
2716 | /* |
2717 | * Free any local-format buffers sitting around before we reset to | |
2718 | * extents format. | |
2719 | */ | |
2720 | static inline void | |
2721 | xfs_ifree_local_data( | |
2722 | struct xfs_inode *ip, | |
2723 | int whichfork) | |
2724 | { | |
2725 | struct xfs_ifork *ifp; | |
2726 | ||
2727 | if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) | |
2728 | return; | |
2729 | ||
2730 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2731 | xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); | |
2732 | } | |
2733 | ||
1da177e4 LT |
2734 | /* |
2735 | * This is called to return an inode to the inode free list. | |
2736 | * The inode should already be truncated to 0 length and have | |
2737 | * no pages associated with it. This routine also assumes that | |
2738 | * the inode is already a part of the transaction. | |
2739 | * | |
2740 | * The on-disk copy of the inode will have been added to the list | |
2741 | * of unlinked inodes in the AGI. We need to remove the inode from | |
2742 | * that list atomically with respect to freeing it here. | |
2743 | */ | |
2744 | int | |
2745 | xfs_ifree( | |
0e0417f3 BF |
2746 | struct xfs_trans *tp, |
2747 | struct xfs_inode *ip) | |
1da177e4 LT |
2748 | { |
2749 | int error; | |
09b56604 | 2750 | struct xfs_icluster xic = { 0 }; |
1da177e4 | 2751 | |
579aa9ca | 2752 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
54d7b5c1 | 2753 | ASSERT(VFS_I(ip)->i_nlink == 0); |
1da177e4 LT |
2754 | ASSERT(ip->i_d.di_nextents == 0); |
2755 | ASSERT(ip->i_d.di_anextents == 0); | |
c19b3b05 | 2756 | ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); |
1da177e4 LT |
2757 | ASSERT(ip->i_d.di_nblocks == 0); |
2758 | ||
2759 | /* | |
2760 | * Pull the on-disk inode from the AGI unlinked list. | |
2761 | */ | |
2762 | error = xfs_iunlink_remove(tp, ip); | |
1baaed8f | 2763 | if (error) |
1da177e4 | 2764 | return error; |
1da177e4 | 2765 | |
0e0417f3 | 2766 | error = xfs_difree(tp, ip->i_ino, &xic); |
1baaed8f | 2767 | if (error) |
1da177e4 | 2768 | return error; |
1baaed8f | 2769 | |
98c4f78d DW |
2770 | xfs_ifree_local_data(ip, XFS_DATA_FORK); |
2771 | xfs_ifree_local_data(ip, XFS_ATTR_FORK); | |
2772 | ||
c19b3b05 | 2773 | VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ |
1da177e4 | 2774 | ip->i_d.di_flags = 0; |
beaae8cd | 2775 | ip->i_d.di_flags2 = 0; |
1da177e4 LT |
2776 | ip->i_d.di_dmevmask = 0; |
2777 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ | |
1da177e4 LT |
2778 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
2779 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
dc1baa71 ES |
2780 | |
2781 | /* Don't attempt to replay owner changes for a deleted inode */ | |
2782 | ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); | |
2783 | ||
1da177e4 LT |
2784 | /* |
2785 | * Bump the generation count so no one will be confused | |
2786 | * by reincarnations of this inode. | |
2787 | */ | |
9e9a2674 | 2788 | VFS_I(ip)->i_generation++; |
1da177e4 LT |
2789 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
2790 | ||
09b56604 BF |
2791 | if (xic.deleted) |
2792 | error = xfs_ifree_cluster(ip, tp, &xic); | |
1da177e4 | 2793 | |
2a30f36d | 2794 | return error; |
1da177e4 LT |
2795 | } |
2796 | ||
1da177e4 | 2797 | /* |
60ec6783 CH |
2798 | * This is called to unpin an inode. The caller must have the inode locked |
2799 | * in at least shared mode so that the buffer cannot be subsequently pinned | |
2800 | * once someone is waiting for it to be unpinned. | |
1da177e4 | 2801 | */ |
60ec6783 | 2802 | static void |
f392e631 | 2803 | xfs_iunpin( |
60ec6783 | 2804 | struct xfs_inode *ip) |
1da177e4 | 2805 | { |
579aa9ca | 2806 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
1da177e4 | 2807 | |
4aaf15d1 DC |
2808 | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
2809 | ||
a3f74ffb | 2810 | /* Give the log a push to start the unpinning I/O */ |
656de4ff | 2811 | xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); |
a14a348b | 2812 | |
a3f74ffb | 2813 | } |
1da177e4 | 2814 | |
f392e631 CH |
2815 | static void |
2816 | __xfs_iunpin_wait( | |
2817 | struct xfs_inode *ip) | |
2818 | { | |
2819 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); | |
2820 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); | |
2821 | ||
2822 | xfs_iunpin(ip); | |
2823 | ||
2824 | do { | |
21417136 | 2825 | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
f392e631 CH |
2826 | if (xfs_ipincount(ip)) |
2827 | io_schedule(); | |
2828 | } while (xfs_ipincount(ip)); | |
21417136 | 2829 | finish_wait(wq, &wait.wq_entry); |
f392e631 CH |
2830 | } |
2831 | ||
777df5af | 2832 | void |
a3f74ffb | 2833 | xfs_iunpin_wait( |
60ec6783 | 2834 | struct xfs_inode *ip) |
a3f74ffb | 2835 | { |
f392e631 CH |
2836 | if (xfs_ipincount(ip)) |
2837 | __xfs_iunpin_wait(ip); | |
1da177e4 LT |
2838 | } |
2839 | ||
27320369 DC |
2840 | /* |
2841 | * Removing an inode from the namespace involves removing the directory entry | |
2842 | * and dropping the link count on the inode. Removing the directory entry can | |
2843 | * result in locking an AGF (directory blocks were freed) and removing a link | |
2844 | * count can result in placing the inode on an unlinked list which results in | |
2845 | * locking an AGI. | |
2846 | * | |
2847 | * The big problem here is that we have an ordering constraint on AGF and AGI | |
2848 | * locking - inode allocation locks the AGI, then can allocate a new extent for | |
2849 | * new inodes, locking the AGF after the AGI. Similarly, freeing the inode | |
2850 | * removes the inode from the unlinked list, requiring that we lock the AGI | |
2851 | * first, and then freeing the inode can result in an inode chunk being freed | |
2852 | * and hence freeing disk space requiring that we lock an AGF. | |
2853 | * | |
2854 | * Hence the ordering that is imposed by other parts of the code is AGI before | |
2855 | * AGF. This means we cannot remove the directory entry before we drop the inode | |
2856 | * reference count and put it on the unlinked list as this results in a lock | |
2857 | * order of AGF then AGI, and this can deadlock against inode allocation and | |
2858 | * freeing. Therefore we must drop the link counts before we remove the | |
2859 | * directory entry. | |
2860 | * | |
2861 | * This is still safe from a transactional point of view - it is not until we | |
