]> Git Repo - linux.git/blame - mm/memcontrol-v1.c
Merge branches 'fixes', 'arm/smmu', 'intel/vt-d', 'amd/amd-vi' and 'core' into next
[linux.git] / mm / memcontrol-v1.c
CommitLineData
1b1e1344
RG
1// SPDX-License-Identifier: GPL-2.0-or-later
2
d12f6d22
RG
3#include <linux/memcontrol.h>
4#include <linux/swap.h>
5#include <linux/mm_inline.h>
e548ad4a
RG
6#include <linux/pagewalk.h>
7#include <linux/backing-dev.h>
8#include <linux/swap_cgroup.h>
66d60c42
RG
9#include <linux/eventfd.h>
10#include <linux/poll.h>
11#include <linux/sort.h>
12#include <linux/file.h>
ea1e8796 13#include <linux/seq_buf.h>
d12f6d22 14
e548ad4a
RG
15#include "internal.h"
16#include "swap.h"
1b1e1344 17#include "memcontrol-v1.h"
d12f6d22
RG
18
19/*
20 * Cgroups above their limits are maintained in a RB-Tree, independent of
21 * their hierarchy representation
22 */
23
24struct mem_cgroup_tree_per_node {
25 struct rb_root rb_root;
26 struct rb_node *rb_rightmost;
27 spinlock_t lock;
28};
29
30struct mem_cgroup_tree {
31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32};
33
34static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35
36/*
37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38 * limit reclaim to prevent infinite loops, if they ever occur.
39 */
40#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
41#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
42
e548ad4a
RG
43/* Stuffs for move charges at task migration. */
44/*
45 * Types of charges to be moved.
46 */
5316b497
RG
47#define MOVE_ANON 0x1ULL
48#define MOVE_FILE 0x2ULL
e548ad4a
RG
49#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
50
51/* "mc" and its members are protected by cgroup_mutex */
52static struct move_charge_struct {
53 spinlock_t lock; /* for from, to */
54 struct mm_struct *mm;
55 struct mem_cgroup *from;
56 struct mem_cgroup *to;
57 unsigned long flags;
58 unsigned long precharge;
59 unsigned long moved_charge;
60 unsigned long moved_swap;
61 struct task_struct *moving_task; /* a task moving charges */
62 wait_queue_head_t waitq; /* a waitq for other context */
63} mc = {
64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
66};
67
66d60c42
RG
68/* for OOM */
69struct mem_cgroup_eventfd_list {
70 struct list_head list;
71 struct eventfd_ctx *eventfd;
72};
73
74/*
75 * cgroup_event represents events which userspace want to receive.
76 */
77struct mem_cgroup_event {
78 /*
79 * memcg which the event belongs to.
80 */
81 struct mem_cgroup *memcg;
82 /*
83 * eventfd to signal userspace about the event.
84 */
85 struct eventfd_ctx *eventfd;
86 /*
87 * Each of these stored in a list by the cgroup.
88 */
89 struct list_head list;
90 /*
91 * register_event() callback will be used to add new userspace
92 * waiter for changes related to this event. Use eventfd_signal()
93 * on eventfd to send notification to userspace.
94 */
95 int (*register_event)(struct mem_cgroup *memcg,
96 struct eventfd_ctx *eventfd, const char *args);
97 /*
98 * unregister_event() callback will be called when userspace closes
99 * the eventfd or on cgroup removing. This callback must be set,
100 * if you want provide notification functionality.
101 */
102 void (*unregister_event)(struct mem_cgroup *memcg,
103 struct eventfd_ctx *eventfd);
104 /*
105 * All fields below needed to unregister event when
106 * userspace closes eventfd.
107 */
108 poll_table pt;
109 wait_queue_head_t *wqh;
110 wait_queue_entry_t wait;
111 struct work_struct remove;
112};
113
ea1e8796
RG
114#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
115#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
116#define MEMFILE_ATTR(val) ((val) & 0xffff)
117
118enum {
119 RES_USAGE,
120 RES_LIMIT,
121 RES_MAX_USAGE,
122 RES_FAILCNT,
123 RES_SOFT_LIMIT,
124};
125
292fc2e0
RG
126#ifdef CONFIG_LOCKDEP
127static struct lockdep_map memcg_oom_lock_dep_map = {
128 .name = "memcg_oom_lock",
129};
130#endif
131
132DEFINE_SPINLOCK(memcg_oom_lock);
66d60c42 133
d12f6d22
RG
134static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
135 struct mem_cgroup_tree_per_node *mctz,
136 unsigned long new_usage_in_excess)
137{
138 struct rb_node **p = &mctz->rb_root.rb_node;
139 struct rb_node *parent = NULL;
140 struct mem_cgroup_per_node *mz_node;
141 bool rightmost = true;
142
143 if (mz->on_tree)
144 return;
145
146 mz->usage_in_excess = new_usage_in_excess;
147 if (!mz->usage_in_excess)
148 return;
149 while (*p) {
150 parent = *p;
151 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
152 tree_node);
153 if (mz->usage_in_excess < mz_node->usage_in_excess) {
154 p = &(*p)->rb_left;
155 rightmost = false;
156 } else {
157 p = &(*p)->rb_right;
158 }
159 }
160
161 if (rightmost)
162 mctz->rb_rightmost = &mz->tree_node;
163
164 rb_link_node(&mz->tree_node, parent, p);
165 rb_insert_color(&mz->tree_node, &mctz->rb_root);
166 mz->on_tree = true;
167}
168
169static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
170 struct mem_cgroup_tree_per_node *mctz)
171{
172 if (!mz->on_tree)
173 return;
174
175 if (&mz->tree_node == mctz->rb_rightmost)
176 mctz->rb_rightmost = rb_prev(&mz->tree_node);
177
178 rb_erase(&mz->tree_node, &mctz->rb_root);
179 mz->on_tree = false;
180}
181
182static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
183 struct mem_cgroup_tree_per_node *mctz)
184{
185 unsigned long flags;
186
187 spin_lock_irqsave(&mctz->lock, flags);
188 __mem_cgroup_remove_exceeded(mz, mctz);
189 spin_unlock_irqrestore(&mctz->lock, flags);
190}
191
192static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
193{
194 unsigned long nr_pages = page_counter_read(&memcg->memory);
195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
196 unsigned long excess = 0;
197
198 if (nr_pages > soft_limit)
199 excess = nr_pages - soft_limit;
200
201 return excess;
202}
203
34926e10 204static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
d12f6d22
RG
205{
206 unsigned long excess;
207 struct mem_cgroup_per_node *mz;
208 struct mem_cgroup_tree_per_node *mctz;
209
210 if (lru_gen_enabled()) {
211 if (soft_limit_excess(memcg))
212 lru_gen_soft_reclaim(memcg, nid);
213 return;
214 }
215
216 mctz = soft_limit_tree.rb_tree_per_node[nid];
217 if (!mctz)
218 return;
219 /*
220 * Necessary to update all ancestors when hierarchy is used.
221 * because their event counter is not touched.
222 */
223 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
224 mz = memcg->nodeinfo[nid];
225 excess = soft_limit_excess(memcg);
226 /*
227 * We have to update the tree if mz is on RB-tree or
228 * mem is over its softlimit.
229 */
230 if (excess || mz->on_tree) {
231 unsigned long flags;
232
233 spin_lock_irqsave(&mctz->lock, flags);
234 /* if on-tree, remove it */
235 if (mz->on_tree)
236 __mem_cgroup_remove_exceeded(mz, mctz);
237 /*
238 * Insert again. mz->usage_in_excess will be updated.
239 * If excess is 0, no tree ops.
240 */
241 __mem_cgroup_insert_exceeded(mz, mctz, excess);
242 spin_unlock_irqrestore(&mctz->lock, flags);
243 }
244 }
245}
246
87024f58 247void memcg1_remove_from_trees(struct mem_cgroup *memcg)
d12f6d22
RG
248{
249 struct mem_cgroup_tree_per_node *mctz;
250 struct mem_cgroup_per_node *mz;
251 int nid;
252
253 for_each_node(nid) {
254 mz = memcg->nodeinfo[nid];
255 mctz = soft_limit_tree.rb_tree_per_node[nid];
256 if (mctz)
257 mem_cgroup_remove_exceeded(mz, mctz);
258 }
259}
260
261static struct mem_cgroup_per_node *
262__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263{
264 struct mem_cgroup_per_node *mz;
265
266retry:
267 mz = NULL;
268 if (!mctz->rb_rightmost)
269 goto done; /* Nothing to reclaim from */
270
271 mz = rb_entry(mctz->rb_rightmost,
272 struct mem_cgroup_per_node, tree_node);
273 /*
274 * Remove the node now but someone else can add it back,
275 * we will to add it back at the end of reclaim to its correct
276 * position in the tree.
277 */
278 __mem_cgroup_remove_exceeded(mz, mctz);
279 if (!soft_limit_excess(mz->memcg) ||
280 !css_tryget(&mz->memcg->css))
281 goto retry;
282done:
283 return mz;
284}
285
286static struct mem_cgroup_per_node *
287mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
288{
289 struct mem_cgroup_per_node *mz;
290
291 spin_lock_irq(&mctz->lock);
292 mz = __mem_cgroup_largest_soft_limit_node(mctz);
293 spin_unlock_irq(&mctz->lock);
294 return mz;
295}
296
297static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
298 pg_data_t *pgdat,
299 gfp_t gfp_mask,
300 unsigned long *total_scanned)
301{
302 struct mem_cgroup *victim = NULL;
303 int total = 0;
304 int loop = 0;
305 unsigned long excess;
306 unsigned long nr_scanned;
307 struct mem_cgroup_reclaim_cookie reclaim = {
308 .pgdat = pgdat,
309 };
310
311 excess = soft_limit_excess(root_memcg);
312
313 while (1) {
314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
315 if (!victim) {
316 loop++;
317 if (loop >= 2) {
318 /*
319 * If we have not been able to reclaim
320 * anything, it might because there are
321 * no reclaimable pages under this hierarchy
322 */
323 if (!total)
324 break;
325 /*
326 * We want to do more targeted reclaim.
327 * excess >> 2 is not to excessive so as to
328 * reclaim too much, nor too less that we keep
329 * coming back to reclaim from this cgroup
330 */
331 if (total >= (excess >> 2) ||
332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
333 break;
334 }
335 continue;
336 }
337 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
338 pgdat, &nr_scanned);
339 *total_scanned += nr_scanned;
340 if (!soft_limit_excess(root_memcg))
341 break;
342 }
343 mem_cgroup_iter_break(root_memcg, victim);
344 return total;
345}
346
87024f58 347unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
d12f6d22
RG
348 gfp_t gfp_mask,
349 unsigned long *total_scanned)
350{
351 unsigned long nr_reclaimed = 0;
352 struct mem_cgroup_per_node *mz, *next_mz = NULL;
353 unsigned long reclaimed;
354 int loop = 0;
355 struct mem_cgroup_tree_per_node *mctz;
356 unsigned long excess;
357
358 if (lru_gen_enabled())
359 return 0;
360
361 if (order > 0)
362 return 0;
363
364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
365
366 /*
367 * Do not even bother to check the largest node if the root
368 * is empty. Do it lockless to prevent lock bouncing. Races
369 * are acceptable as soft limit is best effort anyway.
