]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/mmap.c | |
3 | * | |
4 | * Written by obz. | |
5 | * | |
046c6884 | 6 | * Address space accounting code <[email protected]> |
1da177e4 LT |
7 | */ |
8 | ||
e8420a8e | 9 | #include <linux/kernel.h> |
1da177e4 | 10 | #include <linux/slab.h> |
4af3c9cc | 11 | #include <linux/backing-dev.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/shm.h> | |
14 | #include <linux/mman.h> | |
15 | #include <linux/pagemap.h> | |
16 | #include <linux/swap.h> | |
17 | #include <linux/syscalls.h> | |
c59ede7b | 18 | #include <linux/capability.h> |
1da177e4 LT |
19 | #include <linux/init.h> |
20 | #include <linux/file.h> | |
21 | #include <linux/fs.h> | |
22 | #include <linux/personality.h> | |
23 | #include <linux/security.h> | |
24 | #include <linux/hugetlb.h> | |
25 | #include <linux/profile.h> | |
b95f1b31 | 26 | #include <linux/export.h> |
1da177e4 LT |
27 | #include <linux/mount.h> |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/rmap.h> | |
cddb8a5c | 30 | #include <linux/mmu_notifier.h> |
cdd6c482 | 31 | #include <linux/perf_event.h> |
120a795d | 32 | #include <linux/audit.h> |
b15d00b6 | 33 | #include <linux/khugepaged.h> |
2b144498 | 34 | #include <linux/uprobes.h> |
d3737187 | 35 | #include <linux/rbtree_augmented.h> |
cf4aebc2 | 36 | #include <linux/sched/sysctl.h> |
1640879a AS |
37 | #include <linux/notifier.h> |
38 | #include <linux/memory.h> | |
1da177e4 LT |
39 | |
40 | #include <asm/uaccess.h> | |
41 | #include <asm/cacheflush.h> | |
42 | #include <asm/tlb.h> | |
d6dd61c8 | 43 | #include <asm/mmu_context.h> |
1da177e4 | 44 | |
42b77728 JB |
45 | #include "internal.h" |
46 | ||
3a459756 KK |
47 | #ifndef arch_mmap_check |
48 | #define arch_mmap_check(addr, len, flags) (0) | |
49 | #endif | |
50 | ||
08e7d9b5 MS |
51 | #ifndef arch_rebalance_pgtables |
52 | #define arch_rebalance_pgtables(addr, len) (addr) | |
53 | #endif | |
54 | ||
e0da382c HD |
55 | static void unmap_region(struct mm_struct *mm, |
56 | struct vm_area_struct *vma, struct vm_area_struct *prev, | |
57 | unsigned long start, unsigned long end); | |
58 | ||
1da177e4 LT |
59 | /* description of effects of mapping type and prot in current implementation. |
60 | * this is due to the limited x86 page protection hardware. The expected | |
61 | * behavior is in parens: | |
62 | * | |
63 | * map_type prot | |
64 | * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC | |
65 | * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes | |
66 | * w: (no) no w: (no) no w: (yes) yes w: (no) no | |
67 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes | |
68 | * | |
69 | * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes | |
70 | * w: (no) no w: (no) no w: (copy) copy w: (no) no | |
71 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes | |
72 | * | |
73 | */ | |
74 | pgprot_t protection_map[16] = { | |
75 | __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, | |
76 | __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 | |
77 | }; | |
78 | ||
804af2cf HD |
79 | pgprot_t vm_get_page_prot(unsigned long vm_flags) |
80 | { | |
b845f313 DK |
81 | return __pgprot(pgprot_val(protection_map[vm_flags & |
82 | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | | |
83 | pgprot_val(arch_vm_get_page_prot(vm_flags))); | |
804af2cf HD |
84 | } |
85 | EXPORT_SYMBOL(vm_get_page_prot); | |
86 | ||
34679d7e SL |
87 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ |
88 | int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ | |
c3d8c141 | 89 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; |
c9b1d098 | 90 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ |
4eeab4f5 | 91 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ |
34679d7e SL |
92 | /* |
93 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
94 | * other variables. It can be updated by several CPUs frequently. | |
95 | */ | |
96 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
1da177e4 | 97 | |
997071bc S |
98 | /* |
99 | * The global memory commitment made in the system can be a metric | |
100 | * that can be used to drive ballooning decisions when Linux is hosted | |
101 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
102 | * balancing memory across competing virtual machines that are hosted. | |
103 | * Several metrics drive this policy engine including the guest reported | |
104 | * memory commitment. | |
105 | */ | |
106 | unsigned long vm_memory_committed(void) | |
107 | { | |
108 | return percpu_counter_read_positive(&vm_committed_as); | |
109 | } | |
110 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
111 | ||
1da177e4 LT |
112 | /* |
113 | * Check that a process has enough memory to allocate a new virtual | |
114 | * mapping. 0 means there is enough memory for the allocation to | |
115 | * succeed and -ENOMEM implies there is not. | |
116 | * | |
117 | * We currently support three overcommit policies, which are set via the | |
118 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting | |
119 | * | |
120 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
121 | * Additional code 2002 Jul 20 by Robert Love. | |
122 | * | |
123 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
124 | * | |
125 | * Note this is a helper function intended to be used by LSMs which | |
126 | * wish to use this logic. | |
127 | */ | |
34b4e4aa | 128 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) |
1da177e4 | 129 | { |
c9b1d098 | 130 | unsigned long free, allowed, reserve; |
1da177e4 LT |
131 | |
132 | vm_acct_memory(pages); | |
133 | ||
134 | /* | |
135 | * Sometimes we want to use more memory than we have | |
136 | */ | |
137 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
138 | return 0; | |
139 | ||
140 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
c15bef30 DF |
141 | free = global_page_state(NR_FREE_PAGES); |
142 | free += global_page_state(NR_FILE_PAGES); | |
143 | ||
144 | /* | |
145 | * shmem pages shouldn't be counted as free in this | |
146 | * case, they can't be purged, only swapped out, and | |
147 | * that won't affect the overall amount of available | |
148 | * memory in the system. | |
149 | */ | |
150 | free -= global_page_state(NR_SHMEM); | |
1da177e4 | 151 | |
ec8acf20 | 152 | free += get_nr_swap_pages(); |
1da177e4 LT |
153 | |
154 | /* | |
155 | * Any slabs which are created with the | |
156 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents | |
157 | * which are reclaimable, under pressure. The dentry | |
158 | * cache and most inode caches should fall into this | |
159 | */ | |
972d1a7b | 160 | free += global_page_state(NR_SLAB_RECLAIMABLE); |
1da177e4 | 161 | |
6d9f7839 HA |
162 | /* |
163 | * Leave reserved pages. The pages are not for anonymous pages. | |
164 | */ | |
c15bef30 | 165 | if (free <= totalreserve_pages) |
6d9f7839 HA |
166 | goto error; |
167 | else | |
c15bef30 | 168 | free -= totalreserve_pages; |
6d9f7839 HA |
169 | |
170 | /* | |
4eeab4f5 | 171 | * Reserve some for root |
6d9f7839 | 172 | */ |
1da177e4 | 173 | if (!cap_sys_admin) |
4eeab4f5 | 174 | free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
1da177e4 LT |
175 | |
176 | if (free > pages) | |
177 | return 0; | |
6d9f7839 HA |
178 | |
179 | goto error; | |
1da177e4 LT |
180 | } |
181 | ||
00619bcc | 182 | allowed = vm_commit_limit(); |
1da177e4 | 183 | /* |
4eeab4f5 | 184 | * Reserve some for root |
1da177e4 LT |
185 | */ |
186 | if (!cap_sys_admin) | |
4eeab4f5 | 187 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
1da177e4 | 188 | |
c9b1d098 AS |
189 | /* |
190 | * Don't let a single process grow so big a user can't recover | |
191 | */ | |
192 | if (mm) { | |
193 | reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | |
194 | allowed -= min(mm->total_vm / 32, reserve); | |
195 | } | |
1da177e4 | 196 | |
00a62ce9 | 197 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) |
1da177e4 | 198 | return 0; |
6d9f7839 | 199 | error: |
1da177e4 LT |
200 | vm_unacct_memory(pages); |
201 | ||
202 | return -ENOMEM; | |
203 | } | |
204 | ||
1da177e4 | 205 | /* |
3d48ae45 | 206 | * Requires inode->i_mapping->i_mmap_mutex |
1da177e4 LT |
207 | */ |
208 | static void __remove_shared_vm_struct(struct vm_area_struct *vma, | |
209 | struct file *file, struct address_space *mapping) | |
210 | { | |
211 | if (vma->vm_flags & VM_DENYWRITE) | |
496ad9aa | 212 | atomic_inc(&file_inode(file)->i_writecount); |
1da177e4 LT |
213 | if (vma->vm_flags & VM_SHARED) |
214 | mapping->i_mmap_writable--; | |
215 | ||
216 | flush_dcache_mmap_lock(mapping); | |
217 | if (unlikely(vma->vm_flags & VM_NONLINEAR)) | |
6b2dbba8 | 218 | list_del_init(&vma->shared.nonlinear); |
1da177e4 | 219 | else |
6b2dbba8 | 220 | vma_interval_tree_remove(vma, &mapping->i_mmap); |
1da177e4 LT |
221 | flush_dcache_mmap_unlock(mapping); |
222 | } | |
223 | ||
224 | /* | |
6b2dbba8 | 225 | * Unlink a file-based vm structure from its interval tree, to hide |
a8fb5618 | 226 | * vma from rmap and vmtruncate before freeing its page tables. |
1da177e4 | 227 | */ |
a8fb5618 | 228 | void unlink_file_vma(struct vm_area_struct *vma) |
1da177e4 LT |
229 | { |
230 | struct file *file = vma->vm_file; | |
231 | ||
1da177e4 LT |
232 | if (file) { |
233 | struct address_space *mapping = file->f_mapping; | |
3d48ae45 | 234 | mutex_lock(&mapping->i_mmap_mutex); |
1da177e4 | 235 | __remove_shared_vm_struct(vma, file, mapping); |
3d48ae45 | 236 | mutex_unlock(&mapping->i_mmap_mutex); |
1da177e4 | 237 | } |
a8fb5618 HD |
238 | } |
239 | ||
240 | /* | |
241 | * Close a vm structure and free it, returning the next. | |
242 | */ | |
243 | static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) | |
244 | { | |
245 | struct vm_area_struct *next = vma->vm_next; | |
246 | ||
a8fb5618 | 247 | might_sleep(); |
1da177e4 LT |
248 | if (vma->vm_ops && vma->vm_ops->close) |
249 | vma->vm_ops->close(vma); | |
e9714acf | 250 | if (vma->vm_file) |
a8fb5618 | 251 | fput(vma->vm_file); |
f0be3d32 | 252 | mpol_put(vma_policy(vma)); |
1da177e4 | 253 | kmem_cache_free(vm_area_cachep, vma); |
a8fb5618 | 254 | return next; |
1da177e4 LT |
255 | } |
256 | ||
e4eb1ff6 LT |
257 | static unsigned long do_brk(unsigned long addr, unsigned long len); |
258 | ||
6a6160a7 | 259 | SYSCALL_DEFINE1(brk, unsigned long, brk) |
1da177e4 LT |
260 | { |
261 | unsigned long rlim, retval; | |
262 | unsigned long newbrk, oldbrk; | |
263 | struct mm_struct *mm = current->mm; | |
a5b4592c | 264 | unsigned long min_brk; |
128557ff | 265 | bool populate; |
1da177e4 LT |
266 | |
267 | down_write(&mm->mmap_sem); | |
268 | ||
a5b4592c | 269 | #ifdef CONFIG_COMPAT_BRK |
5520e894 JK |
270 | /* |
271 | * CONFIG_COMPAT_BRK can still be overridden by setting | |
272 | * randomize_va_space to 2, which will still cause mm->start_brk | |
273 | * to be arbitrarily shifted | |
274 | */ | |
4471a675 | 275 | if (current->brk_randomized) |
5520e894 JK |
276 | min_brk = mm->start_brk; |
277 | else | |
278 | min_brk = mm->end_data; | |
a5b4592c JK |
279 | #else |
280 | min_brk = mm->start_brk; | |
281 | #endif | |
282 | if (brk < min_brk) | |
1da177e4 | 283 | goto out; |
1e624196 RG |
284 | |
285 | /* | |
286 | * Check against rlimit here. If this check is done later after the test | |
287 | * of oldbrk with newbrk then it can escape the test and let the data | |
288 | * segment grow beyond its set limit the in case where the limit is | |
289 | * not page aligned -Ram Gupta | |
290 | */ | |
59e99e5b | 291 | rlim = rlimit(RLIMIT_DATA); |
c1d171a0 JK |
292 | if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + |
293 | (mm->end_data - mm->start_data) > rlim) | |
1e624196 RG |
294 | goto out; |
295 | ||
1da177e4 LT |
296 | newbrk = PAGE_ALIGN(brk); |
297 | oldbrk = PAGE_ALIGN(mm->brk); | |
298 | if (oldbrk == newbrk) | |
299 | goto set_brk; | |
300 | ||
301 | /* Always allow shrinking brk. */ | |
302 | if (brk <= mm->brk) { | |
303 | if (!do_munmap(mm, newbrk, oldbrk-newbrk)) | |
304 | goto set_brk; | |
305 | goto out; | |
306 | } | |
307 | ||
1da177e4 LT |
308 | /* Check against existing mmap mappings. */ |
309 | if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) | |
310 | goto out; | |
311 | ||
312 | /* Ok, looks good - let it rip. */ | |
313 | if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) | |
314 | goto out; | |
128557ff | 315 | |
1da177e4 LT |
316 | set_brk: |
317 | mm->brk = brk; | |
128557ff ML |
318 | populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; |
319 | up_write(&mm->mmap_sem); | |
320 | if (populate) | |
321 | mm_populate(oldbrk, newbrk - oldbrk); | |
322 | return brk; | |
323 | ||
1da177e4 LT |
324 | out: |
325 | retval = mm->brk; | |
326 | up_write(&mm->mmap_sem); | |
327 | return retval; | |
328 | } | |
329 | ||
d3737187 ML |
330 | static long vma_compute_subtree_gap(struct vm_area_struct *vma) |
331 | { | |
332 | unsigned long max, subtree_gap; | |
333 | max = vma->vm_start; | |
334 | if (vma->vm_prev) | |
335 | max -= vma->vm_prev->vm_end; | |
336 | if (vma->vm_rb.rb_left) { | |
337 | subtree_gap = rb_entry(vma->vm_rb.rb_left, | |
338 | struct vm_area_struct, vm_rb)->rb_subtree_gap; | |
339 | if (subtree_gap > max) | |
340 | max = subtree_gap; | |
341 | } | |
342 | if (vma->vm_rb.rb_right) { | |
343 | subtree_gap = rb_entry(vma->vm_rb.rb_right, | |
344 | struct vm_area_struct, vm_rb)->rb_subtree_gap; | |
345 | if (subtree_gap > max) | |
346 | max = subtree_gap; | |
347 | } | |
348 | return max; | |
349 | } | |
350 | ||
ed8ea815 | 351 | #ifdef CONFIG_DEBUG_VM_RB |
1da177e4 LT |
352 | static int browse_rb(struct rb_root *root) |
353 | { | |
5a0768f6 | 354 | int i = 0, j, bug = 0; |
1da177e4 LT |
355 | struct rb_node *nd, *pn = NULL; |
356 | unsigned long prev = 0, pend = 0; | |
357 | ||
358 | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | |
359 | struct vm_area_struct *vma; | |
360 | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | |
5a0768f6 ML |
361 | if (vma->vm_start < prev) { |
362 | printk("vm_start %lx prev %lx\n", vma->vm_start, prev); | |
363 | bug = 1; | |
364 | } | |
365 | if (vma->vm_start < pend) { | |
1da177e4 | 366 | printk("vm_start %lx pend %lx\n", vma->vm_start, pend); |
5a0768f6 ML |
367 | bug = 1; |
368 | } | |
369 | if (vma->vm_start > vma->vm_end) { | |
370 | printk("vm_end %lx < vm_start %lx\n", | |
371 | vma->vm_end, vma->vm_start); | |
372 | bug = 1; | |
373 | } | |
374 | if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { | |
375 | printk("free gap %lx, correct %lx\n", | |
376 | vma->rb_subtree_gap, | |
377 | vma_compute_subtree_gap(vma)); | |
378 | bug = 1; | |
379 | } | |
1da177e4 LT |
380 | i++; |
381 | pn = nd; | |
d1af65d1 DM |
382 | prev = vma->vm_start; |
383 | pend = vma->vm_end; | |
1da177e4 LT |
384 | } |
385 | j = 0; | |
5a0768f6 | 386 | for (nd = pn; nd; nd = rb_prev(nd)) |
1da177e4 | 387 | j++; |
5a0768f6 ML |
388 | if (i != j) { |
389 | printk("backwards %d, forwards %d\n", j, i); | |
390 | bug = 1; | |
1da177e4 | 391 | } |
5a0768f6 | 392 | return bug ? -1 : i; |
1da177e4 LT |
393 | } |
394 | ||
d3737187 ML |
395 | static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) |
396 | { | |
397 | struct rb_node *nd; | |
398 | ||
399 | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | |
400 | struct vm_area_struct *vma; | |
401 | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | |
402 | BUG_ON(vma != ignore && | |
403 | vma->rb_subtree_gap != vma_compute_subtree_gap(vma)); | |
1da177e4 | 404 | } |
1da177e4 LT |
405 | } |
406 | ||
407 | void validate_mm(struct mm_struct *mm) | |
408 | { | |
409 | int bug = 0; | |
410 | int i = 0; | |
5a0768f6 | 411 | unsigned long highest_address = 0; |
ed8ea815 ML |
412 | struct vm_area_struct *vma = mm->mmap; |
