]>
Commit | Line | Data |
---|---|---|
10cef602 MM |
1 | /* |
2 | * SLOB Allocator: Simple List Of Blocks | |
3 | * | |
4 | * Matt Mackall <[email protected]> 12/30/03 | |
5 | * | |
6193a2ff PM |
6 | * NUMA support by Paul Mundt, 2007. |
7 | * | |
10cef602 MM |
8 | * How SLOB works: |
9 | * | |
10 | * The core of SLOB is a traditional K&R style heap allocator, with | |
11 | * support for returning aligned objects. The granularity of this | |
55394849 NP |
12 | * allocator is as little as 2 bytes, however typically most architectures |
13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | |
95b35127 | 14 | * |
20cecbae MM |
15 | * The slob heap is a set of linked list of pages from alloc_pages(), |
16 | * and within each page, there is a singly-linked list of free blocks | |
17 | * (slob_t). The heap is grown on demand. To reduce fragmentation, | |
18 | * heap pages are segregated into three lists, with objects less than | |
19 | * 256 bytes, objects less than 1024 bytes, and all other objects. | |
20 | * | |
21 | * Allocation from heap involves first searching for a page with | |
22 | * sufficient free blocks (using a next-fit-like approach) followed by | |
23 | * a first-fit scan of the page. Deallocation inserts objects back | |
24 | * into the free list in address order, so this is effectively an | |
25 | * address-ordered first fit. | |
10cef602 MM |
26 | * |
27 | * Above this is an implementation of kmalloc/kfree. Blocks returned | |
55394849 | 28 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
10cef602 | 29 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
6193a2ff | 30 | * alloc_pages() directly, allocating compound pages so the page order |
d87a133f NP |
31 | * does not have to be separately tracked, and also stores the exact |
32 | * allocation size in page->private so that it can be used to accurately | |
33 | * provide ksize(). These objects are detected in kfree() because slob_page() | |
34 | * is false for them. | |
10cef602 MM |
35 | * |
36 | * SLAB is emulated on top of SLOB by simply calling constructors and | |
95b35127 NP |
37 | * destructors for every SLAB allocation. Objects are returned with the |
38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | |
39 | * case the low-level allocator will fragment blocks to create the proper | |
40 | * alignment. Again, objects of page-size or greater are allocated by | |
6193a2ff | 41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
95b35127 | 42 | * size bookkeeping is necessary and there is essentially no allocation |
d87a133f NP |
43 | * space overhead, and compound pages aren't needed for multi-page |
44 | * allocations. | |
6193a2ff PM |
45 | * |
46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real | |
47 | * logic down to the page allocator, and simply doing the node accounting | |
48 | * on the upper levels. In the event that a node id is explicitly | |
6484eb3e | 49 | * provided, alloc_pages_exact_node() with the specified node id is used |
6193a2ff PM |
50 | * instead. The common case (or when the node id isn't explicitly provided) |
51 | * will default to the current node, as per numa_node_id(). | |
52 | * | |
53 | * Node aware pages are still inserted in to the global freelist, and | |
54 | * these are scanned for by matching against the node id encoded in the | |
55 | * page flags. As a result, block allocations that can be satisfied from | |