370 */
371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
372 return 0;
373
374 /*
375 * This loop can run a while, specially if mem_cgroup's continuously
376 * keep exceeding their soft limit and putting the system under
377 * pressure
378 */
379 do {
380 if (next_mz)
381 mz = next_mz;
382 else
383 mz = mem_cgroup_largest_soft_limit_node(mctz);
384 if (!mz)
385 break;
386
387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
388 gfp_mask, total_scanned);
389 nr_reclaimed += reclaimed;
390 spin_lock_irq(&mctz->lock);
391
392 /*
393 * If we failed to reclaim anything from this memory cgroup
394 * it is time to move on to the next cgroup
395 */
396 next_mz = NULL;
397 if (!reclaimed)
398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
399
400 excess = soft_limit_excess(mz->memcg);
401 /*
402 * One school of thought says that we should not add
403 * back the node to the tree if reclaim returns 0.
404 * But our reclaim could return 0, simply because due
405 * to priority we are exposing a smaller subset of
406 * memory to reclaim from. Consider this as a longer
407 * term TODO.
408 */
409 /* If excess == 0, no tree ops */
410 __mem_cgroup_insert_exceeded(mz, mctz, excess);
411 spin_unlock_irq(&mctz->lock);
412 css_put(&mz->memcg->css);
413 loop++;
414 /*
415 * Could not reclaim anything and there are no more
416 * mem cgroups to try or we seem to be looping without
417 * reclaiming anything.
418 */
419 if (!nr_reclaimed &&
420 (next_mz == NULL ||
421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
422 break;
423 } while (!nr_reclaimed);
424 if (next_mz)
425 css_put(&next_mz->memcg->css);
426 return nr_reclaimed;
427}
428
e548ad4a
RG
429/*
430 * A routine for checking "mem" is under move_account() or not.
431 *
432 * Checking a cgroup is mc.from or mc.to or under hierarchy of
433 * moving cgroups. This is for waiting at high-memory pressure
434 * caused by "move".
435 */
436static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
437{
438 struct mem_cgroup *from;
439 struct mem_cgroup *to;
440 bool ret = false;
441 /*
442 * Unlike task_move routines, we access mc.to, mc.from not under
443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
444 */
445 spin_lock(&mc.lock);
446 from = mc.from;
447 to = mc.to;
448 if (!from)
449 goto unlock;
450
451 ret = mem_cgroup_is_descendant(from, memcg) ||
452 mem_cgroup_is_descendant(to, memcg);
453unlock:
454 spin_unlock(&mc.lock);
455 return ret;
456}
457
b9eaacb1 458bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
e548ad4a
RG
459{
460 if (mc.moving_task && current != mc.moving_task) {
461 if (mem_cgroup_under_move(memcg)) {
462 DEFINE_WAIT(wait);
463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
464 /* moving charge context might have finished. */
465 if (mc.moving_task)
466 schedule();
467 finish_wait(&mc.waitq, &wait);
468 return true;
469 }
470 }
471 return false;
472}
473
474/**
475 * folio_memcg_lock - Bind a folio to its memcg.
476 * @folio: The folio.
477 *
478 * This function prevents unlocked LRU folios from being moved to
479 * another cgroup.
480 *
481 * It ensures lifetime of the bound memcg. The caller is responsible
482 * for the lifetime of the folio.
483 */
484void folio_memcg_lock(struct folio *folio)
485{
486 struct mem_cgroup *memcg;
487 unsigned long flags;
488
489 /*
490 * The RCU lock is held throughout the transaction. The fast
491 * path can get away without acquiring the memcg->move_lock
492 * because page moving starts with an RCU grace period.
493 */
494 rcu_read_lock();
495
496 if (mem_cgroup_disabled())
497 return;
498again:
499 memcg = folio_memcg(folio);
500 if (unlikely(!memcg))
501 return;
502
503#ifdef CONFIG_PROVE_LOCKING
504 local_irq_save(flags);
505 might_lock(&memcg->move_lock);
506 local_irq_restore(flags);
507#endif
508
509 if (atomic_read(&memcg->moving_account) <= 0)
510 return;
511
512 spin_lock_irqsave(&memcg->move_lock, flags);
513 if (memcg != folio_memcg(folio)) {
514 spin_unlock_irqrestore(&memcg->move_lock, flags);
515 goto again;
516 }
517
518 /*
519 * When charge migration first begins, we can have multiple
520 * critical sections holding the fast-path RCU lock and one
521 * holding the slowpath move_lock. Track the task who has the
522 * move_lock for folio_memcg_unlock().
523 */
524 memcg->move_lock_task = current;
525 memcg->move_lock_flags = flags;
526}
527
528static void __folio_memcg_unlock(struct mem_cgroup *memcg)
529{
530 if (memcg && memcg->move_lock_task == current) {
531 unsigned long flags = memcg->move_lock_flags;
532
533 memcg->move_lock_task = NULL;
534 memcg->move_lock_flags = 0;
535
536 spin_unlock_irqrestore(&memcg->move_lock, flags);
537 }
538
539 rcu_read_unlock();
540}
541
542/**
543 * folio_memcg_unlock - Release the binding between a folio and its memcg.
544 * @folio: The folio.
545 *
546 * This releases the binding created by folio_memcg_lock(). This does
547 * not change the accounting of this folio to its memcg, but it does
548 * permit others to change it.
549 */
550void folio_memcg_unlock(struct folio *folio)
551{
552 __folio_memcg_unlock(folio_memcg(folio));
553}
554
555#ifdef CONFIG_SWAP
556/**
557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
558 * @entry: swap entry to be moved
559 * @from: mem_cgroup which the entry is moved from
560 * @to: mem_cgroup which the entry is moved to
561 *
562 * It succeeds only when the swap_cgroup's record for this entry is the same
563 * as the mem_cgroup's id of @from.
564 *
565 * Returns 0 on success, -EINVAL on failure.
566 *
567 * The caller must have charged to @to, IOW, called page_counter_charge() about
568 * both res and memsw, and called css_get().
569 */
570static int mem_cgroup_move_swap_account(swp_entry_t entry,
571 struct mem_cgroup *from, struct mem_cgroup *to)
572{
573 unsigned short old_id, new_id;
574
575 old_id = mem_cgroup_id(from);
576 new_id = mem_cgroup_id(to);
577
578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
579 mod_memcg_state(from, MEMCG_SWAP, -1);
580 mod_memcg_state(to, MEMCG_SWAP, 1);
581 return 0;
582 }
583 return -EINVAL;
584}
585#else
586static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
587 struct mem_cgroup *from, struct mem_cgroup *to)
588{
589 return -EINVAL;
590}
591#endif
592
ea1e8796 593static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
e548ad4a
RG
594 struct cftype *cft)
595{
596 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
597}
598
599#ifdef CONFIG_MMU
ea1e8796 600static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
e548ad4a
RG
601 struct cftype *cft, u64 val)
602{
603 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
604
605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
606 "Please report your usecase to [email protected] if you "
607 "depend on this functionality.\n");
608
609 if (val & ~MOVE_MASK)
610 return -EINVAL;
611
612 /*
613 * No kind of locking is needed in here, because ->can_attach() will
614 * check this value once in the beginning of the process, and then carry
615 * on with stale data. This means that changes to this value will only
616 * affect task migrations starting after the change.
617 */
618 memcg->move_charge_at_immigrate = val;
619 return 0;
620}
621#else
ea1e8796 622static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
e548ad4a
RG
623 struct cftype *cft, u64 val)
624{
625 return -ENOSYS;
626}
627#endif
628
629#ifdef CONFIG_MMU
630/* Handlers for move charge at task migration. */
631static int mem_cgroup_do_precharge(unsigned long count)
632{
633 int ret;
634
635 /* Try a single bulk charge without reclaim first, kswapd may wake */
636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
637 if (!ret) {
638 mc.precharge += count;
639 return ret;
640 }
641
642 /* Try charges one by one with reclaim, but do not retry */
643 while (count--) {
644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
645 if (ret)
646 return ret;
647 mc.precharge++;
648 cond_resched();
649 }
650 return 0;
651}
652
653union mc_target {
654 struct folio *folio;
655 swp_entry_t ent;
656};
657
658enum mc_target_type {
659 MC_TARGET_NONE = 0,
660 MC_TARGET_PAGE,
661 MC_TARGET_SWAP,
662 MC_TARGET_DEVICE,
663};
664
665static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
666 unsigned long addr, pte_t ptent)
667{
668 struct page *page = vm_normal_page(vma, addr, ptent);
669
670 if (!page)
671 return NULL;
672 if (PageAnon(page)) {
673 if (!(mc.flags & MOVE_ANON))
674 return NULL;
675 } else {
676 if (!(mc.flags & MOVE_FILE))
677 return NULL;
678 }
679 get_page(page);
680
681 return page;
682}
683
684#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
685static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
686 pte_t ptent, swp_entry_t *entry)
687{
688 struct page *page = NULL;
689 swp_entry_t ent = pte_to_swp_entry(ptent);
690
691 if (!(mc.flags & MOVE_ANON))
692 return NULL;
693
694 /*
695 * Handle device private pages that are not accessible by the CPU, but
696 * stored as special swap entries in the page table.
697 */
698 if (is_device_private_entry(ent)) {
699 page = pfn_swap_entry_to_page(ent);
700 if (!get_page_unless_zero(page))
701 return NULL;
702 return page;
703 }
704
705 if (non_swap_entry(ent))
706 return NULL;
707
708 /*
709 * Because swap_cache_get_folio() updates some statistics counter,
710 * we call find_get_page() with swapper_space directly.
711 */
712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
713 entry->val = ent.val;
714
715 return page;
716}
717#else
718static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
719 pte_t ptent, swp_entry_t *entry)
720{
721 return NULL;
722}
723#endif
724
725static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
726 unsigned long addr, pte_t ptent)
727{
728 unsigned long index;
729 struct folio *folio;
730
731 if (!vma->vm_file) /* anonymous vma */
732 return NULL;
733 if (!(mc.flags & MOVE_FILE))
734 return NULL;
735
736 /* folio is moved even if it's not RSS of this task(page-faulted). */
737 /* shmem/tmpfs may report page out on swap: account for that too. */
738 index = linear_page_index(vma, addr);
739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
740 if (IS_ERR(folio))
741 return NULL;
742 return folio_file_page(folio, index);
743}
744
745/**
746 * mem_cgroup_move_account - move account of the folio
747 * @folio: The folio.