413 | while (vma) { | |
414 | struct anon_vma_chain *avc; | |
63c3b902 | 415 | vma_lock_anon_vma(vma); |
ed8ea815 ML |
416 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
417 | anon_vma_interval_tree_verify(avc); | |
63c3b902 | 418 | vma_unlock_anon_vma(vma); |
5a0768f6 | 419 | highest_address = vma->vm_end; |
ed8ea815 | 420 | vma = vma->vm_next; |
1da177e4 LT |
421 | i++; |
422 | } | |
5a0768f6 ML |
423 | if (i != mm->map_count) { |
424 | printk("map_count %d vm_next %d\n", mm->map_count, i); | |
425 | bug = 1; | |
426 | } | |
427 | if (highest_address != mm->highest_vm_end) { | |
428 | printk("mm->highest_vm_end %lx, found %lx\n", | |
429 | mm->highest_vm_end, highest_address); | |
430 | bug = 1; | |
431 | } | |
1da177e4 | 432 | i = browse_rb(&mm->mm_rb); |
5a0768f6 ML |
433 | if (i != mm->map_count) { |
434 | printk("map_count %d rb %d\n", mm->map_count, i); | |
435 | bug = 1; | |
436 | } | |
46a350ef | 437 | BUG_ON(bug); |
1da177e4 LT |
438 | } |
439 | #else | |
d3737187 | 440 | #define validate_mm_rb(root, ignore) do { } while (0) |
1da177e4 LT |
441 | #define validate_mm(mm) do { } while (0) |
442 | #endif | |
443 | ||
d3737187 ML |
444 | RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, |
445 | unsigned long, rb_subtree_gap, vma_compute_subtree_gap) | |
446 | ||
447 | /* | |
448 | * Update augmented rbtree rb_subtree_gap values after vma->vm_start or | |
449 | * vma->vm_prev->vm_end values changed, without modifying the vma's position | |
450 | * in the rbtree. | |
451 | */ | |
452 | static void vma_gap_update(struct vm_area_struct *vma) | |
453 | { | |
454 | /* | |
455 | * As it turns out, RB_DECLARE_CALLBACKS() already created a callback | |
456 | * function that does exacltly what we want. | |
457 | */ | |
458 | vma_gap_callbacks_propagate(&vma->vm_rb, NULL); | |
459 | } | |
460 | ||
461 | static inline void vma_rb_insert(struct vm_area_struct *vma, | |
462 | struct rb_root *root) | |
463 | { | |
464 | /* All rb_subtree_gap values must be consistent prior to insertion */ | |
465 | validate_mm_rb(root, NULL); | |
466 | ||
467 | rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); | |
468 | } | |
469 | ||
470 | static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) | |
471 | { | |
472 | /* | |
473 | * All rb_subtree_gap values must be consistent prior to erase, | |
474 | * with the possible exception of the vma being erased. | |
475 | */ | |
476 | validate_mm_rb(root, vma); | |
477 | ||
478 | /* | |
479 | * Note rb_erase_augmented is a fairly large inline function, | |
480 | * so make sure we instantiate it only once with our desired | |
481 | * augmented rbtree callbacks. | |
482 | */ | |
483 | rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); | |
484 | } | |
485 | ||
bf181b9f ML |
486 | /* |
487 | * vma has some anon_vma assigned, and is already inserted on that | |
488 | * anon_vma's interval trees. | |
489 | * | |
490 | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the | |
491 | * vma must be removed from the anon_vma's interval trees using | |
492 | * anon_vma_interval_tree_pre_update_vma(). | |
493 | * | |
494 | * After the update, the vma will be reinserted using | |
495 | * anon_vma_interval_tree_post_update_vma(). | |
496 | * | |
497 | * The entire update must be protected by exclusive mmap_sem and by | |
498 | * the root anon_vma's mutex. | |
499 | */ | |
500 | static inline void | |
501 | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) | |
502 | { | |
503 | struct anon_vma_chain *avc; | |
504 | ||
505 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | |
506 | anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); | |
507 | } | |
508 | ||
509 | static inline void | |
510 | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) | |
511 | { | |
512 | struct anon_vma_chain *avc; | |
513 | ||
514 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | |
515 | anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); | |
516 | } | |
517 | ||
6597d783 HD |
518 | static int find_vma_links(struct mm_struct *mm, unsigned long addr, |
519 | unsigned long end, struct vm_area_struct **pprev, | |
520 | struct rb_node ***rb_link, struct rb_node **rb_parent) | |
1da177e4 | 521 | { |
6597d783 | 522 | struct rb_node **__rb_link, *__rb_parent, *rb_prev; |
1da177e4 LT |
523 | |
524 | __rb_link = &mm->mm_rb.rb_node; | |
525 | rb_prev = __rb_parent = NULL; | |
1da177e4 LT |
526 | |
527 | while (*__rb_link) { | |
528 | struct vm_area_struct *vma_tmp; | |
529 | ||
530 | __rb_parent = *__rb_link; | |
531 | vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); | |
532 | ||
533 | if (vma_tmp->vm_end > addr) { | |
6597d783 HD |
534 | /* Fail if an existing vma overlaps the area */ |
535 | if (vma_tmp->vm_start < end) | |
536 | return -ENOMEM; | |
1da177e4 LT |
537 | __rb_link = &__rb_parent->rb_left; |
538 | } else { | |
539 | rb_prev = __rb_parent; | |
540 | __rb_link = &__rb_parent->rb_right; | |
541 | } | |
542 | } | |
543 | ||
544 | *pprev = NULL; | |
545 | if (rb_prev) | |
546 | *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); | |
547 | *rb_link = __rb_link; | |
548 | *rb_parent = __rb_parent; | |
6597d783 | 549 | return 0; |
1da177e4 LT |
550 | } |
551 | ||
e8420a8e CH |
552 | static unsigned long count_vma_pages_range(struct mm_struct *mm, |
553 | unsigned long addr, unsigned long end) | |
554 | { | |
555 | unsigned long nr_pages = 0; | |
556 | struct vm_area_struct *vma; | |
557 | ||
558 | /* Find first overlaping mapping */ | |
559 | vma = find_vma_intersection(mm, addr, end); | |
560 | if (!vma) | |
561 | return 0; | |
562 | ||
563 | nr_pages = (min(end, vma->vm_end) - | |
564 | max(addr, vma->vm_start)) >> PAGE_SHIFT; | |
565 | ||
566 | /* Iterate over the rest of the overlaps */ | |
567 | for (vma = vma->vm_next; vma; vma = vma->vm_next) { | |
568 | unsigned long overlap_len; | |
569 | ||
570 | if (vma->vm_start > end) | |
571 | break; | |
572 | ||
573 | overlap_len = min(end, vma->vm_end) - vma->vm_start; | |
574 | nr_pages += overlap_len >> PAGE_SHIFT; | |
575 | } | |
576 | ||
577 | return nr_pages; | |
578 | } | |
579 | ||
1da177e4 LT |
580 | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, |
581 | struct rb_node **rb_link, struct rb_node *rb_parent) | |
582 | { | |
d3737187 ML |
583 | /* Update tracking information for the gap following the new vma. */ |
584 | if (vma->vm_next) | |
585 | vma_gap_update(vma->vm_next); | |
586 | else | |
587 | mm->highest_vm_end = vma->vm_end; | |
588 | ||
589 | /* | |
590 | * vma->vm_prev wasn't known when we followed the rbtree to find the | |
591 | * correct insertion point for that vma. As a result, we could not | |
592 | * update the vma vm_rb parents rb_subtree_gap values on the way down. | |
593 | * So, we first insert the vma with a zero rb_subtree_gap value | |
594 | * (to be consistent with what we did on the way down), and then | |
595 | * immediately update the gap to the correct value. Finally we | |
596 | * rebalance the rbtree after all augmented values have been set. | |
597 | */ | |
1da177e4 | 598 | rb_link_node(&vma->vm_rb, rb_parent, rb_link); |
d3737187 ML |
599 | vma->rb_subtree_gap = 0; |
600 | vma_gap_update(vma); | |
601 | vma_rb_insert(vma, &mm->mm_rb); | |
1da177e4 LT |
602 | } |
603 | ||
cb8f488c | 604 | static void __vma_link_file(struct vm_area_struct *vma) |
1da177e4 | 605 | { |
48aae425 | 606 | struct file *file; |
1da177e4 LT |
607 | |
608 | file = vma->vm_file; | |
609 | if (file) { | |
610 | struct address_space *mapping = file->f_mapping; | |
611 | ||
612 | if (vma->vm_flags & VM_DENYWRITE) | |
496ad9aa | 613 | atomic_dec(&file_inode(file)->i_writecount); |
1da177e4 LT |
614 | if (vma->vm_flags & VM_SHARED) |
615 | mapping->i_mmap_writable++; | |
616 | ||
617 | flush_dcache_mmap_lock(mapping); | |
618 | if (unlikely(vma->vm_flags & VM_NONLINEAR)) | |
619 | vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); | |
620 | else | |
6b2dbba8 | 621 | vma_interval_tree_insert(vma, &mapping->i_mmap); |
1da177e4 LT |
622 | flush_dcache_mmap_unlock(mapping); |
623 | } | |
624 | } | |
625 | ||
626 | static void | |
627 | __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | |
628 | struct vm_area_struct *prev, struct rb_node **rb_link, | |
629 | struct rb_node *rb_parent) | |
630 | { | |
631 | __vma_link_list(mm, vma, prev, rb_parent); | |
632 | __vma_link_rb(mm, vma, rb_link, rb_parent); | |
1da177e4 LT |
633 | } |
634 | ||
635 | static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | |
636 | struct vm_area_struct *prev, struct rb_node **rb_link, | |
637 | struct rb_node *rb_parent) | |
638 | { | |
639 | struct address_space *mapping = NULL; | |
640 | ||
641 | if (vma->vm_file) | |
642 | mapping = vma->vm_file->f_mapping; | |
643 | ||
97a89413 | 644 | if (mapping) |
3d48ae45 | 645 | mutex_lock(&mapping->i_mmap_mutex); |
1da177e4 LT |
646 | |
647 | __vma_link(mm, vma, prev, rb_link, rb_parent); | |
648 | __vma_link_file(vma); | |
649 | ||
1da177e4 | 650 | if (mapping) |
3d48ae45 | 651 | mutex_unlock(&mapping->i_mmap_mutex); |
1da177e4 LT |
652 | |
653 | mm->map_count++; | |
654 | validate_mm(mm); | |
655 | } | |
656 | ||
657 | /* | |
88f6b4c3 | 658 | * Helper for vma_adjust() in the split_vma insert case: insert a vma into the |
6b2dbba8 | 659 | * mm's list and rbtree. It has already been inserted into the interval tree. |
1da177e4 | 660 | */ |
48aae425 | 661 | static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
1da177e4 | 662 | { |
6597d783 | 663 | struct vm_area_struct *prev; |
48aae425 | 664 | struct rb_node **rb_link, *rb_parent; |
1da177e4 | 665 | |
6597d783 HD |
666 | if (find_vma_links(mm, vma->vm_start, vma->vm_end, |
667 | &prev, &rb_link, &rb_parent)) | |
668 | BUG(); | |
1da177e4 LT |
669 | __vma_link(mm, vma, prev, rb_link, rb_parent); |
670 | mm->map_count++; | |
671 | } | |
672 | ||
673 | static inline void | |
674 | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, | |
675 | struct vm_area_struct *prev) | |
676 | { | |
d3737187 | 677 | struct vm_area_struct *next; |
297c5eee | 678 | |
d3737187 ML |
679 | vma_rb_erase(vma, &mm->mm_rb); |
680 | prev->vm_next = next = vma->vm_next; | |
297c5eee LT |
681 | if (next) |
682 | next->vm_prev = prev; | |
1da177e4 LT |
683 | if (mm->mmap_cache == vma) |
684 | mm->mmap_cache = prev; | |
685 | } | |
686 | ||
687 | /* | |
688 | * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that | |
689 | * is already present in an i_mmap tree without adjusting the tree. | |
690 | * The following helper function should be used when such adjustments | |
691 | * are necessary. The "insert" vma (if any) is to be inserted | |
692 | * before we drop the necessary locks. | |
693 | */ | |
5beb4930 | 694 | int vma_adjust(struct vm_area_struct *vma, unsigned long start, |
1da177e4 LT |
695 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) |
696 | { | |
697 | struct mm_struct *mm = vma->vm_mm; | |
698 | struct vm_area_struct *next = vma->vm_next; | |
699 | struct vm_area_struct *importer = NULL; | |
700 | struct address_space *mapping = NULL; | |
6b2dbba8 | 701 | struct rb_root *root = NULL; |
012f1800 | 702 | struct anon_vma *anon_vma = NULL; |
1da177e4 | 703 | struct file *file = vma->vm_file; |
d3737187 | 704 | bool start_changed = false, end_changed = false; |
1da177e4 LT |
705 | long adjust_next = 0; |
706 | int remove_next = 0; | |
707 | ||
708 | if (next && !insert) { | |
287d97ac LT |
709 | struct vm_area_struct *exporter = NULL; |
710 | ||
1da177e4 LT |
711 | if (end >= next->vm_end) { |
712 | /* | |
713 | * vma expands, overlapping all the next, and | |
714 | * perhaps the one after too (mprotect case 6). | |
715 | */ | |
716 | again: remove_next = 1 + (end > next->vm_end); | |
717 | end = next->vm_end; | |
287d97ac | 718 | exporter = next; |
1da177e4 LT |
719 | importer = vma; |
720 | } else if (end > next->vm_start) { | |
721 | /* | |
722 | * vma expands, overlapping part of the next: | |
723 | * mprotect case 5 shifting the boundary up. | |
724 | */ | |
725 | adjust_next = (end - next->vm_start) >> PAGE_SHIFT; | |
287d97ac | 726 | exporter = next; |
1da177e4 LT |
727 | importer = vma; |
728 | } else if (end < vma->vm_end) { | |
729 | /* | |
730 | * vma shrinks, and !insert tells it's not | |
731 | * split_vma inserting another: so it must be | |
732 | * mprotect case 4 shifting the boundary down. | |
733 | */ | |
734 | adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); | |
287d97ac | 735 | exporter = vma; |
1da177e4 LT |
736 | importer = next; |
737 | } | |
1da177e4 | 738 | |
5beb4930 RR |
739 | /* |
740 | * Easily overlooked: when mprotect shifts the boundary, | |
741 | * make sure the expanding vma has anon_vma set if the | |
742 | * shrinking vma had, to cover any anon pages imported. | |
743 | */ | |
287d97ac LT |
744 | if (exporter && exporter->anon_vma && !importer->anon_vma) { |
745 | if (anon_vma_clone(importer, exporter)) | |
5beb4930 | 746 | return -ENOMEM; |
287d97ac | 747 | importer->anon_vma = exporter->anon_vma; |
5beb4930 RR |
748 | } |
749 | } | |
750 | ||
1da177e4 LT |
751 | if (file) { |
752 | mapping = file->f_mapping; | |
682968e0 | 753 | if (!(vma->vm_flags & VM_NONLINEAR)) { |
1da177e4 | 754 | root = &mapping->i_mmap; |
cbc91f71 | 755 | uprobe_munmap(vma, vma->vm_start, vma->vm_end); |
682968e0 SD |
756 | |
757 | if (adjust_next) | |
cbc91f71 SD |
758 | uprobe_munmap(next, next->vm_start, |
759 | next->vm_end); | |
682968e0 SD |
760 | } |
761 | ||
3d48ae45 | 762 | mutex_lock(&mapping->i_mmap_mutex); |
1da177e4 | 763 | if (insert) { |
1da177e4 | 764 | /* |
6b2dbba8 | 765 | * Put into interval tree now, so instantiated pages |
1da177e4 LT |
766 | * are visible to arm/parisc __flush_dcache_page |
767 | * throughout; but we cannot insert into address | |
768 | * space until vma start or end is updated. | |
769 | */ | |
770 | __vma_link_file(insert); | |
771 | } | |
772 | } | |
773 | ||
94fcc585 AA |
774 | vma_adjust_trans_huge(vma, start, end, adjust_next); |
775 | ||
bf181b9f ML |
776 | anon_vma = vma->anon_vma; |
777 | if (!anon_vma && adjust_next) | |
778 | anon_vma = next->anon_vma; | |
779 | if (anon_vma) { | |
ca42b26a ML |
780 | VM_BUG_ON(adjust_next && next->anon_vma && |
781 | anon_vma != next->anon_vma); | |
4fc3f1d6 | 782 | anon_vma_lock_write(anon_vma); |
bf181b9f ML |
783 | anon_vma_interval_tree_pre_update_vma(vma); |
784 | if (adjust_next) | |
785 | anon_vma_interval_tree_pre_update_vma(next); | |
786 | } | |
012f1800 | 787 | |
1da177e4 LT |
788 | if (root) { |
789 | flush_dcache_mmap_lock(mapping); | |
6b2dbba8 | 790 | vma_interval_tree_remove(vma, root); |
1da177e4 | 791 | if (adjust_next) |
6b2dbba8 | 792 | vma_interval_tree_remove(next, root); |
1da177e4 LT |
793 | } |
794 | ||
d3737187 ML |
795 | if (start != vma->vm_start) { |
796 | vma->vm_start = start; | |
797 | start_changed = true; | |
798 | } | |
799 | if (end != vma->vm_end) { | |
800 | vma->vm_end = end; | |
801 | end_changed = true; | |
802 | } | |
1da177e4 LT |
803 | vma->vm_pgoff = pgoff; |
804 | if (adjust_next) { | |
805 | next->vm_start += adjust_next << PAGE_SHIFT; | |
806 | next->vm_pgoff += adjust_next; | |
807 | } | |
808 | ||
809 | if (root) { | |
810 | if (adjust_next) | |
6b2dbba8 ML |
811 | vma_interval_tree_insert(next, root); |
812 | vma_interval_tree_insert(vma, root); | |
1da177e4 LT |
813 | flush_dcache_mmap_unlock(mapping); |
814 | } | |
815 | ||
816 | if (remove_next) { | |
817 | /* | |
818 | * vma_merge has merged next into vma, and needs | |
819 | * us to remove next before dropping the locks. | |
820 | */ | |
821 | __vma_unlink(mm, next, vma); | |
822 | if (file) | |
823 | __remove_shared_vm_struct(next, file, mapping); | |