56 | * the freelist will only be done so on pages residing on the same node, | |
57 | * in order to prevent random node placement. | |
10cef602 MM |
58 | */ |
59 | ||
95b35127 | 60 | #include <linux/kernel.h> |
10cef602 | 61 | #include <linux/slab.h> |
97d06609 CL |
62 | #include "slab.h" |
63 | ||
10cef602 | 64 | #include <linux/mm.h> |
1f0532eb | 65 | #include <linux/swap.h> /* struct reclaim_state */ |
10cef602 MM |
66 | #include <linux/cache.h> |
67 | #include <linux/init.h> | |
b95f1b31 | 68 | #include <linux/export.h> |
afc0cedb | 69 | #include <linux/rcupdate.h> |
95b35127 | 70 | #include <linux/list.h> |
4374e616 | 71 | #include <linux/kmemleak.h> |
039ca4e7 LZ |
72 | |
73 | #include <trace/events/kmem.h> | |
74 | ||
60063497 | 75 | #include <linux/atomic.h> |
95b35127 | 76 | |
95b35127 NP |
77 | /* |
78 | * slob_block has a field 'units', which indicates size of block if +ve, | |
79 | * or offset of next block if -ve (in SLOB_UNITs). | |
80 | * | |
81 | * Free blocks of size 1 unit simply contain the offset of the next block. | |
82 | * Those with larger size contain their size in the first SLOB_UNIT of | |
83 | * memory, and the offset of the next free block in the second SLOB_UNIT. | |
84 | */ | |
55394849 | 85 | #if PAGE_SIZE <= (32767 * 2) |
95b35127 NP |
86 | typedef s16 slobidx_t; |
87 | #else | |
88 | typedef s32 slobidx_t; | |
89 | #endif | |
90 | ||
10cef602 | 91 | struct slob_block { |
95b35127 | 92 | slobidx_t units; |
55394849 | 93 | }; |
10cef602 MM |
94 | typedef struct slob_block slob_t; |
95 | ||
95b35127 | 96 | /* |
20cecbae | 97 | * All partially free slob pages go on these lists. |
95b35127 | 98 | */ |
20cecbae MM |
99 | #define SLOB_BREAK1 256 |
100 | #define SLOB_BREAK2 1024 | |
101 | static LIST_HEAD(free_slob_small); | |
102 | static LIST_HEAD(free_slob_medium); | |
103 | static LIST_HEAD(free_slob_large); | |
95b35127 | 104 | |
95b35127 NP |
105 | /* |
106 | * slob_page_free: true for pages on free_slob_pages list. | |
107 | */ | |
b8c24c4a | 108 | static inline int slob_page_free(struct page *sp) |
95b35127 | 109 | { |
b8c24c4a | 110 | return PageSlobFree(sp); |
95b35127 NP |
111 | } |
112 | ||
b8c24c4a | 113 | static void set_slob_page_free(struct page *sp, struct list_head *list) |
95b35127 | 114 | { |
20cecbae | 115 | list_add(&sp->list, list); |
b8c24c4a | 116 | __SetPageSlobFree(sp); |
95b35127 NP |
117 | } |
118 | ||
b8c24c4a | 119 | static inline void clear_slob_page_free(struct page *sp) |
95b35127 NP |
120 | { |
121 | list_del(&sp->list); | |
b8c24c4a | 122 | __ClearPageSlobFree(sp); |
95b35127 NP |
123 | } |
124 | ||
10cef602 MM |
125 | #define SLOB_UNIT sizeof(slob_t) |
126 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | |
127 | #define SLOB_ALIGN L1_CACHE_BYTES | |
128 | ||
afc0cedb NP |
129 | /* |
130 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which | |
131 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free | |
132 | * the block using call_rcu. | |
133 | */ | |
134 | struct slob_rcu { | |
135 | struct rcu_head head; | |
136 | int size; | |
137 | }; | |
138 | ||
95b35127 NP |
139 | /* |
140 | * slob_lock protects all slob allocator structures. | |
141 | */ | |
10cef602 | 142 | static DEFINE_SPINLOCK(slob_lock); |
10cef602 | 143 | |
95b35127 NP |
144 | /* |
145 | * Encode the given size and next info into a free slob block s. | |
146 | */ | |
147 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | |
148 | { | |
149 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
150 | slobidx_t offset = next - base; | |
bcb4ddb4 | 151 | |
95b35127 NP |
152 | if (size > 1) { |
153 | s[0].units = size; | |
154 | s[1].units = offset; | |
155 | } else | |
156 | s[0].units = -offset; | |
157 | } | |
10cef602 | 158 | |
95b35127 NP |
159 | /* |
160 | * Return the size of a slob block. | |
161 | */ | |
162 | static slobidx_t slob_units(slob_t *s) | |
163 | { | |
164 | if (s->units > 0) | |
165 | return s->units; | |
166 | return 1; | |
167 | } | |
168 | ||
169 | /* | |
170 | * Return the next free slob block pointer after this one. | |
171 | */ | |
172 | static slob_t *slob_next(slob_t *s) | |
173 | { | |
174 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
175 | slobidx_t next; | |
176 | ||
177 | if (s[0].units < 0) | |
178 | next = -s[0].units; | |
179 | else | |
180 | next = s[1].units; | |
181 | return base+next; | |
182 | } | |
183 | ||
184 | /* | |
185 | * Returns true if s is the last free block in its page. | |
186 | */ | |
187 | static int slob_last(slob_t *s) | |
188 | { | |
189 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | |
190 | } | |
191 | ||
6e9ed0cc | 192 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
6193a2ff PM |
193 | { |
194 | void *page; | |
195 | ||
196 | #ifdef CONFIG_NUMA | |
197 | if (node != -1) | |
6484eb3e | 198 | page = alloc_pages_exact_node(node, gfp, order); |
6193a2ff PM |
199 | else |
200 | #endif | |
201 | page = alloc_pages(gfp, order); | |
202 | ||
203 | if (!page) | |
204 | return NULL; | |
205 | ||
206 | return page_address(page); | |
207 | } | |
208 | ||
6e9ed0cc AW |
209 | static void slob_free_pages(void *b, int order) |
210 | { | |
1f0532eb NP |
211 | if (current->reclaim_state) |
212 | current->reclaim_state->reclaimed_slab += 1 << order; | |
6e9ed0cc AW |
213 | free_pages((unsigned long)b, order); |
214 | } | |
215 | ||
95b35127 NP |
216 | /* |
217 | * Allocate a slob block within a given slob_page sp. | |
218 | */ | |
b8c24c4a | 219 | static void *slob_page_alloc(struct page *sp, size_t size, int align) |
10cef602 | 220 | { |
6e9ed0cc | 221 | slob_t *prev, *cur, *aligned = NULL; |
10cef602 | 222 | int delta = 0, units = SLOB_UNITS(size); |
10cef602 | 223 | |
b8c24c4a | 224 | for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { |
95b35127 NP |
225 | slobidx_t avail = slob_units(cur); |
226 | ||
10cef602 MM |
227 | if (align) { |
228 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); | |
229 | delta = aligned - cur; | |
230 | } | |
95b35127 NP |
231 | if (avail >= units + delta) { /* room enough? */ |
232 | slob_t *next; | |
233 | ||
10cef602 | 234 | if (delta) { /* need to fragment head to align? */ |
95b35127 NP |
235 | next = slob_next(cur); |
236 | set_slob(aligned, avail - delta, next); | |
237 | set_slob(cur, delta, aligned); | |
10cef602 MM |
238 | prev = cur; |
239 | cur = aligned; | |
95b35127 | 240 | avail = slob_units(cur); |
10cef602 MM |
241 | } |
242 | ||
95b35127 NP |
243 | next = slob_next(cur); |
244 | if (avail == units) { /* exact fit? unlink. */ | |
245 | if (prev) | |
246 | set_slob(prev, slob_units(prev), next); | |
247 | else | |
b8c24c4a | 248 | sp->freelist = next; |
95b35127 NP |
249 | } else { /* fragment */ |
250 | if (prev) | |
251 | set_slob(prev, slob_units(prev), cur + units); | |
252 | else | |
b8c24c4a | 253 | sp->freelist = cur + units; |