748 * @compound: charge the page as compound or small page
749 * @from: mem_cgroup which the folio is moved from.
750 * @to: mem_cgroup which the folio is moved to. @from != @to.
751 *
752 * The folio must be locked and not on the LRU.
753 *
754 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
755 * from old cgroup.
756 */
757static int mem_cgroup_move_account(struct folio *folio,
758 bool compound,
759 struct mem_cgroup *from,
760 struct mem_cgroup *to)
761{
762 struct lruvec *from_vec, *to_vec;
763 struct pglist_data *pgdat;
764 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
765 int nid, ret;
766
767 VM_BUG_ON(from == to);
768 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
769 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
770 VM_BUG_ON(compound && !folio_test_large(folio));
771
772 ret = -EINVAL;
773 if (folio_memcg(folio) != from)
774 goto out;
775
776 pgdat = folio_pgdat(folio);
777 from_vec = mem_cgroup_lruvec(from, pgdat);
778 to_vec = mem_cgroup_lruvec(to, pgdat);
779
780 folio_memcg_lock(folio);
781
782 if (folio_test_anon(folio)) {
783 if (folio_mapped(folio)) {
784 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
785 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
786 if (folio_test_pmd_mappable(folio)) {
787 __mod_lruvec_state(from_vec, NR_ANON_THPS,
788 -nr_pages);
789 __mod_lruvec_state(to_vec, NR_ANON_THPS,
790 nr_pages);
791 }
792 }
793 } else {
794 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
795 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
796
797 if (folio_test_swapbacked(folio)) {
798 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
799 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
800 }
801
802 if (folio_mapped(folio)) {
803 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
804 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
805 }
806
807 if (folio_test_dirty(folio)) {
808 struct address_space *mapping = folio_mapping(folio);
809
810 if (mapping_can_writeback(mapping)) {
811 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
812 -nr_pages);
813 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
814 nr_pages);
815 }
816 }
817 }
818
819#ifdef CONFIG_SWAP
820 if (folio_test_swapcache(folio)) {
821 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
822 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
823 }
824#endif
825 if (folio_test_writeback(folio)) {
826 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
827 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
828 }
829
830 /*
831 * All state has been migrated, let's switch to the new memcg.
832 *
833 * It is safe to change page's memcg here because the page
834 * is referenced, charged, isolated, and locked: we can't race
835 * with (un)charging, migration, LRU putback, or anything else
836 * that would rely on a stable page's memory cgroup.
837 *
838 * Note that folio_memcg_lock is a memcg lock, not a page lock,
839 * to save space. As soon as we switch page's memory cgroup to a
840 * new memcg that isn't locked, the above state can change
841 * concurrently again. Make sure we're truly done with it.
842 */
843 smp_mb();
844
845 css_get(&to->css);
846 css_put(&from->css);
847
848 folio->memcg_data = (unsigned long)to;
849
850 __folio_memcg_unlock(from);
851
852 ret = 0;
853 nid = folio_nid(folio);
854
855 local_irq_disable();
856 mem_cgroup_charge_statistics(to, nr_pages);
cc7b8504 857 memcg1_check_events(to, nid);
e548ad4a 858 mem_cgroup_charge_statistics(from, -nr_pages);
cc7b8504 859 memcg1_check_events(from, nid);
e548ad4a
RG
860 local_irq_enable();
861out:
862 return ret;
863}
864
865/**
866 * get_mctgt_type - get target type of moving charge
867 * @vma: the vma the pte to be checked belongs
868 * @addr: the address corresponding to the pte to be checked
869 * @ptent: the pte to be checked
870 * @target: the pointer the target page or swap ent will be stored(can be NULL)
871 *
872 * Context: Called with pte lock held.
873 * Return:
874 * * MC_TARGET_NONE - If the pte is not a target for move charge.
875 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
876 * move charge. If @target is not NULL, the folio is stored in target->folio
877 * with extra refcnt taken (Caller should release it).
878 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
879 * target for charge migration. If @target is not NULL, the entry is
880 * stored in target->ent.
881 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
882 * thus not on the lru. For now such page is charged like a regular page
883 * would be as it is just special memory taking the place of a regular page.
884 * See Documentations/vm/hmm.txt and include/linux/hmm.h
885 */
886static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
887 unsigned long addr, pte_t ptent, union mc_target *target)
888{
889 struct page *page = NULL;
890 struct folio *folio;
891 enum mc_target_type ret = MC_TARGET_NONE;
892 swp_entry_t ent = { .val = 0 };
893
894 if (pte_present(ptent))
895 page = mc_handle_present_pte(vma, addr, ptent);
896 else if (pte_none_mostly(ptent))
897 /*
898 * PTE markers should be treated as a none pte here, separated
899 * from other swap handling below.
900 */
901 page = mc_handle_file_pte(vma, addr, ptent);
902 else if (is_swap_pte(ptent))
903 page = mc_handle_swap_pte(vma, ptent, &ent);
904
905 if (page)
906 folio = page_folio(page);
907 if (target && page) {
908 if (!folio_trylock(folio)) {
909 folio_put(folio);
910 return ret;
911 }
912 /*
913 * page_mapped() must be stable during the move. This
914 * pte is locked, so if it's present, the page cannot
915 * become unmapped. If it isn't, we have only partial
916 * control over the mapped state: the page lock will
917 * prevent new faults against pagecache and swapcache,
918 * so an unmapped page cannot become mapped. However,
919 * if the page is already mapped elsewhere, it can
920 * unmap, and there is nothing we can do about it.
921 * Alas, skip moving the page in this case.
922 */
923 if (!pte_present(ptent) && page_mapped(page)) {
924 folio_unlock(folio);
925 folio_put(folio);
926 return ret;
927 }
928 }
929
930 if (!page && !ent.val)
931 return ret;
932 if (page) {
933 /*
934 * Do only loose check w/o serialization.
935 * mem_cgroup_move_account() checks the page is valid or
936 * not under LRU exclusion.
937 */
938 if (folio_memcg(folio) == mc.from) {
939 ret = MC_TARGET_PAGE;
940 if (folio_is_device_private(folio) ||
941 folio_is_device_coherent(folio))
942 ret = MC_TARGET_DEVICE;
943 if (target)
944 target->folio = folio;
945 }
946 if (!ret || !target) {
947 if (target)
948 folio_unlock(folio);
949 folio_put(folio);
950 }
951 }
952 /*
953 * There is a swap entry and a page doesn't exist or isn't charged.
954 * But we cannot move a tail-page in a THP.
955 */
956 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
957 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
958 ret = MC_TARGET_SWAP;
959 if (target)
960 target->ent = ent;
961 }
962 return ret;
963}
964
965#ifdef CONFIG_TRANSPARENT_HUGEPAGE
966/*
967 * We don't consider PMD mapped swapping or file mapped pages because THP does
968 * not support them for now.
969 * Caller should make sure that pmd_trans_huge(pmd) is true.
970 */
971static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
972 unsigned long addr, pmd_t pmd, union mc_target *target)
973{
974 struct page *page = NULL;
975 struct folio *folio;
976 enum mc_target_type ret = MC_TARGET_NONE;
977
978 if (unlikely(is_swap_pmd(pmd))) {
979 VM_BUG_ON(thp_migration_supported() &&
980 !is_pmd_migration_entry(pmd));
981 return ret;
982 }
983 page = pmd_page(pmd);
984 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
985 folio = page_folio(page);
986 if (!(mc.flags & MOVE_ANON))
987 return ret;
988 if (folio_memcg(folio) == mc.from) {
989 ret = MC_TARGET_PAGE;
990 if (target) {
991 folio_get(folio);
992 if (!folio_trylock(folio)) {
993 folio_put(folio);
994 return MC_TARGET_NONE;
995 }
996 target->folio = folio;
997 }
998 }
999 return ret;
1000}
1001#else
1002static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
1003 unsigned long addr, pmd_t pmd, union mc_target *target)
1004{
1005 return MC_TARGET_NONE;
1006}
1007#endif
1008
1009static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
1010 unsigned long addr, unsigned long end,
1011 struct mm_walk *walk)
1012{
1013 struct vm_area_struct *vma = walk->vma;
1014 pte_t *pte;
1015 spinlock_t *ptl;
1016
1017 ptl = pmd_trans_huge_lock(pmd, vma);
1018 if (ptl) {
1019 /*
1020 * Note their can not be MC_TARGET_DEVICE for now as we do not
1021 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
1022 * this might change.
1023 */
1024 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
1025 mc.precharge += HPAGE_PMD_NR;
1026 spin_unlock(ptl);
1027 return 0;
1028 }
1029
1030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1031 if (!pte)
1032 return 0;
1033 for (; addr != end; pte++, addr += PAGE_SIZE)
1034 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
1035 mc.precharge++; /* increment precharge temporarily */
1036 pte_unmap_unlock(pte - 1, ptl);
1037 cond_resched();
1038
1039 return 0;
1040}
1041
1042static const struct mm_walk_ops precharge_walk_ops = {
1043 .pmd_entry = mem_cgroup_count_precharge_pte_range,
1044 .walk_lock = PGWALK_RDLOCK,
1045};
1046
1047static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
1048{
1049 unsigned long precharge;
1050
1051 mmap_read_lock(mm);
1052 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
1053 mmap_read_unlock(mm);
1054
1055 precharge = mc.precharge;
1056 mc.precharge = 0;
1057
1058 return precharge;
1059}
1060
1061static int mem_cgroup_precharge_mc(struct mm_struct *mm)
1062{
1063 unsigned long precharge = mem_cgroup_count_precharge(mm);
1064
1065 VM_BUG_ON(mc.moving_task);
1066 mc.moving_task = current;
1067 return mem_cgroup_do_precharge(precharge);
1068}
1069
1070/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
1071static void __mem_cgroup_clear_mc(void)
1072{
1073 struct mem_cgroup *from = mc.from;
1074 struct mem_cgroup *to = mc.to;
1075
1076 /* we must uncharge all the leftover precharges from mc.to */
1077 if (mc.precharge) {
1078 mem_cgroup_cancel_charge(mc.to, mc.precharge);
1079 mc.precharge = 0;
1080 }
1081 /*
1082 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
1083 * we must uncharge here.
1084 */
1085 if (mc.moved_charge) {
1086 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
1087 mc.moved_charge = 0;
1088 }
1089 /* we must fixup refcnts and charges */
1090 if (mc.moved_swap) {
1091 /* uncharge swap account from the old cgroup */
1092 if (!mem_cgroup_is_root(mc.from))
1093 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
1094
1095 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
1096
1097 /*
1098 * we charged both to->memory and to->memsw, so we
1099 * should uncharge to->memory.