1da177e4 LT |
824 | } else if (insert) { |
825 | /* | |
826 | * split_vma has split insert from vma, and needs | |
827 | * us to insert it before dropping the locks | |
828 | * (it may either follow vma or precede it). | |
829 | */ | |
830 | __insert_vm_struct(mm, insert); | |
d3737187 ML |
831 | } else { |
832 | if (start_changed) | |
833 | vma_gap_update(vma); | |
834 | if (end_changed) { | |
835 | if (!next) | |
836 | mm->highest_vm_end = end; | |
837 | else if (!adjust_next) | |
838 | vma_gap_update(next); | |
839 | } | |
1da177e4 LT |
840 | } |
841 | ||
bf181b9f ML |
842 | if (anon_vma) { |
843 | anon_vma_interval_tree_post_update_vma(vma); | |
844 | if (adjust_next) | |
845 | anon_vma_interval_tree_post_update_vma(next); | |
08b52706 | 846 | anon_vma_unlock_write(anon_vma); |
bf181b9f | 847 | } |
1da177e4 | 848 | if (mapping) |
3d48ae45 | 849 | mutex_unlock(&mapping->i_mmap_mutex); |
1da177e4 | 850 | |
2b144498 | 851 | if (root) { |
7b2d81d4 | 852 | uprobe_mmap(vma); |
2b144498 SD |
853 | |
854 | if (adjust_next) | |
7b2d81d4 | 855 | uprobe_mmap(next); |
2b144498 SD |
856 | } |
857 | ||
1da177e4 | 858 | if (remove_next) { |
925d1c40 | 859 | if (file) { |
cbc91f71 | 860 | uprobe_munmap(next, next->vm_start, next->vm_end); |
1da177e4 | 861 | fput(file); |
925d1c40 | 862 | } |
5beb4930 RR |
863 | if (next->anon_vma) |
864 | anon_vma_merge(vma, next); | |
1da177e4 | 865 | mm->map_count--; |
3964acd0 | 866 | mpol_put(vma_policy(next)); |
1da177e4 LT |
867 | kmem_cache_free(vm_area_cachep, next); |
868 | /* | |
869 | * In mprotect's case 6 (see comments on vma_merge), | |
870 | * we must remove another next too. It would clutter | |
871 | * up the code too much to do both in one go. | |
872 | */ | |
d3737187 ML |
873 | next = vma->vm_next; |
874 | if (remove_next == 2) | |
1da177e4 | 875 | goto again; |
d3737187 ML |
876 | else if (next) |
877 | vma_gap_update(next); | |
878 | else | |
879 | mm->highest_vm_end = end; | |
1da177e4 | 880 | } |
2b144498 | 881 | if (insert && file) |
7b2d81d4 | 882 | uprobe_mmap(insert); |
1da177e4 LT |
883 | |
884 | validate_mm(mm); | |
5beb4930 RR |
885 | |
886 | return 0; | |
1da177e4 LT |
887 | } |
888 | ||
889 | /* | |
890 | * If the vma has a ->close operation then the driver probably needs to release | |
891 | * per-vma resources, so we don't attempt to merge those. | |
892 | */ | |
1da177e4 LT |
893 | static inline int is_mergeable_vma(struct vm_area_struct *vma, |
894 | struct file *file, unsigned long vm_flags) | |
895 | { | |
0b173bc4 | 896 | if (vma->vm_flags ^ vm_flags) |
1da177e4 LT |
897 | return 0; |
898 | if (vma->vm_file != file) | |
899 | return 0; | |
900 | if (vma->vm_ops && vma->vm_ops->close) | |
901 | return 0; | |
902 | return 1; | |
903 | } | |
904 | ||
905 | static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, | |
965f55de SL |
906 | struct anon_vma *anon_vma2, |
907 | struct vm_area_struct *vma) | |
1da177e4 | 908 | { |
965f55de SL |
909 | /* |
910 | * The list_is_singular() test is to avoid merging VMA cloned from | |
911 | * parents. This can improve scalability caused by anon_vma lock. | |
912 | */ | |
913 | if ((!anon_vma1 || !anon_vma2) && (!vma || | |
914 | list_is_singular(&vma->anon_vma_chain))) | |
915 | return 1; | |
916 | return anon_vma1 == anon_vma2; | |
1da177e4 LT |
917 | } |
918 | ||
919 | /* | |
920 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | |
921 | * in front of (at a lower virtual address and file offset than) the vma. | |
922 | * | |
923 | * We cannot merge two vmas if they have differently assigned (non-NULL) | |
924 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | |
925 | * | |
926 | * We don't check here for the merged mmap wrapping around the end of pagecache | |
927 | * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which | |
928 | * wrap, nor mmaps which cover the final page at index -1UL. | |
929 | */ | |
930 | static int | |
931 | can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, | |
932 | struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) | |
933 | { | |
934 | if (is_mergeable_vma(vma, file, vm_flags) && | |
965f55de | 935 | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { |
1da177e4 LT |
936 | if (vma->vm_pgoff == vm_pgoff) |
937 | return 1; | |
938 | } | |
939 | return 0; | |
940 | } | |
941 | ||
942 | /* | |
943 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | |
944 | * beyond (at a higher virtual address and file offset than) the vma. | |
945 | * | |
946 | * We cannot merge two vmas if they have differently assigned (non-NULL) | |
947 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | |
948 | */ | |
949 | static int | |
950 | can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, | |
951 | struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) | |
952 | { | |
953 | if (is_mergeable_vma(vma, file, vm_flags) && | |
965f55de | 954 | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { |
1da177e4 | 955 | pgoff_t vm_pglen; |
d6e93217 | 956 | vm_pglen = vma_pages(vma); |
1da177e4 LT |
957 | if (vma->vm_pgoff + vm_pglen == vm_pgoff) |
958 | return 1; | |
959 | } | |
960 | return 0; | |
961 | } | |
962 | ||
963 | /* | |
964 | * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out | |
965 | * whether that can be merged with its predecessor or its successor. | |
966 | * Or both (it neatly fills a hole). | |
967 | * | |
968 | * In most cases - when called for mmap, brk or mremap - [addr,end) is | |
969 | * certain not to be mapped by the time vma_merge is called; but when | |
970 | * called for mprotect, it is certain to be already mapped (either at | |
971 | * an offset within prev, or at the start of next), and the flags of | |
972 | * this area are about to be changed to vm_flags - and the no-change | |
973 | * case has already been eliminated. | |
974 | * | |
975 | * The following mprotect cases have to be considered, where AAAA is | |
976 | * the area passed down from mprotect_fixup, never extending beyond one | |
977 | * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: | |
978 | * | |
979 | * AAAA AAAA AAAA AAAA | |
980 | * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX | |
981 | * cannot merge might become might become might become | |
982 | * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or | |
983 | * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or | |
984 | * mremap move: PPPPNNNNNNNN 8 | |
985 | * AAAA | |
986 | * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN | |
987 | * might become case 1 below case 2 below case 3 below | |
988 | * | |
989 | * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: | |
990 | * mprotect_fixup updates vm_flags & vm_page_prot on successful return. | |
991 | */ | |
992 | struct vm_area_struct *vma_merge(struct mm_struct *mm, | |
993 | struct vm_area_struct *prev, unsigned long addr, | |
994 | unsigned long end, unsigned long vm_flags, | |
995 | struct anon_vma *anon_vma, struct file *file, | |
996 | pgoff_t pgoff, struct mempolicy *policy) | |
997 | { | |
998 | pgoff_t pglen = (end - addr) >> PAGE_SHIFT; | |
999 | struct vm_area_struct *area, *next; | |
5beb4930 | 1000 | int err; |
1da177e4 LT |
1001 | |
1002 | /* | |
1003 | * We later require that vma->vm_flags == vm_flags, | |
1004 | * so this tests vma->vm_flags & VM_SPECIAL, too. | |
1005 | */ | |
1006 | if (vm_flags & VM_SPECIAL) | |
1007 | return NULL; | |
1008 | ||
1009 | if (prev) | |
1010 | next = prev->vm_next; | |
1011 | else | |
1012 | next = mm->mmap; | |
1013 | area = next; | |
1014 | if (next && next->vm_end == end) /* cases 6, 7, 8 */ | |
1015 | next = next->vm_next; | |
1016 | ||
1017 | /* | |
1018 | * Can it merge with the predecessor? | |
1019 | */ | |
1020 | if (prev && prev->vm_end == addr && | |
1021 | mpol_equal(vma_policy(prev), policy) && | |
1022 | can_vma_merge_after(prev, vm_flags, | |
1023 | anon_vma, file, pgoff)) { | |
1024 | /* | |
1025 | * OK, it can. Can we now merge in the successor as well? | |
1026 | */ | |
1027 | if (next && end == next->vm_start && | |
1028 | mpol_equal(policy, vma_policy(next)) && | |
1029 | can_vma_merge_before(next, vm_flags, | |
1030 | anon_vma, file, pgoff+pglen) && | |
1031 | is_mergeable_anon_vma(prev->anon_vma, | |
965f55de | 1032 | next->anon_vma, NULL)) { |
1da177e4 | 1033 | /* cases 1, 6 */ |
5beb4930 | 1034 | err = vma_adjust(prev, prev->vm_start, |
1da177e4 LT |
1035 | next->vm_end, prev->vm_pgoff, NULL); |
1036 | } else /* cases 2, 5, 7 */ | |
5beb4930 | 1037 | err = vma_adjust(prev, prev->vm_start, |
1da177e4 | 1038 | end, prev->vm_pgoff, NULL); |
5beb4930 RR |
1039 | if (err) |
1040 | return NULL; | |
b15d00b6 | 1041 | khugepaged_enter_vma_merge(prev); |
1da177e4 LT |
1042 | return prev; |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * Can this new request be merged in front of next? | |
1047 | */ | |
1048 | if (next && end == next->vm_start && | |
1049 | mpol_equal(policy, vma_policy(next)) && | |
1050 | can_vma_merge_before(next, vm_flags, | |
1051 | anon_vma, file, pgoff+pglen)) { | |
1052 | if (prev && addr < prev->vm_end) /* case 4 */ | |
5beb4930 | 1053 | err = vma_adjust(prev, prev->vm_start, |
1da177e4 LT |
1054 | addr, prev->vm_pgoff, NULL); |
1055 | else /* cases 3, 8 */ | |
5beb4930 | 1056 | err = vma_adjust(area, addr, next->vm_end, |
1da177e4 | 1057 | next->vm_pgoff - pglen, NULL); |
5beb4930 RR |
1058 | if (err) |
1059 | return NULL; | |
b15d00b6 | 1060 | khugepaged_enter_vma_merge(area); |
1da177e4 LT |
1061 | return area; |
1062 | } | |
1063 | ||
1064 | return NULL; | |
1065 | } | |
1066 | ||
d0e9fe17 LT |
1067 | /* |
1068 | * Rough compatbility check to quickly see if it's even worth looking | |
1069 | * at sharing an anon_vma. | |
1070 | * | |
1071 | * They need to have the same vm_file, and the flags can only differ | |
1072 | * in things that mprotect may change. | |
1073 | * | |
1074 | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that | |
1075 | * we can merge the two vma's. For example, we refuse to merge a vma if | |
1076 | * there is a vm_ops->close() function, because that indicates that the | |
1077 | * driver is doing some kind of reference counting. But that doesn't | |
1078 | * really matter for the anon_vma sharing case. | |
1079 | */ | |
1080 | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) | |
1081 | { | |
1082 | return a->vm_end == b->vm_start && | |
1083 | mpol_equal(vma_policy(a), vma_policy(b)) && | |
1084 | a->vm_file == b->vm_file && | |
1085 | !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && | |
1086 | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); | |
1087 | } | |
1088 | ||
1089 | /* | |
1090 | * Do some basic sanity checking to see if we can re-use the anon_vma | |
1091 | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be | |
1092 | * the same as 'old', the other will be the new one that is trying | |
1093 | * to share the anon_vma. | |
1094 | * | |
1095 | * NOTE! This runs with mm_sem held for reading, so it is possible that | |
1096 | * the anon_vma of 'old' is concurrently in the process of being set up | |
1097 | * by another page fault trying to merge _that_. But that's ok: if it | |
1098 | * is being set up, that automatically means that it will be a singleton | |
1099 | * acceptable for merging, so we can do all of this optimistically. But | |
1100 | * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. | |
1101 | * | |
1102 | * IOW: that the "list_is_singular()" test on the anon_vma_chain only | |
1103 | * matters for the 'stable anon_vma' case (ie the thing we want to avoid | |
1104 | * is to return an anon_vma that is "complex" due to having gone through | |
1105 | * a fork). | |
1106 | * | |
1107 | * We also make sure that the two vma's are compatible (adjacent, | |
1108 | * and with the same memory policies). That's all stable, even with just | |
1109 | * a read lock on the mm_sem. | |
1110 | */ | |
1111 | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) | |
1112 | { | |
1113 | if (anon_vma_compatible(a, b)) { | |
1114 | struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); | |
1115 | ||
1116 | if (anon_vma && list_is_singular(&old->anon_vma_chain)) | |
1117 | return anon_vma; | |
1118 | } | |
1119 | return NULL; | |
1120 | } | |
1121 | ||
1da177e4 LT |
1122 | /* |
1123 | * find_mergeable_anon_vma is used by anon_vma_prepare, to check | |
1124 | * neighbouring vmas for a suitable anon_vma, before it goes off | |
1125 | * to allocate a new anon_vma. It checks because a repetitive | |
1126 | * sequence of mprotects and faults may otherwise lead to distinct | |
1127 | * anon_vmas being allocated, preventing vma merge in subsequent | |
1128 | * mprotect. | |
1129 | */ | |
1130 | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) | |
1131 | { | |
d0e9fe17 | 1132 | struct anon_vma *anon_vma; |
1da177e4 | 1133 | struct vm_area_struct *near; |
1da177e4 LT |
1134 | |
1135 | near = vma->vm_next; | |
1136 | if (!near) | |
1137 | goto try_prev; | |
1138 | ||
d0e9fe17 LT |
1139 | anon_vma = reusable_anon_vma(near, vma, near); |
1140 | if (anon_vma) | |
1141 | return anon_vma; | |
1da177e4 | 1142 | try_prev: |
9be34c9d | 1143 | near = vma->vm_prev; |
1da177e4 LT |
1144 | if (!near) |
1145 | goto none; | |
1146 | ||
d0e9fe17 LT |
1147 | anon_vma = reusable_anon_vma(near, near, vma); |
1148 | if (anon_vma) | |
1149 | return anon_vma; | |
1da177e4 LT |
1150 | none: |
1151 | /* | |
1152 | * There's no absolute need to look only at touching neighbours: | |
1153 | * we could search further afield for "compatible" anon_vmas. | |
1154 | * But it would probably just be a waste of time searching, | |
1155 | * or lead to too many vmas hanging off the same anon_vma. | |
1156 | * We're trying to allow mprotect remerging later on, | |
1157 | * not trying to minimize memory used for anon_vmas. | |
1158 | */ | |
1159 | return NULL; | |
1160 | } | |
1161 | ||
1162 | #ifdef CONFIG_PROC_FS | |
ab50b8ed | 1163 | void vm_stat_account(struct mm_struct *mm, unsigned long flags, |
1da177e4 LT |
1164 | struct file *file, long pages) |
1165 | { | |
1166 | const unsigned long stack_flags | |
1167 | = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); | |
1168 | ||
44de9d0c HS |
1169 | mm->total_vm += pages; |
1170 | ||
1da177e4 LT |
1171 | if (file) { |
1172 | mm->shared_vm += pages; | |
1173 | if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) | |
1174 | mm->exec_vm += pages; | |
1175 | } else if (flags & stack_flags) | |
1176 | mm->stack_vm += pages; | |
1da177e4 LT |
1177 | } |
1178 | #endif /* CONFIG_PROC_FS */ | |
1179 | ||
40401530 AV |
1180 | /* |
1181 | * If a hint addr is less than mmap_min_addr change hint to be as | |
1182 | * low as possible but still greater than mmap_min_addr | |
1183 | */ | |
1184 | static inline unsigned long round_hint_to_min(unsigned long hint) | |
1185 | { | |
1186 | hint &= PAGE_MASK; | |
1187 | if (((void *)hint != NULL) && | |
1188 | (hint < mmap_min_addr)) | |
1189 | return PAGE_ALIGN(mmap_min_addr); | |
1190 | return hint; | |
1191 | } | |
1192 | ||
1da177e4 | 1193 | /* |
27f5de79 | 1194 | * The caller must hold down_write(¤t->mm->mmap_sem). |
1da177e4 LT |
1195 | */ |
1196 | ||
e3fc629d | 1197 | unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, |
1da177e4 | 1198 | unsigned long len, unsigned long prot, |
bebeb3d6 | 1199 | unsigned long flags, unsigned long pgoff, |
41badc15 | 1200 | unsigned long *populate) |
1da177e4 LT |
1201 | { |
1202 | struct mm_struct * mm = current->mm; | |
ca16d140 | 1203 | vm_flags_t vm_flags; |
1da177e4 | 1204 | |
41badc15 | 1205 | *populate = 0; |
bebeb3d6 | 1206 | |
1da177e4 LT |
1207 | /* |
1208 | * Does the application expect PROT_READ to imply PROT_EXEC? | |
