]>
Commit | Line | Data |
---|---|---|
a7834745 TG |
1 | #ifndef __NET_SCHED_RED_H |
2 | #define __NET_SCHED_RED_H | |
3 | ||
4 | #include <linux/config.h> | |
5 | #include <linux/types.h> | |
6 | #include <net/pkt_sched.h> | |
7 | #include <net/inet_ecn.h> | |
8 | #include <net/dsfield.h> | |
9 | ||
10 | /* Random Early Detection (RED) algorithm. | |
11 | ======================================= | |
12 | ||
13 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | |
14 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | |
15 | ||
16 | This file codes a "divisionless" version of RED algorithm | |
17 | as written down in Fig.17 of the paper. | |
18 | ||
19 | Short description. | |
20 | ------------------ | |
21 | ||
22 | When a new packet arrives we calculate the average queue length: | |
23 | ||
24 | avg = (1-W)*avg + W*current_queue_len, | |
25 | ||
26 | W is the filter time constant (chosen as 2^(-Wlog)), it controls | |
27 | the inertia of the algorithm. To allow larger bursts, W should be | |
28 | decreased. | |
29 | ||
30 | if (avg > th_max) -> packet marked (dropped). | |
31 | if (avg < th_min) -> packet passes. | |
32 | if (th_min < avg < th_max) we calculate probability: | |
33 | ||
34 | Pb = max_P * (avg - th_min)/(th_max-th_min) | |
35 | ||
36 | and mark (drop) packet with this probability. | |
37 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | |
38 | max_P should be small (not 1), usually 0.01..0.02 is good value. | |
39 | ||
40 | max_P is chosen as a number, so that max_P/(th_max-th_min) | |
41 | is a negative power of two in order arithmetics to contain | |
42 | only shifts. | |
43 | ||
44 | ||
45 | Parameters, settable by user: | |
46 | ----------------------------- | |
47 | ||
48 | qth_min - bytes (should be < qth_max/2) | |
49 | qth_max - bytes (should be at least 2*qth_min and less limit) | |
50 | Wlog - bits (<32) log(1/W). | |
51 | Plog - bits (<32) | |
52 | ||
53 | Plog is related to max_P by formula: | |
54 | ||
55 | max_P = (qth_max-qth_min)/2^Plog; | |
56 | ||
57 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | |
58 | corresponds to max_P=0.02 | |
59 | ||
60 | Scell_log | |
61 | Stab | |
62 | ||
63 | Lookup table for log((1-W)^(t/t_ave). | |
64 | ||
65 | ||
66 | NOTES: | |
67 | ||
68 | Upper bound on W. | |
69 | ----------------- | |
70 | ||
71 | If you want to allow bursts of L packets of size S, | |
72 | you should choose W: | |
73 | ||
74 | L + 1 - th_min/S < (1-(1-W)^L)/W | |
75 | ||
76 | th_min/S = 32 th_min/S = 4 | |
77 | ||
78 | log(W) L | |
79 | -1 33 | |
80 | -2 35 | |
81 | -3 39 | |
82 | -4 46 | |
83 | -5 57 | |
84 | -6 75 | |
85 | -7 101 | |
86 | -8 135 | |
87 | -9 190 | |
88 | etc. | |
89 | */ | |
90 | ||
91 | #define RED_STAB_SIZE 256 | |
92 | #define RED_STAB_MASK (RED_STAB_SIZE - 1) | |
93 | ||
94 | struct red_stats | |
95 | { | |
96 | u32 prob_drop; /* Early probability drops */ | |
97 | u32 prob_mark; /* Early probability marks */ | |
98 | u32 forced_drop; /* Forced drops, qavg > max_thresh */ | |
99 | u32 forced_mark; /* Forced marks, qavg > max_thresh */ | |
100 | u32 pdrop; /* Drops due to queue limits */ | |
101 | u32 other; /* Drops due to drop() calls */ | |
102 | u32 backlog; | |
103 | }; | |
104 | ||
105 | struct red_parms | |
106 | { | |
107 | /* Parameters */ | |
108 | u32 qth_min; /* Min avg length threshold: A scaled */ | |
109 | u32 qth_max; /* Max avg length threshold: A scaled */ | |
110 | u32 Scell_max; | |