1100 */
1101 if (!mem_cgroup_is_root(mc.to))
1102 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
1103
1104 mc.moved_swap = 0;
1105 }
8d49b699
RG
1106 memcg1_oom_recover(from);
1107 memcg1_oom_recover(to);
e548ad4a
RG
1108 wake_up_all(&mc.waitq);
1109}
1110
1111static void mem_cgroup_clear_mc(void)
1112{
1113 struct mm_struct *mm = mc.mm;
1114
1115 /*
1116 * we must clear moving_task before waking up waiters at the end of
1117 * task migration.
1118 */
1119 mc.moving_task = NULL;
1120 __mem_cgroup_clear_mc();
1121 spin_lock(&mc.lock);
1122 mc.from = NULL;
1123 mc.to = NULL;
1124 mc.mm = NULL;
1125 spin_unlock(&mc.lock);
1126
1127 mmput(mm);
1128}
1129
b9eaacb1 1130int memcg1_can_attach(struct cgroup_taskset *tset)
e548ad4a
RG
1131{
1132 struct cgroup_subsys_state *css;
1133 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
1134 struct mem_cgroup *from;
1135 struct task_struct *leader, *p;
1136 struct mm_struct *mm;
1137 unsigned long move_flags;
1138 int ret = 0;
1139
1140 /* charge immigration isn't supported on the default hierarchy */
1141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1142 return 0;
1143
1144 /*
1145 * Multi-process migrations only happen on the default hierarchy
1146 * where charge immigration is not used. Perform charge
1147 * immigration if @tset contains a leader and whine if there are
1148 * multiple.
1149 */
1150 p = NULL;
1151 cgroup_taskset_for_each_leader(leader, css, tset) {
1152 WARN_ON_ONCE(p);
1153 p = leader;
1154 memcg = mem_cgroup_from_css(css);
1155 }
1156 if (!p)
1157 return 0;
1158
1159 /*
1160 * We are now committed to this value whatever it is. Changes in this
1161 * tunable will only affect upcoming migrations, not the current one.
1162 * So we need to save it, and keep it going.
1163 */
1164 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1165 if (!move_flags)
1166 return 0;
1167
1168 from = mem_cgroup_from_task(p);
1169
1170 VM_BUG_ON(from == memcg);
1171
1172 mm = get_task_mm(p);
1173 if (!mm)
1174 return 0;
1175 /* We move charges only when we move a owner of the mm */
1176 if (mm->owner == p) {
1177 VM_BUG_ON(mc.from);
1178 VM_BUG_ON(mc.to);
1179 VM_BUG_ON(mc.precharge);
1180 VM_BUG_ON(mc.moved_charge);
1181 VM_BUG_ON(mc.moved_swap);
1182
1183 spin_lock(&mc.lock);
1184 mc.mm = mm;
1185 mc.from = from;
1186 mc.to = memcg;
1187 mc.flags = move_flags;
1188 spin_unlock(&mc.lock);
1189 /* We set mc.moving_task later */
1190
1191 ret = mem_cgroup_precharge_mc(mm);
1192 if (ret)
1193 mem_cgroup_clear_mc();
1194 } else {
1195 mmput(mm);
1196 }
1197 return ret;
1198}
1199
b9eaacb1 1200void memcg1_cancel_attach(struct cgroup_taskset *tset)
e548ad4a
RG
1201{
1202 if (mc.to)
1203 mem_cgroup_clear_mc();
1204}
1205
1206static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
1207 unsigned long addr, unsigned long end,
1208 struct mm_walk *walk)
1209{
1210 int ret = 0;
1211 struct vm_area_struct *vma = walk->vma;
1212 pte_t *pte;
1213 spinlock_t *ptl;
1214 enum mc_target_type target_type;
1215 union mc_target target;
1216 struct folio *folio;
1217
1218 ptl = pmd_trans_huge_lock(pmd, vma);
1219 if (ptl) {
1220 if (mc.precharge < HPAGE_PMD_NR) {
1221 spin_unlock(ptl);
1222 return 0;
1223 }
1224 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
1225 if (target_type == MC_TARGET_PAGE) {
1226 folio = target.folio;
1227 if (folio_isolate_lru(folio)) {
1228 if (!mem_cgroup_move_account(folio, true,
1229 mc.from, mc.to)) {
1230 mc.precharge -= HPAGE_PMD_NR;
1231 mc.moved_charge += HPAGE_PMD_NR;
1232 }
1233 folio_putback_lru(folio);
1234 }
1235 folio_unlock(folio);
1236 folio_put(folio);
1237 } else if (target_type == MC_TARGET_DEVICE) {
1238 folio = target.folio;
1239 if (!mem_cgroup_move_account(folio, true,
1240 mc.from, mc.to)) {
1241 mc.precharge -= HPAGE_PMD_NR;
1242 mc.moved_charge += HPAGE_PMD_NR;
1243 }
1244 folio_unlock(folio);
1245 folio_put(folio);
1246 }
1247 spin_unlock(ptl);
1248 return 0;
1249 }
1250
1251retry:
1252 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1253 if (!pte)
1254 return 0;
1255 for (; addr != end; addr += PAGE_SIZE) {
1256 pte_t ptent = ptep_get(pte++);
1257 bool device = false;
1258 swp_entry_t ent;
1259
1260 if (!mc.precharge)
1261 break;
1262
1263 switch (get_mctgt_type(vma, addr, ptent, &target)) {
1264 case MC_TARGET_DEVICE:
1265 device = true;
1266 fallthrough;
1267 case MC_TARGET_PAGE:
1268 folio = target.folio;
1269 /*
1270 * We can have a part of the split pmd here. Moving it
1271 * can be done but it would be too convoluted so simply
1272 * ignore such a partial THP and keep it in original
1273 * memcg. There should be somebody mapping the head.
1274 */
1275 if (folio_test_large(folio))
1276 goto put;
1277 if (!device && !folio_isolate_lru(folio))
1278 goto put;
1279 if (!mem_cgroup_move_account(folio, false,
1280 mc.from, mc.to)) {
1281 mc.precharge--;
1282 /* we uncharge from mc.from later. */
1283 mc.moved_charge++;
1284 }
1285 if (!device)
1286 folio_putback_lru(folio);
1287put: /* get_mctgt_type() gets & locks the page */
1288 folio_unlock(folio);
1289 folio_put(folio);
1290 break;
1291 case MC_TARGET_SWAP:
1292 ent = target.ent;
1293 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
1294 mc.precharge--;
1295 mem_cgroup_id_get_many(mc.to, 1);
1296 /* we fixup other refcnts and charges later. */
1297 mc.moved_swap++;
1298 }
1299 break;
1300 default:
1301 break;
1302 }
1303 }
1304 pte_unmap_unlock(pte - 1, ptl);
1305 cond_resched();
1306
1307 if (addr != end) {
1308 /*
1309 * We have consumed all precharges we got in can_attach().
1310 * We try charge one by one, but don't do any additional
1311 * charges to mc.to if we have failed in charge once in attach()
1312 * phase.
1313 */
1314 ret = mem_cgroup_do_precharge(1);
1315 if (!ret)
1316 goto retry;
1317 }
1318
1319 return ret;
1320}
1321
1322static const struct mm_walk_ops charge_walk_ops = {
1323 .pmd_entry = mem_cgroup_move_charge_pte_range,
1324 .walk_lock = PGWALK_RDLOCK,
1325};
1326
1327static void mem_cgroup_move_charge(void)
1328{
1329 lru_add_drain_all();
1330 /*
1331 * Signal folio_memcg_lock() to take the memcg's move_lock
1332 * while we're moving its pages to another memcg. Then wait
1333 * for already started RCU-only updates to finish.
1334 */
1335 atomic_inc(&mc.from->moving_account);
1336 synchronize_rcu();
1337retry:
1338 if (unlikely(!mmap_read_trylock(mc.mm))) {
1339 /*
1340 * Someone who are holding the mmap_lock might be waiting in
1341 * waitq. So we cancel all extra charges, wake up all waiters,
1342 * and retry. Because we cancel precharges, we might not be able
1343 * to move enough charges, but moving charge is a best-effort
1344 * feature anyway, so it wouldn't be a big problem.
1345 */
1346 __mem_cgroup_clear_mc();
1347 cond_resched();
1348 goto retry;
1349 }
1350 /*
1351 * When we have consumed all precharges and failed in doing
1352 * additional charge, the page walk just aborts.
1353 */
1354 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
1355 mmap_read_unlock(mc.mm);
1356 atomic_dec(&mc.from->moving_account);
1357}
1358
b9eaacb1 1359void memcg1_move_task(void)
e548ad4a
RG
1360{
1361 if (mc.to) {
1362 mem_cgroup_move_charge();
1363 mem_cgroup_clear_mc();
1364 }
1365}
1366
1367#else /* !CONFIG_MMU */
b9eaacb1 1368int memcg1_can_attach(struct cgroup_taskset *tset)
e548ad4a
RG
1369{
1370 return 0;
1371}
b9eaacb1 1372void memcg1_cancel_attach(struct cgroup_taskset *tset)
e548ad4a
RG
1373{
1374}
b9eaacb1 1375void memcg1_move_task(void)
e548ad4a
RG
1376{
1377}
1378#endif
1379
66d60c42
RG
1380static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
1381{
1382 struct mem_cgroup_threshold_ary *t;
1383 unsigned long usage;
1384 int i;
1385
1386 rcu_read_lock();
1387 if (!swap)
1388 t = rcu_dereference(memcg->thresholds.primary);
1389 else
1390 t = rcu_dereference(memcg->memsw_thresholds.primary);
1391
1392 if (!t)
1393 goto unlock;
1394
1395 usage = mem_cgroup_usage(memcg, swap);
1396
1397 /*
1398 * current_threshold points to threshold just below or equal to usage.
1399 * If it's not true, a threshold was crossed after last
1400 * call of __mem_cgroup_threshold().
1401 */
1402 i = t->current_threshold;
1403
1404 /*
1405 * Iterate backward over array of thresholds starting from
1406 * current_threshold and check if a threshold is crossed.
1407 * If none of thresholds below usage is crossed, we read
1408 * only one element of the array here.
1409 */
1410 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
1411 eventfd_signal(t->entries[i].eventfd);
1412
1413 /* i = current_threshold + 1 */
1414 i++;
1415
1416 /*
1417 * Iterate forward over array of thresholds starting from
1418 * current_threshold+1 and check if a threshold is crossed.
1419 * If none of thresholds above usage is crossed, we read
1420 * only one element of the array here.
1421 */
1422 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
1423 eventfd_signal(t->entries[i].eventfd);
1424
1425 /* Update current_threshold */
1426 t->current_threshold = i - 1;
1427unlock:
1428 rcu_read_unlock();
1429}
1430
1431static void mem_cgroup_threshold(struct mem_cgroup *memcg)
1432{
1433 while (memcg) {
1434 __mem_cgroup_threshold(memcg, false);
1435 if (do_memsw_account())
1436 __mem_cgroup_threshold(memcg, true);
1437
1438 memcg = parent_mem_cgroup(memcg);
1439 }
1440}
1441
1442/*
1443 * Check events in order.