310a75a3 | 2862 | * get to xfs_defer_finish() that we have the possibility of multiple |
27320369 DC |
2863 | * transactions in this operation. Hence as long as we remove the directory |
2864 | * entry and drop the link count in the first transaction of the remove | |
2865 | * operation, there are no transactional constraints on the ordering here. | |
2866 | */ | |
c24b5dfa DC |
2867 | int |
2868 | xfs_remove( | |
2869 | xfs_inode_t *dp, | |
2870 | struct xfs_name *name, | |
2871 | xfs_inode_t *ip) | |
2872 | { | |
2873 | xfs_mount_t *mp = dp->i_mount; | |
2874 | xfs_trans_t *tp = NULL; | |
c19b3b05 | 2875 | int is_dir = S_ISDIR(VFS_I(ip)->i_mode); |
c24b5dfa | 2876 | int error = 0; |
c24b5dfa | 2877 | uint resblks; |
c24b5dfa DC |
2878 | |
2879 | trace_xfs_remove(dp, name); | |
2880 | ||
2881 | if (XFS_FORCED_SHUTDOWN(mp)) | |
2451337d | 2882 | return -EIO; |
c24b5dfa | 2883 | |
c14cfcca | 2884 | error = xfs_qm_dqattach(dp); |
c24b5dfa DC |
2885 | if (error) |
2886 | goto std_return; | |
2887 | ||
c14cfcca | 2888 | error = xfs_qm_dqattach(ip); |
c24b5dfa DC |
2889 | if (error) |
2890 | goto std_return; | |
2891 | ||
c24b5dfa DC |
2892 | /* |
2893 | * We try to get the real space reservation first, | |
2894 | * allowing for directory btree deletion(s) implying | |
2895 | * possible bmap insert(s). If we can't get the space | |
2896 | * reservation then we use 0 instead, and avoid the bmap | |
2897 | * btree insert(s) in the directory code by, if the bmap | |
2898 | * insert tries to happen, instead trimming the LAST | |
2899 | * block from the directory. | |
2900 | */ | |
2901 | resblks = XFS_REMOVE_SPACE_RES(mp); | |
253f4911 | 2902 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); |
2451337d | 2903 | if (error == -ENOSPC) { |
c24b5dfa | 2904 | resblks = 0; |
253f4911 CH |
2905 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, |
2906 | &tp); | |
c24b5dfa DC |
2907 | } |
2908 | if (error) { | |
2451337d | 2909 | ASSERT(error != -ENOSPC); |
253f4911 | 2910 | goto std_return; |
c24b5dfa DC |
2911 | } |
2912 | ||
7c2d238a | 2913 | xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); |
c24b5dfa | 2914 | |
65523218 | 2915 | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
c24b5dfa DC |
2916 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
2917 | ||
2918 | /* | |
2919 | * If we're removing a directory perform some additional validation. | |
2920 | */ | |
2921 | if (is_dir) { | |
54d7b5c1 DC |
2922 | ASSERT(VFS_I(ip)->i_nlink >= 2); |
2923 | if (VFS_I(ip)->i_nlink != 2) { | |
2451337d | 2924 | error = -ENOTEMPTY; |
c24b5dfa DC |
2925 | goto out_trans_cancel; |
2926 | } | |
2927 | if (!xfs_dir_isempty(ip)) { | |
2451337d | 2928 | error = -ENOTEMPTY; |
c24b5dfa DC |
2929 | goto out_trans_cancel; |
2930 | } | |
c24b5dfa | 2931 | |
27320369 | 2932 | /* Drop the link from ip's "..". */ |
c24b5dfa DC |
2933 | error = xfs_droplink(tp, dp); |
2934 | if (error) | |
27320369 | 2935 | goto out_trans_cancel; |
c24b5dfa | 2936 | |
27320369 | 2937 | /* Drop the "." link from ip to self. */ |
c24b5dfa DC |
2938 | error = xfs_droplink(tp, ip); |
2939 | if (error) | |
27320369 | 2940 | goto out_trans_cancel; |
c24b5dfa DC |
2941 | } else { |
2942 | /* | |
2943 | * When removing a non-directory we need to log the parent | |
2944 | * inode here. For a directory this is done implicitly | |
2945 | * by the xfs_droplink call for the ".." entry. | |
2946 | */ | |
2947 | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | |
2948 | } | |
27320369 | 2949 | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
c24b5dfa | 2950 | |
27320369 | 2951 | /* Drop the link from dp to ip. */ |
c24b5dfa DC |
2952 | error = xfs_droplink(tp, ip); |
2953 | if (error) | |
27320369 | 2954 | goto out_trans_cancel; |
c24b5dfa | 2955 | |
381eee69 | 2956 | error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); |
27320369 | 2957 | if (error) { |
2451337d | 2958 | ASSERT(error != -ENOENT); |
c8eac49e | 2959 | goto out_trans_cancel; |
27320369 DC |
2960 | } |
2961 | ||
c24b5dfa DC |
2962 | /* |
2963 | * If this is a synchronous mount, make sure that the | |
2964 | * remove transaction goes to disk before returning to | |
2965 | * the user. | |
2966 | */ | |
2967 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | |
2968 | xfs_trans_set_sync(tp); | |
2969 | ||
70393313 | 2970 | error = xfs_trans_commit(tp); |
c24b5dfa DC |
2971 | if (error) |
2972 | goto std_return; | |
2973 | ||
2cd2ef6a | 2974 | if (is_dir && xfs_inode_is_filestream(ip)) |
c24b5dfa DC |
2975 | xfs_filestream_deassociate(ip); |
2976 | ||
2977 | return 0; | |
2978 | ||
c24b5dfa | 2979 | out_trans_cancel: |
4906e215 | 2980 | xfs_trans_cancel(tp); |
c24b5dfa DC |
2981 | std_return: |
2982 | return error; | |
2983 | } | |
2984 | ||
f6bba201 DC |
2985 | /* |
2986 | * Enter all inodes for a rename transaction into a sorted array. | |
2987 | */ | |
95afcf5c | 2988 | #define __XFS_SORT_INODES 5 |
f6bba201 DC |
2989 | STATIC void |
2990 | xfs_sort_for_rename( | |
95afcf5c DC |
2991 | struct xfs_inode *dp1, /* in: old (source) directory inode */ |
2992 | struct xfs_inode *dp2, /* in: new (target) directory inode */ | |
2993 | struct xfs_inode *ip1, /* in: inode of old entry */ | |
2994 | struct xfs_inode *ip2, /* in: inode of new entry */ | |
2995 | struct xfs_inode *wip, /* in: whiteout inode */ | |
2996 | struct xfs_inode **i_tab,/* out: sorted array of inodes */ | |
2997 | int *num_inodes) /* in/out: inodes in array */ | |
f6bba201 | 2998 | { |
f6bba201 DC |
2999 | int i, j; |
3000 | ||
95afcf5c DC |
3001 | ASSERT(*num_inodes == __XFS_SORT_INODES); |
3002 | memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); | |
3003 | ||
f6bba201 DC |
3004 | /* |
3005 | * i_tab contains a list of pointers to inodes. We initialize | |
3006 | * the table here & we'll sort it. We will then use it to | |
3007 | * order the acquisition of the inode locks. | |
3008 | * | |
3009 | * Note that the table may contain duplicates. e.g., dp1 == dp2. | |
3010 | */ | |
95afcf5c DC |
3011 | i = 0; |
3012 | i_tab[i++] = dp1; | |
3013 | i_tab[i++] = dp2; | |
3014 | i_tab[i++] = ip1; | |
3015 | if (ip2) | |
3016 | i_tab[i++] = ip2; | |
3017 | if (wip) | |
3018 | i_tab[i++] = wip; | |
3019 | *num_inodes = i; | |
f6bba201 DC |
3020 | |
3021 | /* | |
3022 | * Sort the elements via bubble sort. (Remember, there are at | |
