]> Git Repo - linux.git/blame - mm/slab.c
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
[linux.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * ([email protected])
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <[email protected]>.
81 * Shobhit Dayal <[email protected]>
82 * Alok N Kataria <[email protected]>
83 * Christoph Lameter <[email protected]>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
1da177e4 365/*
3df1cccd
DR
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
1da177e4 368 */
543585cc
DR
369#define SLAB_MAX_ORDER_HI 1
370#define SLAB_MAX_ORDER_LO 0
371static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 372static bool slab_max_order_set __initdata;
1da177e4 373
8456a648 374static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
375 unsigned int idx)
376{
8456a648 377 return page->s_mem + cache->size * idx;
8fea4e96
PE
378}
379
6fb92430 380#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 381/* internal cache of cache description objs */
9b030cb8 382static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
383 .batchcount = 1,
384 .limit = BOOT_CPUCACHE_ENTRIES,
385 .shared = 1,
3b0efdfa 386 .size = sizeof(struct kmem_cache),
b28a02de 387 .name = "kmem_cache",
1da177e4
LT
388};
389
1871e52c 390static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 391
343e0d7a 392static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 393{
bf0dea23 394 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
395}
396
a737b3e2
AM
397/*
398 * Calculate the number of objects and left-over bytes for a given buffer size.
399 */
70f75067 400static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 401 slab_flags_t flags, size_t *left_over)
fbaccacf 402{
70f75067 403 unsigned int num;
fbaccacf 404 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 405
fbaccacf
SR
406 /*
407 * The slab management structure can be either off the slab or
408 * on it. For the latter case, the memory allocated for a
409 * slab is used for:
410 *
fbaccacf 411 * - @buffer_size bytes for each object
2e6b3602
JK
412 * - One freelist_idx_t for each object
413 *
414 * We don't need to consider alignment of freelist because
415 * freelist will be at the end of slab page. The objects will be
416 * at the correct alignment.
fbaccacf
SR
417 *
418 * If the slab management structure is off the slab, then the
419 * alignment will already be calculated into the size. Because
420 * the slabs are all pages aligned, the objects will be at the
421 * correct alignment when allocated.
422 */
b03a017b 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 424 num = slab_size / buffer_size;
2e6b3602 425 *left_over = slab_size % buffer_size;
fbaccacf 426 } else {
70f75067 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
428 *left_over = slab_size %
429 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 430 }
70f75067
JK
431
432 return num;
1da177e4
LT
433}
434
f28510d3 435#if DEBUG
d40cee24 436#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 437
a737b3e2
AM
438static void __slab_error(const char *function, struct kmem_cache *cachep,
439 char *msg)
1da177e4 440{
1170532b 441 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 442 function, cachep->name, msg);
1da177e4 443 dump_stack();
373d4d09 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 445}
f28510d3 446#endif
1da177e4 447
3395ee05
PM
448/*
449 * By default on NUMA we use alien caches to stage the freeing of
450 * objects allocated from other nodes. This causes massive memory
451 * inefficiencies when using fake NUMA setup to split memory into a
452 * large number of small nodes, so it can be disabled on the command
453 * line
454 */
455
456static int use_alien_caches __read_mostly = 1;
457static int __init noaliencache_setup(char *s)
458{
459 use_alien_caches = 0;
460 return 1;
461}
462__setup("noaliencache", noaliencache_setup);
463
3df1cccd
DR
464static int __init slab_max_order_setup(char *str)
465{
466 get_option(&str, &slab_max_order);
467 slab_max_order = slab_max_order < 0 ? 0 :
468 min(slab_max_order, MAX_ORDER - 1);
469 slab_max_order_set = true;
470
471 return 1;
472}
473__setup("slab_max_order=", slab_max_order_setup);
474
8fce4d8e
CL
475#ifdef CONFIG_NUMA
476/*
477 * Special reaping functions for NUMA systems called from cache_reap().
478 * These take care of doing round robin flushing of alien caches (containing
479 * objects freed on different nodes from which they were allocated) and the
480 * flushing of remote pcps by calling drain_node_pages.
481 */
1871e52c 482static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
483
484static void init_reap_node(int cpu)
485{
0edaf86c
AM
486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 node_online_map);
8fce4d8e
CL
488}
489
490static void next_reap_node(void)
491{
909ea964 492 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 493
0edaf86c 494 node = next_node_in(node, node_online_map);
909ea964 495 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
496}
497
498#else
499#define init_reap_node(cpu) do { } while (0)
500#define next_reap_node(void) do { } while (0)
501#endif
502
1da177e4
LT
503/*
504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
505 * via the workqueue/eventd.
506 * Add the CPU number into the expiration time to minimize the possibility of
507 * the CPUs getting into lockstep and contending for the global cache chain
508 * lock.
509 */
0db0628d 510static void start_cpu_timer(int cpu)
1da177e4 511{
1871e52c 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 513
eac0337a 514 if (reap_work->work.func == NULL) {
8fce4d8e 515 init_reap_node(cpu);
203b42f7 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
517 schedule_delayed_work_on(cpu, reap_work,
518 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
519 }
520}
521
1fe00d50 522static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 523{
1fe00d50
JK
524 if (ac) {
525 ac->avail = 0;
526 ac->limit = limit;
527 ac->batchcount = batch;
528 ac->touched = 0;
1da177e4 529 }
1fe00d50
JK
530}
531
532static struct array_cache *alloc_arraycache(int node, int entries,
533 int batchcount, gfp_t gfp)
534{
5e804789 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
536 struct array_cache *ac = NULL;
537
538 ac = kmalloc_node(memsize, gfp, node);
92d1d07d
QC
539 /*
540 * The array_cache structures contain pointers to free object.
541 * However, when such objects are allocated or transferred to another
542 * cache the pointers are not cleared and they could be counted as
543 * valid references during a kmemleak scan. Therefore, kmemleak must
544 * not scan such objects.
545 */
546 kmemleak_no_scan(ac);
1fe00d50
JK
547 init_arraycache(ac, entries, batchcount);
548 return ac;
1da177e4
LT
549}
550
f68f8ddd
JK
551static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 struct page *page, void *objp)
072bb0aa 553{
f68f8ddd
JK
554 struct kmem_cache_node *n;
555 int page_node;
556 LIST_HEAD(list);
072bb0aa 557
f68f8ddd
JK
558 page_node = page_to_nid(page);
559 n = get_node(cachep, page_node);
381760ea 560
f68f8ddd
JK
561 spin_lock(&n->list_lock);
562 free_block(cachep, &objp, 1, page_node, &list);
563 spin_unlock(&n->list_lock);
381760ea 564
f68f8ddd 565 slabs_destroy(cachep, &list);
072bb0aa
MG
566}
567
3ded175a
CL
568/*
569 * Transfer objects in one arraycache to another.
570 * Locking must be handled by the caller.
571 *
572 * Return the number of entries transferred.
573 */
574static int transfer_objects(struct array_cache *to,
575 struct array_cache *from, unsigned int max)
576{
577 /* Figure out how many entries to transfer */
732eacc0 578 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
579
580 if (!nr)
581 return 0;
582
583 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 sizeof(void *) *nr);
585
586 from->avail -= nr;
587 to->avail += nr;
3ded175a
CL
588 return nr;
589}
590
dabc3e29
KC
591/* &alien->lock must be held by alien callers. */
592static __always_inline void __free_one(struct array_cache *ac, void *objp)
593{
594 /* Avoid trivial double-free. */
595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
597 return;
598 ac->entry[ac->avail++] = objp;
599}
600
765c4507
CL
601#ifndef CONFIG_NUMA
602
603#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 604#define reap_alien(cachep, n) do { } while (0)
765c4507 605
c8522a3a
JK
606static inline struct alien_cache **alloc_alien_cache(int node,
607 int limit, gfp_t gfp)
765c4507 608{
8888177e 609 return NULL;
765c4507
CL
610}
611
c8522a3a 612static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
613{
614}
615
616static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
617{
618 return 0;
619}
620
621static inline void *alternate_node_alloc(struct kmem_cache *cachep,
622 gfp_t flags)
623{
624 return NULL;
625}
626
8b98c169 627static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
628 gfp_t flags, int nodeid)
629{
630 return NULL;
631}
632
4167e9b2
DR
633static inline gfp_t gfp_exact_node(gfp_t flags)
634{
444eb2a4 635 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
636}
637
765c4507
CL
638#else /* CONFIG_NUMA */
639
8b98c169 640static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 641static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 642
c8522a3a
JK
643static struct alien_cache *__alloc_alien_cache(int node, int entries,
644 int batch, gfp_t gfp)
645{
5e804789 646 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
647 struct alien_cache *alc = NULL;
648
649 alc = kmalloc_node(memsize, gfp, node);
09c2e76e 650 if (alc) {
92d1d07d 651 kmemleak_no_scan(alc);
09c2e76e
CL
652 init_arraycache(&alc->ac, entries, batch);
653 spin_lock_init(&alc->lock);
654 }
c8522a3a
JK
655 return alc;
656}
657
658static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 659{
c8522a3a 660 struct alien_cache **alc_ptr;
e498be7d
CL
661 int i;
662
663 if (limit > 1)
664 limit = 12;
b9726c26 665 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
c8522a3a
JK
666 if (!alc_ptr)
667 return NULL;
668
669 for_each_node(i) {
670 if (i == node || !node_online(i))
671 continue;
672 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
673 if (!alc_ptr[i]) {
674 for (i--; i >= 0; i--)
675 kfree(alc_ptr[i]);
676 kfree(alc_ptr);
677 return NULL;
e498be7d
CL
678 }
679 }
c8522a3a 680 return alc_ptr;
e498be7d
CL
681}
682
c8522a3a 683static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
684{
685 int i;
686
c8522a3a 687 if (!alc_ptr)
e498be7d 688 return;
e498be7d 689 for_each_node(i)
c8522a3a
JK
690 kfree(alc_ptr[i]);
691 kfree(alc_ptr);
e498be7d
CL
692}
693
343e0d7a 694static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
695 struct array_cache *ac, int node,
696 struct list_head *list)
e498be7d 697{
18bf8541 698 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
699
700 if (ac->avail) {
ce8eb6c4 701 spin_lock(&n->list_lock);
e00946fe
CL
702 /*
703 * Stuff objects into the remote nodes shared array first.
704 * That way we could avoid the overhead of putting the objects
705 * into the free lists and getting them back later.
706 */
ce8eb6c4
CL
707 if (n->shared)
708 transfer_objects(n->shared, ac, ac->limit);
e00946fe 709
833b706c 710 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 711 ac->avail = 0;
ce8eb6c4 712 spin_unlock(&n->list_lock);
e498be7d
CL
713 }
714}
715
8fce4d8e
CL
716/*
717 * Called from cache_reap() to regularly drain alien caches round robin.
718 */
ce8eb6c4 719static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 720{
909ea964 721 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 722
ce8eb6c4 723 if (n->alien) {
c8522a3a
JK
724 struct alien_cache *alc = n->alien[node];
725 struct array_cache *ac;
726
727 if (alc) {
728 ac = &alc->ac;
49dfc304 729 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
730 LIST_HEAD(list);
731
732 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 733 spin_unlock_irq(&alc->lock);
833b706c 734 slabs_destroy(cachep, &list);
c8522a3a 735 }
8fce4d8e
CL
736 }
737 }
738}
739
a737b3e2 740static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 741 struct alien_cache **alien)
e498be7d 742{
b28a02de 743 int i = 0;
c8522a3a 744 struct alien_cache *alc;
e498be7d
CL
745 struct array_cache *ac;
746 unsigned long flags;
747
748 for_each_online_node(i) {
c8522a3a
JK
749 alc = alien[i];
750 if (alc) {
833b706c
JK
751 LIST_HEAD(list);
752
c8522a3a 753 ac = &alc->ac;
49dfc304 754 spin_lock_irqsave(&alc->lock, flags);
833b706c 755 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 756 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 757 slabs_destroy(cachep, &list);
e498be7d
CL
758 }
759 }
760}
729bd0b7 761
25c4f304
JK
762static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
763 int node, int page_node)
729bd0b7 764{
ce8eb6c4 765 struct kmem_cache_node *n;
c8522a3a
JK
766 struct alien_cache *alien = NULL;
767 struct array_cache *ac;
97654dfa 768 LIST_HEAD(list);
1ca4cb24 769
18bf8541 770 n = get_node(cachep, node);
729bd0b7 771 STATS_INC_NODEFREES(cachep);
25c4f304
JK
772 if (n->alien && n->alien[page_node]) {
773 alien = n->alien[page_node];
c8522a3a 774 ac = &alien->ac;
49dfc304 775 spin_lock(&alien->lock);
c8522a3a 776 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 777 STATS_INC_ACOVERFLOW(cachep);
25c4f304 778 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 779 }
dabc3e29 780 __free_one(ac, objp);
49dfc304 781 spin_unlock(&alien->lock);
833b706c 782 slabs_destroy(cachep, &list);
729bd0b7 783 } else {
25c4f304 784 n = get_node(cachep, page_node);
18bf8541 785 spin_lock(&n->list_lock);
25c4f304 786 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 787 spin_unlock(&n->list_lock);
97654dfa 788 slabs_destroy(cachep, &list);
729bd0b7
PE
789 }
790 return 1;
791}
25c4f304
JK
792
793static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
794{
795 int page_node = page_to_nid(virt_to_page(objp));
796 int node = numa_mem_id();
797 /*
798 * Make sure we are not freeing a object from another node to the array
799 * cache on this cpu.
800 */
801 if (likely(node == page_node))
802 return 0;
803
804 return __cache_free_alien(cachep, objp, node, page_node);
805}
4167e9b2
DR
806
807/*
444eb2a4
MG
808 * Construct gfp mask to allocate from a specific node but do not reclaim or
809 * warn about failures.
4167e9b2
DR
810 */
811static inline gfp_t gfp_exact_node(gfp_t flags)
812{
444eb2a4 813 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 814}
e498be7d
CL
815#endif
816
ded0ecf6
JK
817static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
818{
819 struct kmem_cache_node *n;
820
821 /*
822 * Set up the kmem_cache_node for cpu before we can
823 * begin anything. Make sure some other cpu on this
824 * node has not already allocated this
825 */
826 n = get_node(cachep, node);
827 if (n) {
828 spin_lock_irq(&n->list_lock);
829 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
830 cachep->num;
831 spin_unlock_irq(&n->list_lock);
832
833 return 0;
834 }
835
836 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
837 if (!n)
838 return -ENOMEM;
839
840 kmem_cache_node_init(n);
841 n->next_reap = jiffies + REAPTIMEOUT_NODE +
842 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
843
844 n->free_limit =
845 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
846
847 /*
848 * The kmem_cache_nodes don't come and go as CPUs
849 * come and go. slab_mutex is sufficient
850 * protection here.
851 */
852 cachep->node[node] = n;
853
854 return 0;
855}
856
6731d4f1 857#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 858/*
6a67368c 859 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 860 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 861 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 862 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
863 * already in use.