1444 *
1445 */
cc7b8504 1446void memcg1_check_events(struct mem_cgroup *memcg, int nid)
66d60c42
RG
1447{
1448 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1449 return;
1450
1451 /* threshold event is triggered in finer grain than soft limit */
1452 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1453 MEM_CGROUP_TARGET_THRESH))) {
1454 bool do_softlimit;
1455
1456 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1457 MEM_CGROUP_TARGET_SOFTLIMIT);
1458 mem_cgroup_threshold(memcg);
1459 if (unlikely(do_softlimit))
1460 memcg1_update_tree(memcg, nid);
1461 }
1462}
1463
1464static int compare_thresholds(const void *a, const void *b)
1465{
1466 const struct mem_cgroup_threshold *_a = a;
1467 const struct mem_cgroup_threshold *_b = b;
1468
1469 if (_a->threshold > _b->threshold)
1470 return 1;
1471
1472 if (_a->threshold < _b->threshold)
1473 return -1;
1474
1475 return 0;
1476}
1477
1478static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
1479{
1480 struct mem_cgroup_eventfd_list *ev;
1481
1482 spin_lock(&memcg_oom_lock);
1483
1484 list_for_each_entry(ev, &memcg->oom_notify, list)
1485 eventfd_signal(ev->eventfd);
1486
1487 spin_unlock(&memcg_oom_lock);
1488 return 0;
1489}
1490
292fc2e0 1491static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
66d60c42
RG
1492{
1493 struct mem_cgroup *iter;
1494
1495 for_each_mem_cgroup_tree(iter, memcg)
1496 mem_cgroup_oom_notify_cb(iter);
1497}
1498
1499static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1500 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
1501{
1502 struct mem_cgroup_thresholds *thresholds;
1503 struct mem_cgroup_threshold_ary *new;
1504 unsigned long threshold;
1505 unsigned long usage;
1506 int i, size, ret;
1507
1508 ret = page_counter_memparse(args, "-1", &threshold);
1509 if (ret)
1510 return ret;
1511
1512 mutex_lock(&memcg->thresholds_lock);
1513
1514 if (type == _MEM) {
1515 thresholds = &memcg->thresholds;
1516 usage = mem_cgroup_usage(memcg, false);
1517 } else if (type == _MEMSWAP) {
1518 thresholds = &memcg->memsw_thresholds;
1519 usage = mem_cgroup_usage(memcg, true);
1520 } else
1521 BUG();
1522
1523 /* Check if a threshold crossed before adding a new one */
1524 if (thresholds->primary)
1525 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1526
1527 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
1528
1529 /* Allocate memory for new array of thresholds */
1530 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
1531 if (!new) {
1532 ret = -ENOMEM;
1533 goto unlock;
1534 }
1535 new->size = size;
1536
1537 /* Copy thresholds (if any) to new array */
1538 if (thresholds->primary)
1539 memcpy(new->entries, thresholds->primary->entries,
1540 flex_array_size(new, entries, size - 1));
1541
1542 /* Add new threshold */
1543 new->entries[size - 1].eventfd = eventfd;
1544 new->entries[size - 1].threshold = threshold;
1545
1546 /* Sort thresholds. Registering of new threshold isn't time-critical */
1547 sort(new->entries, size, sizeof(*new->entries),
1548 compare_thresholds, NULL);
1549
1550 /* Find current threshold */
1551 new->current_threshold = -1;
1552 for (i = 0; i < size; i++) {
1553 if (new->entries[i].threshold <= usage) {
1554 /*
1555 * new->current_threshold will not be used until
1556 * rcu_assign_pointer(), so it's safe to increment
1557 * it here.
1558 */
1559 ++new->current_threshold;
1560 } else
1561 break;
1562 }
1563
1564 /* Free old spare buffer and save old primary buffer as spare */
1565 kfree(thresholds->spare);
1566 thresholds->spare = thresholds->primary;
1567
1568 rcu_assign_pointer(thresholds->primary, new);
1569
1570 /* To be sure that nobody uses thresholds */
1571 synchronize_rcu();
1572
1573unlock:
1574 mutex_unlock(&memcg->thresholds_lock);
1575
1576 return ret;
1577}
1578
1579static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1580 struct eventfd_ctx *eventfd, const char *args)
1581{
1582 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
1583}
1584
1585static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
1586 struct eventfd_ctx *eventfd, const char *args)
1587{
1588 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
1589}
1590
1591static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1592 struct eventfd_ctx *eventfd, enum res_type type)
1593{
1594 struct mem_cgroup_thresholds *thresholds;
1595 struct mem_cgroup_threshold_ary *new;
1596 unsigned long usage;
1597 int i, j, size, entries;
1598
1599 mutex_lock(&memcg->thresholds_lock);
1600
1601 if (type == _MEM) {
1602 thresholds = &memcg->thresholds;
1603 usage = mem_cgroup_usage(memcg, false);
1604 } else if (type == _MEMSWAP) {
1605 thresholds = &memcg->memsw_thresholds;
1606 usage = mem_cgroup_usage(memcg, true);
1607 } else
1608 BUG();
1609
1610 if (!thresholds->primary)
1611 goto unlock;
1612
1613 /* Check if a threshold crossed before removing */
1614 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1615
1616 /* Calculate new number of threshold */
1617 size = entries = 0;
1618 for (i = 0; i < thresholds->primary->size; i++) {
1619 if (thresholds->primary->entries[i].eventfd != eventfd)
1620 size++;
1621 else
1622 entries++;
1623 }
1624
1625 new = thresholds->spare;
1626
1627 /* If no items related to eventfd have been cleared, nothing to do */
1628 if (!entries)
1629 goto unlock;
1630
1631 /* Set thresholds array to NULL if we don't have thresholds */
1632 if (!size) {
1633 kfree(new);
1634 new = NULL;
1635 goto swap_buffers;
1636 }
1637
1638 new->size = size;
1639
1640 /* Copy thresholds and find current threshold */
1641 new->current_threshold = -1;
1642 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
1643 if (thresholds->primary->entries[i].eventfd == eventfd)
1644 continue;
1645
1646 new->entries[j] = thresholds->primary->entries[i];
1647 if (new->entries[j].threshold <= usage) {
1648 /*
1649 * new->current_threshold will not be used
1650 * until rcu_assign_pointer(), so it's safe to increment
1651 * it here.
1652 */
1653 ++new->current_threshold;
1654 }
1655 j++;
1656 }
1657
1658swap_buffers:
1659 /* Swap primary and spare array */
1660 thresholds->spare = thresholds->primary;
1661
1662 rcu_assign_pointer(thresholds->primary, new);
1663
1664 /* To be sure that nobody uses thresholds */
1665 synchronize_rcu();
1666
1667 /* If all events are unregistered, free the spare array */
1668 if (!new) {
1669 kfree(thresholds->spare);
1670 thresholds->spare = NULL;
1671 }
1672unlock:
1673 mutex_unlock(&memcg->thresholds_lock);
1674}
1675
1676static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1677 struct eventfd_ctx *eventfd)
1678{
1679 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
1680}
1681
1682static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1683 struct eventfd_ctx *eventfd)
1684{
1685 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
1686}
1687
1688static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
1689 struct eventfd_ctx *eventfd, const char *args)
1690{
1691 struct mem_cgroup_eventfd_list *event;
1692
1693 event = kmalloc(sizeof(*event), GFP_KERNEL);
1694 if (!event)
1695 return -ENOMEM;
1696
1697 spin_lock(&memcg_oom_lock);
1698
1699 event->eventfd = eventfd;
1700 list_add(&event->list, &memcg->oom_notify);
1701
1702 /* already in OOM ? */
1703 if (memcg->under_oom)
1704 eventfd_signal(eventfd);
1705 spin_unlock(&memcg_oom_lock);
1706
1707 return 0;
1708}
1709
1710static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
1711 struct eventfd_ctx *eventfd)
1712{
1713 struct mem_cgroup_eventfd_list *ev, *tmp;
1714
1715 spin_lock(&memcg_oom_lock);
1716
1717 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
1718 if (ev->eventfd == eventfd) {
1719 list_del(&ev->list);
1720 kfree(ev);
1721 }
1722 }
1723
1724 spin_unlock(&memcg_oom_lock);
1725}
1726
1727/*
1728 * DO NOT USE IN NEW FILES.
1729 *
1730 * "cgroup.event_control" implementation.
1731 *
1732 * This is way over-engineered. It tries to support fully configurable
1733 * events for each user. Such level of flexibility is completely
1734 * unnecessary especially in the light of the planned unified hierarchy.
1735 *
1736 * Please deprecate this and replace with something simpler if at all
1737 * possible.
1738 */
1739
1740/*
1741 * Unregister event and free resources.
1742 *
1743 * Gets called from workqueue.
1744 */
1745static void memcg_event_remove(struct work_struct *work)
1746{
1747 struct mem_cgroup_event *event =
1748 container_of(work, struct mem_cgroup_event, remove);
1749 struct mem_cgroup *memcg = event->memcg;
1750
1751 remove_wait_queue(event->wqh, &event->wait);
1752
1753 event->unregister_event(memcg, event->eventfd);
1754
1755 /* Notify userspace the event is going away. */
1756 eventfd_signal(event->eventfd);
1757
1758 eventfd_ctx_put(event->eventfd);
1759 kfree(event);
1760 css_put(&memcg->css);
1761}
1762
1763/*
1764 * Gets called on EPOLLHUP on eventfd when user closes it.
1765 *
1766 * Called with wqh->lock held and interrupts disabled.
1767 */
1768static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
1769 int sync, void *key)
1770{
1771 struct mem_cgroup_event *event =
1772 container_of(wait, struct mem_cgroup_event, wait);
1773 struct mem_cgroup *memcg = event->memcg;
1774 __poll_t flags = key_to_poll(key);
1775
1776 if (flags & EPOLLHUP) {
1777 /*
1778 * If the event has been detached at cgroup removal, we
1779 * can simply return knowing the other side will cleanup
1780 * for us.
1781 *
1782 * We can't race against event freeing since the other
1783 * side will require wqh->lock via remove_wait_queue(),
1784 * which we hold.
1785 */
1786 spin_lock(&memcg->event_list_lock);
1787 if (!list_empty(&event->list)) {
1788 list_del_init(&event->list);
1789 /*
1790 * We are in atomic context, but cgroup_event_remove()
1791 * may sleep, so we have to call it in workqueue.
1792 */
1793 schedule_work(&event->remove);
1794 }
1795 spin_unlock(&memcg->event_list_lock);
1796 }
1797
1798 return 0;
1799}
1800
1801static void memcg_event_ptable_queue_proc(struct file *file,
1802 wait_queue_head_t *wqh, poll_table *pt)
1803{
1804 struct mem_cgroup_event *event =
1805 container_of(pt, struct mem_cgroup_event, pt);
1806
1807 event->wqh = wqh;
1808 add_wait_queue(wqh, &event->wait);
1809}
1810
1811/*
1812 * DO NOT USE IN NEW FILES.