95afcf5c | 3023 | * most 5 elements to sort, so this is adequate.) |
f6bba201 DC |
3024 | */ |
3025 | for (i = 0; i < *num_inodes; i++) { | |
3026 | for (j = 1; j < *num_inodes; j++) { | |
3027 | if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { | |
95afcf5c | 3028 | struct xfs_inode *temp = i_tab[j]; |
f6bba201 DC |
3029 | i_tab[j] = i_tab[j-1]; |
3030 | i_tab[j-1] = temp; | |
3031 | } | |
3032 | } | |
3033 | } | |
3034 | } | |
3035 | ||
310606b0 DC |
3036 | static int |
3037 | xfs_finish_rename( | |
c9cfdb38 | 3038 | struct xfs_trans *tp) |
310606b0 | 3039 | { |
310606b0 DC |
3040 | /* |
3041 | * If this is a synchronous mount, make sure that the rename transaction | |
3042 | * goes to disk before returning to the user. | |
3043 | */ | |
3044 | if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | |
3045 | xfs_trans_set_sync(tp); | |
3046 | ||
70393313 | 3047 | return xfs_trans_commit(tp); |
310606b0 DC |
3048 | } |
3049 | ||
d31a1825 CM |
3050 | /* |
3051 | * xfs_cross_rename() | |
3052 | * | |
3053 | * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall | |
3054 | */ | |
3055 | STATIC int | |
3056 | xfs_cross_rename( | |
3057 | struct xfs_trans *tp, | |
3058 | struct xfs_inode *dp1, | |
3059 | struct xfs_name *name1, | |
3060 | struct xfs_inode *ip1, | |
3061 | struct xfs_inode *dp2, | |
3062 | struct xfs_name *name2, | |
3063 | struct xfs_inode *ip2, | |
d31a1825 CM |
3064 | int spaceres) |
3065 | { | |
3066 | int error = 0; | |
3067 | int ip1_flags = 0; | |
3068 | int ip2_flags = 0; | |
3069 | int dp2_flags = 0; | |
3070 | ||
3071 | /* Swap inode number for dirent in first parent */ | |
381eee69 | 3072 | error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); |
d31a1825 | 3073 | if (error) |
eeacd321 | 3074 | goto out_trans_abort; |
d31a1825 CM |
3075 | |
3076 | /* Swap inode number for dirent in second parent */ | |
381eee69 | 3077 | error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); |
d31a1825 | 3078 | if (error) |
eeacd321 | 3079 | goto out_trans_abort; |
d31a1825 CM |
3080 | |
3081 | /* | |
3082 | * If we're renaming one or more directories across different parents, | |
3083 | * update the respective ".." entries (and link counts) to match the new | |
3084 | * parents. | |
3085 | */ | |
3086 | if (dp1 != dp2) { | |
3087 | dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | |
3088 | ||
c19b3b05 | 3089 | if (S_ISDIR(VFS_I(ip2)->i_mode)) { |
d31a1825 | 3090 | error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, |
381eee69 | 3091 | dp1->i_ino, spaceres); |
d31a1825 | 3092 | if (error) |
eeacd321 | 3093 | goto out_trans_abort; |
d31a1825 CM |
3094 | |
3095 | /* transfer ip2 ".." reference to dp1 */ | |
c19b3b05 | 3096 | if (!S_ISDIR(VFS_I(ip1)->i_mode)) { |
d31a1825 CM |
3097 | error = xfs_droplink(tp, dp2); |
3098 | if (error) | |
eeacd321 | 3099 | goto out_trans_abort; |
d31a1825 CM |
3100 | error = xfs_bumplink(tp, dp1); |
3101 | if (error) | |
eeacd321 | 3102 | goto out_trans_abort; |
d31a1825 CM |
3103 | } |
3104 | ||
3105 | /* | |
3106 | * Although ip1 isn't changed here, userspace needs | |
3107 | * to be warned about the change, so that applications | |
3108 | * relying on it (like backup ones), will properly | |
3109 | * notify the change | |
3110 | */ | |
3111 | ip1_flags |= XFS_ICHGTIME_CHG; | |
3112 | ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | |
3113 | } | |
3114 | ||
c19b3b05 | 3115 | if (S_ISDIR(VFS_I(ip1)->i_mode)) { |
d31a1825 | 3116 | error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, |
381eee69 | 3117 | dp2->i_ino, spaceres); |
d31a1825 | 3118 | if (error) |
eeacd321 | 3119 | goto out_trans_abort; |
d31a1825 CM |
3120 | |
3121 | /* transfer ip1 ".." reference to dp2 */ | |
c19b3b05 | 3122 | if (!S_ISDIR(VFS_I(ip2)->i_mode)) { |
d31a1825 CM |
3123 | error = xfs_droplink(tp, dp1); |
3124 | if (error) | |
eeacd321 | 3125 | goto out_trans_abort; |
d31a1825 CM |
3126 | error = xfs_bumplink(tp, dp2); |
3127 | if (error) | |
eeacd321 | 3128 | goto out_trans_abort; |
d31a1825 CM |
3129 | } |
3130 | ||
3131 | /* | |
3132 | * Although ip2 isn't changed here, userspace needs | |
3133 | * to be warned about the change, so that applications | |
3134 | * relying on it (like backup ones), will properly | |
3135 | * notify the change | |
3136 | */ | |
3137 | ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | |
3138 | ip2_flags |= XFS_ICHGTIME_CHG; | |
3139 | } | |
3140 | } | |
3141 | ||
3142 | if (ip1_flags) { | |
3143 | xfs_trans_ichgtime(tp, ip1, ip1_flags); | |
3144 | xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); | |
3145 | } | |
3146 | if (ip2_flags) { | |
3147 | xfs_trans_ichgtime(tp, ip2, ip2_flags); | |
3148 | xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); | |
3149 | } | |
3150 | if (dp2_flags) { | |
3151 | xfs_trans_ichgtime(tp, dp2, dp2_flags); | |
3152 | xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); | |
3153 | } | |
3154 | xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | |
3155 | xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); | |
c9cfdb38 | 3156 | return xfs_finish_rename(tp); |
eeacd321 DC |
3157 | |
3158 | out_trans_abort: | |
4906e215 | 3159 | xfs_trans_cancel(tp); |
d31a1825 CM |
3160 | return error; |
3161 | } | |
3162 | ||
7dcf5c3e DC |
3163 | /* |
3164 | * xfs_rename_alloc_whiteout() | |
3165 | * | |
3166 | * Return a referenced, unlinked, unlocked inode that that can be used as a | |
3167 | * whiteout in a rename transaction. We use a tmpfile inode here so that if we | |
3168 | * crash between allocating the inode and linking it into the rename transaction | |
3169 | * recovery will free the inode and we won't leak it. | |
3170 | */ | |
3171 | static int | |
3172 | xfs_rename_alloc_whiteout( | |
3173 | struct xfs_inode *dp, | |
3174 | struct xfs_inode **wip) | |
3175 | { | |
3176 | struct xfs_inode *tmpfile; | |
3177 | int error; | |
3178 | ||
a1f69417 | 3179 | error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); |
7dcf5c3e DC |
3180 | if (error) |
3181 | return error; | |
3182 | ||
22419ac9 BF |
3183 | /* |
3184 | * Prepare the tmpfile inode as if it were created through the VFS. | |
c4a6bf7f DW |
3185 | * Complete the inode setup and flag it as linkable. nlink is already |
3186 | * zero, so we can skip the drop_nlink. | |
22419ac9 | 3187 | */ |
2b3d1d41 | 3188 | xfs_setup_iops(tmpfile); |