95b35127 | 254 | set_slob(cur + units, avail - units, next); |
10cef602 MM |
255 | } |
256 | ||
95b35127 NP |
257 | sp->units -= units; |
258 | if (!sp->units) | |
259 | clear_slob_page_free(sp); | |
10cef602 MM |
260 | return cur; |
261 | } | |
95b35127 NP |
262 | if (slob_last(cur)) |
263 | return NULL; | |
264 | } | |
265 | } | |
10cef602 | 266 | |
95b35127 NP |
267 | /* |
268 | * slob_alloc: entry point into the slob allocator. | |
269 | */ | |
6193a2ff | 270 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
95b35127 | 271 | { |
b8c24c4a | 272 | struct page *sp; |
d6269543 | 273 | struct list_head *prev; |
20cecbae | 274 | struct list_head *slob_list; |
95b35127 NP |
275 | slob_t *b = NULL; |
276 | unsigned long flags; | |
10cef602 | 277 | |
20cecbae MM |
278 | if (size < SLOB_BREAK1) |
279 | slob_list = &free_slob_small; | |
280 | else if (size < SLOB_BREAK2) | |
281 | slob_list = &free_slob_medium; | |
282 | else | |
283 | slob_list = &free_slob_large; | |
284 | ||
95b35127 NP |
285 | spin_lock_irqsave(&slob_lock, flags); |
286 | /* Iterate through each partially free page, try to find room */ | |
20cecbae | 287 | list_for_each_entry(sp, slob_list, list) { |
6193a2ff PM |
288 | #ifdef CONFIG_NUMA |
289 | /* | |
290 | * If there's a node specification, search for a partial | |
291 | * page with a matching node id in the freelist. | |
292 | */ | |
b8c24c4a | 293 | if (node != -1 && page_to_nid(sp) != node) |
6193a2ff PM |
294 | continue; |
295 | #endif | |
d6269543 MM |
296 | /* Enough room on this page? */ |
297 | if (sp->units < SLOB_UNITS(size)) | |
298 | continue; | |
6193a2ff | 299 | |
d6269543 MM |
300 | /* Attempt to alloc */ |
301 | prev = sp->list.prev; | |
302 | b = slob_page_alloc(sp, size, align); | |
303 | if (!b) | |
304 | continue; | |
305 | ||
306 | /* Improve fragment distribution and reduce our average | |
307 | * search time by starting our next search here. (see | |
308 | * Knuth vol 1, sec 2.5, pg 449) */ | |
20cecbae MM |
309 | if (prev != slob_list->prev && |
310 | slob_list->next != prev->next) | |
311 | list_move_tail(slob_list, prev->next); | |
d6269543 | 312 | break; |
10cef602 | 313 | } |
95b35127 NP |
314 | spin_unlock_irqrestore(&slob_lock, flags); |
315 | ||
316 | /* Not enough space: must allocate a new page */ | |
317 | if (!b) { | |
6e9ed0cc | 318 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
95b35127 | 319 | if (!b) |
6e9ed0cc | 320 | return NULL; |
b5568280 CL |
321 | sp = virt_to_page(b); |
322 | __SetPageSlab(sp); | |
95b35127 NP |
323 | |
324 | spin_lock_irqsave(&slob_lock, flags); | |
325 | sp->units = SLOB_UNITS(PAGE_SIZE); | |
b8c24c4a | 326 | sp->freelist = b; |
95b35127 NP |
327 | INIT_LIST_HEAD(&sp->list); |
328 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | |
20cecbae | 329 | set_slob_page_free(sp, slob_list); |
95b35127 NP |
330 | b = slob_page_alloc(sp, size, align); |
331 | BUG_ON(!b); | |
332 | spin_unlock_irqrestore(&slob_lock, flags); | |
333 | } | |
d07dbea4 CL |
334 | if (unlikely((gfp & __GFP_ZERO) && b)) |
335 | memset(b, 0, size); | |
95b35127 | 336 | return b; |
10cef602 MM |
337 | } |
338 | ||
95b35127 NP |
339 | /* |
340 | * slob_free: entry point into the slob allocator. | |
341 | */ | |
10cef602 MM |
342 | static void slob_free(void *block, int size) |
343 | { | |
b8c24c4a | 344 | struct page *sp; |
95b35127 NP |
345 | slob_t *prev, *next, *b = (slob_t *)block; |
346 | slobidx_t units; | |