1209 | * | |
1210 | * (the exception is when the underlying filesystem is noexec | |
1211 | * mounted, in which case we dont add PROT_EXEC.) | |
1212 | */ | |
1213 | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) | |
d3ac7f89 | 1214 | if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) |
1da177e4 LT |
1215 | prot |= PROT_EXEC; |
1216 | ||
1217 | if (!len) | |
1218 | return -EINVAL; | |
1219 | ||
7cd94146 EP |
1220 | if (!(flags & MAP_FIXED)) |
1221 | addr = round_hint_to_min(addr); | |
1222 | ||
1da177e4 LT |
1223 | /* Careful about overflows.. */ |
1224 | len = PAGE_ALIGN(len); | |
9206de95 | 1225 | if (!len) |
1da177e4 LT |
1226 | return -ENOMEM; |
1227 | ||
1228 | /* offset overflow? */ | |
1229 | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) | |
1230 | return -EOVERFLOW; | |
1231 | ||
1232 | /* Too many mappings? */ | |
1233 | if (mm->map_count > sysctl_max_map_count) | |
1234 | return -ENOMEM; | |
1235 | ||
1236 | /* Obtain the address to map to. we verify (or select) it and ensure | |
1237 | * that it represents a valid section of the address space. | |
1238 | */ | |
1239 | addr = get_unmapped_area(file, addr, len, pgoff, flags); | |
1240 | if (addr & ~PAGE_MASK) | |
1241 | return addr; | |
1242 | ||
1243 | /* Do simple checking here so the lower-level routines won't have | |
1244 | * to. we assume access permissions have been handled by the open | |
1245 | * of the memory object, so we don't do any here. | |
1246 | */ | |
1247 | vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | | |
1248 | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; | |
1249 | ||
cdf7b341 | 1250 | if (flags & MAP_LOCKED) |
1da177e4 LT |
1251 | if (!can_do_mlock()) |
1252 | return -EPERM; | |
ba470de4 | 1253 | |
1da177e4 LT |
1254 | /* mlock MCL_FUTURE? */ |
1255 | if (vm_flags & VM_LOCKED) { | |
1256 | unsigned long locked, lock_limit; | |
93ea1d0a CW |
1257 | locked = len >> PAGE_SHIFT; |
1258 | locked += mm->locked_vm; | |
59e99e5b | 1259 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
93ea1d0a | 1260 | lock_limit >>= PAGE_SHIFT; |
1da177e4 LT |
1261 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) |
1262 | return -EAGAIN; | |
1263 | } | |
1264 | ||
1da177e4 | 1265 | if (file) { |
077bf22b ON |
1266 | struct inode *inode = file_inode(file); |
1267 | ||
1da177e4 LT |
1268 | switch (flags & MAP_TYPE) { |
1269 | case MAP_SHARED: | |
1270 | if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) | |
1271 | return -EACCES; | |
1272 | ||
1273 | /* | |
1274 | * Make sure we don't allow writing to an append-only | |
1275 | * file.. | |
1276 | */ | |
1277 | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) | |
1278 | return -EACCES; | |
1279 | ||
1280 | /* | |
1281 | * Make sure there are no mandatory locks on the file. | |
1282 | */ | |
1283 | if (locks_verify_locked(inode)) | |
1284 | return -EAGAIN; | |
1285 | ||
1286 | vm_flags |= VM_SHARED | VM_MAYSHARE; | |
1287 | if (!(file->f_mode & FMODE_WRITE)) | |
1288 | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); | |
1289 | ||
1290 | /* fall through */ | |
1291 | case MAP_PRIVATE: | |
1292 | if (!(file->f_mode & FMODE_READ)) | |
1293 | return -EACCES; | |
d3ac7f89 | 1294 | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { |
80c5606c LT |
1295 | if (vm_flags & VM_EXEC) |
1296 | return -EPERM; | |
1297 | vm_flags &= ~VM_MAYEXEC; | |
1298 | } | |
80c5606c | 1299 | |
72c2d531 | 1300 | if (!file->f_op->mmap) |
80c5606c | 1301 | return -ENODEV; |
b2c56e4f ON |
1302 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
1303 | return -EINVAL; | |
1da177e4 LT |
1304 | break; |
1305 | ||
1306 | default: | |
1307 | return -EINVAL; | |
1308 | } | |
1309 | } else { | |
1310 | switch (flags & MAP_TYPE) { | |
1311 | case MAP_SHARED: | |
b2c56e4f ON |
1312 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
1313 | return -EINVAL; | |
ce363942 TH |
1314 | /* |
1315 | * Ignore pgoff. | |
1316 | */ | |
1317 | pgoff = 0; | |
1da177e4 LT |
1318 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
1319 | break; | |
1320 | case MAP_PRIVATE: | |
1321 | /* | |
1322 | * Set pgoff according to addr for anon_vma. | |
1323 | */ | |
1324 | pgoff = addr >> PAGE_SHIFT; | |
1325 | break; | |
1326 | default: | |
1327 | return -EINVAL; | |
1328 | } | |
1329 | } | |
1330 | ||
c22c0d63 ML |
1331 | /* |
1332 | * Set 'VM_NORESERVE' if we should not account for the | |
1333 | * memory use of this mapping. | |
1334 | */ | |
1335 | if (flags & MAP_NORESERVE) { | |
1336 | /* We honor MAP_NORESERVE if allowed to overcommit */ | |
1337 | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) | |
1338 | vm_flags |= VM_NORESERVE; | |
1339 | ||
1340 | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ | |
1341 | if (file && is_file_hugepages(file)) | |
1342 | vm_flags |= VM_NORESERVE; | |
1343 | } | |
1344 | ||
1345 | addr = mmap_region(file, addr, len, vm_flags, pgoff); | |
09a9f1d2 ML |
1346 | if (!IS_ERR_VALUE(addr) && |
1347 | ((vm_flags & VM_LOCKED) || | |
1348 | (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) | |
41badc15 | 1349 | *populate = len; |
bebeb3d6 | 1350 | return addr; |
0165ab44 | 1351 | } |
6be5ceb0 | 1352 | |
66f0dc48 HD |
1353 | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, |
1354 | unsigned long, prot, unsigned long, flags, | |
1355 | unsigned long, fd, unsigned long, pgoff) | |
1356 | { | |
1357 | struct file *file = NULL; | |
1358 | unsigned long retval = -EBADF; | |
1359 | ||
1360 | if (!(flags & MAP_ANONYMOUS)) { | |
120a795d | 1361 | audit_mmap_fd(fd, flags); |
66f0dc48 HD |
1362 | file = fget(fd); |
1363 | if (!file) | |
1364 | goto out; | |
af73e4d9 NH |
1365 | if (is_file_hugepages(file)) |
1366 | len = ALIGN(len, huge_page_size(hstate_file(file))); | |
493af578 JE |
1367 | retval = -EINVAL; |
1368 | if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) | |
1369 | goto out_fput; | |
66f0dc48 HD |
1370 | } else if (flags & MAP_HUGETLB) { |
1371 | struct user_struct *user = NULL; | |
c103a4dc | 1372 | struct hstate *hs; |
af73e4d9 | 1373 | |
c103a4dc | 1374 | hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); |
091d0d55 LZ |
1375 | if (!hs) |
1376 | return -EINVAL; | |
1377 | ||
1378 | len = ALIGN(len, huge_page_size(hs)); | |
66f0dc48 HD |
1379 | /* |
1380 | * VM_NORESERVE is used because the reservations will be | |
1381 | * taken when vm_ops->mmap() is called | |
1382 | * A dummy user value is used because we are not locking | |
1383 | * memory so no accounting is necessary | |
1384 | */ | |
af73e4d9 | 1385 | file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, |
42d7395f AK |
1386 | VM_NORESERVE, |
1387 | &user, HUGETLB_ANONHUGE_INODE, | |
1388 | (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); | |
66f0dc48 HD |
1389 | if (IS_ERR(file)) |
1390 | return PTR_ERR(file); | |
1391 | } | |
1392 | ||
1393 | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); | |
1394 | ||
eb36c587 | 1395 | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); |
493af578 | 1396 | out_fput: |
66f0dc48 HD |
1397 | if (file) |
1398 | fput(file); | |
1399 | out: | |
1400 | return retval; | |
1401 | } | |
1402 | ||
a4679373 CH |
1403 | #ifdef __ARCH_WANT_SYS_OLD_MMAP |
1404 | struct mmap_arg_struct { | |
1405 | unsigned long addr; | |
1406 | unsigned long len; | |
1407 | unsigned long prot; | |
1408 | unsigned long flags; | |
1409 | unsigned long fd; | |
1410 | unsigned long offset; | |
1411 | }; | |
1412 | ||
1413 | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) | |
1414 | { | |
1415 | struct mmap_arg_struct a; | |
1416 | ||
1417 | if (copy_from_user(&a, arg, sizeof(a))) | |
1418 | return -EFAULT; | |
1419 | if (a.offset & ~PAGE_MASK) | |
1420 | return -EINVAL; | |
1421 | ||
1422 | return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, | |
1423 | a.offset >> PAGE_SHIFT); | |
1424 | } | |
1425 | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ | |
1426 | ||
4e950f6f AD |
1427 | /* |
1428 | * Some shared mappigns will want the pages marked read-only | |
1429 | * to track write events. If so, we'll downgrade vm_page_prot | |
1430 | * to the private version (using protection_map[] without the | |
1431 | * VM_SHARED bit). | |
1432 | */ | |
1433 | int vma_wants_writenotify(struct vm_area_struct *vma) | |
1434 | { | |
ca16d140 | 1435 | vm_flags_t vm_flags = vma->vm_flags; |
4e950f6f AD |
1436 | |
1437 | /* If it was private or non-writable, the write bit is already clear */ | |
1438 | if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) | |
1439 | return 0; | |
1440 | ||
1441 | /* The backer wishes to know when pages are first written to? */ | |
1442 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) | |
1443 | return 1; | |
1444 | ||
1445 | /* The open routine did something to the protections already? */ | |
1446 | if (pgprot_val(vma->vm_page_prot) != | |
3ed75eb8 | 1447 | pgprot_val(vm_get_page_prot(vm_flags))) |
4e950f6f AD |
1448 | return 0; |
1449 | ||
1450 | /* Specialty mapping? */ | |
4b6e1e37 | 1451 | if (vm_flags & VM_PFNMAP) |
4e950f6f AD |
1452 | return 0; |
1453 | ||
1454 | /* Can the mapping track the dirty pages? */ | |
1455 | return vma->vm_file && vma->vm_file->f_mapping && | |
1456 | mapping_cap_account_dirty(vma->vm_file->f_mapping); | |
1457 | } | |
1458 | ||
fc8744ad LT |
1459 | /* |
1460 | * We account for memory if it's a private writeable mapping, | |
5a6fe125 | 1461 | * not hugepages and VM_NORESERVE wasn't set. |
fc8744ad | 1462 | */ |
ca16d140 | 1463 | static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) |
fc8744ad | 1464 | { |
5a6fe125 MG |
1465 | /* |
1466 | * hugetlb has its own accounting separate from the core VM | |
1467 | * VM_HUGETLB may not be set yet so we cannot check for that flag. | |
1468 | */ | |
1469 | if (file && is_file_hugepages(file)) | |
1470 | return 0; | |
1471 | ||
fc8744ad LT |
1472 | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; |
1473 | } | |
1474 | ||
0165ab44 | 1475 | unsigned long mmap_region(struct file *file, unsigned long addr, |
c22c0d63 | 1476 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) |
0165ab44 MS |
1477 | { |
1478 | struct mm_struct *mm = current->mm; | |
1479 | struct vm_area_struct *vma, *prev; | |
0165ab44 MS |
1480 | int error; |
1481 | struct rb_node **rb_link, *rb_parent; | |
1482 | unsigned long charged = 0; | |
0165ab44 | 1483 | |
e8420a8e CH |
1484 | /* Check against address space limit. */ |
1485 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { | |
1486 | unsigned long nr_pages; | |
1487 | ||
1488 | /* | |
1489 | * MAP_FIXED may remove pages of mappings that intersects with | |
1490 | * requested mapping. Account for the pages it would unmap. | |
1491 | */ | |
1492 | if (!(vm_flags & MAP_FIXED)) | |
1493 | return -ENOMEM; | |
1494 | ||
1495 | nr_pages = count_vma_pages_range(mm, addr, addr + len); | |
1496 | ||
1497 | if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) | |
1498 | return -ENOMEM; | |
1499 | } | |
1500 | ||
1da177e4 LT |
1501 | /* Clear old maps */ |
1502 | error = -ENOMEM; | |
1503 | munmap_back: | |
6597d783 | 1504 | if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { |
1da177e4 LT |
1505 | if (do_munmap(mm, addr, len)) |
1506 | return -ENOMEM; | |
1507 | goto munmap_back; | |
1508 | } | |
1509 | ||
fc8744ad LT |
1510 | /* |
1511 | * Private writable mapping: check memory availability | |
1512 | */ | |
5a6fe125 | 1513 | if (accountable_mapping(file, vm_flags)) { |
fc8744ad | 1514 | charged = len >> PAGE_SHIFT; |
191c5424 | 1515 | if (security_vm_enough_memory_mm(mm, charged)) |
fc8744ad LT |
1516 | return -ENOMEM; |
1517 | vm_flags |= VM_ACCOUNT; | |
1da177e4 LT |
1518 | } |
1519 | ||
1520 | /* | |
de33c8db | 1521 | * Can we just expand an old mapping? |
1da177e4 | 1522 | */ |
de33c8db LT |
1523 | vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); |
1524 | if (vma) | |
1525 | goto out; | |
1da177e4 LT |
1526 | |
1527 | /* | |
1528 | * Determine the object being mapped and call the appropriate | |
1529 | * specific mapper. the address has already been validated, but | |
1530 | * not unmapped, but the maps are removed from the list. | |
1531 | */ | |
c5e3b83e | 1532 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 LT |
1533 | if (!vma) { |
1534 | error = -ENOMEM; | |
1535 | goto unacct_error; | |
1536 | } | |
1da177e4 LT |
1537 | |
1538 | vma->vm_mm = mm; | |
1539 | vma->vm_start = addr; | |
1540 | vma->vm_end = addr + len; | |
1541 | vma->vm_flags = vm_flags; | |
3ed75eb8 | 1542 | vma->vm_page_prot = vm_get_page_prot(vm_flags); |
1da177e4 | 1543 | vma->vm_pgoff = pgoff; |
5beb4930 | 1544 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1da177e4 LT |
1545 | |
1546 | if (file) { | |
1da177e4 LT |
1547 | if (vm_flags & VM_DENYWRITE) { |
1548 | error = deny_write_access(file); | |
1549 | if (error) | |
1550 | goto free_vma; | |
1da177e4 | 1551 | } |
cb0942b8 | 1552 | vma->vm_file = get_file(file); |
1da177e4 LT |
1553 | error = file->f_op->mmap(file, vma); |
1554 | if (error) | |
1555 | goto unmap_and_free_vma; | |
f8dbf0a7 HS |
1556 | |
1557 | /* Can addr have changed?? | |
1558 | * | |
1559 | * Answer: Yes, several device drivers can do it in their | |
1560 | * f_op->mmap method. -DaveM | |
2897b4d2 JK |
1561 | * Bug: If addr is changed, prev, rb_link, rb_parent should |
1562 | * be updated for vma_link() | |
f8dbf0a7 | 1563 | */ |
2897b4d2 JK |
1564 | WARN_ON_ONCE(addr != vma->vm_start); |
1565 | ||
f8dbf0a7 | 1566 | addr = vma->vm_start; |
f8dbf0a7 | 1567 | vm_flags = vma->vm_flags; |
1da177e4 LT |
1568 | } else if (vm_flags & VM_SHARED) { |
1569 | error = shmem_zero_setup(vma); | |
1570 | if (error) | |
1571 | goto free_vma; | |
1572 | } | |
1573 | ||
c9d0bf24 MD |
1574 | if (vma_wants_writenotify(vma)) { |
1575 | pgprot_t pprot = vma->vm_page_prot; | |
1576 | ||
1577 | /* Can vma->vm_page_prot have changed?? | |
1578 | * | |
1579 | * Answer: Yes, drivers may have changed it in their | |
1580 | * f_op->mmap method. | |
1581 | * | |
1582 | * Ensures that vmas marked as uncached stay that way. | |
1583 | */ | |
1ddd439e | 1584 | vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); |
c9d0bf24 MD |
1585 | if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) |
1586 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | |
1587 | } | |
d08b3851 | 1588 | |
de33c8db | 1589 | vma_link(mm, vma, prev, rb_link, rb_parent); |
4d3d5b41 | 1590 | /* Once vma denies write, undo our temporary denial count */ |
e8686772 ON |
1591 | if (vm_flags & VM_DENYWRITE) |
1592 | allow_write_access(file); | |
1593 | file = vma->vm_file; | |
4d3d5b41 | 1594 | out: |
cdd6c482 | 1595 | perf_event_mmap(vma); |
0a4a9391 | 1596 | |
ab50b8ed | 1597 | vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); |
1da177e4 | 1598 | if (vm_flags & VM_LOCKED) { |
bebeb3d6 ML |
1599 | if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || |
1600 | vma == get_gate_vma(current->mm))) | |
06f9d8c2 | 1601 | mm->locked_vm += (len >> PAGE_SHIFT); |
bebeb3d6 ML |
1602 | else |
1603 | vma->vm_flags &= ~VM_LOCKED; | |
1604 | } | |
2b144498 | 1605 | |
c7a3a88c ON |
1606 | if (file) |
1607 | uprobe_mmap(vma); | |
2b144498 | 1608 | |
d9104d1c CG |
1609 | /* |
1610 | * New (or expanded) vma always get soft dirty status. | |
1611 | * Otherwise user-space soft-dirty page tracker won't | |
1612 | * be able to distinguish situation when vma area unmapped, | |
1613 | * then new mapped in-place (which must be aimed as | |
1614 | * a completely new data area). | |
1615 | */ | |
1616 | vma->vm_flags |= VM_SOFTDIRTY; | |
1617 | ||
1da177e4 LT |
1618 | return addr; |
1619 | ||
1620 | unmap_and_free_vma: | |
e8686772 ON |