7dcf5c3e DC |
3189 | xfs_finish_inode_setup(tmpfile); |
3190 | VFS_I(tmpfile)->i_state |= I_LINKABLE; | |
3191 | ||
3192 | *wip = tmpfile; | |
3193 | return 0; | |
3194 | } | |
3195 | ||
f6bba201 DC |
3196 | /* |
3197 | * xfs_rename | |
3198 | */ | |
3199 | int | |
3200 | xfs_rename( | |
7dcf5c3e DC |
3201 | struct xfs_inode *src_dp, |
3202 | struct xfs_name *src_name, | |
3203 | struct xfs_inode *src_ip, | |
3204 | struct xfs_inode *target_dp, | |
3205 | struct xfs_name *target_name, | |
3206 | struct xfs_inode *target_ip, | |
3207 | unsigned int flags) | |
f6bba201 | 3208 | { |
7dcf5c3e DC |
3209 | struct xfs_mount *mp = src_dp->i_mount; |
3210 | struct xfs_trans *tp; | |
7dcf5c3e DC |
3211 | struct xfs_inode *wip = NULL; /* whiteout inode */ |
3212 | struct xfs_inode *inodes[__XFS_SORT_INODES]; | |
3213 | int num_inodes = __XFS_SORT_INODES; | |
2b93681f | 3214 | bool new_parent = (src_dp != target_dp); |
c19b3b05 | 3215 | bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); |
7dcf5c3e DC |
3216 | int spaceres; |
3217 | int error; | |
f6bba201 DC |
3218 | |
3219 | trace_xfs_rename(src_dp, target_dp, src_name, target_name); | |
3220 | ||
eeacd321 DC |
3221 | if ((flags & RENAME_EXCHANGE) && !target_ip) |
3222 | return -EINVAL; | |
3223 | ||
7dcf5c3e DC |
3224 | /* |
3225 | * If we are doing a whiteout operation, allocate the whiteout inode | |
3226 | * we will be placing at the target and ensure the type is set | |
3227 | * appropriately. | |
3228 | */ | |
3229 | if (flags & RENAME_WHITEOUT) { | |
3230 | ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); | |
3231 | error = xfs_rename_alloc_whiteout(target_dp, &wip); | |
3232 | if (error) | |
3233 | return error; | |
3234 | ||
3235 | /* setup target dirent info as whiteout */ | |
3236 | src_name->type = XFS_DIR3_FT_CHRDEV; | |
3237 | } | |
f6bba201 | 3238 | |
7dcf5c3e | 3239 | xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, |
f6bba201 DC |
3240 | inodes, &num_inodes); |
3241 | ||
f6bba201 | 3242 | spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); |
253f4911 | 3243 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); |
2451337d | 3244 | if (error == -ENOSPC) { |
f6bba201 | 3245 | spaceres = 0; |
253f4911 CH |
3246 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, |
3247 | &tp); | |
f6bba201 | 3248 | } |
445883e8 | 3249 | if (error) |
253f4911 | 3250 | goto out_release_wip; |
f6bba201 DC |
3251 | |
3252 | /* | |
3253 | * Attach the dquots to the inodes | |
3254 | */ | |
3255 | error = xfs_qm_vop_rename_dqattach(inodes); | |
445883e8 DC |
3256 | if (error) |
3257 | goto out_trans_cancel; | |
f6bba201 DC |
3258 | |
3259 | /* | |
3260 | * Lock all the participating inodes. Depending upon whether | |
3261 | * the target_name exists in the target directory, and | |
3262 | * whether the target directory is the same as the source | |
3263 | * directory, we can lock from 2 to 4 inodes. | |
3264 | */ | |
3265 | xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); | |
3266 | ||
3267 | /* | |
3268 | * Join all the inodes to the transaction. From this point on, | |
3269 | * we can rely on either trans_commit or trans_cancel to unlock | |
3270 | * them. | |
3271 | */ | |
65523218 | 3272 | xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); |
f6bba201 | 3273 | if (new_parent) |
65523218 | 3274 | xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); |
f6bba201 DC |
3275 | xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); |
3276 | if (target_ip) | |
3277 | xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); | |
7dcf5c3e DC |
3278 | if (wip) |
3279 | xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); | |
f6bba201 DC |
3280 | |
3281 | /* | |
3282 | * If we are using project inheritance, we only allow renames | |
3283 | * into our tree when the project IDs are the same; else the | |
3284 | * tree quota mechanism would be circumvented. | |
3285 | */ | |
3286 | if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && | |
3287 | (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { | |
2451337d | 3288 | error = -EXDEV; |
445883e8 | 3289 | goto out_trans_cancel; |
f6bba201 DC |
3290 | } |
3291 | ||
eeacd321 DC |
3292 | /* RENAME_EXCHANGE is unique from here on. */ |
3293 | if (flags & RENAME_EXCHANGE) | |
3294 | return xfs_cross_rename(tp, src_dp, src_name, src_ip, | |
3295 | target_dp, target_name, target_ip, | |
f16dea54 | 3296 | spaceres); |
d31a1825 | 3297 | |
f6bba201 DC |
3298 | /* |
3299 | * Set up the target. | |
3300 | */ | |
3301 | if (target_ip == NULL) { | |
3302 | /* | |
3303 | * If there's no space reservation, check the entry will | |
3304 | * fit before actually inserting it. | |
3305 | */ | |
94f3cad5 ES |
3306 | if (!spaceres) { |
3307 | error = xfs_dir_canenter(tp, target_dp, target_name); | |
3308 | if (error) | |
445883e8 | 3309 | goto out_trans_cancel; |
94f3cad5 | 3310 | } |
f6bba201 DC |
3311 | /* |
3312 | * If target does not exist and the rename crosses | |
3313 | * directories, adjust the target directory link count | |
3314 | * to account for the ".." reference from the new entry. | |
3315 | */ | |
3316 | error = xfs_dir_createname(tp, target_dp, target_name, | |
381eee69 | 3317 | src_ip->i_ino, spaceres); |
f6bba201 | 3318 | if (error) |
c8eac49e | 3319 | goto out_trans_cancel; |
f6bba201 DC |
3320 | |
3321 | xfs_trans_ichgtime(tp, target_dp, | |
3322 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | |
3323 | ||
3324 | if (new_parent && src_is_directory) { | |
3325 | error = xfs_bumplink(tp, target_dp); | |
3326 | if (error) | |
c8eac49e | 3327 | goto out_trans_cancel; |
f6bba201 DC |
3328 | } |
3329 | } else { /* target_ip != NULL */ | |
3330 | /* | |
3331 | * If target exists and it's a directory, check that both | |
3332 | * target and source are directories and that target can be | |
3333 | * destroyed, or that neither is a directory. | |
3334 | */ | |
c19b3b05 | 3335 | if (S_ISDIR(VFS_I(target_ip)->i_mode)) { |
f6bba201 DC |
3336 | /* |
3337 | * Make sure target dir is empty. | |
3338 | */ | |
3339 | if (!(xfs_dir_isempty(target_ip)) || | |
54d7b5c1 | 3340 | (VFS_I(target_ip)->i_nlink > 2)) { |
2451337d | 3341 | error = -EEXIST; |
445883e8 | 3342 | goto out_trans_cancel; |
f6bba201 DC |
3343 | } |
3344 | } | |
3345 | ||
3346 | /* | |
3347 | * Link the source inode under the target name. | |