10cef602 | 347 | unsigned long flags; |
d602daba | 348 | struct list_head *slob_list; |
10cef602 | 349 | |
2408c550 | 350 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
10cef602 | 351 | return; |
95b35127 | 352 | BUG_ON(!size); |
10cef602 | 353 | |
b5568280 | 354 | sp = virt_to_page(block); |
95b35127 | 355 | units = SLOB_UNITS(size); |
10cef602 | 356 | |
10cef602 | 357 | spin_lock_irqsave(&slob_lock, flags); |
10cef602 | 358 | |
95b35127 NP |
359 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
360 | /* Go directly to page allocator. Do not pass slob allocator */ | |
361 | if (slob_page_free(sp)) | |
362 | clear_slob_page_free(sp); | |
6fb8f424 | 363 | spin_unlock_irqrestore(&slob_lock, flags); |
b5568280 CL |
364 | __ClearPageSlab(sp); |
365 | reset_page_mapcount(sp); | |
1f0532eb | 366 | slob_free_pages(b, 0); |
6fb8f424 | 367 | return; |
95b35127 | 368 | } |
10cef602 | 369 | |
95b35127 NP |
370 | if (!slob_page_free(sp)) { |
371 | /* This slob page is about to become partially free. Easy! */ | |
372 | sp->units = units; | |
b8c24c4a | 373 | sp->freelist = b; |
95b35127 NP |
374 | set_slob(b, units, |
375 | (void *)((unsigned long)(b + | |
376 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | |
d602daba BL |
377 | if (size < SLOB_BREAK1) |
378 | slob_list = &free_slob_small; | |
379 | else if (size < SLOB_BREAK2) | |
380 | slob_list = &free_slob_medium; | |
381 | else | |
382 | slob_list = &free_slob_large; | |
383 | set_slob_page_free(sp, slob_list); | |
95b35127 NP |
384 | goto out; |
385 | } | |
386 | ||
387 | /* | |
388 | * Otherwise the page is already partially free, so find reinsertion | |
389 | * point. | |
390 | */ | |
391 | sp->units += units; | |
10cef602 | 392 | |
b8c24c4a CL |
393 | if (b < (slob_t *)sp->freelist) { |
394 | if (b + units == sp->freelist) { | |
395 | units += slob_units(sp->freelist); | |
396 | sp->freelist = slob_next(sp->freelist); | |
679299b3 | 397 | } |
b8c24c4a CL |
398 | set_slob(b, units, sp->freelist); |
399 | sp->freelist = b; | |
95b35127 | 400 | } else { |
b8c24c4a | 401 | prev = sp->freelist; |
95b35127 NP |
402 | next = slob_next(prev); |
403 | while (b > next) { | |
404 | prev = next; | |
405 | next = slob_next(prev); | |
406 | } | |
10cef602 | 407 | |
95b35127 NP |
408 | if (!slob_last(prev) && b + units == next) { |
409 | units += slob_units(next); | |
410 | set_slob(b, units, slob_next(next)); | |
411 | } else | |
412 | set_slob(b, units, next); | |
413 | ||
414 | if (prev + slob_units(prev) == b) { | |
415 | units = slob_units(b) + slob_units(prev); | |
416 | set_slob(prev, units, slob_next(b)); | |
417 | } else | |
418 | set_slob(prev, slob_units(prev), b); | |
419 | } | |
420 | out: | |
10cef602 MM |
421 | spin_unlock_irqrestore(&slob_lock, flags); |
422 | } | |
423 | ||
95b35127 NP |
424 | /* |
425 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | |
426 | */ | |
427 | ||
6193a2ff | 428 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
10cef602 | 429 | { |
6cb8f913 | 430 | unsigned int *m; |
55394849 | 431 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
3eae2cb2 | 432 | void *ret; |
55394849 | 433 | |
bd50cfa8 SR |
434 | gfp &= gfp_allowed_mask; |
435 | ||
19cefdff | 436 | lockdep_trace_alloc(gfp); |
cf40bd16 | 437 | |
55394849 | 438 | if (size < PAGE_SIZE - align) { |
6cb8f913 CL |
439 | if (!size) |
440 | return ZERO_SIZE_PTR; | |
441 | ||