1621 | if (vm_flags & VM_DENYWRITE) |
1622 | allow_write_access(file); | |
1da177e4 LT |
1623 | vma->vm_file = NULL; |
1624 | fput(file); | |
1625 | ||
1626 | /* Undo any partial mapping done by a device driver. */ | |
e0da382c HD |
1627 | unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); |
1628 | charged = 0; | |
1da177e4 LT |
1629 | free_vma: |
1630 | kmem_cache_free(vm_area_cachep, vma); | |
1631 | unacct_error: | |
1632 | if (charged) | |
1633 | vm_unacct_memory(charged); | |
1634 | return error; | |
1635 | } | |
1636 | ||
db4fbfb9 ML |
1637 | unsigned long unmapped_area(struct vm_unmapped_area_info *info) |
1638 | { | |
1639 | /* | |
1640 | * We implement the search by looking for an rbtree node that | |
1641 | * immediately follows a suitable gap. That is, | |
1642 | * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; | |
1643 | * - gap_end = vma->vm_start >= info->low_limit + length; | |
1644 | * - gap_end - gap_start >= length | |
1645 | */ | |
1646 | ||
1647 | struct mm_struct *mm = current->mm; | |
1648 | struct vm_area_struct *vma; | |
1649 | unsigned long length, low_limit, high_limit, gap_start, gap_end; | |
1650 | ||
1651 | /* Adjust search length to account for worst case alignment overhead */ | |
1652 | length = info->length + info->align_mask; | |
1653 | if (length < info->length) | |
1654 | return -ENOMEM; | |
1655 | ||
1656 | /* Adjust search limits by the desired length */ | |
1657 | if (info->high_limit < length) | |
1658 | return -ENOMEM; | |
1659 | high_limit = info->high_limit - length; | |
1660 | ||
1661 | if (info->low_limit > high_limit) | |
1662 | return -ENOMEM; | |
1663 | low_limit = info->low_limit + length; | |
1664 | ||
1665 | /* Check if rbtree root looks promising */ | |
1666 | if (RB_EMPTY_ROOT(&mm->mm_rb)) | |
1667 | goto check_highest; | |
1668 | vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); | |
1669 | if (vma->rb_subtree_gap < length) | |
1670 | goto check_highest; | |
1671 | ||
1672 | while (true) { | |
1673 | /* Visit left subtree if it looks promising */ | |
1674 | gap_end = vma->vm_start; | |
1675 | if (gap_end >= low_limit && vma->vm_rb.rb_left) { | |
1676 | struct vm_area_struct *left = | |
1677 | rb_entry(vma->vm_rb.rb_left, | |
1678 | struct vm_area_struct, vm_rb); | |
1679 | if (left->rb_subtree_gap >= length) { | |
1680 | vma = left; | |
1681 | continue; | |
1682 | } | |
1683 | } | |
1684 | ||
1685 | gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; | |
1686 | check_current: | |
1687 | /* Check if current node has a suitable gap */ | |
1688 | if (gap_start > high_limit) | |
1689 | return -ENOMEM; | |
1690 | if (gap_end >= low_limit && gap_end - gap_start >= length) | |
1691 | goto found; | |
1692 | ||
1693 | /* Visit right subtree if it looks promising */ | |
1694 | if (vma->vm_rb.rb_right) { | |
1695 | struct vm_area_struct *right = | |
1696 | rb_entry(vma->vm_rb.rb_right, | |
1697 | struct vm_area_struct, vm_rb); | |
1698 | if (right->rb_subtree_gap >= length) { | |
1699 | vma = right; | |
1700 | continue; | |
1701 | } | |
1702 | } | |
1703 | ||
1704 | /* Go back up the rbtree to find next candidate node */ | |
1705 | while (true) { | |
1706 | struct rb_node *prev = &vma->vm_rb; | |
1707 | if (!rb_parent(prev)) | |
1708 | goto check_highest; | |
1709 | vma = rb_entry(rb_parent(prev), | |
1710 | struct vm_area_struct, vm_rb); | |
1711 | if (prev == vma->vm_rb.rb_left) { | |
1712 | gap_start = vma->vm_prev->vm_end; | |
1713 | gap_end = vma->vm_start; | |
1714 | goto check_current; | |
1715 | } | |
1716 | } | |
1717 | } | |
1718 | ||
1719 | check_highest: | |
1720 | /* Check highest gap, which does not precede any rbtree node */ | |
1721 | gap_start = mm->highest_vm_end; | |
1722 | gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ | |
1723 | if (gap_start > high_limit) | |
1724 | return -ENOMEM; | |
1725 | ||
1726 | found: | |
1727 | /* We found a suitable gap. Clip it with the original low_limit. */ | |
1728 | if (gap_start < info->low_limit) | |
1729 | gap_start = info->low_limit; | |
1730 | ||
1731 | /* Adjust gap address to the desired alignment */ | |
1732 | gap_start += (info->align_offset - gap_start) & info->align_mask; | |
1733 | ||
1734 | VM_BUG_ON(gap_start + info->length > info->high_limit); | |
1735 | VM_BUG_ON(gap_start + info->length > gap_end); | |
1736 | return gap_start; | |
1737 | } | |
1738 | ||
1739 | unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) | |
1740 | { | |
1741 | struct mm_struct *mm = current->mm; | |
1742 | struct vm_area_struct *vma; | |
1743 | unsigned long length, low_limit, high_limit, gap_start, gap_end; | |
1744 | ||
1745 | /* Adjust search length to account for worst case alignment overhead */ | |
1746 | length = info->length + info->align_mask; | |
1747 | if (length < info->length) | |
1748 | return -ENOMEM; | |
1749 | ||
1750 | /* | |
1751 | * Adjust search limits by the desired length. | |
1752 | * See implementation comment at top of unmapped_area(). | |
1753 | */ | |
1754 | gap_end = info->high_limit; | |
1755 | if (gap_end < length) | |
1756 | return -ENOMEM; | |
1757 | high_limit = gap_end - length; | |
1758 | ||
1759 | if (info->low_limit > high_limit) | |
1760 | return -ENOMEM; | |
1761 | low_limit = info->low_limit + length; | |
1762 | ||
1763 | /* Check highest gap, which does not precede any rbtree node */ | |
1764 | gap_start = mm->highest_vm_end; | |
1765 | if (gap_start <= high_limit) | |
1766 | goto found_highest; | |
1767 | ||
1768 | /* Check if rbtree root looks promising */ | |
1769 | if (RB_EMPTY_ROOT(&mm->mm_rb)) | |
1770 | return -ENOMEM; | |
1771 | vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); | |
1772 | if (vma->rb_subtree_gap < length) | |
1773 | return -ENOMEM; | |
1774 | ||
1775 | while (true) { | |
1776 | /* Visit right subtree if it looks promising */ | |
1777 | gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; | |
1778 | if (gap_start <= high_limit && vma->vm_rb.rb_right) { | |
1779 | struct vm_area_struct *right = | |
1780 | rb_entry(vma->vm_rb.rb_right, | |
1781 | struct vm_area_struct, vm_rb); | |
1782 | if (right->rb_subtree_gap >= length) { | |
1783 | vma = right; | |
1784 | continue; | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | check_current: | |
1789 | /* Check if current node has a suitable gap */ | |
1790 | gap_end = vma->vm_start; | |
1791 | if (gap_end < low_limit) | |
1792 | return -ENOMEM; | |
1793 | if (gap_start <= high_limit && gap_end - gap_start >= length) | |
1794 | goto found; | |
1795 | ||
1796 | /* Visit left subtree if it looks promising */ | |
1797 | if (vma->vm_rb.rb_left) { | |
1798 | struct vm_area_struct *left = | |
1799 | rb_entry(vma->vm_rb.rb_left, | |
1800 | struct vm_area_struct, vm_rb); | |
1801 | if (left->rb_subtree_gap >= length) { | |
1802 | vma = left; | |
1803 | continue; | |
1804 | } | |
1805 | } | |
1806 | ||
1807 | /* Go back up the rbtree to find next candidate node */ | |
1808 | while (true) { | |
1809 | struct rb_node *prev = &vma->vm_rb; | |
1810 | if (!rb_parent(prev)) | |
1811 | return -ENOMEM; | |
1812 | vma = rb_entry(rb_parent(prev), | |
1813 | struct vm_area_struct, vm_rb); | |
1814 | if (prev == vma->vm_rb.rb_right) { | |
1815 | gap_start = vma->vm_prev ? | |
1816 | vma->vm_prev->vm_end : 0; | |
1817 | goto check_current; | |
1818 | } | |
1819 | } | |
1820 | } | |
1821 | ||
1822 | found: | |
1823 | /* We found a suitable gap. Clip it with the original high_limit. */ | |
1824 | if (gap_end > info->high_limit) | |
1825 | gap_end = info->high_limit; | |
1826 | ||
1827 | found_highest: | |
1828 | /* Compute highest gap address at the desired alignment */ | |
1829 | gap_end -= info->length; | |
1830 | gap_end -= (gap_end - info->align_offset) & info->align_mask; | |
1831 | ||
1832 | VM_BUG_ON(gap_end < info->low_limit); | |
1833 | VM_BUG_ON(gap_end < gap_start); | |
1834 | return gap_end; | |
1835 | } | |
1836 | ||
1da177e4 LT |
1837 | /* Get an address range which is currently unmapped. |
1838 | * For shmat() with addr=0. | |
1839 | * | |
1840 | * Ugly calling convention alert: | |
1841 | * Return value with the low bits set means error value, | |
1842 | * ie | |
1843 | * if (ret & ~PAGE_MASK) | |
1844 | * error = ret; | |
1845 | * | |
1846 | * This function "knows" that -ENOMEM has the bits set. | |
1847 | */ | |
1848 | #ifndef HAVE_ARCH_UNMAPPED_AREA | |
1849 | unsigned long | |
1850 | arch_get_unmapped_area(struct file *filp, unsigned long addr, | |
1851 | unsigned long len, unsigned long pgoff, unsigned long flags) | |
1852 | { | |
1853 | struct mm_struct *mm = current->mm; | |
1854 | struct vm_area_struct *vma; | |
db4fbfb9 | 1855 | struct vm_unmapped_area_info info; |
1da177e4 | 1856 | |
2afc745f | 1857 | if (len > TASK_SIZE - mmap_min_addr) |
1da177e4 LT |
1858 | return -ENOMEM; |
1859 | ||
06abdfb4 BH |
1860 | if (flags & MAP_FIXED) |
1861 | return addr; | |
1862 | ||
1da177e4 LT |
1863 | if (addr) { |
1864 | addr = PAGE_ALIGN(addr); | |
1865 | vma = find_vma(mm, addr); | |
2afc745f | 1866 | if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && |
1da177e4 LT |
1867 | (!vma || addr + len <= vma->vm_start)) |
1868 | return addr; | |
1869 | } | |
1da177e4 | 1870 | |
db4fbfb9 ML |
1871 | info.flags = 0; |
1872 | info.length = len; | |
4e99b021 | 1873 | info.low_limit = mm->mmap_base; |
db4fbfb9 ML |
1874 | info.high_limit = TASK_SIZE; |
1875 | info.align_mask = 0; | |
1876 | return vm_unmapped_area(&info); | |
1da177e4 LT |
1877 | } |
1878 | #endif | |
1879 | ||
1da177e4 LT |
1880 | /* |
1881 | * This mmap-allocator allocates new areas top-down from below the | |
1882 | * stack's low limit (the base): | |
1883 | */ | |
1884 | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | |
1885 | unsigned long | |
1886 | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | |
1887 | const unsigned long len, const unsigned long pgoff, | |
1888 | const unsigned long flags) | |
1889 | { | |
1890 | struct vm_area_struct *vma; | |
1891 | struct mm_struct *mm = current->mm; | |
db4fbfb9 ML |
1892 | unsigned long addr = addr0; |
1893 | struct vm_unmapped_area_info info; | |
1da177e4 LT |
1894 | |
1895 | /* requested length too big for entire address space */ | |
2afc745f | 1896 | if (len > TASK_SIZE - mmap_min_addr) |
1da177e4 LT |
1897 | return -ENOMEM; |
1898 | ||
06abdfb4 BH |
1899 | if (flags & MAP_FIXED) |
1900 | return addr; | |
1901 | ||
1da177e4 LT |
1902 | /* requesting a specific address */ |
1903 | if (addr) { | |
1904 | addr = PAGE_ALIGN(addr); | |
1905 | vma = find_vma(mm, addr); | |
2afc745f | 1906 | if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && |
1da177e4 LT |
1907 | (!vma || addr + len <= vma->vm_start)) |
1908 | return addr; | |
1909 | } | |
1910 | ||
db4fbfb9 ML |
1911 | info.flags = VM_UNMAPPED_AREA_TOPDOWN; |
1912 | info.length = len; | |
2afc745f | 1913 | info.low_limit = max(PAGE_SIZE, mmap_min_addr); |
db4fbfb9 ML |
1914 | info.high_limit = mm->mmap_base; |
1915 | info.align_mask = 0; | |
1916 | addr = vm_unmapped_area(&info); | |
b716ad95 | 1917 | |
1da177e4 LT |
1918 | /* |
1919 | * A failed mmap() very likely causes application failure, | |
1920 | * so fall back to the bottom-up function here. This scenario | |
1921 | * can happen with large stack limits and large mmap() | |
1922 | * allocations. | |
1923 | */ | |
db4fbfb9 ML |
1924 | if (addr & ~PAGE_MASK) { |
1925 | VM_BUG_ON(addr != -ENOMEM); | |
1926 | info.flags = 0; | |
1927 | info.low_limit = TASK_UNMAPPED_BASE; | |
1928 | info.high_limit = TASK_SIZE; | |
1929 | addr = vm_unmapped_area(&info); | |
1930 | } | |
1da177e4 LT |
1931 | |
1932 | return addr; | |
1933 | } | |
1934 | #endif | |
1935 | ||
1da177e4 LT |
1936 | unsigned long |
1937 | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, | |
1938 | unsigned long pgoff, unsigned long flags) | |
1939 | { | |
06abdfb4 BH |
1940 | unsigned long (*get_area)(struct file *, unsigned long, |
1941 | unsigned long, unsigned long, unsigned long); | |
1942 | ||
9206de95 AV |
1943 | unsigned long error = arch_mmap_check(addr, len, flags); |
1944 | if (error) | |
1945 | return error; | |
1946 | ||
1947 | /* Careful about overflows.. */ | |
1948 | if (len > TASK_SIZE) | |
1949 | return -ENOMEM; | |
1950 | ||
06abdfb4 | 1951 | get_area = current->mm->get_unmapped_area; |
72c2d531 | 1952 | if (file && file->f_op->get_unmapped_area) |
06abdfb4 BH |
1953 | get_area = file->f_op->get_unmapped_area; |
1954 | addr = get_area(file, addr, len, pgoff, flags); | |
1955 | if (IS_ERR_VALUE(addr)) | |
1956 | return addr; | |
1da177e4 | 1957 | |
07ab67c8 LT |
1958 | if (addr > TASK_SIZE - len) |
1959 | return -ENOMEM; | |
1960 | if (addr & ~PAGE_MASK) | |
1961 | return -EINVAL; | |
06abdfb4 | 1962 | |
9ac4ed4b AV |
1963 | addr = arch_rebalance_pgtables(addr, len); |
1964 | error = security_mmap_addr(addr); | |
1965 | return error ? error : addr; | |
1da177e4 LT |
1966 | } |
1967 | ||
1968 | EXPORT_SYMBOL(get_unmapped_area); | |
1969 | ||
1970 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ | |
48aae425 | 1971 | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) |
1da177e4 LT |
1972 | { |
1973 | struct vm_area_struct *vma = NULL; | |
1974 | ||
841e31e5 RM |
1975 | /* Check the cache first. */ |
1976 | /* (Cache hit rate is typically around 35%.) */ | |
b6a9b7f6 | 1977 | vma = ACCESS_ONCE(mm->mmap_cache); |
841e31e5 RM |
1978 | if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { |
1979 | struct rb_node *rb_node; | |
1980 | ||
1981 | rb_node = mm->mm_rb.rb_node; | |
1982 | vma = NULL; | |
1983 | ||
1984 | while (rb_node) { | |
1985 | struct vm_area_struct *vma_tmp; | |
1986 | ||
1987 | vma_tmp = rb_entry(rb_node, | |
1988 | struct vm_area_struct, vm_rb); | |
1989 | ||
1990 | if (vma_tmp->vm_end > addr) { | |
1991 | vma = vma_tmp; | |
1992 | if (vma_tmp->vm_start <= addr) | |
1993 | break; | |
1994 | rb_node = rb_node->rb_left; | |
1995 | } else | |
1996 | rb_node = rb_node->rb_right; | |
1da177e4 | 1997 | } |
841e31e5 RM |
1998 | if (vma) |
1999 | mm->mmap_cache = vma; | |
1da177e4 LT |
2000 | } |
2001 | return vma; | |
2002 | } | |
2003 | ||
2004 | EXPORT_SYMBOL(find_vma); | |
2005 | ||
6bd4837d KM |
2006 | /* |
2007 | * Same as find_vma, but also return a pointer to the previous VMA in *pprev. | |
6bd4837d | 2008 | */ |
1da177e4 LT |
2009 | struct vm_area_struct * |
2010 | find_vma_prev(struct mm_struct *mm, unsigned long addr, | |
2011 | struct vm_area_struct **pprev) | |
2012 | { | |
6bd4837d | 2013 | struct vm_area_struct *vma; |
1da177e4 | 2014 | |
6bd4837d | 2015 | vma = find_vma(mm, addr); |
83cd904d MP |
2016 | if (vma) { |
2017 | *pprev = vma->vm_prev; | |
2018 | } else { | |
2019 | struct rb_node *rb_node = mm->mm_rb.rb_node; | |
2020 | *pprev = NULL; | |
2021 | while (rb_node) { | |
2022 | *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); | |
2023 | rb_node = rb_node->rb_right; | |
2024 | } | |
2025 | } | |
6bd4837d | 2026 | return vma; |
1da177e4 LT |
2027 | } |
2028 | ||
2029 | /* | |
2030 | * Verify that the stack growth is acceptable and | |
2031 | * update accounting. This is shared with both the | |
2032 | * grow-up and grow-down cases. | |
2033 | */ | |
48aae425 | 2034 | static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) |
1da177e4 LT |
2035 | { |
2036 | struct mm_struct *mm = vma->vm_mm; | |
2037 | struct rlimit *rlim = current->signal->rlim; | |
0d59a01b | 2038 | unsigned long new_start; |
1da177e4 LT |
2039 | |
2040 | /* address space limit tests */ | |
119f657c | 2041 | if (!may_expand_vm(mm, grow)) |
1da177e4 LT |
2042 | return -ENOMEM; |
2043 | ||
2044 | /* Stack limit test */ | |
59e99e5b | 2045 | if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) |