111 | u32 Rmask; /* Cached random mask, see red_rmask */ | |
112 | u8 Scell_log; | |
113 | u8 Wlog; /* log(W) */ | |
114 | u8 Plog; /* random number bits */ | |
115 | u8 Stab[RED_STAB_SIZE]; | |
116 | ||
117 | /* Variables */ | |
118 | int qcount; /* Number of packets since last random | |
119 | number generation */ | |
120 | u32 qR; /* Cached random number */ | |
121 | ||
122 | unsigned long qavg; /* Average queue length: A scaled */ | |
123 | psched_time_t qidlestart; /* Start of current idle period */ | |
124 | }; | |
125 | ||
126 | static inline u32 red_rmask(u8 Plog) | |
127 | { | |
128 | return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; | |
129 | } | |
130 | ||
131 | static inline void red_set_parms(struct red_parms *p, | |
132 | u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, | |
133 | u8 Scell_log, u8 *stab) | |
134 | { | |
135 | /* Reset average queue length, the value is strictly bound | |
136 | * to the parameters below, reseting hurts a bit but leaving | |
137 | * it might result in an unreasonable qavg for a while. --TGR | |
138 | */ | |
139 | p->qavg = 0; | |
140 | ||
141 | p->qcount = -1; | |
142 | p->qth_min = qth_min << Wlog; | |
143 | p->qth_max = qth_max << Wlog; | |
144 | p->Wlog = Wlog; | |
145 | p->Plog = Plog; | |
146 | p->Rmask = red_rmask(Plog); | |
147 | p->Scell_log = Scell_log; | |
148 | p->Scell_max = (255 << Scell_log); | |
149 | ||
150 | memcpy(p->Stab, stab, sizeof(p->Stab)); | |
151 | } | |
152 | ||
153 | static inline int red_is_idling(struct red_parms *p) | |
154 | { | |
155 | return !PSCHED_IS_PASTPERFECT(p->qidlestart); | |
156 | } | |
157 | ||
158 | static inline void red_start_of_idle_period(struct red_parms *p) | |
159 | { | |
160 | PSCHED_GET_TIME(p->qidlestart); | |
161 | } | |
162 | ||
163 | static inline void red_end_of_idle_period(struct red_parms *p) | |
164 | { | |
165 | PSCHED_SET_PASTPERFECT(p->qidlestart); | |
166 | } | |
167 | ||
168 | static inline void red_restart(struct red_parms *p) | |
169 | { | |
170 | red_end_of_idle_period(p); | |
171 | p->qavg = 0; | |
172 | p->qcount = -1; | |
173 | } | |
174 | ||
175 | static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) | |
176 | { | |
177 | psched_time_t now; | |
178 | long us_idle; | |
179 | int shift; | |
180 | ||
181 | PSCHED_GET_TIME(now); | |
182 | us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); | |
183 | ||
184 | /* | |
185 | * The problem: ideally, average length queue recalcultion should | |
186 | * be done over constant clock intervals. This is too expensive, so | |
187 | * that the calculation is driven by outgoing packets. | |
188 | * When the queue is idle we have to model this clock by hand. | |
189 | * | |
190 | * SF+VJ proposed to "generate": | |
191 | * | |
192 | * m = idletime / (average_pkt_size / bandwidth) | |
193 | * | |
194 | * dummy packets as a burst after idle time, i.e. | |
195 | * | |
196 | * p->qavg *= (1-W)^m | |
197 | * | |
198 | * This is an apparently overcomplicated solution (f.e. we have to | |
199 | * precompute a table to make this calculation in reasonable time) | |
200 | * I believe that a simpler model may be used here, | |
201 | * but it is field for experiments. | |
202 | */ | |
203 | ||
204 | shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; | |
205 | ||
206 | if (shift) | |
207 | return p->qavg >> shift; | |
208 | else { | |
209 | /* Approximate initial part of exponent with linear function: | |