864 *
18004c5d 865 * Must hold slab_mutex.
8f9f8d9e 866 */
6a67368c 867static int init_cache_node_node(int node)
8f9f8d9e 868{
ded0ecf6 869 int ret;
8f9f8d9e 870 struct kmem_cache *cachep;
8f9f8d9e 871
18004c5d 872 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
873 ret = init_cache_node(cachep, node, GFP_KERNEL);
874 if (ret)
875 return ret;
8f9f8d9e 876 }
ded0ecf6 877
8f9f8d9e
DR
878 return 0;
879}
6731d4f1 880#endif
8f9f8d9e 881
c3d332b6
JK
882static int setup_kmem_cache_node(struct kmem_cache *cachep,
883 int node, gfp_t gfp, bool force_change)
884{
885 int ret = -ENOMEM;
886 struct kmem_cache_node *n;
887 struct array_cache *old_shared = NULL;
888 struct array_cache *new_shared = NULL;
889 struct alien_cache **new_alien = NULL;
890 LIST_HEAD(list);
891
892 if (use_alien_caches) {
893 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
894 if (!new_alien)
895 goto fail;
896 }
897
898 if (cachep->shared) {
899 new_shared = alloc_arraycache(node,
900 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
901 if (!new_shared)
902 goto fail;
903 }
904
905 ret = init_cache_node(cachep, node, gfp);
906 if (ret)
907 goto fail;
908
909 n = get_node(cachep, node);
910 spin_lock_irq(&n->list_lock);
911 if (n->shared && force_change) {
912 free_block(cachep, n->shared->entry,
913 n->shared->avail, node, &list);
914 n->shared->avail = 0;
915 }
916
917 if (!n->shared || force_change) {
918 old_shared = n->shared;
919 n->shared = new_shared;
920 new_shared = NULL;
921 }
922
923 if (!n->alien) {
924 n->alien = new_alien;
925 new_alien = NULL;
926 }
927
928 spin_unlock_irq(&n->list_lock);
929 slabs_destroy(cachep, &list);
930
801faf0d
JK
931 /*
932 * To protect lockless access to n->shared during irq disabled context.
933 * If n->shared isn't NULL in irq disabled context, accessing to it is
934 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 935 * freed after synchronize_rcu().
801faf0d 936 */
86d9f485 937 if (old_shared && force_change)
6564a25e 938 synchronize_rcu();
801faf0d 939
c3d332b6
JK
940fail:
941 kfree(old_shared);
942 kfree(new_shared);
943 free_alien_cache(new_alien);
944
945 return ret;
946}
947
6731d4f1
SAS
948#ifdef CONFIG_SMP
949
0db0628d 950static void cpuup_canceled(long cpu)
fbf1e473
AM
951{
952 struct kmem_cache *cachep;
ce8eb6c4 953 struct kmem_cache_node *n = NULL;
7d6e6d09 954 int node = cpu_to_mem(cpu);
a70f7302 955 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 956
18004c5d 957 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
958 struct array_cache *nc;
959 struct array_cache *shared;
c8522a3a 960 struct alien_cache **alien;
97654dfa 961 LIST_HEAD(list);
fbf1e473 962
18bf8541 963 n = get_node(cachep, node);
ce8eb6c4 964 if (!n)
bf0dea23 965 continue;
fbf1e473 966
ce8eb6c4 967 spin_lock_irq(&n->list_lock);
fbf1e473 968
ce8eb6c4
CL
969 /* Free limit for this kmem_cache_node */
970 n->free_limit -= cachep->batchcount;
bf0dea23
JK
971
972 /* cpu is dead; no one can alloc from it. */
973 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
517f9f1e
LR
974 free_block(cachep, nc->entry, nc->avail, node, &list);
975 nc->avail = 0;
fbf1e473 976
58463c1f 977 if (!cpumask_empty(mask)) {
ce8eb6c4 978 spin_unlock_irq(&n->list_lock);
bf0dea23 979 goto free_slab;
fbf1e473
AM
980 }
981
ce8eb6c4 982 shared = n->shared;
fbf1e473
AM
983 if (shared) {
984 free_block(cachep, shared->entry,
97654dfa 985 shared->avail, node, &list);
ce8eb6c4 986 n->shared = NULL;
fbf1e473
AM
987 }
988
ce8eb6c4
CL
989 alien = n->alien;
990 n->alien = NULL;
fbf1e473 991
ce8eb6c4 992 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
993
994 kfree(shared);
995 if (alien) {
996 drain_alien_cache(cachep, alien);
997 free_alien_cache(alien);
998 }
bf0dea23
JK
999
1000free_slab:
97654dfa 1001 slabs_destroy(cachep, &list);
fbf1e473
AM
1002 }
1003 /*
1004 * In the previous loop, all the objects were freed to
1005 * the respective cache's slabs, now we can go ahead and
1006 * shrink each nodelist to its limit.
1007 */
18004c5d 1008 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1009 n = get_node(cachep, node);
ce8eb6c4 1010 if (!n)
fbf1e473 1011 continue;
a5aa63a5 1012 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1013 }
1014}
1015
0db0628d 1016static int cpuup_prepare(long cpu)
1da177e4 1017{
343e0d7a 1018 struct kmem_cache *cachep;
7d6e6d09 1019 int node = cpu_to_mem(cpu);
8f9f8d9e 1020 int err;
1da177e4 1021
fbf1e473
AM
1022 /*
1023 * We need to do this right in the beginning since
1024 * alloc_arraycache's are going to use this list.
1025 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1026 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1027 */
6a67368c 1028 err = init_cache_node_node(node);
8f9f8d9e
DR
1029 if (err < 0)
1030 goto bad;
fbf1e473
AM
1031
1032 /*
1033 * Now we can go ahead with allocating the shared arrays and
1034 * array caches
1035 */
18004c5d 1036 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1037 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1038 if (err)
1039 goto bad;
fbf1e473 1040 }
ce79ddc8 1041
fbf1e473
AM
1042 return 0;
1043bad:
12d00f6a 1044 cpuup_canceled(cpu);
fbf1e473
AM
1045 return -ENOMEM;
1046}
1047
6731d4f1 1048int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1049{
6731d4f1 1050 int err;
fbf1e473 1051
6731d4f1
SAS
1052 mutex_lock(&slab_mutex);
1053 err = cpuup_prepare(cpu);
1054 mutex_unlock(&slab_mutex);
1055 return err;
1056}
1057
1058/*
1059 * This is called for a failed online attempt and for a successful
1060 * offline.
1061 *
1062 * Even if all the cpus of a node are down, we don't free the
221503e1 1063 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
6731d4f1
SAS
1064 * a kmalloc allocation from another cpu for memory from the node of
1065 * the cpu going down. The list3 structure is usually allocated from
1066 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1067 */
1068int slab_dead_cpu(unsigned int cpu)
1069{
1070 mutex_lock(&slab_mutex);
1071 cpuup_canceled(cpu);
1072 mutex_unlock(&slab_mutex);
1073 return 0;
1074}
8f5be20b 1075#endif
6731d4f1
SAS
1076
1077static int slab_online_cpu(unsigned int cpu)
1078{
1079 start_cpu_timer(cpu);
1080 return 0;
1da177e4
LT
1081}
1082
6731d4f1
SAS
1083static int slab_offline_cpu(unsigned int cpu)
1084{
1085 /*
1086 * Shutdown cache reaper. Note that the slab_mutex is held so
1087 * that if cache_reap() is invoked it cannot do anything
1088 * expensive but will only modify reap_work and reschedule the
1089 * timer.
1090 */
1091 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1092 /* Now the cache_reaper is guaranteed to be not running. */
1093 per_cpu(slab_reap_work, cpu).work.func = NULL;
1094 return 0;
1095}
1da177e4 1096
8f9f8d9e
DR
1097#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1098/*
1099 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1100 * Returns -EBUSY if all objects cannot be drained so that the node is not
1101 * removed.
1102 *
18004c5d 1103 * Must hold slab_mutex.
8f9f8d9e 1104 */
6a67368c 1105static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1106{
1107 struct kmem_cache *cachep;
1108 int ret = 0;
1109
18004c5d 1110 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1111 struct kmem_cache_node *n;
8f9f8d9e 1112
18bf8541 1113 n = get_node(cachep, node);
ce8eb6c4 1114 if (!n)
8f9f8d9e
DR
1115 continue;
1116
a5aa63a5 1117 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1118
ce8eb6c4
CL
1119 if (!list_empty(&n->slabs_full) ||
1120 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1121 ret = -EBUSY;
1122 break;
1123 }
1124 }
1125 return ret;
1126}
1127
1128static int __meminit slab_memory_callback(struct notifier_block *self,
1129 unsigned long action, void *arg)
1130{
1131 struct memory_notify *mnb = arg;
1132 int ret = 0;
1133 int nid;
1134
1135 nid = mnb->status_change_nid;
1136 if (nid < 0)
1137 goto out;
1138
1139 switch (action) {
1140 case MEM_GOING_ONLINE:
18004c5d 1141 mutex_lock(&slab_mutex);
6a67368c 1142 ret = init_cache_node_node(nid);
18004c5d 1143 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1144 break;
1145 case MEM_GOING_OFFLINE:
18004c5d 1146 mutex_lock(&slab_mutex);
6a67368c 1147 ret = drain_cache_node_node(nid);
18004c5d 1148 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1149 break;
1150 case MEM_ONLINE:
1151 case MEM_OFFLINE:
1152 case MEM_CANCEL_ONLINE:
1153 case MEM_CANCEL_OFFLINE:
1154 break;
1155 }
1156out:
5fda1bd5 1157 return notifier_from_errno(ret);
8f9f8d9e
DR
1158}
1159#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1160
e498be7d 1161/*
ce8eb6c4 1162 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1163 */
6744f087 1164static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1165 int nodeid)
e498be7d 1166{
6744f087 1167 struct kmem_cache_node *ptr;
e498be7d 1168
6744f087 1169 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1170 BUG_ON(!ptr);
1171
6744f087 1172 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1173 /*
1174 * Do not assume that spinlocks can be initialized via memcpy:
1175 */
1176 spin_lock_init(&ptr->list_lock);
1177
e498be7d 1178 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1179 cachep->node[nodeid] = ptr;
e498be7d
CL
1180}
1181
556a169d 1182/*
ce8eb6c4
CL
1183 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1184 * size of kmem_cache_node.
556a169d 1185 */
ce8eb6c4 1186static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1187{
1188 int node;
1189
1190 for_each_online_node(node) {
ce8eb6c4 1191 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1192 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1193 REAPTIMEOUT_NODE +
1194 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1195 }
1196}
1197
a737b3e2
AM
1198/*
1199 * Initialisation. Called after the page allocator have been initialised and
1200 * before smp_init().
1da177e4
LT
1201 */
1202void __init kmem_cache_init(void)
1203{
e498be7d
CL
1204 int i;
1205
9b030cb8
CL
1206 kmem_cache = &kmem_cache_boot;
1207
8888177e 1208 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1209 use_alien_caches = 0;
1210
3c583465 1211 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1212 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1213
1da177e4
LT
1214 /*
1215 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1216 * page orders on machines with more than 32MB of memory if
1217 * not overridden on the command line.
1da177e4 1218 */
ca79b0c2 1219 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1220 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1221
1da177e4
LT
1222 /* Bootstrap is tricky, because several objects are allocated
1223 * from caches that do not exist yet:
9b030cb8
CL
1224 * 1) initialize the kmem_cache cache: it contains the struct
1225 * kmem_cache structures of all caches, except kmem_cache itself:
1226 * kmem_cache is statically allocated.
e498be7d 1227 * Initially an __init data area is used for the head array and the
ce8eb6c4 1228 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1229 * array at the end of the bootstrap.
1da177e4 1230 * 2) Create the first kmalloc cache.
343e0d7a 1231 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1232 * An __init data area is used for the head array.
1233 * 3) Create the remaining kmalloc caches, with minimally sized
1234 * head arrays.
9b030cb8 1235 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1236 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1237 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1238 * the other cache's with kmalloc allocated memory.
1239 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1240 */
1241
9b030cb8 1242 /* 1) create the kmem_cache */
1da177e4 1243
8da3430d 1244 /*
b56efcf0 1245 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1246 */
2f9baa9f 1247 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1248 offsetof(struct kmem_cache, node) +
6744f087 1249 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1250 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1251 list_add(&kmem_cache->list, &slab_caches);
9855609b 1252 memcg_link_cache(kmem_cache);
bf0dea23 1253 slab_state = PARTIAL;
1da177e4 1254
a737b3e2 1255 /*
bf0dea23
JK
1256 * Initialize the caches that provide memory for the kmem_cache_node
1257 * structures first. Without this, further allocations will bug.
e498be7d 1258 */
cc252eae 1259 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
cb5d9fb3 1260 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
dc0a7f75
PL
1261 kmalloc_info[INDEX_NODE].size,
1262 ARCH_KMALLOC_FLAGS, 0,
1263 kmalloc_info[INDEX_NODE].size);
bf0dea23 1264 slab_state = PARTIAL_NODE;
34cc6990 1265 setup_kmalloc_cache_index_table();
e498be7d 1266
e0a42726
IM
1267 slab_early_init = 0;
1268
ce8eb6c4 1269 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1270 {
1ca4cb24
PE
1271 int nid;
1272
9c09a95c 1273 for_each_online_node(nid) {
ce8eb6c4 1274 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1275
cc252eae 1276 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1277 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1278 }
1279 }
1da177e4 1280
f97d5f63 1281 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286 struct kmem_cache *cachep;
1287
8429db5c 1288 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1289 mutex_lock(&slab_mutex);
1290 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1291 if (enable_cpucache(cachep, GFP_NOWAIT))
1292 BUG();
18004c5d 1293 mutex_unlock(&slab_mutex);
056c6241 1294
97d06609
CL
1295 /* Done! */
1296 slab_state = FULL;
1297
8f9f8d9e
DR
1298#ifdef CONFIG_NUMA
1299 /*
1300 * Register a memory hotplug callback that initializes and frees
6a67368c 1301 * node.
8f9f8d9e
DR
1302 */
1303 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
a737b3e2
AM
1306 /*
1307 * The reap timers are started later, with a module init call: That part
1308 * of the kernel is not yet operational.