6193a2ff | 442 | m = slob_alloc(size + align, gfp, align, node); |
3eae2cb2 | 443 | |
239f49c0 MK |
444 | if (!m) |
445 | return NULL; | |
446 | *m = size; | |
3eae2cb2 EGM |
447 | ret = (void *)m + align; |
448 | ||
ca2b84cb EGM |
449 | trace_kmalloc_node(_RET_IP_, ret, |
450 | size, size + align, gfp, node); | |
d87a133f | 451 | } else { |
3eae2cb2 | 452 | unsigned int order = get_order(size); |
d87a133f | 453 | |
8df275af DR |
454 | if (likely(order)) |
455 | gfp |= __GFP_COMP; | |
456 | ret = slob_new_pages(gfp, order, node); | |
d87a133f NP |
457 | if (ret) { |
458 | struct page *page; | |
459 | page = virt_to_page(ret); | |
460 | page->private = size; | |
461 | } | |
3eae2cb2 | 462 | |
ca2b84cb EGM |
463 | trace_kmalloc_node(_RET_IP_, ret, |
464 | size, PAGE_SIZE << order, gfp, node); | |
10cef602 | 465 | } |
3eae2cb2 | 466 | |
4374e616 | 467 | kmemleak_alloc(ret, size, 1, gfp); |
3eae2cb2 | 468 | return ret; |
10cef602 | 469 | } |
6193a2ff | 470 | EXPORT_SYMBOL(__kmalloc_node); |
10cef602 MM |
471 | |
472 | void kfree(const void *block) | |
473 | { | |
b8c24c4a | 474 | struct page *sp; |
10cef602 | 475 | |
2121db74 PE |
476 | trace_kfree(_RET_IP_, block); |
477 | ||
2408c550 | 478 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
10cef602 | 479 | return; |
4374e616 | 480 | kmemleak_free(block); |
10cef602 | 481 | |
b5568280 CL |
482 | sp = virt_to_page(block); |
483 | if (PageSlab(sp)) { | |
55394849 NP |
484 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
485 | unsigned int *m = (unsigned int *)(block - align); | |
486 | slob_free(m, *m + align); | |
d87a133f | 487 | } else |
b8c24c4a | 488 | put_page(sp); |
10cef602 | 489 | } |
10cef602 MM |
490 | EXPORT_SYMBOL(kfree); |
491 | ||
d87a133f | 492 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
fd76bab2 | 493 | size_t ksize(const void *block) |
10cef602 | 494 | { |
b8c24c4a | 495 | struct page *sp; |
10cef602 | 496 | |
ef8b4520 CL |
497 | BUG_ON(!block); |
498 | if (unlikely(block == ZERO_SIZE_PTR)) | |
10cef602 MM |
499 | return 0; |
500 | ||
b5568280 CL |
501 | sp = virt_to_page(block); |
502 | if (PageSlab(sp)) { | |
70096a56 MM |
503 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
504 | unsigned int *m = (unsigned int *)(block - align); | |
505 | return SLOB_UNITS(*m) * SLOB_UNIT; | |
506 | } else | |
b8c24c4a | 507 | return sp->private; |
10cef602 | 508 | } |
b1aabecd | 509 | EXPORT_SYMBOL(ksize); |
10cef602 | 510 | |
039363f3 | 511 | struct kmem_cache *__kmem_cache_create(const char *name, size_t size, |
51cc5068 | 512 | size_t align, unsigned long flags, void (*ctor)(void *)) |
10cef602 MM |
513 | { |
514 | struct kmem_cache *c; | |
515 | ||
0701a9e6 | 516 | c = slob_alloc(sizeof(struct kmem_cache), |
5e18e2b8 | 517 | GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); |
10cef602 MM |
518 | |
519 | if (c) { | |
520 | c->name = name; | |
3b0efdfa | 521 | c->size = c->object_size; |
afc0cedb | 522 | if (flags & SLAB_DESTROY_BY_RCU) { |
afc0cedb NP |
523 | /* leave room for rcu footer at the end of object */ |
524 | c->size += sizeof(struct slob_rcu); | |
525 | } | |
526 | c->flags = flags; | |
10cef602 | 527 | c->ctor = ctor; |
10cef602 | 528 | /* ignore alignment unless it's forced */ |
5af60839 | 529 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
55394849 NP |
530 | if (c->align < ARCH_SLAB_MINALIGN) |
531 | c->align = ARCH_SLAB_MINALIGN; | |
10cef602 MM |
532 | if (c->align < align) |