210 | * | |
211 | * (1-W)^m ~= 1-mW + ... | |
212 | * | |
213 | * Seems, it is the best solution to | |
214 | * problem of too coarse exponent tabulation. | |
215 | */ | |
216 | us_idle = (p->qavg * us_idle) >> p->Scell_log; | |
217 | ||
218 | if (us_idle < (p->qavg >> 1)) | |
219 | return p->qavg - us_idle; | |
220 | else | |
221 | return p->qavg >> 1; | |
222 | } | |
223 | } | |
224 | ||
225 | static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, | |
226 | unsigned int backlog) | |
227 | { | |
228 | /* | |
229 | * NOTE: p->qavg is fixed point number with point at Wlog. | |
230 | * The formula below is equvalent to floating point | |
231 | * version: | |
232 | * | |
233 | * qavg = qavg*(1-W) + backlog*W; | |
234 | * | |
235 | * --ANK (980924) | |
236 | */ | |
237 | return p->qavg + (backlog - (p->qavg >> p->Wlog)); | |
238 | } | |
239 | ||
240 | static inline unsigned long red_calc_qavg(struct red_parms *p, | |
241 | unsigned int backlog) | |
242 | { | |
243 | if (!red_is_idling(p)) | |
244 | return red_calc_qavg_no_idle_time(p, backlog); | |
245 | else | |
246 | return red_calc_qavg_from_idle_time(p); | |
247 | } | |
248 | ||
249 | static inline u32 red_random(struct red_parms *p) | |
250 | { | |
251 | return net_random() & p->Rmask; | |
252 | } | |
253 | ||
254 | static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) | |
255 | { | |
256 | /* The formula used below causes questions. | |
257 | ||
258 | OK. qR is random number in the interval 0..Rmask | |
259 | i.e. 0..(2^Plog). If we used floating point | |
260 | arithmetics, it would be: (2^Plog)*rnd_num, | |
261 | where rnd_num is less 1. | |
262 | ||
263 | Taking into account, that qavg have fixed | |
264 | point at Wlog, and Plog is related to max_P by | |
265 | max_P = (qth_max-qth_min)/2^Plog; two lines | |
266 | below have the following floating point equivalent: | |
267 | ||
268 | max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount | |
269 | ||
270 | Any questions? --ANK (980924) | |
271 | */ | |
272 | return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); | |
273 | } | |
274 | ||
275 | enum { | |
276 | RED_BELOW_MIN_THRESH, | |
277 | RED_BETWEEN_TRESH, | |
278 | RED_ABOVE_MAX_TRESH, | |
279 | }; | |
280 | ||
281 | static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) | |
282 | { | |
283 | if (qavg < p->qth_min) | |
284 | return RED_BELOW_MIN_THRESH; | |
285 | else if (qavg >= p->qth_max) | |
286 | return RED_ABOVE_MAX_TRESH; | |
287 | else | |
288 | return RED_BETWEEN_TRESH; | |
289 | } | |
290 | ||
291 | enum { | |
292 | RED_DONT_MARK, | |
293 | RED_PROB_MARK, | |
294 | RED_HARD_MARK, | |
295 | }; | |
296 | ||
297 | static inline int red_action(struct red_parms *p, unsigned long qavg) | |
298 | { | |
299 | switch (red_cmp_thresh(p, qavg)) { | |
300 | case RED_BELOW_MIN_THRESH: | |
301 | p->qcount = -1; | |
302 | return RED_DONT_MARK; | |
303 | ||
304 | case RED_BETWEEN_TRESH: | |
305 | if (++p->qcount) { | |
306 | if (red_mark_probability(p, qavg)) { | |
307 | p->qcount = 0; | |
308 | p->qR = red_random(p); | |
309 | return RED_PROB_MARK; | |
310 | } | |
311 | } else | |
312 | p->qR = red_random(p); | |
313 | ||
314 | return RED_DONT_MARK; | |
315 | ||
316 | case RED_ABOVE_MAX_TRESH: | |
317 | p->qcount = -1; | |
318 | return RED_HARD_MARK; | |
319 | } | |
320 | ||
321 | BUG(); | |
322 | return RED_DONT_MARK; | |
323 | } | |
324 | ||
325 | #endif |