1da177e4
LT
1309 */
1310}
1311
1312static int __init cpucache_init(void)
1313{
6731d4f1 1314 int ret;
1da177e4 1315
a737b3e2
AM
1316 /*
1317 * Register the timers that return unneeded pages to the page allocator
1da177e4 1318 */
6731d4f1
SAS
1319 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320 slab_online_cpu, slab_offline_cpu);
1321 WARN_ON(ret < 0);
a164f896 1322
1da177e4
LT
1323 return 0;
1324}
1da177e4
LT
1325__initcall(cpucache_init);
1326
8bdec192
RA
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
9a02d699 1330#if DEBUG
ce8eb6c4 1331 struct kmem_cache_node *n;
8bdec192
RA
1332 unsigned long flags;
1333 int node;
9a02d699
DR
1334 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335 DEFAULT_RATELIMIT_BURST);
1336
1337 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338 return;
8bdec192 1339
5b3810e5
VB
1340 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341 nodeid, gfpflags, &gfpflags);
1342 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1343 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1344
18bf8541 1345 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1346 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1347
ce8eb6c4 1348 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1349 total_slabs = n->total_slabs;
1350 free_slabs = n->free_slabs;
1351 free_objs = n->free_objects;
ce8eb6c4 1352 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1353
bf00bd34
DR
1354 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355 node, total_slabs - free_slabs, total_slabs,
1356 (total_slabs * cachep->num) - free_objs,
1357 total_slabs * cachep->num);
8bdec192 1358 }
9a02d699 1359#endif
8bdec192
RA
1360}
1361
1da177e4 1362/*
8a7d9b43
WSH
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1da177e4
LT
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
0c3aa83e
JK
1370static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371 int nodeid)
1da177e4
LT
1372{
1373 struct page *page;
765c4507 1374
a618e89f 1375 flags |= cachep->allocflags;
e1b6aa6f 1376
75f296d9 1377 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1378 if (!page) {
9a02d699 1379 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1380 return NULL;
8bdec192 1381 }
1da177e4 1382
6cea1d56 1383 if (charge_slab_page(page, flags, cachep->gfporder, cachep)) {
f3ccb2c4
VD
1384 __free_pages(page, cachep->gfporder);
1385 return NULL;
1386 }
1387
a57a4988 1388 __SetPageSlab(page);
f68f8ddd
JK
1389 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1390 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1391 SetPageSlabPfmemalloc(page);
072bb0aa 1392
0c3aa83e 1393 return page;
1da177e4
LT
1394}
1395
1396/*
1397 * Interface to system's page release.
1398 */
0c3aa83e 1399static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1400{
27ee57c9 1401 int order = cachep->gfporder;
73293c2f 1402
a57a4988 1403 BUG_ON(!PageSlab(page));
73293c2f 1404 __ClearPageSlabPfmemalloc(page);
a57a4988 1405 __ClearPageSlab(page);
8456a648
JK
1406 page_mapcount_reset(page);
1407 page->mapping = NULL;
1f458cbf 1408
1da177e4 1409 if (current->reclaim_state)
6cea1d56
RG
1410 current->reclaim_state->reclaimed_slab += 1 << order;
1411 uncharge_slab_page(page, order, cachep);
27ee57c9 1412 __free_pages(page, order);
1da177e4
LT
1413}
1414
1415static void kmem_rcu_free(struct rcu_head *head)
1416{
68126702
JK
1417 struct kmem_cache *cachep;
1418 struct page *page;
1da177e4 1419
68126702
JK
1420 page = container_of(head, struct page, rcu_head);
1421 cachep = page->slab_cache;
1422
1423 kmem_freepages(cachep, page);
1da177e4
LT
1424}
1425
1426#if DEBUG
40b44137
JK
1427static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1428{
8e57f8ac 1429 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
40b44137
JK
1430 (cachep->size % PAGE_SIZE) == 0)
1431 return true;
1432
1433 return false;
1434}
1da177e4
LT
1435
1436#ifdef CONFIG_DEBUG_PAGEALLOC
80552f0f 1437static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
40b44137
JK
1438{
1439 if (!is_debug_pagealloc_cache(cachep))
1440 return;
1441
40b44137
JK
1442 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1443}
1444
1445#else
1446static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
80552f0f 1447 int map) {}
40b44137 1448
1da177e4
LT
1449#endif
1450
343e0d7a 1451static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1452{
8c138bc0 1453 int size = cachep->object_size;
3dafccf2 1454 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1455
1456 memset(addr, val, size);
b28a02de 1457 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1458}
1459
1460static void dump_line(char *data, int offset, int limit)
1461{
1462 int i;
aa83aa40
DJ
1463 unsigned char error = 0;
1464 int bad_count = 0;
1465
1170532b 1466 pr_err("%03x: ", offset);
aa83aa40
DJ
1467 for (i = 0; i < limit; i++) {
1468 if (data[offset + i] != POISON_FREE) {
1469 error = data[offset + i];
1470 bad_count++;
1471 }
aa83aa40 1472 }
fdde6abb
SAS
1473 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1474 &data[offset], limit, 1);
aa83aa40
DJ
1475
1476 if (bad_count == 1) {
1477 error ^= POISON_FREE;
1478 if (!(error & (error - 1))) {
1170532b 1479 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1480#ifdef CONFIG_X86
1170532b 1481 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1482#else
1170532b 1483 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1484#endif
1485 }
1486 }
1da177e4
LT
1487}
1488#endif
1489
1490#if DEBUG
1491
343e0d7a 1492static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1493{
1494 int i, size;
1495 char *realobj;
1496
1497 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1498 pr_err("Redzone: 0x%llx/0x%llx\n",
1499 *dbg_redzone1(cachep, objp),
1500 *dbg_redzone2(cachep, objp));
1da177e4
LT
1501 }
1502
85c3e4a5
GU
1503 if (cachep->flags & SLAB_STORE_USER)
1504 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1505 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1506 size = cachep->object_size;
b28a02de 1507 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1508 int limit;
1509 limit = 16;
b28a02de
PE
1510 if (i + limit > size)
1511 limit = size - i;
1da177e4
LT
1512 dump_line(realobj, i, limit);
1513 }
1514}
1515
343e0d7a 1516static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1517{
1518 char *realobj;
1519 int size, i;
1520 int lines = 0;
1521
40b44137
JK
1522 if (is_debug_pagealloc_cache(cachep))
1523 return;
1524
3dafccf2 1525 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1526 size = cachep->object_size;
1da177e4 1527
b28a02de 1528 for (i = 0; i < size; i++) {
1da177e4 1529 char exp = POISON_FREE;
b28a02de 1530 if (i == size - 1)
1da177e4
LT
1531 exp = POISON_END;
1532 if (realobj[i] != exp) {
1533 int limit;
1534 /* Mismatch ! */
1535 /* Print header */
1536 if (lines == 0) {
85c3e4a5 1537 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1538 print_tainted(), cachep->name,
1539 realobj, size);
1da177e4
LT
1540 print_objinfo(cachep, objp, 0);
1541 }
1542 /* Hexdump the affected line */
b28a02de 1543 i = (i / 16) * 16;
1da177e4 1544 limit = 16;
b28a02de
PE
1545 if (i + limit > size)
1546 limit = size - i;
1da177e4
LT
1547 dump_line(realobj, i, limit);
1548 i += 16;
1549 lines++;
1550 /* Limit to 5 lines */
1551 if (lines > 5)
1552 break;
1553 }
1554 }
1555 if (lines != 0) {
1556 /* Print some data about the neighboring objects, if they
1557 * exist:
1558 */
8456a648 1559 struct page *page = virt_to_head_page(objp);
8fea4e96 1560 unsigned int objnr;
1da177e4 1561
8456a648 1562 objnr = obj_to_index(cachep, page, objp);
1da177e4 1563 if (objnr) {
8456a648 1564 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1565 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1566 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1567 print_objinfo(cachep, objp, 2);
1568 }
b28a02de 1569 if (objnr + 1 < cachep->num) {
8456a648 1570 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1571 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1572 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1573 print_objinfo(cachep, objp, 2);
1574 }
1575 }
1576}
1577#endif
1578
12dd36fa 1579#if DEBUG
8456a648
JK
1580static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1581 struct page *page)
1da177e4 1582{
1da177e4 1583 int i;
b03a017b
JK
1584
1585 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1586 poison_obj(cachep, page->freelist - obj_offset(cachep),
1587 POISON_FREE);
1588 }
1589
1da177e4 1590 for (i = 0; i < cachep->num; i++) {
8456a648 1591 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1592
1593 if (cachep->flags & SLAB_POISON) {
1da177e4 1594 check_poison_obj(cachep, objp);
80552f0f 1595 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
1596 }
1597 if (cachep->flags & SLAB_RED_ZONE) {
1598 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1599 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1600 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1601 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1602 }
1da177e4 1603 }
12dd36fa 1604}
1da177e4 1605#else
8456a648
JK
1606static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1607 struct page *page)
12dd36fa 1608{
12dd36fa 1609}
1da177e4
LT
1610#endif
1611
911851e6
RD
1612/**
1613 * slab_destroy - destroy and release all objects in a slab
1614 * @cachep: cache pointer being destroyed
cb8ee1a3 1615 * @page: page pointer being destroyed
911851e6 1616 *
8a7d9b43
WSH
1617 * Destroy all the objs in a slab page, and release the mem back to the system.
1618 * Before calling the slab page must have been unlinked from the cache. The
1619 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1620 */
8456a648 1621static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1622{
7e007355 1623 void *freelist;
12dd36fa 1624
8456a648
JK
1625 freelist = page->freelist;
1626 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1627 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1628 call_rcu(&page->rcu_head, kmem_rcu_free);
1629 else
0c3aa83e 1630 kmem_freepages(cachep, page);
68126702
JK
1631
1632 /*
8456a648 1633 * From now on, we don't use freelist
68126702
JK
1634 * although actual page can be freed in rcu context
1635 */
1636 if (OFF_SLAB(cachep))
8456a648 1637 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1638}
1639
97654dfa
JK
1640static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1641{
1642 struct page *page, *n;
1643
16cb0ec7
TH
1644 list_for_each_entry_safe(page, n, list, slab_list) {
1645 list_del(&page->slab_list);
97654dfa
JK
1646 slab_destroy(cachep, page);
1647 }
1648}
1649
4d268eba 1650/**
a70773dd
RD
1651 * calculate_slab_order - calculate size (page order) of slabs
1652 * @cachep: pointer to the cache that is being created
1653 * @size: size of objects to be created in this cache.
a70773dd
RD
1654 * @flags: slab allocation flags
1655 *
1656 * Also calculates the number of objects per slab.
4d268eba
PE
1657 *
1658 * This could be made much more intelligent. For now, try to avoid using
1659 * high order pages for slabs. When the gfp() functions are more friendly
1660 * towards high-order requests, this should be changed.
a862f68a
MR
1661 *
1662 * Return: number of left-over bytes in a slab
4d268eba 1663 */
a737b3e2 1664static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1665 size_t size, slab_flags_t flags)
4d268eba
PE
1666{
1667 size_t left_over = 0;
9888e6fa 1668 int gfporder;
4d268eba 1669
0aa817f0 1670 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1671 unsigned int num;
1672 size_t remainder;
1673
70f75067 1674 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1675 if (!num)
1676 continue;
9888e6fa 1677
f315e3fa
JK
1678 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1679 if (num > SLAB_OBJ_MAX_NUM)
1680 break;
1681
b1ab41c4 1682 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1683 struct kmem_cache *freelist_cache;
1684 size_t freelist_size;
1685
1686 freelist_size = num * sizeof(freelist_idx_t);
1687 freelist_cache = kmalloc_slab(freelist_size, 0u);
1688 if (!freelist_cache)
1689 continue;
1690
b1ab41c4 1691 /*
3217fd9b 1692 * Needed to avoid possible looping condition
76b342bd 1693 * in cache_grow_begin()
b1ab41c4 1694 */
3217fd9b
JK
1695 if (OFF_SLAB(freelist_cache))
1696 continue;
b1ab41c4 1697
3217fd9b
JK
1698 /* check if off slab has enough benefit */
1699 if (freelist_cache->size > cachep->size / 2)
1700 continue;
b1ab41c4 1701 }
4d268eba 1702
9888e6fa 1703 /* Found something acceptable - save it away */
4d268eba 1704 cachep->num = num;
9888e6fa 1705 cachep->gfporder = gfporder;
4d268eba
PE
1706 left_over = remainder;
1707
f78bb8ad
LT
1708 /*
1709 * A VFS-reclaimable slab tends to have most allocations
1710 * as GFP_NOFS and we really don't want to have to be allocating
1711 * higher-order pages when we are unable to shrink dcache.
1712 */
1713 if (flags & SLAB_RECLAIM_ACCOUNT)
1714 break;
1715
4d268eba
PE
1716 /*
1717 * Large number of objects is good, but very large slabs are
1718 * currently bad for the gfp()s.
1719 */
543585cc 1720 if (gfporder >= slab_max_order)
4d268eba
PE
1721 break;
1722
9888e6fa
LT
1723 /*
1724 * Acceptable internal fragmentation?
1725 */
a737b3e2 1726 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1727 break;
1728 }
1729 return left_over;
1730}
1731
bf0dea23
JK
1732static struct array_cache __percpu *alloc_kmem_cache_cpus(
1733 struct kmem_cache *cachep, int entries, int batchcount)
1734{
1735 int cpu;
1736 size_t size;
1737 struct array_cache __percpu *cpu_cache;
1738
1739 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1740 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1741
1742 if (!cpu_cache)
1743 return NULL;
1744
1745 for_each_possible_cpu(cpu) {
1746 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1747 entries, batchcount);
1748 }
1749
1750 return cpu_cache;
1751}
1752
bd721ea7 1753static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1754{
97d06609 1755 if (slab_state >= FULL)
83b519e8 1756 return enable_cpucache(cachep, gfp);
2ed3a4ef 1757
bf0dea23
JK
1758 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1759 if (!cachep->cpu_cache)
1760 return 1;
1761
97d06609 1762 if (slab_state == DOWN) {
bf0dea23
JK
1763 /* Creation of first cache (kmem_cache). */
1764 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1765 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1766 /* For kmem_cache_node */
1767 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1768 } else {
bf0dea23 1769 int node;
f30cf7d1 1770
bf0dea23
JK
1771 for_each_online_node(node) {
1772 cachep->node[node] = kmalloc_node(
1773 sizeof(struct kmem_cache_node), gfp, node);
1774 BUG_ON(!cachep->node[node]);
1775 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1776 }
1777 }
bf0dea23 1778
6a67368c 1779 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1780 jiffies + REAPTIMEOUT_NODE +
1781 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1782
1783 cpu_cache_get(cachep)->avail = 0;
1784 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1785 cpu_cache_get(cachep)->batchcount = 1;
1786 cpu_cache_get(cachep)->touched = 0;
1787 cachep->batchcount = 1;
1788 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1789 return 0;
f30cf7d1
PE
1790}
1791
0293d1fd 1792slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1793 slab_flags_t flags, const char *name,
12220dea
JK
1794 void (*ctor)(void *))
1795{
1796 return flags;
1797}
1798
1799struct kmem_cache *
f4957d5b 1800__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1801 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1802{
1803 struct kmem_cache *cachep;
1804
1805 cachep = find_mergeable(size, align, flags, name, ctor);
1806 if (cachep) {
1807 cachep->refcount++;
1808
1809 /*
1810 * Adjust the object sizes so that we clear
1811 * the complete object on kzalloc.