3348 | * If the source inode is a directory and we are moving | |
3349 | * it across directories, its ".." entry will be | |
3350 | * inconsistent until we replace that down below. | |
3351 | * | |
3352 | * In case there is already an entry with the same | |
3353 | * name at the destination directory, remove it first. | |
3354 | */ | |
3355 | error = xfs_dir_replace(tp, target_dp, target_name, | |
381eee69 | 3356 | src_ip->i_ino, spaceres); |
f6bba201 | 3357 | if (error) |
c8eac49e | 3358 | goto out_trans_cancel; |
f6bba201 DC |
3359 | |
3360 | xfs_trans_ichgtime(tp, target_dp, | |
3361 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | |
3362 | ||
3363 | /* | |
3364 | * Decrement the link count on the target since the target | |
3365 | * dir no longer points to it. | |
3366 | */ | |
3367 | error = xfs_droplink(tp, target_ip); | |
3368 | if (error) | |
c8eac49e | 3369 | goto out_trans_cancel; |
f6bba201 DC |
3370 | |
3371 | if (src_is_directory) { | |
3372 | /* | |
3373 | * Drop the link from the old "." entry. | |
3374 | */ | |
3375 | error = xfs_droplink(tp, target_ip); | |
3376 | if (error) | |
c8eac49e | 3377 | goto out_trans_cancel; |
f6bba201 DC |
3378 | } |
3379 | } /* target_ip != NULL */ | |
3380 | ||
3381 | /* | |
3382 | * Remove the source. | |
3383 | */ | |
3384 | if (new_parent && src_is_directory) { | |
3385 | /* | |
3386 | * Rewrite the ".." entry to point to the new | |
3387 | * directory. | |
3388 | */ | |
3389 | error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, | |
381eee69 | 3390 | target_dp->i_ino, spaceres); |
2451337d | 3391 | ASSERT(error != -EEXIST); |
f6bba201 | 3392 | if (error) |
c8eac49e | 3393 | goto out_trans_cancel; |
f6bba201 DC |
3394 | } |
3395 | ||
3396 | /* | |
3397 | * We always want to hit the ctime on the source inode. | |
3398 | * | |
3399 | * This isn't strictly required by the standards since the source | |
3400 | * inode isn't really being changed, but old unix file systems did | |
3401 | * it and some incremental backup programs won't work without it. | |
3402 | */ | |
3403 | xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); | |
3404 | xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); | |
3405 | ||
3406 | /* | |
3407 | * Adjust the link count on src_dp. This is necessary when | |
3408 | * renaming a directory, either within one parent when | |
3409 | * the target existed, or across two parent directories. | |
3410 | */ | |
3411 | if (src_is_directory && (new_parent || target_ip != NULL)) { | |
3412 | ||
3413 | /* | |
3414 | * Decrement link count on src_directory since the | |
3415 | * entry that's moved no longer points to it. | |
3416 | */ | |
3417 | error = xfs_droplink(tp, src_dp); | |
3418 | if (error) | |
c8eac49e | 3419 | goto out_trans_cancel; |
f6bba201 DC |
3420 | } |
3421 | ||
7dcf5c3e DC |
3422 | /* |
3423 | * For whiteouts, we only need to update the source dirent with the | |
3424 | * inode number of the whiteout inode rather than removing it | |
3425 | * altogether. | |
3426 | */ | |
3427 | if (wip) { | |
3428 | error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, | |
381eee69 | 3429 | spaceres); |
7dcf5c3e DC |
3430 | } else |
3431 | error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, | |
381eee69 | 3432 | spaceres); |
f6bba201 | 3433 | if (error) |
c8eac49e | 3434 | goto out_trans_cancel; |
f6bba201 DC |
3435 | |
3436 | /* | |
7dcf5c3e DC |
3437 | * For whiteouts, we need to bump the link count on the whiteout inode. |
3438 | * This means that failures all the way up to this point leave the inode | |
3439 | * on the unlinked list and so cleanup is a simple matter of dropping | |
3440 | * the remaining reference to it. If we fail here after bumping the link | |
3441 | * count, we're shutting down the filesystem so we'll never see the | |
3442 | * intermediate state on disk. | |
f6bba201 | 3443 | */ |
7dcf5c3e | 3444 | if (wip) { |
54d7b5c1 | 3445 | ASSERT(VFS_I(wip)->i_nlink == 0); |
7dcf5c3e DC |
3446 | error = xfs_bumplink(tp, wip); |
3447 | if (error) | |
c8eac49e | 3448 | goto out_trans_cancel; |
7dcf5c3e DC |
3449 | error = xfs_iunlink_remove(tp, wip); |
3450 | if (error) | |
c8eac49e | 3451 | goto out_trans_cancel; |
7dcf5c3e | 3452 | xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); |
f6bba201 | 3453 | |
7dcf5c3e DC |
3454 | /* |
3455 | * Now we have a real link, clear the "I'm a tmpfile" state | |
3456 | * flag from the inode so it doesn't accidentally get misused in | |
3457 | * future. | |
3458 | */ | |
3459 | VFS_I(wip)->i_state &= ~I_LINKABLE; | |
f6bba201 DC |
3460 | } |
3461 | ||
f6bba201 DC |
3462 | xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
3463 | xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); | |
3464 | if (new_parent) | |
3465 | xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); | |
f6bba201 | 3466 | |
c9cfdb38 | 3467 | error = xfs_finish_rename(tp); |
7dcf5c3e | 3468 | if (wip) |
44a8736b | 3469 | xfs_irele(wip); |
7dcf5c3e | 3470 | return error; |
f6bba201 | 3471 | |
445883e8 | 3472 | out_trans_cancel: |
4906e215 | 3473 | xfs_trans_cancel(tp); |
253f4911 | 3474 | out_release_wip: |
7dcf5c3e | 3475 | if (wip) |
44a8736b | 3476 | xfs_irele(wip); |
f6bba201 DC |
3477 | return error; |
3478 | } | |
3479 | ||
5c4d97d0 DC |
3480 | STATIC int |
3481 | xfs_iflush_cluster( | |
19429363 DC |
3482 | struct xfs_inode *ip, |
3483 | struct xfs_buf *bp) | |
1da177e4 | 3484 | { |
19429363 | 3485 | struct xfs_mount *mp = ip->i_mount; |
5c4d97d0 DC |
3486 | struct xfs_perag *pag; |
3487 | unsigned long first_index, mask; | |
3488 | unsigned long inodes_per_cluster; | |
19429363 DC |
3489 | int cilist_size; |
3490 | struct xfs_inode **cilist; | |
3491 | struct xfs_inode *cip; | |
5c4d97d0 DC |
3492 | int nr_found; |
3493 | int clcount = 0; | |
1da177e4 | 3494 | int i; |
1da177e4 | 3495 | |
5c4d97d0 | 3496 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
1da177e4 | 3497 | |
0f49efd8 | 3498 | inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; |
19429363 DC |
3499 | cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); |
3500 | cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); | |
3501 | if (!cilist) | |
5c4d97d0 | 3502 | goto out_put; |
1da177e4 | 3503 | |
0f49efd8 | 3504 | mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); |
5c4d97d0 DC |
3505 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; |