533 | c->align = align; | |
10cef602 | 534 | |
039363f3 | 535 | kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL); |
97d06609 | 536 | c->refcount = 1; |
039363f3 | 537 | } |
10cef602 MM |
538 | return c; |
539 | } | |
10cef602 | 540 | |
133d205a | 541 | void kmem_cache_destroy(struct kmem_cache *c) |
10cef602 | 542 | { |
4374e616 | 543 | kmemleak_free(c); |
7ed9f7e5 PM |
544 | if (c->flags & SLAB_DESTROY_BY_RCU) |
545 | rcu_barrier(); | |
10cef602 | 546 | slob_free(c, sizeof(struct kmem_cache)); |
10cef602 MM |
547 | } |
548 | EXPORT_SYMBOL(kmem_cache_destroy); | |
549 | ||
6193a2ff | 550 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
10cef602 MM |
551 | { |
552 | void *b; | |
553 | ||
bd50cfa8 SR |
554 | flags &= gfp_allowed_mask; |
555 | ||
556 | lockdep_trace_alloc(flags); | |
557 | ||
3eae2cb2 | 558 | if (c->size < PAGE_SIZE) { |
6193a2ff | 559 | b = slob_alloc(c->size, flags, c->align, node); |
ca2b84cb EGM |
560 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
561 | SLOB_UNITS(c->size) * SLOB_UNIT, | |
562 | flags, node); | |
3eae2cb2 | 563 | } else { |
6e9ed0cc | 564 | b = slob_new_pages(flags, get_order(c->size), node); |
ca2b84cb EGM |
565 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
566 | PAGE_SIZE << get_order(c->size), | |
567 | flags, node); | |
3eae2cb2 | 568 | } |
10cef602 MM |
569 | |
570 | if (c->ctor) | |
51cc5068 | 571 | c->ctor(b); |
10cef602 | 572 | |
4374e616 | 573 | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); |
10cef602 MM |
574 | return b; |
575 | } | |
6193a2ff | 576 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
10cef602 | 577 | |
afc0cedb | 578 | static void __kmem_cache_free(void *b, int size) |
10cef602 | 579 | { |
afc0cedb NP |
580 | if (size < PAGE_SIZE) |
581 | slob_free(b, size); | |
10cef602 | 582 | else |
6e9ed0cc | 583 | slob_free_pages(b, get_order(size)); |
afc0cedb NP |
584 | } |
585 | ||
586 | static void kmem_rcu_free(struct rcu_head *head) | |
587 | { | |
588 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | |
589 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | |
590 | ||
591 | __kmem_cache_free(b, slob_rcu->size); | |
592 | } | |
593 | ||
594 | void kmem_cache_free(struct kmem_cache *c, void *b) | |
595 | { | |
4374e616 | 596 | kmemleak_free_recursive(b, c->flags); |
afc0cedb NP |
597 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
598 | struct slob_rcu *slob_rcu; | |
599 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | |
afc0cedb NP |
600 | slob_rcu->size = c->size; |
601 | call_rcu(&slob_rcu->head, kmem_rcu_free); | |
602 | } else { | |
afc0cedb NP |
603 | __kmem_cache_free(b, c->size); |
604 | } | |
3eae2cb2 | 605 | |
ca2b84cb | 606 | trace_kmem_cache_free(_RET_IP_, b); |
10cef602 MM |
607 | } |
608 | EXPORT_SYMBOL(kmem_cache_free); | |
609 | ||
610 | unsigned int kmem_cache_size(struct kmem_cache *c) | |
611 | { | |
612 | return c->size; | |
613 | } | |
614 | EXPORT_SYMBOL(kmem_cache_size); | |
615 | ||
2e892f43 CL |
616 | int kmem_cache_shrink(struct kmem_cache *d) |
617 | { | |
618 | return 0; | |
619 | } | |
620 | EXPORT_SYMBOL(kmem_cache_shrink); | |
621 | ||
bcb4ddb4 DG |
622 | void __init kmem_cache_init(void) |
623 | { | |
97d06609 | 624 | slab_state = UP; |
10cef602 | 625 | } |
bbff2e43 WF |
626 | |
627 | void __init kmem_cache_init_late(void) | |
628 | { | |
97d06609 | 629 | slab_state = FULL; |
bbff2e43 | 630 | } |