1813 *
1814 * Parse input and register new cgroup event handler.
1815 *
1816 * Input must be in format '<event_fd> <control_fd> <args>'.
1817 * Interpretation of args is defined by control file implementation.
1818 */
ea1e8796
RG
1819static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1820 char *buf, size_t nbytes, loff_t off)
66d60c42
RG
1821{
1822 struct cgroup_subsys_state *css = of_css(of);
1823 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1824 struct mem_cgroup_event *event;
1825 struct cgroup_subsys_state *cfile_css;
1826 unsigned int efd, cfd;
1827 struct fd efile;
1828 struct fd cfile;
1829 struct dentry *cdentry;
1830 const char *name;
1831 char *endp;
1832 int ret;
1833
1834 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1835 return -EOPNOTSUPP;
1836
1837 buf = strstrip(buf);
1838
1839 efd = simple_strtoul(buf, &endp, 10);
1840 if (*endp != ' ')
1841 return -EINVAL;
1842 buf = endp + 1;
1843
1844 cfd = simple_strtoul(buf, &endp, 10);
046667c4
AV
1845 if (*endp == '\0')
1846 buf = endp;
1847 else if (*endp == ' ')
1848 buf = endp + 1;
1849 else
66d60c42 1850 return -EINVAL;
66d60c42
RG
1851
1852 event = kzalloc(sizeof(*event), GFP_KERNEL);
1853 if (!event)
1854 return -ENOMEM;
1855
1856 event->memcg = memcg;
1857 INIT_LIST_HEAD(&event->list);
1858 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1859 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1860 INIT_WORK(&event->remove, memcg_event_remove);
1861
1862 efile = fdget(efd);
1863 if (!efile.file) {
1864 ret = -EBADF;
1865 goto out_kfree;
1866 }
1867
1868 event->eventfd = eventfd_ctx_fileget(efile.file);
1869 if (IS_ERR(event->eventfd)) {
1870 ret = PTR_ERR(event->eventfd);
1871 goto out_put_efile;
1872 }
1873
1874 cfile = fdget(cfd);
1875 if (!cfile.file) {
1876 ret = -EBADF;
1877 goto out_put_eventfd;
1878 }
1879
1880 /* the process need read permission on control file */
1881 /* AV: shouldn't we check that it's been opened for read instead? */
1882 ret = file_permission(cfile.file, MAY_READ);
1883 if (ret < 0)
1884 goto out_put_cfile;
1885
1886 /*
1887 * The control file must be a regular cgroup1 file. As a regular cgroup
1888 * file can't be renamed, it's safe to access its name afterwards.
1889 */
1890 cdentry = cfile.file->f_path.dentry;
1891 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1892 ret = -EINVAL;
1893 goto out_put_cfile;
1894 }
1895
1896 /*
1897 * Determine the event callbacks and set them in @event. This used
1898 * to be done via struct cftype but cgroup core no longer knows
1899 * about these events. The following is crude but the whole thing
1900 * is for compatibility anyway.
1901 *
1902 * DO NOT ADD NEW FILES.
1903 */
1904 name = cdentry->d_name.name;
1905
1906 if (!strcmp(name, "memory.usage_in_bytes")) {
1907 event->register_event = mem_cgroup_usage_register_event;
1908 event->unregister_event = mem_cgroup_usage_unregister_event;
1909 } else if (!strcmp(name, "memory.oom_control")) {
1910 event->register_event = mem_cgroup_oom_register_event;
1911 event->unregister_event = mem_cgroup_oom_unregister_event;
1912 } else if (!strcmp(name, "memory.pressure_level")) {
1913 event->register_event = vmpressure_register_event;
1914 event->unregister_event = vmpressure_unregister_event;
1915 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1916 event->register_event = memsw_cgroup_usage_register_event;
1917 event->unregister_event = memsw_cgroup_usage_unregister_event;
1918 } else {
1919 ret = -EINVAL;
1920 goto out_put_cfile;
1921 }
1922
1923 /*
1924 * Verify @cfile should belong to @css. Also, remaining events are
1925 * automatically removed on cgroup destruction but the removal is
1926 * asynchronous, so take an extra ref on @css.
1927 */
1928 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1929 &memory_cgrp_subsys);
1930 ret = -EINVAL;
1931 if (IS_ERR(cfile_css))
1932 goto out_put_cfile;
1933 if (cfile_css != css) {
1934 css_put(cfile_css);
1935 goto out_put_cfile;
1936 }
1937
1938 ret = event->register_event(memcg, event->eventfd, buf);
1939 if (ret)
1940 goto out_put_css;
1941
1942 vfs_poll(efile.file, &event->pt);
1943
1944 spin_lock_irq(&memcg->event_list_lock);
1945 list_add(&event->list, &memcg->event_list);
1946 spin_unlock_irq(&memcg->event_list_lock);
1947
1948 fdput(cfile);
1949 fdput(efile);
1950
1951 return nbytes;
1952
1953out_put_css:
1954 css_put(css);
1955out_put_cfile:
1956 fdput(cfile);
1957out_put_eventfd:
1958 eventfd_ctx_put(event->eventfd);
1959out_put_efile:
1960 fdput(efile);
1961out_kfree:
1962 kfree(event);
1963
1964 return ret;
1965}
1966
b5855a26
RG
1967void memcg1_memcg_init(struct mem_cgroup *memcg)
1968{
1969 INIT_LIST_HEAD(&memcg->oom_notify);
1970 mutex_init(&memcg->thresholds_lock);
1971 spin_lock_init(&memcg->move_lock);
1972 INIT_LIST_HEAD(&memcg->event_list);
1973 spin_lock_init(&memcg->event_list_lock);
1974}
1975
66d60c42
RG
1976void memcg1_css_offline(struct mem_cgroup *memcg)
1977{
1978 struct mem_cgroup_event *event, *tmp;
1979
1980 /*
1981 * Unregister events and notify userspace.
1982 * Notify userspace about cgroup removing only after rmdir of cgroup
1983 * directory to avoid race between userspace and kernelspace.
1984 */
1985 spin_lock_irq(&memcg->event_list_lock);
1986 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1987 list_del_init(&event->list);
1988 schedule_work(&event->remove);
1989 }
1990 spin_unlock_irq(&memcg->event_list_lock);
1991}
1992
292fc2e0
RG
1993/*
1994 * Check OOM-Killer is already running under our hierarchy.
1995 * If someone is running, return false.
1996 */
1997static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1998{
1999 struct mem_cgroup *iter, *failed = NULL;
2000
2001 spin_lock(&memcg_oom_lock);
2002
2003 for_each_mem_cgroup_tree(iter, memcg) {
2004 if (iter->oom_lock) {
2005 /*
2006 * this subtree of our hierarchy is already locked
2007 * so we cannot give a lock.
2008 */
2009 failed = iter;
2010 mem_cgroup_iter_break(memcg, iter);
2011 break;
2012 } else
2013 iter->oom_lock = true;
2014 }
2015
2016 if (failed) {
2017 /*
2018 * OK, we failed to lock the whole subtree so we have
2019 * to clean up what we set up to the failing subtree
2020 */
2021 for_each_mem_cgroup_tree(iter, memcg) {
2022 if (iter == failed) {
2023 mem_cgroup_iter_break(memcg, iter);
2024 break;
2025 }
2026 iter->oom_lock = false;
2027 }
2028 } else
2029 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2030
2031 spin_unlock(&memcg_oom_lock);
2032
2033 return !failed;
2034}
2035
2036static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2037{
2038 struct mem_cgroup *iter;
2039
2040 spin_lock(&memcg_oom_lock);
2041 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2042 for_each_mem_cgroup_tree(iter, memcg)
2043 iter->oom_lock = false;
2044 spin_unlock(&memcg_oom_lock);
2045}
2046
2047static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2048{
2049 struct mem_cgroup *iter;
2050
2051 spin_lock(&memcg_oom_lock);
2052 for_each_mem_cgroup_tree(iter, memcg)
2053 iter->under_oom++;
2054 spin_unlock(&memcg_oom_lock);
2055}
2056
2057static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2058{
2059 struct mem_cgroup *iter;
2060
2061 /*
2062 * Be careful about under_oom underflows because a child memcg
2063 * could have been added after mem_cgroup_mark_under_oom.
2064 */
2065 spin_lock(&memcg_oom_lock);
2066 for_each_mem_cgroup_tree(iter, memcg)
2067 if (iter->under_oom > 0)
2068 iter->under_oom--;
2069 spin_unlock(&memcg_oom_lock);
2070}
2071
2072static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2073
2074struct oom_wait_info {
2075 struct mem_cgroup *memcg;
2076 wait_queue_entry_t wait;
2077};
2078
2079static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2080 unsigned mode, int sync, void *arg)
2081{
2082 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2083 struct mem_cgroup *oom_wait_memcg;
2084 struct oom_wait_info *oom_wait_info;
2085
2086 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2087 oom_wait_memcg = oom_wait_info->memcg;
2088
2089 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2090 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2091 return 0;
2092 return autoremove_wake_function(wait, mode, sync, arg);
2093}
2094
8d49b699 2095void memcg1_oom_recover(struct mem_cgroup *memcg)
292fc2e0
RG
2096{
2097 /*
2098 * For the following lockless ->under_oom test, the only required
2099 * guarantee is that it must see the state asserted by an OOM when
2100 * this function is called as a result of userland actions
2101 * triggered by the notification of the OOM. This is trivially
2102 * achieved by invoking mem_cgroup_mark_under_oom() before
2103 * triggering notification.
2104 */
2105 if (memcg && memcg->under_oom)
2106 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2107}
2108
2109/**
2110 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2111 * @handle: actually kill/wait or just clean up the OOM state
2112 *
2113 * This has to be called at the end of a page fault if the memcg OOM
2114 * handler was enabled.
2115 *
2116 * Memcg supports userspace OOM handling where failed allocations must
2117 * sleep on a waitqueue until the userspace task resolves the
2118 * situation. Sleeping directly in the charge context with all kinds
2119 * of locks held is not a good idea, instead we remember an OOM state
2120 * in the task and mem_cgroup_oom_synchronize() has to be called at
2121 * the end of the page fault to complete the OOM handling.
2122 *
2123 * Returns %true if an ongoing memcg OOM situation was detected and
2124 * completed, %false otherwise.