3506 | rcu_read_lock(); | |
3507 | /* really need a gang lookup range call here */ | |
19429363 | 3508 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, |
5c4d97d0 DC |
3509 | first_index, inodes_per_cluster); |
3510 | if (nr_found == 0) | |
3511 | goto out_free; | |
3512 | ||
3513 | for (i = 0; i < nr_found; i++) { | |
19429363 DC |
3514 | cip = cilist[i]; |
3515 | if (cip == ip) | |
bad55843 | 3516 | continue; |
1a3e8f3d DC |
3517 | |
3518 | /* | |
3519 | * because this is an RCU protected lookup, we could find a | |
3520 | * recently freed or even reallocated inode during the lookup. | |
3521 | * We need to check under the i_flags_lock for a valid inode | |
3522 | * here. Skip it if it is not valid or the wrong inode. | |
3523 | */ | |
19429363 DC |
3524 | spin_lock(&cip->i_flags_lock); |
3525 | if (!cip->i_ino || | |
3526 | __xfs_iflags_test(cip, XFS_ISTALE)) { | |
3527 | spin_unlock(&cip->i_flags_lock); | |
1a3e8f3d DC |
3528 | continue; |
3529 | } | |
5a90e53e DC |
3530 | |
3531 | /* | |
3532 | * Once we fall off the end of the cluster, no point checking | |
3533 | * any more inodes in the list because they will also all be | |
3534 | * outside the cluster. | |
3535 | */ | |
19429363 DC |
3536 | if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { |
3537 | spin_unlock(&cip->i_flags_lock); | |
5a90e53e DC |
3538 | break; |
3539 | } | |
19429363 | 3540 | spin_unlock(&cip->i_flags_lock); |
1a3e8f3d | 3541 | |
bad55843 DC |
3542 | /* |
3543 | * Do an un-protected check to see if the inode is dirty and | |
3544 | * is a candidate for flushing. These checks will be repeated | |
3545 | * later after the appropriate locks are acquired. | |
3546 | */ | |
19429363 | 3547 | if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) |
bad55843 | 3548 | continue; |
bad55843 DC |
3549 | |
3550 | /* | |
3551 | * Try to get locks. If any are unavailable or it is pinned, | |
3552 | * then this inode cannot be flushed and is skipped. | |
3553 | */ | |
3554 | ||
19429363 | 3555 | if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) |
bad55843 | 3556 | continue; |
19429363 DC |
3557 | if (!xfs_iflock_nowait(cip)) { |
3558 | xfs_iunlock(cip, XFS_ILOCK_SHARED); | |
bad55843 DC |
3559 | continue; |
3560 | } | |
19429363 DC |
3561 | if (xfs_ipincount(cip)) { |
3562 | xfs_ifunlock(cip); | |
3563 | xfs_iunlock(cip, XFS_ILOCK_SHARED); | |
bad55843 DC |
3564 | continue; |
3565 | } | |
3566 | ||
8a17d7dd DC |
3567 | |
3568 | /* | |
3569 | * Check the inode number again, just to be certain we are not | |
3570 | * racing with freeing in xfs_reclaim_inode(). See the comments | |
3571 | * in that function for more information as to why the initial | |
3572 | * check is not sufficient. | |
3573 | */ | |
19429363 DC |
3574 | if (!cip->i_ino) { |
3575 | xfs_ifunlock(cip); | |
3576 | xfs_iunlock(cip, XFS_ILOCK_SHARED); | |
bad55843 DC |
3577 | continue; |
3578 | } | |
3579 | ||
3580 | /* | |
3581 | * arriving here means that this inode can be flushed. First | |
3582 | * re-check that it's dirty before flushing. | |
3583 | */ | |
19429363 | 3584 | if (!xfs_inode_clean(cip)) { |
33540408 | 3585 | int error; |
19429363 | 3586 | error = xfs_iflush_int(cip, bp); |
bad55843 | 3587 | if (error) { |
19429363 | 3588 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
bad55843 DC |
3589 | goto cluster_corrupt_out; |
3590 | } | |
3591 | clcount++; | |
3592 | } else { | |
19429363 | 3593 | xfs_ifunlock(cip); |
bad55843 | 3594 | } |
19429363 | 3595 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
bad55843 DC |
3596 | } |
3597 | ||
3598 | if (clcount) { | |
ff6d6af2 BD |
3599 | XFS_STATS_INC(mp, xs_icluster_flushcnt); |
3600 | XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); | |
bad55843 DC |
3601 | } |
3602 | ||
3603 | out_free: | |
1a3e8f3d | 3604 | rcu_read_unlock(); |
19429363 | 3605 | kmem_free(cilist); |
44b56e0a DC |
3606 | out_put: |
3607 | xfs_perag_put(pag); | |
bad55843 DC |
3608 | return 0; |
3609 | ||
3610 | ||
3611 | cluster_corrupt_out: | |
3612 | /* | |
3613 | * Corruption detected in the clustering loop. Invalidate the | |
3614 | * inode buffer and shut down the filesystem. | |
3615 | */ | |
1a3e8f3d | 3616 | rcu_read_unlock(); |
bad55843 DC |
3617 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
3618 | ||
bad55843 | 3619 | /* |
e53946db DC |
3620 | * We'll always have an inode attached to the buffer for completion |
3621 | * process by the time we are called from xfs_iflush(). Hence we have | |
3622 | * always need to do IO completion processing to abort the inodes | |
3623 | * attached to the buffer. handle them just like the shutdown case in | |
3624 | * xfs_buf_submit(). | |
bad55843 | 3625 | */ |
e53946db DC |
3626 | ASSERT(bp->b_iodone); |
3627 | bp->b_flags &= ~XBF_DONE; | |
3628 | xfs_buf_stale(bp); | |
3629 | xfs_buf_ioerror(bp, -EIO); | |
3630 | xfs_buf_ioend(bp); | |
3631 | ||
3632 | /* abort the corrupt inode, as it was not attached to the buffer */ | |
19429363 DC |
3633 | xfs_iflush_abort(cip, false); |
3634 | kmem_free(cilist); | |
44b56e0a | 3635 | xfs_perag_put(pag); |
2451337d | 3636 | return -EFSCORRUPTED; |
bad55843 DC |
3637 | } |
3638 | ||
1da177e4 | 3639 | /* |
4c46819a CH |
3640 | * Flush dirty inode metadata into the backing buffer. |
3641 | * | |
3642 | * The caller must have the inode lock and the inode flush lock held. The | |
3643 | * inode lock will still be held upon return to the caller, and the inode | |
3644 | * flush lock will be released after the inode has reached the disk. | |
3645 | * | |
3646 | * The caller must write out the buffer returned in *bpp and release it. | |
1da177e4 LT |
3647 | */ |
3648 | int | |
3649 | xfs_iflush( | |
4c46819a CH |
3650 | struct xfs_inode *ip, |
3651 | struct xfs_buf **bpp) | |
1da177e4 | 3652 | { |
4c46819a | 3653 | struct xfs_mount *mp = ip->i_mount; |
b1438f47 | 3654 | struct xfs_buf *bp = NULL; |
4c46819a | 3655 | struct xfs_dinode *dip; |
1da177e4 | 3656 | int error; |
1da177e4 | 3657 | |
ff6d6af2 | 3658 | XFS_STATS_INC(mp, xs_iflush_count); |
1da177e4 | 3659 | |
579aa9ca | 3660 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
474fce06 | 3661 | ASSERT(xfs_isiflocked(ip)); |
1da177e4 | 3662 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
8096b1eb | 3663 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
1da177e4 | 3664 | |
4c46819a | 3665 | *bpp = NULL; |