1812 */
1813 cachep->object_size = max_t(int, cachep->object_size, size);
1814 }
1815 return cachep;
1816}
1817
b03a017b 1818static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1819 size_t size, slab_flags_t flags)
b03a017b
JK
1820{
1821 size_t left;
1822
1823 cachep->num = 0;
1824
6471384a
AP
1825 /*
1826 * If slab auto-initialization on free is enabled, store the freelist
1827 * off-slab, so that its contents don't end up in one of the allocated
1828 * objects.
1829 */
1830 if (unlikely(slab_want_init_on_free(cachep)))
1831 return false;
1832
5f0d5a3a 1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1834 return false;
1835
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1840
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1843
1844 cachep->colour = left / cachep->colour_off;
1845
1846 return true;
1847}
1848
158e319b 1849static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1850 size_t size, slab_flags_t flags)
158e319b
JK
1851{
1852 size_t left;
1853
1854 cachep->num = 0;
1855
1856 /*
3217fd9b
JK
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
158e319b 1859 */
158e319b
JK
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1862
1863 /*
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1866 */
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1870
1871 /*
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1874 */
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1877
1878 cachep->colour = left / cachep->colour_off;
1879
1880 return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1884 size_t size, slab_flags_t flags)
158e319b
JK
1885{
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1893
1894 cachep->colour = left / cachep->colour_off;
1895
1896 return true;
1897}
1898
1da177e4 1899/**
039363f3 1900 * __kmem_cache_create - Create a cache.
a755b76a 1901 * @cachep: cache management descriptor
1da177e4 1902 * @flags: SLAB flags
1da177e4
LT
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
20c2df83 1906 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1907 *
1da177e4
LT
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1da177e4
LT
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
a862f68a
MR
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1da177e4 1921 */
d50112ed 1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1923{
d4a5fca5 1924 size_t ralign = BYTES_PER_WORD;
83b519e8 1925 gfp_t gfp;
278b1bb1 1926 int err;
be4a7988 1927 unsigned int size = cachep->size;
1da177e4 1928
1da177e4 1929#if DEBUG
1da177e4
LT
1930#if FORCED_DEBUG
1931 /*
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1936 */
87a927c7
DW
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
b28a02de 1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1941 flags |= SLAB_POISON;
1942#endif
1da177e4 1943#endif
1da177e4 1944
a737b3e2
AM
1945 /*
1946 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1949 */
e0771950 1950 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 1951
87a927c7
DW
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
e0771950 1956 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 1957 }
ca5f9703 1958
a44b56d3 1959 /* 3) caller mandated alignment */
8a13a4cc
CL
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1da177e4 1962 }
3ff84a7f
PE
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
a44b56d3 1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 1966 /*
ca5f9703 1967 * 4) Store it.
1da177e4 1968 */
8a13a4cc 1969 cachep->align = ralign;
158e319b
JK
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1da177e4 1974
83b519e8
PE
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1979
1da177e4 1980#if DEBUG
1da177e4 1981
ca5f9703
PE
1982 /*
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1985 */
1da177e4 1986 if (flags & SLAB_RED_ZONE) {
1da177e4 1987 /* add space for red zone words */
3ff84a7f
PE
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1da177e4
LT
1990 }
1991 if (flags & SLAB_STORE_USER) {
ca5f9703 1992 /* user store requires one word storage behind the end of
87a927c7
DW
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1da177e4 1995 */
87a927c7
DW
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
1da177e4 2000 }
832a15d2
JK
2001#endif
2002
7ed2f9e6
AP
2003 kasan_cache_create(cachep, &size, &flags);
2004
832a15d2
JK
2005 size = ALIGN(size, cachep->align);
2006 /*
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 */
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
03a2d2a3
JK
2014 /*
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2020 */
8e57f8ac 2021 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
f3a3c320
JK
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2031 }
2032 }
1da177e4 2033 }
1da177e4
LT
2034#endif
2035
b03a017b
JK
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2039 }
2040
158e319b 2041 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2042 flags |= CFLGS_OFF_SLAB;
158e319b 2043 goto done;
832a15d2 2044 }
1da177e4 2045
158e319b
JK
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
1da177e4 2048
158e319b 2049 return -E2BIG;
1da177e4 2050
158e319b
JK
2051done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2053 cachep->flags = flags;
a57a4988 2054 cachep->allocflags = __GFP_COMP;
a3187e43 2055 if (flags & SLAB_CACHE_DMA)
a618e89f 2056 cachep->allocflags |= GFP_DMA;
6d6ea1e9
NB
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2061 cachep->size = size;
6a2d7a95 2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2063
40b44137
JK
2064#if DEBUG
2065 /*
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2069 */
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076 if (OFF_SLAB(cachep)) {
158e319b
JK
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2079 }
1da177e4 2080
278b1bb1
CL
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
52b4b950 2083 __kmem_cache_release(cachep);
278b1bb1 2084 return err;
2ed3a4ef 2085 }
1da177e4 2086
278b1bb1 2087 return 0;
1da177e4 2088}
1da177e4
LT
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093 BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098 BUG_ON(irqs_disabled());
2099}
2100
18726ca8
JK
2101static void check_mutex_acquired(void)
2102{
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
343e0d7a 2106static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2107{
2108#ifdef CONFIG_SMP
2109 check_irq_off();
18bf8541 2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2111#endif
2112}
e498be7d 2113
343e0d7a 2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2115{
2116#ifdef CONFIG_SMP
2117 check_irq_off();
18bf8541 2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2119#endif
2120}
2121
1da177e4
LT
2122#else
2123#define check_irq_off() do { } while(0)
2124#define check_irq_on() do { } while(0)
18726ca8 2125#define check_mutex_acquired() do { } while(0)
1da177e4 2126#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2127#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2128#endif
2129
18726ca8
JK
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2132{
2133 int tofree;
2134
2135 if (!ac || !ac->avail)
2136 return;
2137
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2141
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
aab2207c 2146
1da177e4
LT
2147static void do_drain(void *arg)
2148{
a737b3e2 2149 struct kmem_cache *cachep = arg;
1da177e4 2150 struct array_cache *ac;
7d6e6d09 2151 int node = numa_mem_id();
18bf8541 2152 struct kmem_cache_node *n;
97654dfa 2153 LIST_HEAD(list);
1da177e4
LT
2154
2155 check_irq_off();
9a2dba4b 2156 ac = cpu_cache_get(cachep);
18bf8541
CL
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
97654dfa 2159 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2160 spin_unlock(&n->list_lock);
97654dfa 2161 slabs_destroy(cachep, &list);
1da177e4
LT
2162 ac->avail = 0;
2163}
2164
343e0d7a 2165static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2166{
ce8eb6c4 2167 struct kmem_cache_node *n;
e498be7d 2168 int node;
18726ca8 2169 LIST_HEAD(list);
e498be7d 2170
15c8b6c1 2171 on_each_cpu(do_drain, cachep, 1);
1da177e4 2172 check_irq_on();
18bf8541
CL
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
ce8eb6c4 2175 drain_alien_cache(cachep, n->alien);
a4523a8b 2176
18726ca8
JK
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2181
2182 slabs_destroy(cachep, &list);
2183 }
1da177e4
LT
2184}
2185
ed11d9eb
CL
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2193 struct kmem_cache_node *n, int tofree)
1da177e4 2194{
ed11d9eb
CL
2195 struct list_head *p;
2196 int nr_freed;
8456a648 2197 struct page *page;
1da177e4 2198
ed11d9eb 2199 nr_freed = 0;
ce8eb6c4 2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2201
ce8eb6c4
CL
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2206 goto out;
2207 }
1da177e4 2208
16cb0ec7
TH
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
f728b0a5 2211 n->free_slabs--;
bf00bd34 2212 n->total_slabs--;
ed11d9eb
CL
2213 /*
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2216 */
ce8eb6c4
CL
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
8456a648 2219 slab_destroy(cache, page);
ed11d9eb 2220 nr_freed++;
1da177e4 2221 }
ed11d9eb
CL
2222out:
2223 return nr_freed;
1da177e4
LT
2224}
2225
f9e13c0a
SB
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228 int node;
2229 struct kmem_cache_node *n;
2230
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2236}
2237
c9fc5864 2238int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2239{
18bf8541
CL
2240 int ret = 0;
2241 int node;
ce8eb6c4 2242 struct kmem_cache_node *n;
e498be7d
CL
2243
2244 drain_cpu_caches(cachep);
2245
2246 check_irq_on();
18bf8541 2247 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2248 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2249
ce8eb6c4
CL
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
e498be7d
CL
2252 }
2253 return (ret ? 1 : 0);
2254}
2255
945cf2b6 2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2257{
c9fc5864 2258 return __kmem_cache_shrink(cachep);
52b4b950
DS
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2262{
12c3667f 2263 int i;
ce8eb6c4 2264 struct kmem_cache_node *n;
1da177e4 2265
c7ce4f60
TG
2266 cache_random_seq_destroy(cachep);
2267
bf0dea23 2268 free_percpu(cachep->cpu_cache);
1da177e4 2269
ce8eb6c4 2270 /* NUMA: free the node structures */
18bf8541
CL
2271 for_each_kmem_cache_node(cachep, i, n) {
2272 kfree(n->shared);
2273 free_alien_cache(n->alien);
2274 kfree(n);
2275 cachep->node[i] = NULL;
12c3667f 2276 }
1da177e4 2277}
1da177e4 2278
e5ac9c5a
RT
2279/*
2280 * Get the memory for a slab management obj.
5f0985bb
JZ
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
e5ac9c5a 2292 */
7e007355 2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2294 struct page *page, int colour_off,
2295 gfp_t local_flags, int nodeid)
1da177e4 2296{
7e007355 2297 void *freelist;
0c3aa83e 2298 void *addr = page_address(page);
b28a02de 2299
51dedad0 2300 page->s_mem = addr + colour_off;
2e6b3602
JK
2301 page->active = 0;
2302
b03a017b
JK
2303 if (OBJFREELIST_SLAB(cachep))
2304 freelist = NULL;
2305 else if (OFF_SLAB(cachep)) {
1da177e4 2306 /* Slab management obj is off-slab. */
8456a648 2307 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2308 local_flags, nodeid);
8456a648 2309 if (!freelist)
1da177e4
LT
2310 return NULL;
2311 } else {
2e6b3602
JK
2312 /* We will use last bytes at the slab for freelist */
2313 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2314 cachep->freelist_size;
1da177e4 2315 }
2e6b3602 2316
8456a648 2317 return freelist;
1da177e4
LT
2318}
2319
7cc68973 2320static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2321{
a41adfaa 2322 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2323}
2324
2325static inline void set_free_obj(struct page *page,
7cc68973 2326 unsigned int idx, freelist_idx_t val)
e5c58dfd 2327{
a41adfaa 2328 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2329}
2330
10b2e9e8 2331static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2332{
10b2e9e8 2333#if DEBUG
1da177e4
LT
2334 int i;
2335
2336 for (i = 0; i < cachep->num; i++) {
8456a648 2337 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2338
1da177e4
LT
2339 if (cachep->flags & SLAB_STORE_USER)
2340 *dbg_userword(cachep, objp) = NULL;
2341
2342 if (cachep->flags & SLAB_RED_ZONE) {
2343 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2344 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2345 }
2346 /*
a737b3e2
AM
2347 * Constructors are not allowed to allocate memory from the same
2348 * cache which they are a constructor for. Otherwise, deadlock.
2349 * They must also be threaded.
1da177e4 2350 */
7ed2f9e6
AP
2351 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2352 kasan_unpoison_object_data(cachep,
2353 objp + obj_offset(cachep));
51cc5068 2354 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2355 kasan_poison_object_data(
2356 cachep, objp + obj_offset(cachep));
2357 }
1da177e4
LT
2358
2359 if (cachep->flags & SLAB_RED_ZONE) {
2360 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2361 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2362 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2363 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2364 }
40b44137
JK
2365 /* need to poison the objs? */
2366 if (cachep->flags & SLAB_POISON) {
2367 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2368 slab_kernel_map(cachep, objp, 0);
40b44137 2369 }
10b2e9e8 2370 }
1da177e4 2371#endif
10b2e9e8
JK
2372}
2373
c7ce4f60
TG
2374#ifdef CONFIG_SLAB_FREELIST_RANDOM
2375/* Hold information during a freelist initialization */
2376union freelist_init_state {
2377 struct {
2378 unsigned int pos;
7c00fce9 2379 unsigned int *list;
c7ce4f60 2380 unsigned int count;
c7ce4f60
TG
2381 };
2382 struct rnd_state rnd_state;
2383};
2384
2385/*
2386 * Initialize the state based on the randomization methode available.
2387 * return true if the pre-computed list is available, false otherwize.
2388 */
2389static bool freelist_state_initialize(union freelist_init_state *state,
2390 struct kmem_cache *cachep,
2391 unsigned int count)
2392{
2393 bool ret;
2394 unsigned int rand;
2395
2396 /* Use best entropy available to define a random shift */
7c00fce9 2397 rand = get_random_int();
c7ce4f60
TG
2398
2399 /* Use a random state if the pre-computed list is not available */
2400 if (!cachep->random_seq) {
2401 prandom_seed_state(&state->rnd_state, rand);
2402 ret = false;
2403 } else {
2404 state->list = cachep->random_seq;
2405 state->count = count;
c4e490cf 2406 state->pos = rand % count;
c7ce4f60
TG
2407 ret = true;
2408 }
2409 return ret;
2410}
2411
2412/* Get the next entry on the list and randomize it using a random shift */
2413static freelist_idx_t next_random_slot(union freelist_init_state *state)
2414{
c4e490cf
JS
2415 if (state->pos >= state->count)
2416 state->pos = 0;
2417 return state->list[state->pos++];
c7ce4f60
TG
2418}
2419
7c00fce9
TG
2420/* Swap two freelist entries */
2421static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2422{
2423 swap(((freelist_idx_t *)page->freelist)[a],
2424 ((freelist_idx_t *)page->freelist)[b]);
2425}
2426
c7ce4f60
TG
2427/*
2428 * Shuffle the freelist initialization state based on pre-computed lists.
2429 * return true if the list was successfully shuffled, false otherwise.
2430 */
2431static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2432{
7c00fce9 2433 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2434 union freelist_init_state state;
2435 bool precomputed;
2436
2437 if (count < 2)
2438 return false;
2439
2440 precomputed = freelist_state_initialize(&state, cachep, count);
2441
2442 /* Take a random entry as the objfreelist */
2443 if (OBJFREELIST_SLAB(cachep)) {
2444 if (!precomputed)
2445 objfreelist = count - 1;
2446 else
2447 objfreelist = next_random_slot(&state);
2448 page->freelist = index_to_obj(cachep, page, objfreelist) +
2449 obj_offset(cachep);
2450 count--;
2451 }
2452
2453 /*
2454 * On early boot, generate the list dynamically.
2455 * Later use a pre-computed list for speed.