1da177e4 LT |
2046 | return -ENOMEM; |
2047 | ||
2048 | /* mlock limit tests */ | |
2049 | if (vma->vm_flags & VM_LOCKED) { | |
2050 | unsigned long locked; | |
2051 | unsigned long limit; | |
2052 | locked = mm->locked_vm + grow; | |
59e99e5b JS |
2053 | limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); |
2054 | limit >>= PAGE_SHIFT; | |
1da177e4 LT |
2055 | if (locked > limit && !capable(CAP_IPC_LOCK)) |
2056 | return -ENOMEM; | |
2057 | } | |
2058 | ||
0d59a01b AL |
2059 | /* Check to ensure the stack will not grow into a hugetlb-only region */ |
2060 | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : | |
2061 | vma->vm_end - size; | |
2062 | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) | |
2063 | return -EFAULT; | |
2064 | ||
1da177e4 LT |
2065 | /* |
2066 | * Overcommit.. This must be the final test, as it will | |
2067 | * update security statistics. | |
2068 | */ | |
05fa199d | 2069 | if (security_vm_enough_memory_mm(mm, grow)) |
1da177e4 LT |
2070 | return -ENOMEM; |
2071 | ||
2072 | /* Ok, everything looks good - let it rip */ | |
1da177e4 LT |
2073 | if (vma->vm_flags & VM_LOCKED) |
2074 | mm->locked_vm += grow; | |
ab50b8ed | 2075 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); |
1da177e4 LT |
2076 | return 0; |
2077 | } | |
2078 | ||
46dea3d0 | 2079 | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) |
1da177e4 | 2080 | /* |
46dea3d0 HD |
2081 | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. |
2082 | * vma is the last one with address > vma->vm_end. Have to extend vma. | |
1da177e4 | 2083 | */ |
46dea3d0 | 2084 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
1da177e4 LT |
2085 | { |
2086 | int error; | |
2087 | ||
2088 | if (!(vma->vm_flags & VM_GROWSUP)) | |
2089 | return -EFAULT; | |
2090 | ||
2091 | /* | |
2092 | * We must make sure the anon_vma is allocated | |
2093 | * so that the anon_vma locking is not a noop. | |
2094 | */ | |
2095 | if (unlikely(anon_vma_prepare(vma))) | |
2096 | return -ENOMEM; | |
bb4a340e | 2097 | vma_lock_anon_vma(vma); |
1da177e4 LT |
2098 | |
2099 | /* | |
2100 | * vma->vm_start/vm_end cannot change under us because the caller | |
2101 | * is required to hold the mmap_sem in read mode. We need the | |
2102 | * anon_vma lock to serialize against concurrent expand_stacks. | |
06b32f3a | 2103 | * Also guard against wrapping around to address 0. |
1da177e4 | 2104 | */ |
06b32f3a HD |
2105 | if (address < PAGE_ALIGN(address+4)) |
2106 | address = PAGE_ALIGN(address+4); | |
2107 | else { | |
bb4a340e | 2108 | vma_unlock_anon_vma(vma); |
06b32f3a HD |
2109 | return -ENOMEM; |
2110 | } | |
1da177e4 LT |
2111 | error = 0; |
2112 | ||
2113 | /* Somebody else might have raced and expanded it already */ | |
2114 | if (address > vma->vm_end) { | |
2115 | unsigned long size, grow; | |
2116 | ||
2117 | size = address - vma->vm_start; | |
2118 | grow = (address - vma->vm_end) >> PAGE_SHIFT; | |
2119 | ||
42c36f63 HD |
2120 | error = -ENOMEM; |
2121 | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { | |
2122 | error = acct_stack_growth(vma, size, grow); | |
2123 | if (!error) { | |
4128997b ML |
2124 | /* |
2125 | * vma_gap_update() doesn't support concurrent | |
2126 | * updates, but we only hold a shared mmap_sem | |
2127 | * lock here, so we need to protect against | |
2128 | * concurrent vma expansions. | |
2129 | * vma_lock_anon_vma() doesn't help here, as | |
2130 | * we don't guarantee that all growable vmas | |
2131 | * in a mm share the same root anon vma. | |
2132 | * So, we reuse mm->page_table_lock to guard | |
2133 | * against concurrent vma expansions. | |
2134 | */ | |
2135 | spin_lock(&vma->vm_mm->page_table_lock); | |
bf181b9f | 2136 | anon_vma_interval_tree_pre_update_vma(vma); |
42c36f63 | 2137 | vma->vm_end = address; |
bf181b9f | 2138 | anon_vma_interval_tree_post_update_vma(vma); |
d3737187 ML |
2139 | if (vma->vm_next) |
2140 | vma_gap_update(vma->vm_next); | |
2141 | else | |
2142 | vma->vm_mm->highest_vm_end = address; | |
4128997b ML |
2143 | spin_unlock(&vma->vm_mm->page_table_lock); |
2144 | ||
42c36f63 HD |
2145 | perf_event_mmap(vma); |
2146 | } | |
3af9e859 | 2147 | } |
1da177e4 | 2148 | } |
bb4a340e | 2149 | vma_unlock_anon_vma(vma); |
b15d00b6 | 2150 | khugepaged_enter_vma_merge(vma); |
ed8ea815 | 2151 | validate_mm(vma->vm_mm); |
1da177e4 LT |
2152 | return error; |
2153 | } | |
46dea3d0 HD |
2154 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ |
2155 | ||
1da177e4 LT |
2156 | /* |
2157 | * vma is the first one with address < vma->vm_start. Have to extend vma. | |
2158 | */ | |
d05f3169 | 2159 | int expand_downwards(struct vm_area_struct *vma, |
b6a2fea3 | 2160 | unsigned long address) |
1da177e4 LT |
2161 | { |
2162 | int error; | |
2163 | ||
2164 | /* | |
2165 | * We must make sure the anon_vma is allocated | |
2166 | * so that the anon_vma locking is not a noop. | |
2167 | */ | |
2168 | if (unlikely(anon_vma_prepare(vma))) | |
2169 | return -ENOMEM; | |
8869477a EP |
2170 | |
2171 | address &= PAGE_MASK; | |
e5467859 | 2172 | error = security_mmap_addr(address); |
8869477a EP |
2173 | if (error) |
2174 | return error; | |
2175 | ||
bb4a340e | 2176 | vma_lock_anon_vma(vma); |
1da177e4 LT |
2177 | |
2178 | /* | |
2179 | * vma->vm_start/vm_end cannot change under us because the caller | |
2180 | * is required to hold the mmap_sem in read mode. We need the | |
2181 | * anon_vma lock to serialize against concurrent expand_stacks. | |
2182 | */ | |
1da177e4 LT |
2183 | |
2184 | /* Somebody else might have raced and expanded it already */ | |
2185 | if (address < vma->vm_start) { | |
2186 | unsigned long size, grow; | |
2187 | ||
2188 | size = vma->vm_end - address; | |
2189 | grow = (vma->vm_start - address) >> PAGE_SHIFT; | |
2190 | ||
a626ca6a LT |
2191 | error = -ENOMEM; |
2192 | if (grow <= vma->vm_pgoff) { | |
2193 | error = acct_stack_growth(vma, size, grow); | |
2194 | if (!error) { | |
4128997b ML |
2195 | /* |
2196 | * vma_gap_update() doesn't support concurrent | |
2197 | * updates, but we only hold a shared mmap_sem | |
2198 | * lock here, so we need to protect against | |
2199 | * concurrent vma expansions. | |
2200 | * vma_lock_anon_vma() doesn't help here, as | |
2201 | * we don't guarantee that all growable vmas | |
2202 | * in a mm share the same root anon vma. | |
2203 | * So, we reuse mm->page_table_lock to guard | |
2204 | * against concurrent vma expansions. | |
2205 | */ | |
2206 | spin_lock(&vma->vm_mm->page_table_lock); | |
bf181b9f | 2207 | anon_vma_interval_tree_pre_update_vma(vma); |
a626ca6a LT |
2208 | vma->vm_start = address; |
2209 | vma->vm_pgoff -= grow; | |
bf181b9f | 2210 | anon_vma_interval_tree_post_update_vma(vma); |
d3737187 | 2211 | vma_gap_update(vma); |
4128997b ML |
2212 | spin_unlock(&vma->vm_mm->page_table_lock); |
2213 | ||
a626ca6a LT |
2214 | perf_event_mmap(vma); |
2215 | } | |
1da177e4 LT |
2216 | } |
2217 | } | |
bb4a340e | 2218 | vma_unlock_anon_vma(vma); |
b15d00b6 | 2219 | khugepaged_enter_vma_merge(vma); |
ed8ea815 | 2220 | validate_mm(vma->vm_mm); |
1da177e4 LT |
2221 | return error; |
2222 | } | |
2223 | ||
09884964 LT |
2224 | /* |
2225 | * Note how expand_stack() refuses to expand the stack all the way to | |
2226 | * abut the next virtual mapping, *unless* that mapping itself is also | |
2227 | * a stack mapping. We want to leave room for a guard page, after all | |
2228 | * (the guard page itself is not added here, that is done by the | |
2229 | * actual page faulting logic) | |
2230 | * | |
2231 | * This matches the behavior of the guard page logic (see mm/memory.c: | |
2232 | * check_stack_guard_page()), which only allows the guard page to be | |
2233 | * removed under these circumstances. | |
2234 | */ | |
b6a2fea3 OW |
2235 | #ifdef CONFIG_STACK_GROWSUP |
2236 | int expand_stack(struct vm_area_struct *vma, unsigned long address) | |
2237 | { | |
09884964 LT |
2238 | struct vm_area_struct *next; |
2239 | ||
2240 | address &= PAGE_MASK; | |
2241 | next = vma->vm_next; | |
2242 | if (next && next->vm_start == address + PAGE_SIZE) { | |
2243 | if (!(next->vm_flags & VM_GROWSUP)) | |
2244 | return -ENOMEM; | |
2245 | } | |
b6a2fea3 OW |
2246 | return expand_upwards(vma, address); |
2247 | } | |
2248 | ||
2249 | struct vm_area_struct * | |
2250 | find_extend_vma(struct mm_struct *mm, unsigned long addr) | |
2251 | { | |
2252 | struct vm_area_struct *vma, *prev; | |
2253 | ||
2254 | addr &= PAGE_MASK; | |
2255 | vma = find_vma_prev(mm, addr, &prev); | |
2256 | if (vma && (vma->vm_start <= addr)) | |
2257 | return vma; | |
1c127185 | 2258 | if (!prev || expand_stack(prev, addr)) |
b6a2fea3 | 2259 | return NULL; |
cea10a19 ML |
2260 | if (prev->vm_flags & VM_LOCKED) |
2261 | __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); | |
b6a2fea3 OW |
2262 | return prev; |
2263 | } | |
2264 | #else | |
2265 | int expand_stack(struct vm_area_struct *vma, unsigned long address) | |
2266 | { | |
09884964 LT |
2267 | struct vm_area_struct *prev; |
2268 | ||
2269 | address &= PAGE_MASK; | |
2270 | prev = vma->vm_prev; | |
2271 | if (prev && prev->vm_end == address) { | |
2272 | if (!(prev->vm_flags & VM_GROWSDOWN)) | |
2273 | return -ENOMEM; | |
2274 | } | |
b6a2fea3 OW |
2275 | return expand_downwards(vma, address); |
2276 | } | |
2277 | ||
1da177e4 LT |
2278 | struct vm_area_struct * |
2279 | find_extend_vma(struct mm_struct * mm, unsigned long addr) | |
2280 | { | |
2281 | struct vm_area_struct * vma; | |
2282 | unsigned long start; | |
2283 | ||
2284 | addr &= PAGE_MASK; | |
2285 | vma = find_vma(mm,addr); | |
2286 | if (!vma) | |
2287 | return NULL; | |
2288 | if (vma->vm_start <= addr) | |
2289 | return vma; | |
2290 | if (!(vma->vm_flags & VM_GROWSDOWN)) | |
2291 | return NULL; | |
2292 | start = vma->vm_start; | |
2293 | if (expand_stack(vma, addr)) | |
2294 | return NULL; | |
cea10a19 ML |
2295 | if (vma->vm_flags & VM_LOCKED) |
2296 | __mlock_vma_pages_range(vma, addr, start, NULL); | |
1da177e4 LT |
2297 | return vma; |
2298 | } | |
2299 | #endif | |
2300 | ||
1da177e4 | 2301 | /* |
2c0b3814 | 2302 | * Ok - we have the memory areas we should free on the vma list, |
1da177e4 | 2303 | * so release them, and do the vma updates. |
2c0b3814 HD |
2304 | * |
2305 | * Called with the mm semaphore held. | |
1da177e4 | 2306 | */ |
2c0b3814 | 2307 | static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) |
1da177e4 | 2308 | { |
4f74d2c8 LT |
2309 | unsigned long nr_accounted = 0; |
2310 | ||
365e9c87 HD |
2311 | /* Update high watermark before we lower total_vm */ |
2312 | update_hiwater_vm(mm); | |
1da177e4 | 2313 | do { |
2c0b3814 HD |
2314 | long nrpages = vma_pages(vma); |
2315 | ||
4f74d2c8 LT |
2316 | if (vma->vm_flags & VM_ACCOUNT) |
2317 | nr_accounted += nrpages; | |
2c0b3814 | 2318 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); |
a8fb5618 | 2319 | vma = remove_vma(vma); |
146425a3 | 2320 | } while (vma); |
4f74d2c8 | 2321 | vm_unacct_memory(nr_accounted); |
1da177e4 LT |
2322 | validate_mm(mm); |
2323 | } | |
2324 | ||
2325 | /* | |
2326 | * Get rid of page table information in the indicated region. | |
2327 | * | |
f10df686 | 2328 | * Called with the mm semaphore held. |
1da177e4 LT |
2329 | */ |
2330 | static void unmap_region(struct mm_struct *mm, | |
e0da382c HD |
2331 | struct vm_area_struct *vma, struct vm_area_struct *prev, |
2332 | unsigned long start, unsigned long end) | |
1da177e4 | 2333 | { |
e0da382c | 2334 | struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; |
d16dfc55 | 2335 | struct mmu_gather tlb; |
1da177e4 LT |
2336 | |
2337 | lru_add_drain(); | |
2b047252 | 2338 | tlb_gather_mmu(&tlb, mm, start, end); |
365e9c87 | 2339 | update_hiwater_rss(mm); |
4f74d2c8 | 2340 | unmap_vmas(&tlb, vma, start, end); |
d16dfc55 | 2341 | free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, |
6ee8630e | 2342 | next ? next->vm_start : USER_PGTABLES_CEILING); |
d16dfc55 | 2343 | tlb_finish_mmu(&tlb, start, end); |
1da177e4 LT |
2344 | } |
2345 | ||
2346 | /* | |
2347 | * Create a list of vma's touched by the unmap, removing them from the mm's | |
2348 | * vma list as we go.. | |
2349 | */ | |
2350 | static void | |
2351 | detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, | |
2352 | struct vm_area_struct *prev, unsigned long end) | |
2353 | { | |
2354 | struct vm_area_struct **insertion_point; | |
2355 | struct vm_area_struct *tail_vma = NULL; | |
2356 | ||
2357 | insertion_point = (prev ? &prev->vm_next : &mm->mmap); | |
297c5eee | 2358 | vma->vm_prev = NULL; |
1da177e4 | 2359 | do { |
d3737187 | 2360 | vma_rb_erase(vma, &mm->mm_rb); |
1da177e4 LT |
2361 | mm->map_count--; |
2362 | tail_vma = vma; | |
2363 | vma = vma->vm_next; | |
2364 | } while (vma && vma->vm_start < end); | |
2365 | *insertion_point = vma; | |
d3737187 | 2366 | if (vma) { |
297c5eee | 2367 | vma->vm_prev = prev; |
d3737187 ML |
2368 | vma_gap_update(vma); |
2369 | } else | |
2370 | mm->highest_vm_end = prev ? prev->vm_end : 0; | |
1da177e4 LT |
2371 | tail_vma->vm_next = NULL; |
2372 | mm->mmap_cache = NULL; /* Kill the cache. */ | |
2373 | } | |
2374 | ||
2375 | /* | |
659ace58 KM |
2376 | * __split_vma() bypasses sysctl_max_map_count checking. We use this on the |
2377 | * munmap path where it doesn't make sense to fail. | |
1da177e4 | 2378 | */ |
659ace58 | 2379 | static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, |
1da177e4 LT |
2380 | unsigned long addr, int new_below) |
2381 | { | |
1da177e4 | 2382 | struct vm_area_struct *new; |
5beb4930 | 2383 | int err = -ENOMEM; |
1da177e4 | 2384 | |
a5516438 AK |
2385 | if (is_vm_hugetlb_page(vma) && (addr & |
2386 | ~(huge_page_mask(hstate_vma(vma))))) | |
1da177e4 LT |
2387 | return -EINVAL; |
2388 | ||
e94b1766 | 2389 | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 | 2390 | if (!new) |
5beb4930 | 2391 | goto out_err; |
1da177e4 LT |
2392 | |
2393 | /* most fields are the same, copy all, and then fixup */ | |
2394 | *new = *vma; | |
2395 | ||
5beb4930 RR |
2396 | INIT_LIST_HEAD(&new->anon_vma_chain); |
2397 | ||
1da177e4 LT |
2398 | if (new_below) |
2399 | new->vm_end = addr; | |
2400 | else { | |
2401 | new->vm_start = addr; | |
2402 | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); | |
2403 | } | |
2404 | ||
ef0855d3 ON |
2405 | err = vma_dup_policy(vma, new); |
2406 | if (err) | |
5beb4930 | 2407 | goto out_free_vma; |
1da177e4 | 2408 | |
5beb4930 RR |
2409 | if (anon_vma_clone(new, vma)) |
2410 | goto out_free_mpol; | |
2411 | ||
e9714acf | 2412 | if (new->vm_file) |
1da177e4 LT |
2413 | get_file(new->vm_file); |
2414 | ||
2415 | if (new->vm_ops && new->vm_ops->open) | |
2416 | new->vm_ops->open(new); | |
2417 | ||
2418 | if (new_below) | |
5beb4930 | 2419 | err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + |
1da177e4 LT |
2420 | ((addr - new->vm_start) >> PAGE_SHIFT), new); |
2421 | else | |
5beb4930 | 2422 | err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); |
1da177e4 | 2423 | |
5beb4930 RR |
2424 | /* Success. */ |
2425 | if (!err) | |
2426 | return 0; | |
2427 | ||
2428 | /* Clean everything up if vma_adjust failed. */ | |
58927533 RR |
2429 | if (new->vm_ops && new->vm_ops->close) |
2430 | new->vm_ops->close(new); | |
e9714acf | 2431 | if (new->vm_file) |
5beb4930 | 2432 | fput(new->vm_file); |
2aeadc30 | 2433 | unlink_anon_vmas(new); |
5beb4930 | 2434 | out_free_mpol: |
ef0855d3 | 2435 | mpol_put(vma_policy(new)); |
5beb4930 RR |
2436 | out_free_vma: |
2437 | kmem_cache_free(vm_area_cachep, new); | |
2438 | out_err: | |
2439 | return err; | |
1da177e4 LT |
2440 | } |
2441 | ||
659ace58 KM |
2442 | /* |
2443 | * Split a vma into two pieces at address 'addr', a new vma is allocated | |