1da177e4 | 3666 | |
1da177e4 LT |
3667 | xfs_iunpin_wait(ip); |
3668 | ||
4b6a4688 DC |
3669 | /* |
3670 | * For stale inodes we cannot rely on the backing buffer remaining | |
3671 | * stale in cache for the remaining life of the stale inode and so | |
475ee413 | 3672 | * xfs_imap_to_bp() below may give us a buffer that no longer contains |
4b6a4688 DC |
3673 | * inodes below. We have to check this after ensuring the inode is |
3674 | * unpinned so that it is safe to reclaim the stale inode after the | |
3675 | * flush call. | |
3676 | */ | |
3677 | if (xfs_iflags_test(ip, XFS_ISTALE)) { | |
3678 | xfs_ifunlock(ip); | |
3679 | return 0; | |
3680 | } | |
3681 | ||
1da177e4 LT |
3682 | /* |
3683 | * This may have been unpinned because the filesystem is shutting | |
3684 | * down forcibly. If that's the case we must not write this inode | |
32ce90a4 CH |
3685 | * to disk, because the log record didn't make it to disk. |
3686 | * | |
3687 | * We also have to remove the log item from the AIL in this case, | |
3688 | * as we wait for an empty AIL as part of the unmount process. | |
1da177e4 LT |
3689 | */ |
3690 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
2451337d | 3691 | error = -EIO; |
32ce90a4 | 3692 | goto abort_out; |
1da177e4 LT |
3693 | } |
3694 | ||
a3f74ffb | 3695 | /* |
b1438f47 DC |
3696 | * Get the buffer containing the on-disk inode. We are doing a try-lock |
3697 | * operation here, so we may get an EAGAIN error. In that case, we | |
3698 | * simply want to return with the inode still dirty. | |
3699 | * | |
3700 | * If we get any other error, we effectively have a corruption situation | |
3701 | * and we cannot flush the inode, so we treat it the same as failing | |
3702 | * xfs_iflush_int(). | |
a3f74ffb | 3703 | */ |
475ee413 CH |
3704 | error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, |
3705 | 0); | |
b1438f47 | 3706 | if (error == -EAGAIN) { |
a3f74ffb DC |
3707 | xfs_ifunlock(ip); |
3708 | return error; | |
3709 | } | |
b1438f47 DC |
3710 | if (error) |
3711 | goto corrupt_out; | |
a3f74ffb | 3712 | |
1da177e4 LT |
3713 | /* |
3714 | * First flush out the inode that xfs_iflush was called with. | |
3715 | */ | |
3716 | error = xfs_iflush_int(ip, bp); | |
bad55843 | 3717 | if (error) |
1da177e4 | 3718 | goto corrupt_out; |
1da177e4 | 3719 | |
a3f74ffb DC |
3720 | /* |
3721 | * If the buffer is pinned then push on the log now so we won't | |
3722 | * get stuck waiting in the write for too long. | |
3723 | */ | |
811e64c7 | 3724 | if (xfs_buf_ispinned(bp)) |
a14a348b | 3725 | xfs_log_force(mp, 0); |
a3f74ffb | 3726 | |
1da177e4 | 3727 | /* |
e53946db DC |
3728 | * inode clustering: try to gather other inodes into this write |
3729 | * | |
3730 | * Note: Any error during clustering will result in the filesystem | |
3731 | * being shut down and completion callbacks run on the cluster buffer. | |
3732 | * As we have already flushed and attached this inode to the buffer, | |
3733 | * it has already been aborted and released by xfs_iflush_cluster() and | |
3734 | * so we have no further error handling to do here. | |
1da177e4 | 3735 | */ |
bad55843 DC |
3736 | error = xfs_iflush_cluster(ip, bp); |
3737 | if (error) | |
e53946db | 3738 | return error; |
1da177e4 | 3739 | |
4c46819a CH |
3740 | *bpp = bp; |
3741 | return 0; | |
1da177e4 LT |
3742 | |
3743 | corrupt_out: | |
b1438f47 DC |
3744 | if (bp) |
3745 | xfs_buf_relse(bp); | |
7d04a335 | 3746 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
32ce90a4 | 3747 | abort_out: |
e53946db | 3748 | /* abort the corrupt inode, as it was not attached to the buffer */ |
04913fdd | 3749 | xfs_iflush_abort(ip, false); |
32ce90a4 | 3750 | return error; |
1da177e4 LT |
3751 | } |
3752 | ||
9cfb9b47 DW |
3753 | /* |
3754 | * If there are inline format data / attr forks attached to this inode, | |
3755 | * make sure they're not corrupt. | |
3756 | */ | |
3757 | bool | |
3758 | xfs_inode_verify_forks( | |
3759 | struct xfs_inode *ip) | |
3760 | { | |
22431bf3 | 3761 | struct xfs_ifork *ifp; |
9cfb9b47 DW |
3762 | xfs_failaddr_t fa; |
3763 | ||
3764 | fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); | |
3765 | if (fa) { | |
22431bf3 DW |
3766 | ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
3767 | xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", | |
3768 | ifp->if_u1.if_data, ifp->if_bytes, fa); | |
9cfb9b47 DW |
3769 | return false; |
3770 | } | |
3771 | ||
3772 | fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); | |
3773 | if (fa) { | |
22431bf3 DW |
3774 | ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); |
3775 | xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", | |
3776 | ifp ? ifp->if_u1.if_data : NULL, | |
3777 | ifp ? ifp->if_bytes : 0, fa); | |
9cfb9b47 DW |
3778 | return false; |
3779 | } | |
3780 | return true; | |
3781 | } | |
3782 | ||
1da177e4 LT |
3783 | STATIC int |
3784 | xfs_iflush_int( | |
93848a99 CH |
3785 | struct xfs_inode *ip, |
3786 | struct xfs_buf *bp) | |
1da177e4 | 3787 | { |
93848a99 CH |
3788 | struct xfs_inode_log_item *iip = ip->i_itemp; |
3789 | struct xfs_dinode *dip; | |
3790 | struct xfs_mount *mp = ip->i_mount; | |
1da177e4 | 3791 | |
579aa9ca | 3792 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
474fce06 | 3793 | ASSERT(xfs_isiflocked(ip)); |
1da177e4 | 3794 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
8096b1eb | 3795 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
93848a99 | 3796 | ASSERT(iip != NULL && iip->ili_fields != 0); |
263997a6 | 3797 | ASSERT(ip->i_d.di_version > 1); |
1da177e4 | 3798 | |
1da177e4 | 3799 | /* set *dip = inode's place in the buffer */ |
88ee2df7 | 3800 | dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); |
1da177e4 | 3801 | |
69ef921b | 3802 | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
9e24cfd0 | 3803 | mp, XFS_ERRTAG_IFLUSH_1)) { |
6a19d939 | 3804 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
c9690043 | 3805 | "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, |
6a19d939 | 3806 | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
1da177e4 LT |
3807 | goto corrupt_out; |
3808 | } | |
c19b3b05 | 3809 | if (S_ISREG(VFS_I(ip)->i_mode)) { |
1da177e4 LT |
3810 | if (XFS_TEST_ERROR( |
3811 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
3812 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | |
9e24cfd0 | 3813 | mp, XFS_ERRTAG_IFLUSH_3)) { |
6a19d939 | 3814 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
c9690043 | 3815 | "%s: Bad regular inode %Lu, ptr "PTR_FMT, |
6a19d939 | 3816 | __func__, ip->i_ino, ip); |
1da177e4 LT |
3817 | goto corrupt_out; |
3818 | } | |
c19b3b05 | 3819 | } else if (S_ISDIR(VFS_I(ip)->i_mode)) { |
1da177e4 LT |
3820 | if (XFS_TEST_ERROR( |
3821 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
3822 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | |
3823 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | |
9e24cfd0 | 3824 | mp, XFS_ERRTAG_IFLUSH_4)) { |
6a19d939 | 3825 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
c9690043 | 3826 | "%s: Bad directory inode %Lu, ptr "PTR_FMT, |
6a19d939 | 3827 | __func__, ip->i_ino, ip); |
1da177e4 LT |
3828 | goto corrupt_out; |
3829 | } | |
3830 | } | |
3831 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | |
9e24cfd0 | 3832 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { |
6a19d939 DC |
3833 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
3834 | "%s: detected corrupt incore inode %Lu, " | |
c9690043 | 3835 | "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, |
6a19d939 | 3836 | __func__, ip->i_ino, |
1da177e4 | 3837 | ip->i_d.di_nextents + ip->i_d.di_anextents, |
6a19d939 | 3838 | ip->i_d.di_nblocks, ip); |
1da177e4 LT |
3839 | goto corrupt_out; |
3840 | } | |
3841 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | |
9e24cfd0 | 3842 | mp, XFS_ERRTAG_IFLUSH_6)) { |
6a19d939 | 3843 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
c9690043 | 3844 | "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, |
6a19d939 | 3845 | __func__, ip->i_ino, ip->i_d.di_forkoff, ip); |
1da177e4 LT |
3846 | goto corrupt_out; |
3847 | } | |
e60896d8 | 3848 | |
1da177e4 | 3849 | /* |
263997a6 | 3850 | * Inode item log recovery for v2 inodes are dependent on the |
e60896d8 DC |
3851 | * di_flushiter count for correct sequencing. We bump the flush |
3852 | * iteration count so we can detect flushes which postdate a log record | |
3853 | * during recovery. This is redundant as we now log every change and | |
3854 | * hence this can't happen but we need to still do it to ensure | |
3855 | * backwards compatibility with old kernels that predate logging all | |
3856 | * inode changes. | |
1da177e4 | 3857 | */ |
e60896d8 DC |
3858 | if (ip->i_d.di_version < 3) |
3859 | ip->i_d.di_flushiter++; | |
1da177e4 | 3860 | |
9cfb9b47 DW |
3861 | /* Check the inline fork data before we write out. */ |
3862 | if (!xfs_inode_verify_forks(ip)) | |
005c5db8 DW |
3863 | goto corrupt_out; |
3864 | ||
1da177e4 | 3865 | /* |
3987848c DC |
3866 | * Copy the dirty parts of the inode into the on-disk inode. We always |
3867 | * copy out the core of the inode, because if the inode is dirty at all | |
3868 | * the core must be. | |
1da177e4 | 3869 | */ |
93f958f9 | 3870 | xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); |
1da177e4 LT |
3871 | |
3872 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | |
3873 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | |
3874 | ip->i_d.di_flushiter = 0; | |
3875 | ||
005c5db8 DW |
3876 | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); |
3877 | if (XFS_IFORK_Q(ip)) | |
3878 | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); | |
1da177e4 LT |
3879 | xfs_inobp_check(mp, bp); |
3880 | ||
3881 | /* | |
f5d8d5c4 CH |
3882 | * We've recorded everything logged in the inode, so we'd like to clear |
3883 | * the ili_fields bits so we don't log and flush things unnecessarily. | |
3884 | * However, we can't stop logging all this information until the data | |
3885 | * we've copied into the disk buffer is written to disk. If we did we | |
3886 | * might overwrite the copy of the inode in the log with all the data | |
3887 | * after re-logging only part of it, and in the face of a crash we | |
3888 | * wouldn't have all the data we need to recover. | |
1da177e4 | 3889 | * |
f5d8d5c4 CH |
3890 | * What we do is move the bits to the ili_last_fields field. When |
3891 | * logging the inode, these bits are moved back to the ili_fields field. | |
3892 | * In the xfs_iflush_done() routine we clear ili_last_fields, since we | |
3893 | * know that the information those bits represent is permanently on | |
3894 | * disk. As long as the flush completes before the inode is logged | |
3895 | * again, then both ili_fields and ili_last_fields will be cleared. | |
1da177e4 | 3896 | * |
f5d8d5c4 CH |
3897 | * We can play with the ili_fields bits here, because the inode lock |
3898 | * must be held exclusively in order to set bits there and the flush | |
3899 | * lock protects the ili_last_fields bits. Set ili_logged so the flush | |
3900 | * done routine can tell whether or not to look in the AIL. Also, store | |
3901 | * the current LSN of the inode so that we can tell whether the item has | |
3902 | * moved in the AIL from xfs_iflush_done(). In order to read the lsn we | |
3903 | * need the AIL lock, because it is a 64 bit value that cannot be read | |
3904 | * atomically. | |
1da177e4 | 3905 | */ |
93848a99 CH |
3906 | iip->ili_last_fields = iip->ili_fields; |
3907 | iip->ili_fields = 0; | |
fc0561ce | 3908 | iip->ili_fsync_fields = 0; |
93848a99 | 3909 | iip->ili_logged = 1; |
1da177e4 | 3910 | |
93848a99 CH |
3911 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
3912 | &iip->ili_item.li_lsn); | |
1da177e4 | 3913 | |
93848a99 CH |
3914 | /* |
3915 | * Attach the function xfs_iflush_done to the inode's | |
3916 | * buffer. This will remove the inode from the AIL | |
3917 | * and unlock the inode's flush lock when the inode is | |
3918 | * completely written to disk. | |
3919 | */ | |
3920 | xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); | |
1da177e4 | 3921 | |
93848a99 CH |
3922 | /* generate the checksum. */ |
3923 | xfs_dinode_calc_crc(mp, dip); | |
1da177e4 | 3924 | |
643c8c05 | 3925 | ASSERT(!list_empty(&bp->b_li_list)); |
93848a99 | 3926 | ASSERT(bp->b_iodone != NULL); |
1da177e4 LT |
3927 | return 0; |
3928 | ||
3929 | corrupt_out: | |
2451337d | 3930 | return -EFSCORRUPTED; |
1da177e4 | 3931 | } |
44a8736b DW |
3932 | |
3933 | /* Release an inode. */ | |
3934 | void | |
3935 | xfs_irele( | |
3936 | struct xfs_inode *ip) | |
3937 | { | |
3938 | trace_xfs_irele(ip, _RET_IP_); | |
3939 | iput(VFS_I(ip)); | |
3940 | } |