2456 */
2457 if (!precomputed) {
7c00fce9
TG
2458 for (i = 0; i < count; i++)
2459 set_free_obj(page, i, i);
2460
2461 /* Fisher-Yates shuffle */
2462 for (i = count - 1; i > 0; i--) {
2463 rand = prandom_u32_state(&state.rnd_state);
2464 rand %= (i + 1);
2465 swap_free_obj(page, i, rand);
2466 }
c7ce4f60
TG
2467 } else {
2468 for (i = 0; i < count; i++)
2469 set_free_obj(page, i, next_random_slot(&state));
2470 }
2471
2472 if (OBJFREELIST_SLAB(cachep))
2473 set_free_obj(page, cachep->num - 1, objfreelist);
2474
2475 return true;
2476}
2477#else
2478static inline bool shuffle_freelist(struct kmem_cache *cachep,
2479 struct page *page)
2480{
2481 return false;
2482}
2483#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2484
10b2e9e8
JK
2485static void cache_init_objs(struct kmem_cache *cachep,
2486 struct page *page)
2487{
2488 int i;
7ed2f9e6 2489 void *objp;
c7ce4f60 2490 bool shuffled;
10b2e9e8
JK
2491
2492 cache_init_objs_debug(cachep, page);
2493
c7ce4f60
TG
2494 /* Try to randomize the freelist if enabled */
2495 shuffled = shuffle_freelist(cachep, page);
2496
2497 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2498 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2499 obj_offset(cachep);
2500 }
2501
10b2e9e8 2502 for (i = 0; i < cachep->num; i++) {
b3cbd9bf 2503 objp = index_to_obj(cachep, page, i);
4d176711 2504 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2505
10b2e9e8 2506 /* constructor could break poison info */
7ed2f9e6 2507 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2508 kasan_unpoison_object_data(cachep, objp);
2509 cachep->ctor(objp);
2510 kasan_poison_object_data(cachep, objp);
2511 }
10b2e9e8 2512
c7ce4f60
TG
2513 if (!shuffled)
2514 set_free_obj(page, i, i);
1da177e4 2515 }
1da177e4
LT
2516}
2517
260b61dd 2518static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2519{
b1cb0982 2520 void *objp;
78d382d7 2521
e5c58dfd 2522 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2523 page->active++;
78d382d7
MD
2524
2525 return objp;
2526}
2527
260b61dd
JK
2528static void slab_put_obj(struct kmem_cache *cachep,
2529 struct page *page, void *objp)
78d382d7 2530{
8456a648 2531 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2532#if DEBUG
16025177 2533 unsigned int i;
b1cb0982 2534
b1cb0982 2535 /* Verify double free bug */
8456a648 2536 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2537 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2538 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2539 cachep->name, objp);
b1cb0982
JK
2540 BUG();
2541 }
78d382d7
MD
2542 }
2543#endif
8456a648 2544 page->active--;
b03a017b
JK
2545 if (!page->freelist)
2546 page->freelist = objp + obj_offset(cachep);
2547
e5c58dfd 2548 set_free_obj(page, page->active, objnr);
78d382d7
MD
2549}
2550
4776874f
PE
2551/*
2552 * Map pages beginning at addr to the given cache and slab. This is required
2553 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2554 * virtual address for kfree, ksize, and slab debugging.
4776874f 2555 */
8456a648 2556static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2557 void *freelist)
1da177e4 2558{
a57a4988 2559 page->slab_cache = cache;
8456a648 2560 page->freelist = freelist;
1da177e4
LT
2561}
2562
2563/*
2564 * Grow (by 1) the number of slabs within a cache. This is called by
2565 * kmem_cache_alloc() when there are no active objs left in a cache.
2566 */
76b342bd
JK
2567static struct page *cache_grow_begin(struct kmem_cache *cachep,
2568 gfp_t flags, int nodeid)
1da177e4 2569{
7e007355 2570 void *freelist;
b28a02de
PE
2571 size_t offset;
2572 gfp_t local_flags;
511e3a05 2573 int page_node;
ce8eb6c4 2574 struct kmem_cache_node *n;
511e3a05 2575 struct page *page;
1da177e4 2576
a737b3e2
AM
2577 /*
2578 * Be lazy and only check for valid flags here, keeping it out of the
2579 * critical path in kmem_cache_alloc().
1da177e4 2580 */
44405099
LL
2581 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2582 flags = kmalloc_fix_flags(flags);
2583
128227e7 2584 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2585 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2586
1da177e4 2587 check_irq_off();
d0164adc 2588 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2589 local_irq_enable();
2590
a737b3e2
AM
2591 /*
2592 * Get mem for the objs. Attempt to allocate a physical page from
2593 * 'nodeid'.
e498be7d 2594 */
511e3a05 2595 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2596 if (!page)
1da177e4
LT
2597 goto failed;
2598
511e3a05
JK
2599 page_node = page_to_nid(page);
2600 n = get_node(cachep, page_node);
03d1d43a
JK
2601
2602 /* Get colour for the slab, and cal the next value. */
2603 n->colour_next++;
2604 if (n->colour_next >= cachep->colour)
2605 n->colour_next = 0;
2606
2607 offset = n->colour_next;
2608 if (offset >= cachep->colour)
2609 offset = 0;
2610
2611 offset *= cachep->colour_off;
2612
51dedad0
AK
2613 /*
2614 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2615 * page_address() in the latter returns a non-tagged pointer,
2616 * as it should be for slab pages.
2617 */
2618 kasan_poison_slab(page);
2619
1da177e4 2620 /* Get slab management. */
8456a648 2621 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2622 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2623 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2624 goto opps1;
2625
8456a648 2626 slab_map_pages(cachep, page, freelist);
1da177e4 2627
8456a648 2628 cache_init_objs(cachep, page);
1da177e4 2629
d0164adc 2630 if (gfpflags_allow_blocking(local_flags))
1da177e4 2631 local_irq_disable();
1da177e4 2632
76b342bd
JK
2633 return page;
2634
a737b3e2 2635opps1:
0c3aa83e 2636 kmem_freepages(cachep, page);
a737b3e2 2637failed:
d0164adc 2638 if (gfpflags_allow_blocking(local_flags))
1da177e4 2639 local_irq_disable();
76b342bd
JK
2640 return NULL;
2641}
2642
2643static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2644{
2645 struct kmem_cache_node *n;
2646 void *list = NULL;
2647
2648 check_irq_off();
2649
2650 if (!page)
2651 return;
2652
16cb0ec7 2653 INIT_LIST_HEAD(&page->slab_list);
76b342bd
JK
2654 n = get_node(cachep, page_to_nid(page));
2655
2656 spin_lock(&n->list_lock);
bf00bd34 2657 n->total_slabs++;
f728b0a5 2658 if (!page->active) {
16cb0ec7 2659 list_add_tail(&page->slab_list, &n->slabs_free);
f728b0a5 2660 n->free_slabs++;
bf00bd34 2661 } else
76b342bd 2662 fixup_slab_list(cachep, n, page, &list);
07a63c41 2663
76b342bd
JK
2664 STATS_INC_GROWN(cachep);
2665 n->free_objects += cachep->num - page->active;
2666 spin_unlock(&n->list_lock);
2667
2668 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2669}
2670
2671#if DEBUG
2672
2673/*
2674 * Perform extra freeing checks:
2675 * - detect bad pointers.
2676 * - POISON/RED_ZONE checking
1da177e4
LT
2677 */
2678static void kfree_debugcheck(const void *objp)
2679{
1da177e4 2680 if (!virt_addr_valid(objp)) {
1170532b 2681 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2682 (unsigned long)objp);
2683 BUG();
1da177e4 2684 }
1da177e4
LT
2685}
2686
58ce1fd5
PE
2687static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2688{
b46b8f19 2689 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2690
2691 redzone1 = *dbg_redzone1(cache, obj);
2692 redzone2 = *dbg_redzone2(cache, obj);
2693
2694 /*
2695 * Redzone is ok.
2696 */
2697 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2698 return;
2699
2700 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2701 slab_error(cache, "double free detected");
2702 else
2703 slab_error(cache, "memory outside object was overwritten");
2704
85c3e4a5 2705 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2706 obj, redzone1, redzone2);
58ce1fd5
PE
2707}
2708
343e0d7a 2709static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2710 unsigned long caller)
1da177e4 2711{
1da177e4 2712 unsigned int objnr;
8456a648 2713 struct page *page;
1da177e4 2714
80cbd911
MW
2715 BUG_ON(virt_to_cache(objp) != cachep);
2716
3dafccf2 2717 objp -= obj_offset(cachep);
1da177e4 2718 kfree_debugcheck(objp);
b49af68f 2719 page = virt_to_head_page(objp);
1da177e4 2720
1da177e4 2721 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2722 verify_redzone_free(cachep, objp);
1da177e4
LT
2723 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2724 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2725 }
7878c231 2726 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2727 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2728
8456a648 2729 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2730
2731 BUG_ON(objnr >= cachep->num);
8456a648 2732 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2733
1da177e4 2734 if (cachep->flags & SLAB_POISON) {
1da177e4 2735 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2736 slab_kernel_map(cachep, objp, 0);
1da177e4
LT
2737 }
2738 return objp;
2739}
2740
1da177e4
LT
2741#else
2742#define kfree_debugcheck(x) do { } while(0)
2743#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2744#endif
2745
b03a017b
JK
2746static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2747 void **list)
2748{
2749#if DEBUG
2750 void *next = *list;
2751 void *objp;
2752
2753 while (next) {
2754 objp = next - obj_offset(cachep);
2755 next = *(void **)next;
2756 poison_obj(cachep, objp, POISON_FREE);
2757 }
2758#endif
2759}
2760
d8410234 2761static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2762 struct kmem_cache_node *n, struct page *page,
2763 void **list)
d8410234
JK
2764{
2765 /* move slabp to correct slabp list: */
16cb0ec7 2766 list_del(&page->slab_list);
b03a017b 2767 if (page->active == cachep->num) {
16cb0ec7 2768 list_add(&page->slab_list, &n->slabs_full);
b03a017b
JK
2769 if (OBJFREELIST_SLAB(cachep)) {
2770#if DEBUG
2771 /* Poisoning will be done without holding the lock */
2772 if (cachep->flags & SLAB_POISON) {
2773 void **objp = page->freelist;
2774
2775 *objp = *list;
2776 *list = objp;
2777 }
2778#endif
2779 page->freelist = NULL;
2780 }
2781 } else
16cb0ec7 2782 list_add(&page->slab_list, &n->slabs_partial);
d8410234
JK
2783}
2784
f68f8ddd
JK
2785/* Try to find non-pfmemalloc slab if needed */
2786static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2787 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2788{
2789 if (!page)
2790 return NULL;
2791
2792 if (pfmemalloc)
2793 return page;
2794
2795 if (!PageSlabPfmemalloc(page))
2796 return page;
2797
2798 /* No need to keep pfmemalloc slab if we have enough free objects */
2799 if (n->free_objects > n->free_limit) {
2800 ClearPageSlabPfmemalloc(page);
2801 return page;
2802 }
2803
2804 /* Move pfmemalloc slab to the end of list to speed up next search */
16cb0ec7 2805 list_del(&page->slab_list);
bf00bd34 2806 if (!page->active) {
16cb0ec7 2807 list_add_tail(&page->slab_list, &n->slabs_free);
bf00bd34 2808 n->free_slabs++;
f728b0a5 2809 } else
16cb0ec7 2810 list_add_tail(&page->slab_list, &n->slabs_partial);
f68f8ddd 2811
16cb0ec7 2812 list_for_each_entry(page, &n->slabs_partial, slab_list) {
f68f8ddd
JK
2813 if (!PageSlabPfmemalloc(page))
2814 return page;
2815 }
2816
f728b0a5 2817 n->free_touched = 1;
16cb0ec7 2818 list_for_each_entry(page, &n->slabs_free, slab_list) {
f728b0a5 2819 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2820 n->free_slabs--;
f68f8ddd 2821 return page;
f728b0a5 2822 }
f68f8ddd
JK
2823 }
2824
2825 return NULL;
2826}
2827
2828static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2829{
2830 struct page *page;
2831
f728b0a5 2832 assert_spin_locked(&n->list_lock);
16cb0ec7
TH
2833 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2834 slab_list);
7aa0d227
GT
2835 if (!page) {
2836 n->free_touched = 1;
bf00bd34 2837 page = list_first_entry_or_null(&n->slabs_free, struct page,
16cb0ec7 2838 slab_list);
f728b0a5 2839 if (page)
bf00bd34 2840 n->free_slabs--;
7aa0d227
GT
2841 }
2842
f68f8ddd 2843 if (sk_memalloc_socks())
bf00bd34 2844 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2845
7aa0d227
GT
2846 return page;
2847}
2848
f68f8ddd
JK
2849static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2850 struct kmem_cache_node *n, gfp_t flags)
2851{
2852 struct page *page;
2853 void *obj;
2854 void *list = NULL;
2855
2856 if (!gfp_pfmemalloc_allowed(flags))
2857 return NULL;
2858
2859 spin_lock(&n->list_lock);
2860 page = get_first_slab(n, true);
2861 if (!page) {
2862 spin_unlock(&n->list_lock);
2863 return NULL;
2864 }
2865
2866 obj = slab_get_obj(cachep, page);
2867 n->free_objects--;
2868
2869 fixup_slab_list(cachep, n, page, &list);
2870
2871 spin_unlock(&n->list_lock);
2872 fixup_objfreelist_debug(cachep, &list);
2873
2874 return obj;
2875}
2876
213b4695
JK
2877/*
2878 * Slab list should be fixed up by fixup_slab_list() for existing slab
2879 * or cache_grow_end() for new slab
2880 */
2881static __always_inline int alloc_block(struct kmem_cache *cachep,
2882 struct array_cache *ac, struct page *page, int batchcount)
2883{
2884 /*
2885 * There must be at least one object available for
2886 * allocation.
2887 */
2888 BUG_ON(page->active >= cachep->num);
2889
2890 while (page->active < cachep->num && batchcount--) {
2891 STATS_INC_ALLOCED(cachep);
2892 STATS_INC_ACTIVE(cachep);
2893 STATS_SET_HIGH(cachep);
2894
2895 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2896 }
2897
2898 return batchcount;
2899}
2900
f68f8ddd 2901static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2902{
2903 int batchcount;
ce8eb6c4 2904 struct kmem_cache_node *n;
801faf0d 2905 struct array_cache *ac, *shared;
1ca4cb24 2906 int node;
b03a017b 2907 void *list = NULL;
76b342bd 2908 struct page *page;
1ca4cb24 2909
1da177e4 2910 check_irq_off();
7d6e6d09 2911 node = numa_mem_id();
f68f8ddd 2912
9a2dba4b 2913 ac = cpu_cache_get(cachep);
1da177e4
LT
2914 batchcount = ac->batchcount;
2915 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2916 /*
2917 * If there was little recent activity on this cache, then
2918 * perform only a partial refill. Otherwise we could generate
2919 * refill bouncing.