2444 | * either for the first part or the tail. | |
2445 | */ | |
2446 | int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, | |
2447 | unsigned long addr, int new_below) | |
2448 | { | |
2449 | if (mm->map_count >= sysctl_max_map_count) | |
2450 | return -ENOMEM; | |
2451 | ||
2452 | return __split_vma(mm, vma, addr, new_below); | |
2453 | } | |
2454 | ||
1da177e4 LT |
2455 | /* Munmap is split into 2 main parts -- this part which finds |
2456 | * what needs doing, and the areas themselves, which do the | |
2457 | * work. This now handles partial unmappings. | |
2458 | * Jeremy Fitzhardinge <[email protected]> | |
2459 | */ | |
2460 | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) | |
2461 | { | |
2462 | unsigned long end; | |
146425a3 | 2463 | struct vm_area_struct *vma, *prev, *last; |
1da177e4 LT |
2464 | |
2465 | if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) | |
2466 | return -EINVAL; | |
2467 | ||
2468 | if ((len = PAGE_ALIGN(len)) == 0) | |
2469 | return -EINVAL; | |
2470 | ||
2471 | /* Find the first overlapping VMA */ | |
9be34c9d | 2472 | vma = find_vma(mm, start); |
146425a3 | 2473 | if (!vma) |
1da177e4 | 2474 | return 0; |
9be34c9d | 2475 | prev = vma->vm_prev; |
146425a3 | 2476 | /* we have start < vma->vm_end */ |
1da177e4 LT |
2477 | |
2478 | /* if it doesn't overlap, we have nothing.. */ | |
2479 | end = start + len; | |
146425a3 | 2480 | if (vma->vm_start >= end) |
1da177e4 LT |
2481 | return 0; |
2482 | ||
2483 | /* | |
2484 | * If we need to split any vma, do it now to save pain later. | |
2485 | * | |
2486 | * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially | |
2487 | * unmapped vm_area_struct will remain in use: so lower split_vma | |
2488 | * places tmp vma above, and higher split_vma places tmp vma below. | |
2489 | */ | |
146425a3 | 2490 | if (start > vma->vm_start) { |
659ace58 KM |
2491 | int error; |
2492 | ||
2493 | /* | |
2494 | * Make sure that map_count on return from munmap() will | |
2495 | * not exceed its limit; but let map_count go just above | |
2496 | * its limit temporarily, to help free resources as expected. | |
2497 | */ | |
2498 | if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) | |
2499 | return -ENOMEM; | |
2500 | ||
2501 | error = __split_vma(mm, vma, start, 0); | |
1da177e4 LT |
2502 | if (error) |
2503 | return error; | |
146425a3 | 2504 | prev = vma; |
1da177e4 LT |
2505 | } |
2506 | ||
2507 | /* Does it split the last one? */ | |
2508 | last = find_vma(mm, end); | |
2509 | if (last && end > last->vm_start) { | |
659ace58 | 2510 | int error = __split_vma(mm, last, end, 1); |
1da177e4 LT |
2511 | if (error) |
2512 | return error; | |
2513 | } | |
146425a3 | 2514 | vma = prev? prev->vm_next: mm->mmap; |
1da177e4 | 2515 | |
ba470de4 RR |
2516 | /* |
2517 | * unlock any mlock()ed ranges before detaching vmas | |
2518 | */ | |
2519 | if (mm->locked_vm) { | |
2520 | struct vm_area_struct *tmp = vma; | |
2521 | while (tmp && tmp->vm_start < end) { | |
2522 | if (tmp->vm_flags & VM_LOCKED) { | |
2523 | mm->locked_vm -= vma_pages(tmp); | |
2524 | munlock_vma_pages_all(tmp); | |
2525 | } | |
2526 | tmp = tmp->vm_next; | |
2527 | } | |
2528 | } | |
2529 | ||
1da177e4 LT |
2530 | /* |
2531 | * Remove the vma's, and unmap the actual pages | |
2532 | */ | |
146425a3 HD |
2533 | detach_vmas_to_be_unmapped(mm, vma, prev, end); |
2534 | unmap_region(mm, vma, prev, start, end); | |
1da177e4 LT |
2535 | |
2536 | /* Fix up all other VM information */ | |
2c0b3814 | 2537 | remove_vma_list(mm, vma); |
1da177e4 LT |
2538 | |
2539 | return 0; | |
2540 | } | |
1da177e4 | 2541 | |
bfce281c | 2542 | int vm_munmap(unsigned long start, size_t len) |
1da177e4 LT |
2543 | { |
2544 | int ret; | |
bfce281c | 2545 | struct mm_struct *mm = current->mm; |
1da177e4 LT |
2546 | |
2547 | down_write(&mm->mmap_sem); | |
a46ef99d | 2548 | ret = do_munmap(mm, start, len); |
1da177e4 LT |
2549 | up_write(&mm->mmap_sem); |
2550 | return ret; | |
2551 | } | |
a46ef99d LT |
2552 | EXPORT_SYMBOL(vm_munmap); |
2553 | ||
2554 | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) | |
2555 | { | |
2556 | profile_munmap(addr); | |
bfce281c | 2557 | return vm_munmap(addr, len); |
a46ef99d | 2558 | } |
1da177e4 LT |
2559 | |
2560 | static inline void verify_mm_writelocked(struct mm_struct *mm) | |
2561 | { | |
a241ec65 | 2562 | #ifdef CONFIG_DEBUG_VM |
1da177e4 LT |
2563 | if (unlikely(down_read_trylock(&mm->mmap_sem))) { |
2564 | WARN_ON(1); | |
2565 | up_read(&mm->mmap_sem); | |
2566 | } | |
2567 | #endif | |
2568 | } | |
2569 | ||
2570 | /* | |
2571 | * this is really a simplified "do_mmap". it only handles | |
2572 | * anonymous maps. eventually we may be able to do some | |
2573 | * brk-specific accounting here. | |
2574 | */ | |
e4eb1ff6 | 2575 | static unsigned long do_brk(unsigned long addr, unsigned long len) |
1da177e4 LT |
2576 | { |
2577 | struct mm_struct * mm = current->mm; | |
2578 | struct vm_area_struct * vma, * prev; | |
2579 | unsigned long flags; | |
2580 | struct rb_node ** rb_link, * rb_parent; | |
2581 | pgoff_t pgoff = addr >> PAGE_SHIFT; | |
3a459756 | 2582 | int error; |
1da177e4 LT |
2583 | |
2584 | len = PAGE_ALIGN(len); | |
2585 | if (!len) | |
2586 | return addr; | |
2587 | ||
3a459756 KK |
2588 | flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; |
2589 | ||
2c6a1016 AV |
2590 | error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); |
2591 | if (error & ~PAGE_MASK) | |
3a459756 KK |
2592 | return error; |
2593 | ||
1da177e4 LT |
2594 | /* |
2595 | * mlock MCL_FUTURE? | |
2596 | */ | |
2597 | if (mm->def_flags & VM_LOCKED) { | |
2598 | unsigned long locked, lock_limit; | |
93ea1d0a CW |
2599 | locked = len >> PAGE_SHIFT; |
2600 | locked += mm->locked_vm; | |
59e99e5b | 2601 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
93ea1d0a | 2602 | lock_limit >>= PAGE_SHIFT; |
1da177e4 LT |
2603 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) |
2604 | return -EAGAIN; | |
2605 | } | |
2606 | ||
2607 | /* | |
2608 | * mm->mmap_sem is required to protect against another thread | |
2609 | * changing the mappings in case we sleep. | |
2610 | */ | |
2611 | verify_mm_writelocked(mm); | |
2612 | ||
2613 | /* | |
2614 | * Clear old maps. this also does some error checking for us | |
2615 | */ | |
2616 | munmap_back: | |
6597d783 | 2617 | if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { |
1da177e4 LT |
2618 | if (do_munmap(mm, addr, len)) |
2619 | return -ENOMEM; | |
2620 | goto munmap_back; | |
2621 | } | |
2622 | ||
2623 | /* Check against address space limits *after* clearing old maps... */ | |
119f657c | 2624 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) |
1da177e4 LT |
2625 | return -ENOMEM; |
2626 | ||
2627 | if (mm->map_count > sysctl_max_map_count) | |
2628 | return -ENOMEM; | |
2629 | ||
191c5424 | 2630 | if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) |
1da177e4 LT |
2631 | return -ENOMEM; |
2632 | ||
1da177e4 | 2633 | /* Can we just expand an old private anonymous mapping? */ |
ba470de4 RR |
2634 | vma = vma_merge(mm, prev, addr, addr + len, flags, |
2635 | NULL, NULL, pgoff, NULL); | |
2636 | if (vma) | |
1da177e4 LT |
2637 | goto out; |
2638 | ||
2639 | /* | |
2640 | * create a vma struct for an anonymous mapping | |
2641 | */ | |
c5e3b83e | 2642 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 LT |
2643 | if (!vma) { |
2644 | vm_unacct_memory(len >> PAGE_SHIFT); | |
2645 | return -ENOMEM; | |
2646 | } | |
1da177e4 | 2647 | |
5beb4930 | 2648 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1da177e4 LT |
2649 | vma->vm_mm = mm; |
2650 | vma->vm_start = addr; | |
2651 | vma->vm_end = addr + len; | |
2652 | vma->vm_pgoff = pgoff; | |
2653 | vma->vm_flags = flags; | |
3ed75eb8 | 2654 | vma->vm_page_prot = vm_get_page_prot(flags); |
1da177e4 LT |
2655 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2656 | out: | |
3af9e859 | 2657 | perf_event_mmap(vma); |
1da177e4 | 2658 | mm->total_vm += len >> PAGE_SHIFT; |
128557ff ML |
2659 | if (flags & VM_LOCKED) |
2660 | mm->locked_vm += (len >> PAGE_SHIFT); | |
d9104d1c | 2661 | vma->vm_flags |= VM_SOFTDIRTY; |
1da177e4 LT |
2662 | return addr; |
2663 | } | |
2664 | ||
e4eb1ff6 LT |
2665 | unsigned long vm_brk(unsigned long addr, unsigned long len) |
2666 | { | |
2667 | struct mm_struct *mm = current->mm; | |
2668 | unsigned long ret; | |
128557ff | 2669 | bool populate; |
e4eb1ff6 LT |
2670 | |
2671 | down_write(&mm->mmap_sem); | |
2672 | ret = do_brk(addr, len); | |
128557ff | 2673 | populate = ((mm->def_flags & VM_LOCKED) != 0); |
e4eb1ff6 | 2674 | up_write(&mm->mmap_sem); |
128557ff ML |
2675 | if (populate) |
2676 | mm_populate(addr, len); | |
e4eb1ff6 LT |
2677 | return ret; |
2678 | } | |
2679 | EXPORT_SYMBOL(vm_brk); | |
1da177e4 LT |
2680 | |
2681 | /* Release all mmaps. */ | |
2682 | void exit_mmap(struct mm_struct *mm) | |
2683 | { | |
d16dfc55 | 2684 | struct mmu_gather tlb; |
ba470de4 | 2685 | struct vm_area_struct *vma; |
1da177e4 LT |
2686 | unsigned long nr_accounted = 0; |
2687 | ||
d6dd61c8 | 2688 | /* mm's last user has gone, and its about to be pulled down */ |
cddb8a5c | 2689 | mmu_notifier_release(mm); |
d6dd61c8 | 2690 | |
ba470de4 RR |
2691 | if (mm->locked_vm) { |
2692 | vma = mm->mmap; | |
2693 | while (vma) { | |
2694 | if (vma->vm_flags & VM_LOCKED) | |
2695 | munlock_vma_pages_all(vma); | |
2696 | vma = vma->vm_next; | |
2697 | } | |
2698 | } | |
9480c53e JF |
2699 | |
2700 | arch_exit_mmap(mm); | |
2701 | ||
ba470de4 | 2702 | vma = mm->mmap; |
9480c53e JF |
2703 | if (!vma) /* Can happen if dup_mmap() received an OOM */ |
2704 | return; | |
2705 | ||
1da177e4 | 2706 | lru_add_drain(); |
1da177e4 | 2707 | flush_cache_mm(mm); |
2b047252 | 2708 | tlb_gather_mmu(&tlb, mm, 0, -1); |
901608d9 | 2709 | /* update_hiwater_rss(mm) here? but nobody should be looking */ |
e0da382c | 2710 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ |
4f74d2c8 | 2711 | unmap_vmas(&tlb, vma, 0, -1); |
9ba69294 | 2712 | |
6ee8630e | 2713 | free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); |
853f5e26 | 2714 | tlb_finish_mmu(&tlb, 0, -1); |
1da177e4 | 2715 | |
1da177e4 | 2716 | /* |
8f4f8c16 HD |
2717 | * Walk the list again, actually closing and freeing it, |
2718 | * with preemption enabled, without holding any MM locks. | |
1da177e4 | 2719 | */ |
4f74d2c8 LT |
2720 | while (vma) { |
2721 | if (vma->vm_flags & VM_ACCOUNT) | |
2722 | nr_accounted += vma_pages(vma); | |
a8fb5618 | 2723 | vma = remove_vma(vma); |
4f74d2c8 LT |
2724 | } |
2725 | vm_unacct_memory(nr_accounted); | |
e0da382c | 2726 | |
e1f56c89 KS |
2727 | WARN_ON(atomic_long_read(&mm->nr_ptes) > |
2728 | (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); | |
1da177e4 LT |
2729 | } |
2730 | ||
2731 | /* Insert vm structure into process list sorted by address | |
2732 | * and into the inode's i_mmap tree. If vm_file is non-NULL | |
3d48ae45 | 2733 | * then i_mmap_mutex is taken here. |
1da177e4 | 2734 | */ |
6597d783 | 2735 | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
1da177e4 | 2736 | { |
6597d783 HD |
2737 | struct vm_area_struct *prev; |
2738 | struct rb_node **rb_link, *rb_parent; | |
1da177e4 LT |
2739 | |
2740 | /* | |
2741 | * The vm_pgoff of a purely anonymous vma should be irrelevant | |
2742 | * until its first write fault, when page's anon_vma and index | |
2743 | * are set. But now set the vm_pgoff it will almost certainly | |
2744 | * end up with (unless mremap moves it elsewhere before that | |
2745 | * first wfault), so /proc/pid/maps tells a consistent story. | |
2746 | * | |
2747 | * By setting it to reflect the virtual start address of the | |
2748 | * vma, merges and splits can happen in a seamless way, just | |
2749 | * using the existing file pgoff checks and manipulations. | |
2750 | * Similarly in do_mmap_pgoff and in do_brk. | |
2751 | */ | |
2752 | if (!vma->vm_file) { | |
2753 | BUG_ON(vma->anon_vma); | |
2754 | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | |
2755 | } | |
6597d783 HD |
2756 | if (find_vma_links(mm, vma->vm_start, vma->vm_end, |
2757 | &prev, &rb_link, &rb_parent)) | |
1da177e4 | 2758 | return -ENOMEM; |
2fd4ef85 | 2759 | if ((vma->vm_flags & VM_ACCOUNT) && |
34b4e4aa | 2760 | security_vm_enough_memory_mm(mm, vma_pages(vma))) |
2fd4ef85 | 2761 | return -ENOMEM; |
2b144498 | 2762 | |
1da177e4 LT |
2763 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2764 | return 0; | |
2765 | } | |
2766 | ||
2767 | /* | |
2768 | * Copy the vma structure to a new location in the same mm, | |
2769 | * prior to moving page table entries, to effect an mremap move. | |
2770 | */ | |
2771 | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, | |
38a76013 ML |
2772 | unsigned long addr, unsigned long len, pgoff_t pgoff, |
2773 | bool *need_rmap_locks) | |
1da177e4 LT |
2774 | { |
2775 | struct vm_area_struct *vma = *vmap; | |
2776 | unsigned long vma_start = vma->vm_start; | |
2777 | struct mm_struct *mm = vma->vm_mm; | |
2778 | struct vm_area_struct *new_vma, *prev; | |
2779 | struct rb_node **rb_link, *rb_parent; | |
948f017b | 2780 | bool faulted_in_anon_vma = true; |
1da177e4 LT |
2781 | |
2782 | /* | |
2783 | * If anonymous vma has not yet been faulted, update new pgoff | |
2784 | * to match new location, to increase its chance of merging. | |
2785 | */ | |
948f017b | 2786 | if (unlikely(!vma->vm_file && !vma->anon_vma)) { |
1da177e4 | 2787 | pgoff = addr >> PAGE_SHIFT; |
948f017b AA |
2788 | faulted_in_anon_vma = false; |
2789 | } | |
1da177e4 | 2790 | |
6597d783 HD |
2791 | if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) |
2792 | return NULL; /* should never get here */ | |
1da177e4 LT |
2793 | new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, |
2794 | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); | |
2795 | if (new_vma) { | |
2796 | /* | |
2797 | * Source vma may have been merged into new_vma | |
2798 | */ | |
948f017b AA |
2799 | if (unlikely(vma_start >= new_vma->vm_start && |
2800 | vma_start < new_vma->vm_end)) { | |
2801 | /* | |
2802 | * The only way we can get a vma_merge with | |
2803 | * self during an mremap is if the vma hasn't | |
2804 | * been faulted in yet and we were allowed to | |
2805 | * reset the dst vma->vm_pgoff to the | |
2806 | * destination address of the mremap to allow | |
2807 | * the merge to happen. mremap must change the | |
2808 | * vm_pgoff linearity between src and dst vmas | |
2809 | * (in turn preventing a vma_merge) to be | |
2810 | * safe. It is only safe to keep the vm_pgoff | |
2811 | * linear if there are no pages mapped yet. | |
2812 | */ | |
2813 | VM_BUG_ON(faulted_in_anon_vma); | |
38a76013 | 2814 | *vmap = vma = new_vma; |
108d6642 | 2815 | } |
38a76013 | 2816 | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); |
1da177e4 | 2817 | } else { |
e94b1766 | 2818 | new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
1da177e4 LT |
2819 | if (new_vma) { |
2820 | *new_vma = *vma; | |
523d4e20 ML |
2821 | new_vma->vm_start = addr; |
2822 | new_vma->vm_end = addr + len; | |
2823 | new_vma->vm_pgoff = pgoff; | |
ef0855d3 | 2824 | if (vma_dup_policy(vma, new_vma)) |
5beb4930 RR |
2825 | goto out_free_vma; |
2826 | INIT_LIST_HEAD(&new_vma->anon_vma_chain); | |
2827 | if (anon_vma_clone(new_vma, vma)) | |
2828 | goto out_free_mempol; | |
e9714acf | 2829 | if (new_vma->vm_file) |
1da177e4 LT |
2830 | get_file(new_vma->vm_file); |
2831 | if (new_vma->vm_ops && new_vma->vm_ops->open) | |
2832 | new_vma->vm_ops->open(new_vma); | |
2833 | vma_link(mm, new_vma, prev, rb_link, rb_parent); | |
38a76013 | 2834 | *need_rmap_locks = false; |
1da177e4 LT |
2835 | } |
2836 | } | |
2837 | return new_vma; | |