2125 */
2126bool mem_cgroup_oom_synchronize(bool handle)
2127{
2128 struct mem_cgroup *memcg = current->memcg_in_oom;
2129 struct oom_wait_info owait;
2130 bool locked;
2131
2132 /* OOM is global, do not handle */
2133 if (!memcg)
2134 return false;
2135
2136 if (!handle)
2137 goto cleanup;
2138
2139 owait.memcg = memcg;
2140 owait.wait.flags = 0;
2141 owait.wait.func = memcg_oom_wake_function;
2142 owait.wait.private = current;
2143 INIT_LIST_HEAD(&owait.wait.entry);
2144
2145 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2146 mem_cgroup_mark_under_oom(memcg);
2147
2148 locked = mem_cgroup_oom_trylock(memcg);
2149
2150 if (locked)
2151 mem_cgroup_oom_notify(memcg);
2152
2153 schedule();
2154 mem_cgroup_unmark_under_oom(memcg);
2155 finish_wait(&memcg_oom_waitq, &owait.wait);
2156
2157 if (locked)
2158 mem_cgroup_oom_unlock(memcg);
2159cleanup:
2160 current->memcg_in_oom = NULL;
2161 css_put(&memcg->css);
2162 return true;
2163}
2164
2165
2166bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
2167{
2168 /*
2169 * We are in the middle of the charge context here, so we
2170 * don't want to block when potentially sitting on a callstack
2171 * that holds all kinds of filesystem and mm locks.
2172 *
2173 * cgroup1 allows disabling the OOM killer and waiting for outside
2174 * handling until the charge can succeed; remember the context and put
2175 * the task to sleep at the end of the page fault when all locks are
2176 * released.
2177 *
2178 * On the other hand, in-kernel OOM killer allows for an async victim
2179 * memory reclaim (oom_reaper) and that means that we are not solely
2180 * relying on the oom victim to make a forward progress and we can
2181 * invoke the oom killer here.
2182 *
2183 * Please note that mem_cgroup_out_of_memory might fail to find a
2184 * victim and then we have to bail out from the charge path.
2185 */
2186 if (READ_ONCE(memcg->oom_kill_disable)) {
2187 if (current->in_user_fault) {
2188 css_get(&memcg->css);
2189 current->memcg_in_oom = memcg;
2190 }
2191 return false;
2192 }
2193
2194 mem_cgroup_mark_under_oom(memcg);
2195
2196 *locked = mem_cgroup_oom_trylock(memcg);
2197
2198 if (*locked)
2199 mem_cgroup_oom_notify(memcg);
2200
2201 mem_cgroup_unmark_under_oom(memcg);
2202
2203 return true;
2204}
2205
2206void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
2207{
2208 if (locked)
2209 mem_cgroup_oom_unlock(memcg);
2210}
2211
ea1e8796
RG
2212static DEFINE_MUTEX(memcg_max_mutex);
2213
2214static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2215 unsigned long max, bool memsw)
2216{
2217 bool enlarge = false;
2218 bool drained = false;
2219 int ret;
2220 bool limits_invariant;
2221 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2222
2223 do {
2224 if (signal_pending(current)) {
2225 ret = -EINTR;
2226 break;
2227 }
2228
2229 mutex_lock(&memcg_max_mutex);
2230 /*
2231 * Make sure that the new limit (memsw or memory limit) doesn't
2232 * break our basic invariant rule memory.max <= memsw.max.
2233 */
2234 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
2235 max <= memcg->memsw.max;
2236 if (!limits_invariant) {
2237 mutex_unlock(&memcg_max_mutex);
2238 ret = -EINVAL;
2239 break;
2240 }
2241 if (max > counter->max)
2242 enlarge = true;
2243 ret = page_counter_set_max(counter, max);
2244 mutex_unlock(&memcg_max_mutex);
2245
2246 if (!ret)
2247 break;
2248
2249 if (!drained) {
2250 drain_all_stock(memcg);
2251 drained = true;
2252 continue;
2253 }
2254
2255 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
68cd9050 2256 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
ea1e8796
RG
2257 ret = -EBUSY;
2258 break;
2259 }
2260 } while (true);
2261
2262 if (!ret && enlarge)
2263 memcg1_oom_recover(memcg);
2264
2265 return ret;
2266}
2267
2268/*
2269 * Reclaims as many pages from the given memcg as possible.
2270 *
2271 * Caller is responsible for holding css reference for memcg.
2272 */
2273static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2274{
2275 int nr_retries = MAX_RECLAIM_RETRIES;
2276
2277 /* we call try-to-free pages for make this cgroup empty */
2278 lru_add_drain_all();
2279
2280 drain_all_stock(memcg);
2281
2282 /* try to free all pages in this cgroup */
2283 while (nr_retries && page_counter_read(&memcg->memory)) {
2284 if (signal_pending(current))
2285 return -EINTR;
2286
2287 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
68cd9050 2288 MEMCG_RECLAIM_MAY_SWAP, NULL))
ea1e8796
RG
2289 nr_retries--;
2290 }
2291
2292 return 0;
2293}
2294
2295static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2296 char *buf, size_t nbytes,
2297 loff_t off)
2298{
2299 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2300
2301 if (mem_cgroup_is_root(memcg))
2302 return -EINVAL;
2303 return mem_cgroup_force_empty(memcg) ?: nbytes;
2304}
2305
2306static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2307 struct cftype *cft)
2308{
2309 return 1;
2310}
2311
2312static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2313 struct cftype *cft, u64 val)
2314{
2315 if (val == 1)
2316 return 0;
2317
2318 pr_warn_once("Non-hierarchical mode is deprecated. "
2319 "Please report your usecase to [email protected] if you "
2320 "depend on this functionality.\n");
2321
2322 return -EINVAL;
2323}
2324
2325static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2326 struct cftype *cft)
2327{
2328 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2329 struct page_counter *counter;
2330
2331 switch (MEMFILE_TYPE(cft->private)) {
2332 case _MEM:
2333 counter = &memcg->memory;
2334 break;
2335 case _MEMSWAP:
2336 counter = &memcg->memsw;
2337 break;
2338 case _KMEM:
2339 counter = &memcg->kmem;
2340 break;
2341 case _TCP:
2342 counter = &memcg->tcpmem;
2343 break;
2344 default:
2345 BUG();
2346 }
2347
2348 switch (MEMFILE_ATTR(cft->private)) {
2349 case RES_USAGE:
2350 if (counter == &memcg->memory)
2351 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2352 if (counter == &memcg->memsw)
2353 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2354 return (u64)page_counter_read(counter) * PAGE_SIZE;
2355 case RES_LIMIT:
2356 return (u64)counter->max * PAGE_SIZE;
2357 case RES_MAX_USAGE:
2358 return (u64)counter->watermark * PAGE_SIZE;
2359 case RES_FAILCNT:
2360 return counter->failcnt;
2361 case RES_SOFT_LIMIT:
2362 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
2363 default:
2364 BUG();
2365 }
2366}
2367
2368/*
2369 * This function doesn't do anything useful. Its only job is to provide a read
2370 * handler for a file so that cgroup_file_mode() will add read permissions.
2371 */
2372static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
2373 __always_unused void *v)
2374{
2375 return -EINVAL;
2376}
2377
2378static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2379{
2380 int ret;
2381
2382 mutex_lock(&memcg_max_mutex);
2383
2384 ret = page_counter_set_max(&memcg->tcpmem, max);
2385 if (ret)
2386 goto out;
2387
2388 if (!memcg->tcpmem_active) {
2389 /*
2390 * The active flag needs to be written after the static_key
2391 * update. This is what guarantees that the socket activation
2392 * function is the last one to run. See mem_cgroup_sk_alloc()
2393 * for details, and note that we don't mark any socket as
2394 * belonging to this memcg until that flag is up.
2395 *
2396 * We need to do this, because static_keys will span multiple
2397 * sites, but we can't control their order. If we mark a socket
2398 * as accounted, but the accounting functions are not patched in
2399 * yet, we'll lose accounting.
2400 *
2401 * We never race with the readers in mem_cgroup_sk_alloc(),
2402 * because when this value change, the code to process it is not
2403 * patched in yet.
2404 */
2405 static_branch_inc(&memcg_sockets_enabled_key);
2406 memcg->tcpmem_active = true;
2407 }
2408out:
2409 mutex_unlock(&memcg_max_mutex);
2410 return ret;
2411}
2412
2413/*
2414 * The user of this function is...
2415 * RES_LIMIT.