1da177e4
LT
2920 */
2921 batchcount = BATCHREFILL_LIMIT;
2922 }
18bf8541 2923 n = get_node(cachep, node);
e498be7d 2924
ce8eb6c4 2925 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2926 shared = READ_ONCE(n->shared);
2927 if (!n->free_objects && (!shared || !shared->avail))
2928 goto direct_grow;
2929
ce8eb6c4 2930 spin_lock(&n->list_lock);
801faf0d 2931 shared = READ_ONCE(n->shared);
1da177e4 2932
3ded175a 2933 /* See if we can refill from the shared array */
801faf0d
JK
2934 if (shared && transfer_objects(ac, shared, batchcount)) {
2935 shared->touched = 1;
3ded175a 2936 goto alloc_done;
44b57f1c 2937 }
3ded175a 2938
1da177e4 2939 while (batchcount > 0) {
1da177e4 2940 /* Get slab alloc is to come from. */
f68f8ddd 2941 page = get_first_slab(n, false);
7aa0d227
GT
2942 if (!page)
2943 goto must_grow;
1da177e4 2944
1da177e4 2945 check_spinlock_acquired(cachep);
714b8171 2946
213b4695 2947 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 2948 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2949 }
2950
a737b3e2 2951must_grow:
ce8eb6c4 2952 n->free_objects -= ac->avail;
a737b3e2 2953alloc_done:
ce8eb6c4 2954 spin_unlock(&n->list_lock);
b03a017b 2955 fixup_objfreelist_debug(cachep, &list);
1da177e4 2956
801faf0d 2957direct_grow:
1da177e4 2958 if (unlikely(!ac->avail)) {
f68f8ddd
JK
2959 /* Check if we can use obj in pfmemalloc slab */
2960 if (sk_memalloc_socks()) {
2961 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2962
2963 if (obj)
2964 return obj;
2965 }
2966
76b342bd 2967 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 2968
76b342bd
JK
2969 /*
2970 * cache_grow_begin() can reenable interrupts,
2971 * then ac could change.
2972 */
9a2dba4b 2973 ac = cpu_cache_get(cachep);
213b4695
JK
2974 if (!ac->avail && page)
2975 alloc_block(cachep, ac, page, batchcount);
2976 cache_grow_end(cachep, page);
072bb0aa 2977
213b4695 2978 if (!ac->avail)
1da177e4 2979 return NULL;
1da177e4
LT
2980 }
2981 ac->touched = 1;
072bb0aa 2982
f68f8ddd 2983 return ac->entry[--ac->avail];
1da177e4
LT
2984}
2985
a737b3e2
AM
2986static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2987 gfp_t flags)
1da177e4 2988{
d0164adc 2989 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2990}
2991
2992#if DEBUG
a737b3e2 2993static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2994 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2995{
128227e7 2996 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
b28a02de 2997 if (!objp)
1da177e4 2998 return objp;
b28a02de 2999 if (cachep->flags & SLAB_POISON) {
1da177e4 3000 check_poison_obj(cachep, objp);
80552f0f 3001 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
3002 poison_obj(cachep, objp, POISON_INUSE);
3003 }
3004 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3005 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3006
3007 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3008 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3009 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3010 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3011 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3012 objp, *dbg_redzone1(cachep, objp),
3013 *dbg_redzone2(cachep, objp));
1da177e4
LT
3014 }
3015 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3016 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3017 }
03787301 3018
3dafccf2 3019 objp += obj_offset(cachep);
4f104934 3020 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3021 cachep->ctor(objp);
7ea466f2
TH
3022 if (ARCH_SLAB_MINALIGN &&
3023 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3024 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3025 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3026 }
1da177e4
LT
3027 return objp;
3028}
3029#else
3030#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3031#endif
3032
343e0d7a 3033static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3034{
b28a02de 3035 void *objp;
1da177e4
LT
3036 struct array_cache *ac;
3037
5c382300 3038 check_irq_off();
8a8b6502 3039
9a2dba4b 3040 ac = cpu_cache_get(cachep);
1da177e4 3041 if (likely(ac->avail)) {
1da177e4 3042 ac->touched = 1;
f68f8ddd 3043 objp = ac->entry[--ac->avail];
072bb0aa 3044
f68f8ddd
JK
3045 STATS_INC_ALLOCHIT(cachep);
3046 goto out;
1da177e4 3047 }
072bb0aa
MG
3048
3049 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3050 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3051 /*
3052 * the 'ac' may be updated by cache_alloc_refill(),
3053 * and kmemleak_erase() requires its correct value.
3054 */
3055 ac = cpu_cache_get(cachep);
3056
3057out:
d5cff635
CM
3058 /*
3059 * To avoid a false negative, if an object that is in one of the
3060 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3061 * treat the array pointers as a reference to the object.
3062 */
f3d8b53a
O
3063 if (objp)
3064 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3065 return objp;
3066}
3067
e498be7d 3068#ifdef CONFIG_NUMA
c61afb18 3069/*
2ad654bc 3070 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3071 *
3072 * If we are in_interrupt, then process context, including cpusets and
3073 * mempolicy, may not apply and should not be used for allocation policy.
3074 */
3075static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3076{
3077 int nid_alloc, nid_here;
3078
765c4507 3079 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3080 return NULL;
7d6e6d09 3081 nid_alloc = nid_here = numa_mem_id();
c61afb18 3082 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3083 nid_alloc = cpuset_slab_spread_node();
c61afb18 3084 else if (current->mempolicy)
2a389610 3085 nid_alloc = mempolicy_slab_node();
c61afb18 3086 if (nid_alloc != nid_here)
8b98c169 3087 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3088 return NULL;
3089}
3090
765c4507
CL
3091/*
3092 * Fallback function if there was no memory available and no objects on a
3c517a61 3093 * certain node and fall back is permitted. First we scan all the
6a67368c 3094 * available node for available objects. If that fails then we
3c517a61
CL
3095 * perform an allocation without specifying a node. This allows the page
3096 * allocator to do its reclaim / fallback magic. We then insert the
3097 * slab into the proper nodelist and then allocate from it.
765c4507 3098 */
8c8cc2c1 3099static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3100{
8c8cc2c1 3101 struct zonelist *zonelist;
dd1a239f 3102 struct zoneref *z;
54a6eb5c 3103 struct zone *zone;
97a225e6 3104 enum zone_type highest_zoneidx = gfp_zone(flags);
765c4507 3105 void *obj = NULL;
76b342bd 3106 struct page *page;
3c517a61 3107 int nid;
cc9a6c87 3108 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3109
3110 if (flags & __GFP_THISNODE)
3111 return NULL;
3112
cc9a6c87 3113retry_cpuset:
d26914d1 3114 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3115 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3116
3c517a61
CL
3117retry:
3118 /*
3119 * Look through allowed nodes for objects available
3120 * from existing per node queues.
3121 */
97a225e6 3122 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
54a6eb5c 3123 nid = zone_to_nid(zone);
aedb0eb1 3124
061d7074 3125 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3126 get_node(cache, nid) &&
3127 get_node(cache, nid)->free_objects) {
3c517a61 3128 obj = ____cache_alloc_node(cache,
4167e9b2 3129 gfp_exact_node(flags), nid);
481c5346
CL
3130 if (obj)
3131 break;
3132 }
3c517a61
CL
3133 }
3134
cfce6604 3135 if (!obj) {
3c517a61
CL
3136 /*
3137 * This allocation will be performed within the constraints
3138 * of the current cpuset / memory policy requirements.
3139 * We may trigger various forms of reclaim on the allowed
3140 * set and go into memory reserves if necessary.
3141 */
76b342bd
JK
3142 page = cache_grow_begin(cache, flags, numa_mem_id());
3143 cache_grow_end(cache, page);
3144 if (page) {
3145 nid = page_to_nid(page);
511e3a05
JK
3146 obj = ____cache_alloc_node(cache,
3147 gfp_exact_node(flags), nid);
0c3aa83e 3148
3c517a61 3149 /*
511e3a05
JK
3150 * Another processor may allocate the objects in
3151 * the slab since we are not holding any locks.
3c517a61 3152 */
511e3a05
JK
3153 if (!obj)
3154 goto retry;
3c517a61 3155 }
aedb0eb1 3156 }
cc9a6c87 3157
d26914d1 3158 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3159 goto retry_cpuset;
765c4507
CL
3160 return obj;
3161}
3162
e498be7d
CL
3163/*
3164 * A interface to enable slab creation on nodeid
1da177e4 3165 */
8b98c169 3166static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3167 int nodeid)
e498be7d 3168{
8456a648 3169 struct page *page;
ce8eb6c4 3170 struct kmem_cache_node *n;
213b4695 3171 void *obj = NULL;
b03a017b 3172 void *list = NULL;
b28a02de 3173
7c3fbbdd 3174 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3175 n = get_node(cachep, nodeid);
ce8eb6c4 3176 BUG_ON(!n);
b28a02de 3177
ca3b9b91 3178 check_irq_off();
ce8eb6c4 3179 spin_lock(&n->list_lock);
f68f8ddd 3180 page = get_first_slab(n, false);
7aa0d227
GT
3181 if (!page)
3182 goto must_grow;
b28a02de 3183
b28a02de 3184 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3185
3186 STATS_INC_NODEALLOCS(cachep);
3187 STATS_INC_ACTIVE(cachep);
3188 STATS_SET_HIGH(cachep);
3189
8456a648 3190 BUG_ON(page->active == cachep->num);
b28a02de 3191
260b61dd 3192 obj = slab_get_obj(cachep, page);
ce8eb6c4 3193 n->free_objects--;
b28a02de 3194
b03a017b 3195 fixup_slab_list(cachep, n, page, &list);
e498be7d 3196
ce8eb6c4 3197 spin_unlock(&n->list_lock);
b03a017b 3198 fixup_objfreelist_debug(cachep, &list);
213b4695 3199 return obj;
e498be7d 3200
a737b3e2 3201must_grow:
ce8eb6c4 3202 spin_unlock(&n->list_lock);
76b342bd 3203 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3204 if (page) {
3205 /* This slab isn't counted yet so don't update free_objects */
3206 obj = slab_get_obj(cachep, page);
3207 }
76b342bd 3208 cache_grow_end(cachep, page);
1da177e4 3209
213b4695 3210 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3211}
8c8cc2c1 3212
8c8cc2c1 3213static __always_inline void *
48356303 3214slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3215 unsigned long caller)
8c8cc2c1
PE
3216{
3217 unsigned long save_flags;
3218 void *ptr;
7d6e6d09 3219 int slab_node = numa_mem_id();
964d4bd3 3220 struct obj_cgroup *objcg = NULL;
8c8cc2c1 3221
dcce284a 3222 flags &= gfp_allowed_mask;
964d4bd3 3223 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
011eceaf 3224 if (unlikely(!cachep))
824ebef1
AM
3225 return NULL;
3226
8c8cc2c1
PE
3227 cache_alloc_debugcheck_before(cachep, flags);
3228 local_irq_save(save_flags);
3229
eacbbae3 3230 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3231 nodeid = slab_node;
8c8cc2c1 3232
18bf8541 3233 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3234 /* Node not bootstrapped yet */
3235 ptr = fallback_alloc(cachep, flags);
3236 goto out;
3237 }
3238
7d6e6d09 3239 if (nodeid == slab_node) {
8c8cc2c1
PE
3240 /*
3241 * Use the locally cached objects if possible.
3242 * However ____cache_alloc does not allow fallback
3243 * to other nodes. It may fail while we still have
3244 * objects on other nodes available.
3245 */
3246 ptr = ____cache_alloc(cachep, flags);
3247 if (ptr)
3248 goto out;
3249 }
3250 /* ___cache_alloc_node can fall back to other nodes */
3251 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3252 out:
3253 local_irq_restore(save_flags);
3254 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3255
6471384a 3256 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
d5e3ed66 3257 memset(ptr, 0, cachep->object_size);
d07dbea4 3258
964d4bd3 3259 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr);
8c8cc2c1
PE
3260 return ptr;
3261}
3262
3263static __always_inline void *
3264__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3265{
3266 void *objp;
3267
2ad654bc 3268 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3269 objp = alternate_node_alloc(cache, flags);
3270 if (objp)
3271 goto out;
3272 }
3273 objp = ____cache_alloc(cache, flags);
3274
3275 /*
3276 * We may just have run out of memory on the local node.
3277 * ____cache_alloc_node() knows how to locate memory on other nodes
3278 */
7d6e6d09
LS
3279 if (!objp)
3280 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3281
3282 out:
3283 return objp;
3284}
3285#else
3286
3287static __always_inline void *
3288__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3289{
3290 return ____cache_alloc(cachep, flags);
3291}
3292
3293#endif /* CONFIG_NUMA */
3294
3295static __always_inline void *
48356303 3296slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3297{
3298 unsigned long save_flags;
3299 void *objp;
964d4bd3 3300 struct obj_cgroup *objcg = NULL;
8c8cc2c1 3301
dcce284a 3302 flags &= gfp_allowed_mask;
964d4bd3 3303 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
011eceaf 3304 if (unlikely(!cachep))
824ebef1
AM
3305 return NULL;
3306
8c8cc2c1
PE
3307 cache_alloc_debugcheck_before(cachep, flags);
3308 local_irq_save(save_flags);
3309 objp = __do_cache_alloc(cachep, flags);
3310 local_irq_restore(save_flags);
3311 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3312 prefetchw(objp);
3313
6471384a 3314 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
d5e3ed66 3315 memset(objp, 0, cachep->object_size);
d07dbea4 3316
964d4bd3 3317 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp);
8c8cc2c1
PE
3318 return objp;
3319}
e498be7d
CL
3320
3321/*
5f0985bb 3322 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3323 * @list: List of detached free slabs should be freed by caller
e498be7d 3324 */
97654dfa
JK
3325static void free_block(struct kmem_cache *cachep, void **objpp,
3326 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3327{
3328 int i;
25c063fb 3329 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3330 struct page *page;
3331
3332 n->free_objects += nr_objects;
1da177e4
LT
3333
3334 for (i = 0; i < nr_objects; i++) {
072bb0aa 3335 void *objp;
8456a648 3336 struct page *page;
1da177e4 3337
072bb0aa
MG
3338 objp = objpp[i];
3339
8456a648 3340 page = virt_to_head_page(objp);
16cb0ec7 3341 list_del(&page->slab_list);
ff69416e 3342 check_spinlock_acquired_node(cachep, node);
260b61dd 3343 slab_put_obj(cachep, page, objp);
1da177e4 3344 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3345
3346 /* fixup slab chains */
f728b0a5 3347 if (page->active == 0) {
16cb0ec7 3348 list_add(&page->slab_list, &n->slabs_free);
f728b0a5 3349 n->free_slabs++;
f728b0a5 3350 } else {
1da177e4
LT
3351 /* Unconditionally move a slab to the end of the
3352 * partial list on free - maximum time for the
3353 * other objects to be freed, too.