5beb4930 RR |
2838 | |
2839 | out_free_mempol: | |
ef0855d3 | 2840 | mpol_put(vma_policy(new_vma)); |
5beb4930 RR |
2841 | out_free_vma: |
2842 | kmem_cache_free(vm_area_cachep, new_vma); | |
2843 | return NULL; | |
1da177e4 | 2844 | } |
119f657c | 2845 | |
2846 | /* | |
2847 | * Return true if the calling process may expand its vm space by the passed | |
2848 | * number of pages | |
2849 | */ | |
2850 | int may_expand_vm(struct mm_struct *mm, unsigned long npages) | |
2851 | { | |
2852 | unsigned long cur = mm->total_vm; /* pages */ | |
2853 | unsigned long lim; | |
2854 | ||
59e99e5b | 2855 | lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; |
119f657c | 2856 | |
2857 | if (cur + npages > lim) | |
2858 | return 0; | |
2859 | return 1; | |
2860 | } | |
fa5dc22f RM |
2861 | |
2862 | ||
b1d0e4f5 NP |
2863 | static int special_mapping_fault(struct vm_area_struct *vma, |
2864 | struct vm_fault *vmf) | |
fa5dc22f | 2865 | { |
b1d0e4f5 | 2866 | pgoff_t pgoff; |
fa5dc22f RM |
2867 | struct page **pages; |
2868 | ||
b1d0e4f5 NP |
2869 | /* |
2870 | * special mappings have no vm_file, and in that case, the mm | |
2871 | * uses vm_pgoff internally. So we have to subtract it from here. | |
2872 | * We are allowed to do this because we are the mm; do not copy | |
2873 | * this code into drivers! | |
2874 | */ | |
2875 | pgoff = vmf->pgoff - vma->vm_pgoff; | |
fa5dc22f | 2876 | |
b1d0e4f5 NP |
2877 | for (pages = vma->vm_private_data; pgoff && *pages; ++pages) |
2878 | pgoff--; | |
fa5dc22f RM |
2879 | |
2880 | if (*pages) { | |
2881 | struct page *page = *pages; | |
2882 | get_page(page); | |
b1d0e4f5 NP |
2883 | vmf->page = page; |
2884 | return 0; | |
fa5dc22f RM |
2885 | } |
2886 | ||
b1d0e4f5 | 2887 | return VM_FAULT_SIGBUS; |
fa5dc22f RM |
2888 | } |
2889 | ||
2890 | /* | |
2891 | * Having a close hook prevents vma merging regardless of flags. | |
2892 | */ | |
2893 | static void special_mapping_close(struct vm_area_struct *vma) | |
2894 | { | |
2895 | } | |
2896 | ||
f0f37e2f | 2897 | static const struct vm_operations_struct special_mapping_vmops = { |
fa5dc22f | 2898 | .close = special_mapping_close, |
b1d0e4f5 | 2899 | .fault = special_mapping_fault, |
fa5dc22f RM |
2900 | }; |
2901 | ||
2902 | /* | |
2903 | * Called with mm->mmap_sem held for writing. | |
2904 | * Insert a new vma covering the given region, with the given flags. | |
2905 | * Its pages are supplied by the given array of struct page *. | |
2906 | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. | |
2907 | * The region past the last page supplied will always produce SIGBUS. | |
2908 | * The array pointer and the pages it points to are assumed to stay alive | |
2909 | * for as long as this mapping might exist. | |
2910 | */ | |
2911 | int install_special_mapping(struct mm_struct *mm, | |
2912 | unsigned long addr, unsigned long len, | |
2913 | unsigned long vm_flags, struct page **pages) | |
2914 | { | |
462e635e | 2915 | int ret; |
fa5dc22f RM |
2916 | struct vm_area_struct *vma; |
2917 | ||
2918 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | |
2919 | if (unlikely(vma == NULL)) | |
2920 | return -ENOMEM; | |
2921 | ||
5beb4930 | 2922 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
fa5dc22f RM |
2923 | vma->vm_mm = mm; |
2924 | vma->vm_start = addr; | |
2925 | vma->vm_end = addr + len; | |
2926 | ||
d9104d1c | 2927 | vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; |
3ed75eb8 | 2928 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
fa5dc22f RM |
2929 | |
2930 | vma->vm_ops = &special_mapping_vmops; | |
2931 | vma->vm_private_data = pages; | |
2932 | ||
462e635e TO |
2933 | ret = insert_vm_struct(mm, vma); |
2934 | if (ret) | |
2935 | goto out; | |
fa5dc22f RM |
2936 | |
2937 | mm->total_vm += len >> PAGE_SHIFT; | |
2938 | ||
cdd6c482 | 2939 | perf_event_mmap(vma); |
089dd79d | 2940 | |
fa5dc22f | 2941 | return 0; |
462e635e TO |
2942 | |
2943 | out: | |
2944 | kmem_cache_free(vm_area_cachep, vma); | |
2945 | return ret; | |
fa5dc22f | 2946 | } |
7906d00c AA |
2947 | |
2948 | static DEFINE_MUTEX(mm_all_locks_mutex); | |
2949 | ||
454ed842 | 2950 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
7906d00c | 2951 | { |
bf181b9f | 2952 | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { |
7906d00c AA |
2953 | /* |
2954 | * The LSB of head.next can't change from under us | |
2955 | * because we hold the mm_all_locks_mutex. | |
2956 | */ | |
572043c9 | 2957 | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); |
7906d00c AA |
2958 | /* |
2959 | * We can safely modify head.next after taking the | |
5a505085 | 2960 | * anon_vma->root->rwsem. If some other vma in this mm shares |
7906d00c AA |
2961 | * the same anon_vma we won't take it again. |
2962 | * | |
2963 | * No need of atomic instructions here, head.next | |
2964 | * can't change from under us thanks to the | |
5a505085 | 2965 | * anon_vma->root->rwsem. |
7906d00c AA |
2966 | */ |
2967 | if (__test_and_set_bit(0, (unsigned long *) | |
bf181b9f | 2968 | &anon_vma->root->rb_root.rb_node)) |
7906d00c AA |
2969 | BUG(); |
2970 | } | |
2971 | } | |
2972 | ||
454ed842 | 2973 | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) |
7906d00c AA |
2974 | { |
2975 | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | |
2976 | /* | |
2977 | * AS_MM_ALL_LOCKS can't change from under us because | |
2978 | * we hold the mm_all_locks_mutex. | |
2979 | * | |
2980 | * Operations on ->flags have to be atomic because | |
2981 | * even if AS_MM_ALL_LOCKS is stable thanks to the | |
2982 | * mm_all_locks_mutex, there may be other cpus | |
2983 | * changing other bitflags in parallel to us. | |
2984 | */ | |
2985 | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | |
2986 | BUG(); | |
3d48ae45 | 2987 | mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); |
7906d00c AA |
2988 | } |
2989 | } | |
2990 | ||
2991 | /* | |
2992 | * This operation locks against the VM for all pte/vma/mm related | |
2993 | * operations that could ever happen on a certain mm. This includes | |
2994 | * vmtruncate, try_to_unmap, and all page faults. | |
2995 | * | |
2996 | * The caller must take the mmap_sem in write mode before calling | |
2997 | * mm_take_all_locks(). The caller isn't allowed to release the | |
2998 | * mmap_sem until mm_drop_all_locks() returns. | |
2999 | * | |
3000 | * mmap_sem in write mode is required in order to block all operations | |
3001 | * that could modify pagetables and free pages without need of | |
3002 | * altering the vma layout (for example populate_range() with | |
3003 | * nonlinear vmas). It's also needed in write mode to avoid new | |
3004 | * anon_vmas to be associated with existing vmas. | |
3005 | * | |
3006 | * A single task can't take more than one mm_take_all_locks() in a row | |
3007 | * or it would deadlock. | |
3008 | * | |
bf181b9f | 3009 | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in |
7906d00c AA |
3010 | * mapping->flags avoid to take the same lock twice, if more than one |
3011 | * vma in this mm is backed by the same anon_vma or address_space. | |
3012 | * | |
3013 | * We can take all the locks in random order because the VM code | |
631b0cfd | 3014 | * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never |
7906d00c AA |
3015 | * takes more than one of them in a row. Secondly we're protected |
3016 | * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. | |
3017 | * | |
3018 | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | |
3019 | * that may have to take thousand of locks. | |
3020 | * | |
3021 | * mm_take_all_locks() can fail if it's interrupted by signals. | |
3022 | */ | |
3023 | int mm_take_all_locks(struct mm_struct *mm) | |
3024 | { | |
3025 | struct vm_area_struct *vma; | |
5beb4930 | 3026 | struct anon_vma_chain *avc; |
7906d00c AA |
3027 | |
3028 | BUG_ON(down_read_trylock(&mm->mmap_sem)); | |
3029 | ||
3030 | mutex_lock(&mm_all_locks_mutex); | |
3031 | ||
3032 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3033 | if (signal_pending(current)) | |
3034 | goto out_unlock; | |
7906d00c | 3035 | if (vma->vm_file && vma->vm_file->f_mapping) |
454ed842 | 3036 | vm_lock_mapping(mm, vma->vm_file->f_mapping); |
7906d00c | 3037 | } |
7cd5a02f PZ |
3038 | |
3039 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3040 | if (signal_pending(current)) | |
3041 | goto out_unlock; | |
3042 | if (vma->anon_vma) | |
5beb4930 RR |
3043 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
3044 | vm_lock_anon_vma(mm, avc->anon_vma); | |
7906d00c | 3045 | } |
7cd5a02f | 3046 | |
584cff54 | 3047 | return 0; |
7906d00c AA |
3048 | |
3049 | out_unlock: | |
584cff54 KC |
3050 | mm_drop_all_locks(mm); |
3051 | return -EINTR; | |
7906d00c AA |
3052 | } |
3053 | ||
3054 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | |
3055 | { | |
bf181b9f | 3056 | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { |
7906d00c AA |
3057 | /* |
3058 | * The LSB of head.next can't change to 0 from under | |
3059 | * us because we hold the mm_all_locks_mutex. | |
3060 | * | |
3061 | * We must however clear the bitflag before unlocking | |
bf181b9f | 3062 | * the vma so the users using the anon_vma->rb_root will |
7906d00c AA |
3063 | * never see our bitflag. |
3064 | * | |
3065 | * No need of atomic instructions here, head.next | |
3066 | * can't change from under us until we release the | |
5a505085 | 3067 | * anon_vma->root->rwsem. |
7906d00c AA |
3068 | */ |
3069 | if (!__test_and_clear_bit(0, (unsigned long *) | |
bf181b9f | 3070 | &anon_vma->root->rb_root.rb_node)) |
7906d00c | 3071 | BUG(); |
08b52706 | 3072 | anon_vma_unlock_write(anon_vma); |
7906d00c AA |
3073 | } |
3074 | } | |
3075 | ||
3076 | static void vm_unlock_mapping(struct address_space *mapping) | |
3077 | { | |
3078 | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | |
3079 | /* | |
3080 | * AS_MM_ALL_LOCKS can't change to 0 from under us | |
3081 | * because we hold the mm_all_locks_mutex. | |
3082 | */ | |
3d48ae45 | 3083 | mutex_unlock(&mapping->i_mmap_mutex); |
7906d00c AA |
3084 | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, |
3085 | &mapping->flags)) | |
3086 | BUG(); | |
3087 | } | |
3088 | } | |
3089 | ||
3090 | /* | |
3091 | * The mmap_sem cannot be released by the caller until | |
3092 | * mm_drop_all_locks() returns. | |
3093 | */ | |
3094 | void mm_drop_all_locks(struct mm_struct *mm) | |
3095 | { | |
3096 | struct vm_area_struct *vma; | |
5beb4930 | 3097 | struct anon_vma_chain *avc; |
7906d00c AA |
3098 | |
3099 | BUG_ON(down_read_trylock(&mm->mmap_sem)); | |
3100 | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | |
3101 | ||
3102 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
3103 | if (vma->anon_vma) | |
5beb4930 RR |
3104 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
3105 | vm_unlock_anon_vma(avc->anon_vma); | |
7906d00c AA |
3106 | if (vma->vm_file && vma->vm_file->f_mapping) |
3107 | vm_unlock_mapping(vma->vm_file->f_mapping); | |
3108 | } | |
3109 | ||
3110 | mutex_unlock(&mm_all_locks_mutex); | |
3111 | } | |
8feae131 DH |
3112 | |
3113 | /* | |
3114 | * initialise the VMA slab | |
3115 | */ | |
3116 | void __init mmap_init(void) | |
3117 | { | |
00a62ce9 KM |
3118 | int ret; |
3119 | ||
3120 | ret = percpu_counter_init(&vm_committed_as, 0); | |
3121 | VM_BUG_ON(ret); | |
8feae131 | 3122 | } |
c9b1d098 AS |
3123 | |
3124 | /* | |
3125 | * Initialise sysctl_user_reserve_kbytes. | |
3126 | * | |
3127 | * This is intended to prevent a user from starting a single memory hogging | |
3128 | * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER | |
3129 | * mode. | |
3130 | * | |
3131 | * The default value is min(3% of free memory, 128MB) | |
3132 | * 128MB is enough to recover with sshd/login, bash, and top/kill. | |
3133 | */ | |
1640879a | 3134 | static int init_user_reserve(void) |
c9b1d098 AS |
3135 | { |
3136 | unsigned long free_kbytes; | |
3137 | ||
3138 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | |
3139 | ||
3140 | sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); | |
3141 | return 0; | |
3142 | } | |
3143 | module_init(init_user_reserve) | |
4eeab4f5 AS |
3144 | |
3145 | /* | |
3146 | * Initialise sysctl_admin_reserve_kbytes. | |
3147 | * | |
3148 | * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin | |
3149 | * to log in and kill a memory hogging process. | |
3150 | * | |
3151 | * Systems with more than 256MB will reserve 8MB, enough to recover | |
3152 | * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will | |
3153 | * only reserve 3% of free pages by default. | |
3154 | */ | |
1640879a | 3155 | static int init_admin_reserve(void) |
4eeab4f5 AS |
3156 | { |
3157 | unsigned long free_kbytes; | |
3158 | ||
3159 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | |
3160 | ||
3161 | sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); | |
3162 | return 0; | |
3163 | } | |
3164 | module_init(init_admin_reserve) | |
1640879a AS |
3165 | |
3166 | /* | |
3167 | * Reinititalise user and admin reserves if memory is added or removed. | |
3168 | * | |
3169 | * The default user reserve max is 128MB, and the default max for the | |
3170 | * admin reserve is 8MB. These are usually, but not always, enough to | |
3171 | * enable recovery from a memory hogging process using login/sshd, a shell, | |
3172 | * and tools like top. It may make sense to increase or even disable the | |
3173 | * reserve depending on the existence of swap or variations in the recovery | |
3174 | * tools. So, the admin may have changed them. | |
3175 | * | |
3176 | * If memory is added and the reserves have been eliminated or increased above | |
3177 | * the default max, then we'll trust the admin. | |
3178 | * | |
3179 | * If memory is removed and there isn't enough free memory, then we | |
3180 | * need to reset the reserves. | |
3181 | * | |
3182 | * Otherwise keep the reserve set by the admin. | |
3183 | */ | |
3184 | static int reserve_mem_notifier(struct notifier_block *nb, | |
3185 | unsigned long action, void *data) | |
3186 | { | |
3187 | unsigned long tmp, free_kbytes; | |
3188 | ||
3189 | switch (action) { | |
3190 | case MEM_ONLINE: | |
3191 | /* Default max is 128MB. Leave alone if modified by operator. */ | |
3192 | tmp = sysctl_user_reserve_kbytes; | |
3193 | if (0 < tmp && tmp < (1UL << 17)) | |
3194 | init_user_reserve(); | |
3195 | ||
3196 | /* Default max is 8MB. Leave alone if modified by operator. */ | |
3197 | tmp = sysctl_admin_reserve_kbytes; | |
3198 | if (0 < tmp && tmp < (1UL << 13)) | |
3199 | init_admin_reserve(); | |
3200 | ||
3201 | break; | |
3202 | case MEM_OFFLINE: | |
3203 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | |
3204 | ||
3205 | if (sysctl_user_reserve_kbytes > free_kbytes) { | |
3206 | init_user_reserve(); | |
3207 | pr_info("vm.user_reserve_kbytes reset to %lu\n", | |
3208 | sysctl_user_reserve_kbytes); | |
3209 | } | |
3210 | ||
3211 | if (sysctl_admin_reserve_kbytes > free_kbytes) { | |
3212 | init_admin_reserve(); | |
3213 | pr_info("vm.admin_reserve_kbytes reset to %lu\n", | |
3214 | sysctl_admin_reserve_kbytes); | |
3215 | } | |
3216 | break; | |
3217 | default: | |
3218 | break; | |
3219 | } | |
3220 | return NOTIFY_OK; | |
3221 | } | |
3222 | ||
3223 | static struct notifier_block reserve_mem_nb = { | |
3224 | .notifier_call = reserve_mem_notifier, | |
3225 | }; | |
3226 | ||
3227 | static int __meminit init_reserve_notifier(void) | |
3228 | { | |
3229 | if (register_hotmemory_notifier(&reserve_mem_nb)) | |
3230 | printk("Failed registering memory add/remove notifier for admin reserve"); | |
3231 | ||
3232 | return 0; | |
3233 | } | |
3234 | module_init(init_reserve_notifier) |