3354 */
16cb0ec7 3355 list_add_tail(&page->slab_list, &n->slabs_partial);
1da177e4
LT
3356 }
3357 }
6052b788
JK
3358
3359 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3360 n->free_objects -= cachep->num;
3361
16cb0ec7
TH
3362 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3363 list_move(&page->slab_list, list);
f728b0a5 3364 n->free_slabs--;
bf00bd34 3365 n->total_slabs--;
6052b788 3366 }
1da177e4
LT
3367}
3368
343e0d7a 3369static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3370{
3371 int batchcount;
ce8eb6c4 3372 struct kmem_cache_node *n;
7d6e6d09 3373 int node = numa_mem_id();
97654dfa 3374 LIST_HEAD(list);
1da177e4
LT
3375
3376 batchcount = ac->batchcount;
260b61dd 3377
1da177e4 3378 check_irq_off();
18bf8541 3379 n = get_node(cachep, node);
ce8eb6c4
CL
3380 spin_lock(&n->list_lock);
3381 if (n->shared) {
3382 struct array_cache *shared_array = n->shared;
b28a02de 3383 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3384 if (max) {
3385 if (batchcount > max)
3386 batchcount = max;
e498be7d 3387 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3388 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3389 shared_array->avail += batchcount;
3390 goto free_done;
3391 }
3392 }
3393
97654dfa 3394 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3395free_done:
1da177e4
LT
3396#if STATS
3397 {
3398 int i = 0;
73c0219d 3399 struct page *page;
1da177e4 3400
16cb0ec7 3401 list_for_each_entry(page, &n->slabs_free, slab_list) {
8456a648 3402 BUG_ON(page->active);
1da177e4
LT
3403
3404 i++;
1da177e4
LT
3405 }
3406 STATS_SET_FREEABLE(cachep, i);
3407 }
3408#endif
ce8eb6c4 3409 spin_unlock(&n->list_lock);
97654dfa 3410 slabs_destroy(cachep, &list);
1da177e4 3411 ac->avail -= batchcount;
a737b3e2 3412 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3413}
3414
3415/*
a737b3e2
AM
3416 * Release an obj back to its cache. If the obj has a constructed state, it must
3417 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3418 */
ee3ce779
DV
3419static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3420 unsigned long caller)
1da177e4 3421{
55834c59 3422 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3423 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3424 return;
3425
cfbe1636
ME
3426 /* Use KCSAN to help debug racy use-after-free. */
3427 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3428 __kcsan_check_access(objp, cachep->object_size,
3429 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3430
55834c59
AP
3431 ___cache_free(cachep, objp, caller);
3432}
1da177e4 3433
55834c59
AP
3434void ___cache_free(struct kmem_cache *cachep, void *objp,
3435 unsigned long caller)
3436{
3437 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3438
1da177e4 3439 check_irq_off();
6471384a
AP
3440 if (unlikely(slab_want_init_on_free(cachep)))
3441 memset(objp, 0, cachep->object_size);
d5cff635 3442 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3443 objp = cache_free_debugcheck(cachep, objp, caller);
964d4bd3 3444 memcg_slab_free_hook(cachep, virt_to_head_page(objp), objp);
1da177e4 3445
1807a1aa
SS
3446 /*
3447 * Skip calling cache_free_alien() when the platform is not numa.
3448 * This will avoid cache misses that happen while accessing slabp (which
3449 * is per page memory reference) to get nodeid. Instead use a global
3450 * variable to skip the call, which is mostly likely to be present in
3451 * the cache.
3452 */
b6e68bc1 3453 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3454 return;
3455
3d880194 3456 if (ac->avail < ac->limit) {
1da177e4 3457 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3458 } else {
3459 STATS_INC_FREEMISS(cachep);
3460 cache_flusharray(cachep, ac);
1da177e4 3461 }
42c8c99c 3462
f68f8ddd
JK
3463 if (sk_memalloc_socks()) {
3464 struct page *page = virt_to_head_page(objp);
3465
3466 if (unlikely(PageSlabPfmemalloc(page))) {
3467 cache_free_pfmemalloc(cachep, page, objp);
3468 return;
3469 }
3470 }
3471
dabc3e29 3472 __free_one(ac, objp);
1da177e4
LT
3473}
3474
3475/**
3476 * kmem_cache_alloc - Allocate an object
3477 * @cachep: The cache to allocate from.
3478 * @flags: See kmalloc().
3479 *
3480 * Allocate an object from this cache. The flags are only relevant
3481 * if the cache has no available objects.
a862f68a
MR
3482 *
3483 * Return: pointer to the new object or %NULL in case of error
1da177e4 3484 */
343e0d7a 3485void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3486{
48356303 3487 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3488
ca2b84cb 3489 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3490 cachep->object_size, cachep->size, flags);
36555751
EGM
3491
3492 return ret;
1da177e4
LT
3493}
3494EXPORT_SYMBOL(kmem_cache_alloc);
3495
7b0501dd
JDB
3496static __always_inline void
3497cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3498 size_t size, void **p, unsigned long caller)
3499{
3500 size_t i;
3501
3502 for (i = 0; i < size; i++)
3503 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3504}
3505
865762a8 3506int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3507 void **p)
484748f0 3508{
2a777eac 3509 size_t i;
964d4bd3 3510 struct obj_cgroup *objcg = NULL;
2a777eac 3511
964d4bd3 3512 s = slab_pre_alloc_hook(s, &objcg, size, flags);
2a777eac
JDB
3513 if (!s)
3514 return 0;
3515
3516 cache_alloc_debugcheck_before(s, flags);
3517
3518 local_irq_disable();
3519 for (i = 0; i < size; i++) {
3520 void *objp = __do_cache_alloc(s, flags);
3521
2a777eac
JDB
3522 if (unlikely(!objp))
3523 goto error;
3524 p[i] = objp;
3525 }
3526 local_irq_enable();
3527
7b0501dd
JDB
3528 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3529
2a777eac 3530 /* Clear memory outside IRQ disabled section */
6471384a 3531 if (unlikely(slab_want_init_on_alloc(flags, s)))
2a777eac
JDB
3532 for (i = 0; i < size; i++)
3533 memset(p[i], 0, s->object_size);
3534
964d4bd3 3535 slab_post_alloc_hook(s, objcg, flags, size, p);
2a777eac
JDB
3536 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3537 return size;
3538error:
3539 local_irq_enable();
7b0501dd 3540 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
964d4bd3 3541 slab_post_alloc_hook(s, objcg, flags, i, p);
2a777eac
JDB
3542 __kmem_cache_free_bulk(s, i, p);
3543 return 0;
484748f0
CL
3544}
3545EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3546
0f24f128 3547#ifdef CONFIG_TRACING
85beb586 3548void *
4052147c 3549kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3550{
85beb586
SR
3551 void *ret;
3552
48356303 3553 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3554
0116523c 3555 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3556 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3557 size, cachep->size, flags);
85beb586 3558 return ret;
36555751 3559}
85beb586 3560EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3561#endif
3562
1da177e4 3563#ifdef CONFIG_NUMA
d0d04b78
ZL
3564/**
3565 * kmem_cache_alloc_node - Allocate an object on the specified node
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 * @nodeid: node number of the target node.
3569 *
3570 * Identical to kmem_cache_alloc but it will allocate memory on the given
3571 * node, which can improve the performance for cpu bound structures.
3572 *
3573 * Fallback to other node is possible if __GFP_THISNODE is not set.
a862f68a
MR
3574 *
3575 * Return: pointer to the new object or %NULL in case of error
d0d04b78 3576 */
8b98c169
CH
3577void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3578{
48356303 3579 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3580
ca2b84cb 3581 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3582 cachep->object_size, cachep->size,
ca2b84cb 3583 flags, nodeid);
36555751
EGM
3584
3585 return ret;
8b98c169 3586}
1da177e4
LT
3587EXPORT_SYMBOL(kmem_cache_alloc_node);
3588
0f24f128 3589#ifdef CONFIG_TRACING
4052147c 3590void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3591 gfp_t flags,
4052147c
EG
3592 int nodeid,
3593 size_t size)
36555751 3594{
85beb586
SR
3595 void *ret;
3596
592f4145 3597 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb 3598
0116523c 3599 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3600 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3601 size, cachep->size,
85beb586
SR
3602 flags, nodeid);
3603 return ret;
36555751 3604}
85beb586 3605EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3606#endif
3607
8b98c169 3608static __always_inline void *
7c0cb9c6 3609__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3610{
343e0d7a 3611 struct kmem_cache *cachep;
7ed2f9e6 3612 void *ret;
97e2bde4 3613
61448479
DV
3614 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3615 return NULL;
2c59dd65 3616 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3617 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3618 return cachep;
7ed2f9e6 3619 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3620 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3621
3622 return ret;
97e2bde4 3623}
8b98c169 3624
8b98c169
CH
3625void *__kmalloc_node(size_t size, gfp_t flags, int node)
3626{
7c0cb9c6 3627 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3628}
dbe5e69d 3629EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3630
3631void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3632 int node, unsigned long caller)
8b98c169 3633{
7c0cb9c6 3634 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3635}
3636EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3637#endif /* CONFIG_NUMA */
1da177e4
LT
3638
3639/**
800590f5 3640 * __do_kmalloc - allocate memory
1da177e4 3641 * @size: how many bytes of memory are required.
800590f5 3642 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3643 * @caller: function caller for debug tracking of the caller
a862f68a
MR
3644 *
3645 * Return: pointer to the allocated memory or %NULL in case of error
1da177e4 3646 */
7fd6b141 3647static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3648 unsigned long caller)
1da177e4 3649{
343e0d7a 3650 struct kmem_cache *cachep;
36555751 3651 void *ret;
1da177e4 3652
61448479
DV
3653 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3654 return NULL;
2c59dd65 3655 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 return cachep;
48356303 3658 ret = slab_alloc(cachep, flags, caller);
36555751 3659
0116523c 3660 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3661 trace_kmalloc(caller, ret,
3b0efdfa 3662 size, cachep->size, flags);
36555751
EGM
3663
3664 return ret;
7fd6b141
PE
3665}
3666
7fd6b141
PE
3667void *__kmalloc(size_t size, gfp_t flags)
3668{
7c0cb9c6 3669 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3670}
3671EXPORT_SYMBOL(__kmalloc);
3672
ce71e27c 3673void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3674{
7c0cb9c6 3675 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3676}
3677EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3678
1da177e4
LT
3679/**
3680 * kmem_cache_free - Deallocate an object
3681 * @cachep: The cache the allocation was from.
3682 * @objp: The previously allocated object.
3683 *
3684 * Free an object which was previously allocated from this
3685 * cache.
3686 */
343e0d7a 3687void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3688{
3689 unsigned long flags;
b9ce5ef4
GC
3690 cachep = cache_from_obj(cachep, objp);
3691 if (!cachep)
3692 return;
1da177e4
LT
3693
3694 local_irq_save(flags);
d97d476b 3695 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3696 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3697 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3698 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3699 local_irq_restore(flags);
36555751 3700
ca2b84cb 3701 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3702}
3703EXPORT_SYMBOL(kmem_cache_free);
3704
e6cdb58d
JDB
3705void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3706{
3707 struct kmem_cache *s;
3708 size_t i;
3709
3710 local_irq_disable();
3711 for (i = 0; i < size; i++) {
3712 void *objp = p[i];
3713
ca257195
JDB
3714 if (!orig_s) /* called via kfree_bulk */
3715 s = virt_to_cache(objp);
3716 else
3717 s = cache_from_obj(orig_s, objp);
a64b5378
KC
3718 if (!s)
3719 continue;
e6cdb58d
JDB
3720
3721 debug_check_no_locks_freed(objp, s->object_size);
3722 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3723 debug_check_no_obj_freed(objp, s->object_size);
3724
3725 __cache_free(s, objp, _RET_IP_);
3726 }
3727 local_irq_enable();
3728
3729 /* FIXME: add tracing */
3730}
3731EXPORT_SYMBOL(kmem_cache_free_bulk);
3732
1da177e4
LT
3733/**
3734 * kfree - free previously allocated memory
3735 * @objp: pointer returned by kmalloc.
3736 *
80e93eff
PE
3737 * If @objp is NULL, no operation is performed.
3738 *
1da177e4
LT
3739 * Don't free memory not originally allocated by kmalloc()
3740 * or you will run into trouble.
3741 */
3742void kfree(const void *objp)
3743{
343e0d7a 3744 struct kmem_cache *c;
1da177e4
LT
3745 unsigned long flags;
3746
2121db74
PE
3747 trace_kfree(_RET_IP_, objp);
3748
6cb8f913 3749 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3750 return;
3751 local_irq_save(flags);
3752 kfree_debugcheck(objp);
6ed5eb22 3753 c = virt_to_cache(objp);
a64b5378
KC
3754 if (!c) {
3755 local_irq_restore(flags);
3756 return;
3757 }
8c138bc0
CL
3758 debug_check_no_locks_freed(objp, c->object_size);
3759
3760 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3761 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3762 local_irq_restore(flags);
3763}
3764EXPORT_SYMBOL(kfree);
3765
e498be7d 3766/*
ce8eb6c4 3767 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3768 */
c3d332b6 3769static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3770{
c3d332b6 3771 int ret;
e498be7d 3772 int node;
ce8eb6c4 3773 struct kmem_cache_node *n;
e498be7d 3774
9c09a95c 3775 for_each_online_node(node) {
c3d332b6
JK
3776 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3777 if (ret)
e498be7d
CL
3778 goto fail;
3779
e498be7d 3780 }
c3d332b6 3781
cafeb02e 3782 return 0;
0718dc2a 3783
a737b3e2 3784fail:
3b0efdfa 3785 if (!cachep->list.next) {
0718dc2a
CL
3786 /* Cache is not active yet. Roll back what we did */
3787 node--;
3788 while (node >= 0) {
18bf8541
CL
3789 n = get_node(cachep, node);
3790 if (n) {
ce8eb6c4
CL
3791 kfree(n->shared);
3792 free_alien_cache(n->alien);
3793 kfree(n);
6a67368c 3794 cachep->node[node] = NULL;
0718dc2a
CL
3795 }
3796 node--;
3797 }
3798 }
cafeb02e 3799 return -ENOMEM;
e498be7d
CL
3800}
3801
18004c5d 3802/* Always called with the slab_mutex held */
943a451a 3803static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3804 int batchcount, int shared, gfp_t gfp)
1da177e4 3805{
bf0dea23
JK
3806 struct array_cache __percpu *cpu_cache, *prev;
3807 int cpu;
1da177e4 3808
bf0dea23
JK
3809 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3810 if (!cpu_cache)
d2e7b7d0
SS
3811 return -ENOMEM;
3812
bf0dea23
JK
3813 prev = cachep->cpu_cache;
3814 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3815 /*
3816 * Without a previous cpu_cache there's no need to synchronize remote
3817 * cpus, so skip the IPIs.
3818 */
3819 if (prev)
3820 kick_all_cpus_sync();
e498be7d 3821
1da177e4 3822 check_irq_on();
1da177e4
LT
3823 cachep->batchcount = batchcount;
3824 cachep->limit = limit;
e498be7d 3825 cachep->shared = shared;
1da177e4 3826
bf0dea23 3827 if (!prev)
c3d332b6 3828 goto setup_node;
bf0dea23
JK
3829
3830 for_each_online_cpu(cpu) {
97654dfa 3831 LIST_HEAD(list);
18bf8541
CL
3832 int node;
3833 struct kmem_cache_node *n;
bf0dea23 3834 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3835
bf0dea23 3836 node = cpu_to_mem(cpu);
18bf8541
CL
3837 n = get_node(cachep, node);
3838 spin_lock_irq(&n->list_lock);
bf0dea23 3839 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3840 spin_unlock_irq(&n->list_lock);
97654dfa 3841 slabs_destroy(cachep, &list);
1da177e4 3842 }
bf0dea23
JK
3843 free_percpu(prev);
3844
c3d332b6
JK
3845setup_node:
3846 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3847}
3848
943a451a
GC
3849static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3850 int batchcount, int shared, gfp_t gfp)
3851{
3852 int ret;
426589f5 3853 struct kmem_cache *c;
943a451a
GC
3854
3855 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3856
3857 if (slab_state < FULL)
3858 return ret;
3859
3860 if ((ret < 0) || !is_root_cache(cachep))
3861 return ret;
3862
426589f5 3863 lockdep_assert_held(&slab_mutex);
9855609b
RG
3864 c = memcg_cache(cachep);
3865 if (c) {
426589f5
VD
3866 /* return value determined by the root cache only */
3867 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3868 }
3869
3870 return ret;
3871}
3872
18004c5d 3873/* Called with slab_mutex held always */
83b519e8 3874static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3875{
3876 int err;
943a451a
GC
3877 int limit = 0;
3878 int shared = 0;
3879 int batchcount = 0;
3880
7c00fce9 3881 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3882 if (err)
3883 goto end;
3884
943a451a
GC
3885 if (!is_root_cache(cachep)) {
3886 struct kmem_cache *root = memcg_root_cache(cachep);
3887 limit = root->limit;
3888 shared = root->shared;
3889 batchcount = root->batchcount;
3890 }
1da177e4 3891
943a451a
GC
3892 if (limit && shared && batchcount)
3893 goto skip_setup;
a737b3e2
AM
3894 /*
3895 * The head array serves three purposes:
1da177e4
LT
3896 * - create a LIFO ordering, i.e. return objects that are cache-warm
3897 * - reduce the number of spinlock operations.
a737b3e2 3898 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3899 * bufctl chains: array operations are cheaper.
3900 * The numbers are guessed, we should auto-tune as described by
3901 * Bonwick.
3902 */
3b0efdfa 3903 if (cachep->size > 131072)
1da177e4 3904 limit = 1;
3b0efdfa 3905 else if (cachep->size > PAGE_SIZE)
1da177e4 3906 limit = 8;
3b0efdfa 3907 else if (cachep->size > 1024)
1da177e4 3908 limit = 24;
3b0efdfa 3909 else if (cachep->size > 256)
1da177e4
LT
3910 limit = 54;
3911 else
3912 limit = 120;
3913
a737b3e2
AM
3914 /*
3915 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3916 * allocation behaviour: Most allocs on one cpu, most free operations
3917 * on another cpu. For these cases, an efficient object passing between
3918 * cpus is necessary. This is provided by a shared array. The array
3919 * replaces Bonwick's magazine layer.
3920 * On uniprocessor, it's functionally equivalent (but less efficient)
3921 * to a larger limit. Thus disabled by default.
3922 */
3923 shared = 0;
3b0efdfa 3924 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3925 shared = 8;
1da177e4
LT
3926
3927#if DEBUG
a737b3e2
AM
3928 /*
3929 * With debugging enabled, large batchcount lead to excessively long
3930 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3931 */
3932 if (limit > 32)
3933 limit = 32;
3934#endif
943a451a
GC
3935 batchcount = (limit + 1) / 2;
3936skip_setup:
3937 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3938end:
1da177e4 3939 if (err)
1170532b 3940 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3941 cachep->name, -err);
2ed3a4ef 3942 return err;
1da177e4
LT
3943}
3944
1b55253a 3945/*
ce8eb6c4
CL
3946 * Drain an array if it contains any elements taking the node lock only if
3947 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3948 * if drain_array() is used on the shared array.
1b55253a 3949 */
ce8eb6c4 3950static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3951 struct array_cache *ac, int node)
1da177e4 3952{
97654dfa 3953 LIST_HEAD(list);
18726ca8
JK
3954
3955 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3956 check_mutex_acquired();
1da177e4 3957
1b55253a
CL
3958 if (!ac || !ac->avail)
3959 return;
18726ca8
JK
3960
3961 if (ac->touched) {
1da177e4 3962 ac->touched = 0;
18726ca8 3963 return;
1da177e4 3964 }
18726ca8
JK
3965
3966 spin_lock_irq(&n->list_lock);
3967 drain_array_locked(cachep, ac, node, false, &list);
3968 spin_unlock_irq(&n->list_lock);
3969
3970 slabs_destroy(cachep, &list);
1da177e4
LT
3971}
3972
3973/**
3974 * cache_reap - Reclaim memory from caches.
05fb6bf0 3975 * @w: work descriptor
1da177e4
LT
3976 *
3977 * Called from workqueue/eventd every few seconds.
3978 * Purpose:
3979 * - clear the per-cpu caches for this CPU.
3980 * - return freeable pages to the main free memory pool.
3981 *
a737b3e2
AM
3982 * If we cannot acquire the cache chain mutex then just give up - we'll try
3983 * again on the next iteration.
1da177e4 3984 */
7c5cae36 3985static void cache_reap(struct work_struct *w)
1da177e4 3986{
7a7c381d 3987 struct kmem_cache *searchp;
ce8eb6c4 3988 struct kmem_cache_node *n;
7d6e6d09 3989 int node = numa_mem_id();
bf6aede7 3990 struct delayed_work *work = to_delayed_work(w);
1da177e4 3991
18004c5d 3992 if (!mutex_trylock(&slab_mutex))
1da177e4 3993 /* Give up. Setup the next iteration. */
7c5cae36 3994 goto out;
1da177e4 3995
18004c5d 3996 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3997 check_irq_on();
3998
35386e3b 3999 /*
ce8eb6c4 4000 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4001 * have established with reasonable certainty that
4002 * we can do some work if the lock was obtained.
4003 */
18bf8541 4004 n = get_node(searchp, node);
35386e3b 4005
ce8eb6c4 4006 reap_alien(searchp, n);
1da177e4 4007
18726ca8 4008 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4009
35386e3b
CL
4010 /*
4011 * These are racy checks but it does not matter
4012 * if we skip one check or scan twice.
4013 */
ce8eb6c4 4014 if (time_after(n->next_reap, jiffies))
35386e3b 4015 goto next;
1da177e4 4016
5f0985bb 4017 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4018
18726ca8 4019 drain_array(searchp, n, n->shared, node);
1da177e4 4020
ce8eb6c4
CL
4021 if (n->free_touched)
4022 n->free_touched = 0;
ed11d9eb
CL
4023 else {
4024 int freed;
1da177e4 4025
ce8eb6c4 4026 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4027 5 * searchp->num - 1) / (5 * searchp->num));
4028 STATS_ADD_REAPED(searchp, freed);
4029 }
35386e3b 4030next:
1da177e4
LT
4031 cond_resched();
4032 }
4033 check_irq_on();
18004c5d 4034 mutex_unlock(&slab_mutex);
8fce4d8e 4035 next_reap_node();
7c5cae36 4036out:
a737b3e2 4037 /* Set up the next iteration */
a9f2a846
VB
4038 schedule_delayed_work_on(smp_processor_id(), work,
4039 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4040}
4041
0d7561c6 4042void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4043{
f728b0a5 4044 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4045 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4046 unsigned long free_slabs = 0;
e498be7d 4047 int node;
ce8eb6c4 4048 struct kmem_cache_node *n;
1da177e4 4049
18bf8541 4050 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4051 check_irq_on();
ce8eb6c4 4052 spin_lock_irq(&n->list_lock);
e498be7d 4053
bf00bd34
DR
4054 total_slabs += n->total_slabs;
4055 free_slabs += n->free_slabs;
f728b0a5 4056 free_objs += n->free_objects;
07a63c41 4057
ce8eb6c4
CL
4058 if (n->shared)
4059 shared_avail += n->shared->avail;
e498be7d 4060
ce8eb6c4 4061 spin_unlock_irq(&n->list_lock);
1da177e4 4062 }
bf00bd34
DR
4063 num_objs = total_slabs * cachep->num;
4064 active_slabs = total_slabs - free_slabs;
f728b0a5 4065 active_objs = num_objs - free_objs;
1da177e4 4066
0d7561c6
GC
4067 sinfo->active_objs = active_objs;
4068 sinfo->num_objs = num_objs;
4069 sinfo->active_slabs = active_slabs;
bf00bd34 4070 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4071 sinfo->shared_avail = shared_avail;
4072 sinfo->limit = cachep->limit;
4073 sinfo->batchcount = cachep->batchcount;
4074 sinfo->shared = cachep->shared;
4075 sinfo->objects_per_slab = cachep->num;
4076 sinfo->cache_order = cachep->gfporder;
4077}
4078
4079void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4080{
1da177e4 4081#if STATS
ce8eb6c4 4082 { /* node stats */
1da177e4
LT
4083 unsigned long high = cachep->high_mark;
4084 unsigned long allocs = cachep->num_allocations;
4085 unsigned long grown = cachep->grown;
4086 unsigned long reaped = cachep->reaped;
4087 unsigned long errors = cachep->errors;
4088 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4089 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4090 unsigned long node_frees = cachep->node_frees;
fb7faf33 4091 unsigned long overflows = cachep->node_overflow;
1da177e4 4092
756a025f 4093 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4094 allocs, high, grown,
4095 reaped, errors, max_freeable, node_allocs,
4096 node_frees, overflows);
1da177e4
LT
4097 }
4098 /* cpu stats */
4099 {
4100 unsigned long allochit = atomic_read(&cachep->allochit);
4101 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4102 unsigned long freehit = atomic_read(&cachep->freehit);
4103 unsigned long freemiss = atomic_read(&cachep->freemiss);
4104
4105 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4106 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4107 }
4108#endif
1da177e4
LT
4109}
4110
1da177e4
LT
4111#define MAX_SLABINFO_WRITE 128
4112/**
4113 * slabinfo_write - Tuning for the slab allocator
4114 * @file: unused
4115 * @buffer: user buffer
4116 * @count: data length
4117 * @ppos: unused
a862f68a
MR
4118 *
4119 * Return: %0 on success, negative error code otherwise.
1da177e4 4120 */
b7454ad3 4121ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4122 size_t count, loff_t *ppos)
1da177e4 4123{
b28a02de 4124 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4125 int limit, batchcount, shared, res;
7a7c381d 4126 struct kmem_cache *cachep;
b28a02de 4127
1da177e4
LT
4128 if (count > MAX_SLABINFO_WRITE)
4129 return -EINVAL;
4130 if (copy_from_user(&kbuf, buffer, count))
4131 return -EFAULT;
b28a02de 4132 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4133
4134 tmp = strchr(kbuf, ' ');
4135 if (!tmp)
4136 return -EINVAL;
4137 *tmp = '\0';
4138 tmp++;
4139 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4140 return -EINVAL;
4141
4142 /* Find the cache in the chain of caches. */
18004c5d 4143 mutex_lock(&slab_mutex);
1da177e4 4144 res = -EINVAL;
18004c5d 4145 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4146 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4147 if (limit < 1 || batchcount < 1 ||
4148 batchcount > limit || shared < 0) {
e498be7d 4149 res = 0;
1da177e4 4150 } else {
e498be7d 4151 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4152 batchcount, shared,
4153 GFP_KERNEL);
1da177e4
LT
4154 }
4155 break;
4156 }
4157 }
18004c5d 4158 mutex_unlock(&slab_mutex);
1da177e4
LT
4159 if (res >= 0)
4160 res = count;
4161 return res;
4162}
871751e2 4163
04385fc5
KC
4164#ifdef CONFIG_HARDENED_USERCOPY
4165/*
afcc90f8
KC
4166 * Rejects incorrectly sized objects and objects that are to be copied
4167 * to/from userspace but do not fall entirely within the containing slab
4168 * cache's usercopy region.
04385fc5
KC
4169 *
4170 * Returns NULL if check passes, otherwise const char * to name of cache
4171 * to indicate an error.
4172 */
f4e6e289
KC
4173void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4174 bool to_user)
04385fc5
KC
4175{
4176 struct kmem_cache *cachep;
4177 unsigned int objnr;
4178 unsigned long offset;
4179
219667c2
AK
4180 ptr = kasan_reset_tag(ptr);
4181
04385fc5
KC
4182 /* Find and validate object. */
4183 cachep = page->slab_cache;
4184 objnr = obj_to_index(cachep, page, (void *)ptr);
4185 BUG_ON(objnr >= cachep->num);
4186
4187 /* Find offset within object. */
4188 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4189
afcc90f8
KC
4190 /* Allow address range falling entirely within usercopy region. */
4191 if (offset >= cachep->useroffset &&
4192 offset - cachep->useroffset <= cachep->usersize &&
4193 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4194 return;
04385fc5 4195
afcc90f8
KC
4196 /*
4197 * If the copy is still within the allocated object, produce
4198 * a warning instead of rejecting the copy. This is intended
4199 * to be a temporary method to find any missing usercopy
4200 * whitelists.
4201 */
2d891fbc
KC
4202 if (usercopy_fallback &&
4203 offset <= cachep->object_size &&
afcc90f8
KC
4204 n <= cachep->object_size - offset) {
4205 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4206 return;
4207 }
04385fc5 4208
f4e6e289 4209 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4210}
4211#endif /* CONFIG_HARDENED_USERCOPY */
4212
00e145b6 4213/**
10d1f8cb 4214 * __ksize -- Uninstrumented ksize.
87bf4f71 4215 * @objp: pointer to the object
00e145b6 4216 *
10d1f8cb
ME
4217 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4218 * safety checks as ksize() with KASAN instrumentation enabled.
87bf4f71
RD
4219 *
4220 * Return: size of the actual memory used by @objp in bytes
00e145b6 4221 */
10d1f8cb 4222size_t __ksize(const void *objp)
1da177e4 4223{
a64b5378 4224 struct kmem_cache *c;
7ed2f9e6
AP
4225 size_t size;
4226
ef8b4520
CL
4227 BUG_ON(!objp);
4228 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4229 return 0;
1da177e4 4230
a64b5378
KC
4231 c = virt_to_cache(objp);
4232 size = c ? c->object_size : 0;
7ed2f9e6
AP
4233
4234 return size;
1da177e4 4235}
10d1f8cb 4236EXPORT_SYMBOL(__ksize);
This page took 2.347826 seconds and 4 git commands to generate.