2416 */
2417static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2418 char *buf, size_t nbytes, loff_t off)
2419{
2420 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2421 unsigned long nr_pages;
2422 int ret;
2423
2424 buf = strstrip(buf);
2425 ret = page_counter_memparse(buf, "-1", &nr_pages);
2426 if (ret)
2427 return ret;
2428
2429 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2430 case RES_LIMIT:
2431 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2432 ret = -EINVAL;
2433 break;
2434 }
2435 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2436 case _MEM:
2437 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2438 break;
2439 case _MEMSWAP:
2440 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2441 break;
2442 case _KMEM:
2443 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
2444 "Writing any value to this file has no effect. "
2445 "Please report your usecase to [email protected] if you "
2446 "depend on this functionality.\n");
2447 ret = 0;
2448 break;
2449 case _TCP:
2450 ret = memcg_update_tcp_max(memcg, nr_pages);
2451 break;
2452 }
2453 break;
2454 case RES_SOFT_LIMIT:
2455 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2456 ret = -EOPNOTSUPP;
2457 } else {
2458 WRITE_ONCE(memcg->soft_limit, nr_pages);
2459 ret = 0;
2460 }
2461 break;
2462 }
2463 return ret ?: nbytes;
2464}
2465
2466static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2467 size_t nbytes, loff_t off)
2468{
2469 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2470 struct page_counter *counter;
2471
2472 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2473 case _MEM:
2474 counter = &memcg->memory;
2475 break;
2476 case _MEMSWAP:
2477 counter = &memcg->memsw;
2478 break;
2479 case _KMEM:
2480 counter = &memcg->kmem;
2481 break;
2482 case _TCP:
2483 counter = &memcg->tcpmem;
2484 break;
2485 default:
2486 BUG();
2487 }
2488
2489 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2490 case RES_MAX_USAGE:
2491 page_counter_reset_watermark(counter);
2492 break;
2493 case RES_FAILCNT:
2494 counter->failcnt = 0;
2495 break;
2496 default:
2497 BUG();
2498 }
2499
2500 return nbytes;
2501}
2502
2503#ifdef CONFIG_NUMA
2504
2505#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
2506#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
2507#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
2508
2509static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
2510 int nid, unsigned int lru_mask, bool tree)
2511{
2512 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
2513 unsigned long nr = 0;
2514 enum lru_list lru;
2515
2516 VM_BUG_ON((unsigned)nid >= nr_node_ids);
2517
2518 for_each_lru(lru) {
2519 if (!(BIT(lru) & lru_mask))
2520 continue;
2521 if (tree)
2522 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
2523 else
2524 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
2525 }
2526 return nr;
2527}
2528
2529static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
2530 unsigned int lru_mask,
2531 bool tree)
2532{
2533 unsigned long nr = 0;
2534 enum lru_list lru;
2535
2536 for_each_lru(lru) {
2537 if (!(BIT(lru) & lru_mask))
2538 continue;
2539 if (tree)
2540 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
2541 else
2542 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
2543 }
2544 return nr;
2545}
2546
2547static int memcg_numa_stat_show(struct seq_file *m, void *v)
2548{
2549 struct numa_stat {
2550 const char *name;
2551 unsigned int lru_mask;
2552 };
2553
2554 static const struct numa_stat stats[] = {
2555 { "total", LRU_ALL },
2556 { "file", LRU_ALL_FILE },
2557 { "anon", LRU_ALL_ANON },
2558 { "unevictable", BIT(LRU_UNEVICTABLE) },
2559 };
2560 const struct numa_stat *stat;
2561 int nid;
2562 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
2563
2564 mem_cgroup_flush_stats(memcg);
2565
2566 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2567 seq_printf(m, "%s=%lu", stat->name,
2568 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2569 false));
2570 for_each_node_state(nid, N_MEMORY)
2571 seq_printf(m, " N%d=%lu", nid,
2572 mem_cgroup_node_nr_lru_pages(memcg, nid,
2573 stat->lru_mask, false));
2574 seq_putc(m, '\n');
2575 }
2576
2577 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2578
2579 seq_printf(m, "hierarchical_%s=%lu", stat->name,
2580 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2581 true));
2582 for_each_node_state(nid, N_MEMORY)
2583 seq_printf(m, " N%d=%lu", nid,
2584 mem_cgroup_node_nr_lru_pages(memcg, nid,
2585 stat->lru_mask, true));
2586 seq_putc(m, '\n');
2587 }
2588
2589 return 0;
2590}
2591#endif /* CONFIG_NUMA */
2592
2593static const unsigned int memcg1_stats[] = {
2594 NR_FILE_PAGES,
2595 NR_ANON_MAPPED,
2596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2597 NR_ANON_THPS,
2598#endif
2599 NR_SHMEM,
2600 NR_FILE_MAPPED,
2601 NR_FILE_DIRTY,
2602 NR_WRITEBACK,
2603 WORKINGSET_REFAULT_ANON,
2604 WORKINGSET_REFAULT_FILE,
2605#ifdef CONFIG_SWAP
2606 MEMCG_SWAP,
2607 NR_SWAPCACHE,
2608#endif
2609};
2610
2611static const char *const memcg1_stat_names[] = {
2612 "cache",
2613 "rss",
2614#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2615 "rss_huge",
2616#endif
2617 "shmem",
2618 "mapped_file",
2619 "dirty",
2620 "writeback",
2621 "workingset_refault_anon",
2622 "workingset_refault_file",
2623#ifdef CONFIG_SWAP
2624 "swap",
2625 "swapcached",
2626#endif
2627};
2628
2629/* Universal VM events cgroup1 shows, original sort order */
2630static const unsigned int memcg1_events[] = {
2631 PGPGIN,
2632 PGPGOUT,
2633 PGFAULT,
2634 PGMAJFAULT,
2635};
2636
2637void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
2638{
2639 unsigned long memory, memsw;
2640 struct mem_cgroup *mi;
2641 unsigned int i;
2642
2643 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
2644
2645 mem_cgroup_flush_stats(memcg);
2646
2647 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2648 unsigned long nr;
2649
2650 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
2651 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
2652 }
2653
2654 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2655 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
2656 memcg_events_local(memcg, memcg1_events[i]));
2657
2658 for (i = 0; i < NR_LRU_LISTS; i++)
2659 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
2660 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
2661 PAGE_SIZE);
2662
2663 /* Hierarchical information */
2664 memory = memsw = PAGE_COUNTER_MAX;
2665 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
2666 memory = min(memory, READ_ONCE(mi->memory.max));
2667 memsw = min(memsw, READ_ONCE(mi->memsw.max));
2668 }
2669 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
2670 (u64)memory * PAGE_SIZE);
2671 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
2672 (u64)memsw * PAGE_SIZE);
2673
2674 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2675 unsigned long nr;
2676
2677 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
2678 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
2679 (u64)nr);
2680 }
2681
2682 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2683 seq_buf_printf(s, "total_%s %llu\n",
2684 vm_event_name(memcg1_events[i]),
2685 (u64)memcg_events(memcg, memcg1_events[i]));
2686
2687 for (i = 0; i < NR_LRU_LISTS; i++)
2688 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
2689 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
2690 PAGE_SIZE);
2691
2692#ifdef CONFIG_DEBUG_VM
2693 {
2694 pg_data_t *pgdat;
2695 struct mem_cgroup_per_node *mz;
2696 unsigned long anon_cost = 0;
2697 unsigned long file_cost = 0;
2698
2699 for_each_online_pgdat(pgdat) {
2700 mz = memcg->nodeinfo[pgdat->node_id];
2701
2702 anon_cost += mz->lruvec.anon_cost;
2703 file_cost += mz->lruvec.file_cost;
2704 }
2705 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
2706 seq_buf_printf(s, "file_cost %lu\n", file_cost);
2707 }
2708#endif
2709}
2710
2711static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
2712 struct cftype *cft)
2713{
2714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2715
2716 return mem_cgroup_swappiness(memcg);
2717}
2718
2719static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
2720 struct cftype *cft, u64 val)
2721{
2722 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2723
410abb20 2724 if (val > MAX_SWAPPINESS)
ea1e8796
RG
2725 return -EINVAL;
2726
2727 if (!mem_cgroup_is_root(memcg))
2728 WRITE_ONCE(memcg->swappiness, val);
2729 else
2730 WRITE_ONCE(vm_swappiness, val);
2731
2732 return 0;
2733}
2734
2735static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
2736{
2737 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
2738
2739 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
2740 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
2741 seq_printf(sf, "oom_kill %lu\n",
2742 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
2743 return 0;
2744}
2745
2746static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
2747 struct cftype *cft, u64 val)
2748{
2749 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2750
2751 /* cannot set to root cgroup and only 0 and 1 are allowed */
2752 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
2753 return -EINVAL;
2754
2755 WRITE_ONCE(memcg->oom_kill_disable, val);
2756 if (!val)
2757 memcg1_oom_recover(memcg);
2758
2759 return 0;
2760}
2761
3a3b7fec 2762#ifdef CONFIG_SLUB_DEBUG
ea1e8796
RG
2763static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2764{
2765 /*
2766 * Deprecated.
2767 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2768 */
2769 return 0;
2770}
2771#endif
2772
2773struct cftype mem_cgroup_legacy_files[] = {
2774 {
2775 .name = "usage_in_bytes",
2776 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2777 .read_u64 = mem_cgroup_read_u64,
2778 },
2779 {
2780 .name = "max_usage_in_bytes",
2781 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2782 .write = mem_cgroup_reset,
2783 .read_u64 = mem_cgroup_read_u64,
2784 },
2785 {
2786 .name = "limit_in_bytes",
2787 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2788 .write = mem_cgroup_write,
2789 .read_u64 = mem_cgroup_read_u64,
2790 },
2791 {
2792 .name = "soft_limit_in_bytes",
2793 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2794 .write = mem_cgroup_write,
2795 .read_u64 = mem_cgroup_read_u64,
2796 },
2797 {
2798 .name = "failcnt",
2799 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2800 .write = mem_cgroup_reset,
2801 .read_u64 = mem_cgroup_read_u64,
2802 },
2803 {
2804 .name = "stat",
2805 .seq_show = memory_stat_show,
2806 },
2807 {
2808 .name = "force_empty",
2809 .write = mem_cgroup_force_empty_write,
2810 },
2811 {
2812 .name = "use_hierarchy",
2813 .write_u64 = mem_cgroup_hierarchy_write,
2814 .read_u64 = mem_cgroup_hierarchy_read,
2815 },
2816 {
2817 .name = "cgroup.event_control", /* XXX: for compat */
2818 .write = memcg_write_event_control,
2819 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2820 },
2821 {
2822 .name = "swappiness",
2823 .read_u64 = mem_cgroup_swappiness_read,
2824 .write_u64 = mem_cgroup_swappiness_write,
2825 },
2826 {
2827 .name = "move_charge_at_immigrate",
2828 .read_u64 = mem_cgroup_move_charge_read,
2829 .write_u64 = mem_cgroup_move_charge_write,
2830 },
2831 {
2832 .name = "oom_control",
2833 .seq_show = mem_cgroup_oom_control_read,
2834 .write_u64 = mem_cgroup_oom_control_write,
2835 },
2836 {
2837 .name = "pressure_level",
2838 .seq_show = mem_cgroup_dummy_seq_show,
2839 },
2840#ifdef CONFIG_NUMA
2841 {
2842 .name = "numa_stat",
2843 .seq_show = memcg_numa_stat_show,
2844 },
2845#endif
2846 {
2847 .name = "kmem.limit_in_bytes",
2848 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2849 .write = mem_cgroup_write,
2850 .read_u64 = mem_cgroup_read_u64,
2851 },
2852 {
2853 .name = "kmem.usage_in_bytes",
2854 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2855 .read_u64 = mem_cgroup_read_u64,
2856 },
2857 {
2858 .name = "kmem.failcnt",
2859 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2860 .write = mem_cgroup_reset,
2861 .read_u64 = mem_cgroup_read_u64,
2862 },
2863 {
2864 .name = "kmem.max_usage_in_bytes",
2865 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2866 .write = mem_cgroup_reset,
2867 .read_u64 = mem_cgroup_read_u64,
2868 },
3a3b7fec 2869#ifdef CONFIG_SLUB_DEBUG
ea1e8796
RG
2870 {
2871 .name = "kmem.slabinfo",
2872 .seq_show = mem_cgroup_slab_show,
2873 },
2874#endif
2875 {
2876 .name = "kmem.tcp.limit_in_bytes",
2877 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2878 .write = mem_cgroup_write,
2879 .read_u64 = mem_cgroup_read_u64,
2880 },
2881 {
2882 .name = "kmem.tcp.usage_in_bytes",
2883 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2884 .read_u64 = mem_cgroup_read_u64,
2885 },
2886 {
2887 .name = "kmem.tcp.failcnt",
2888 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2889 .write = mem_cgroup_reset,
2890 .read_u64 = mem_cgroup_read_u64,
2891 },
2892 {
2893 .name = "kmem.tcp.max_usage_in_bytes",
2894 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2895 .write = mem_cgroup_reset,
2896 .read_u64 = mem_cgroup_read_u64,
2897 },
2898 { }, /* terminate */
2899};
2900
2901struct cftype memsw_files[] = {
2902 {
2903 .name = "memsw.usage_in_bytes",
2904 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2905 .read_u64 = mem_cgroup_read_u64,
2906 },
2907 {
2908 .name = "memsw.max_usage_in_bytes",
2909 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2910 .write = mem_cgroup_reset,
2911 .read_u64 = mem_cgroup_read_u64,
2912 },
2913 {
2914 .name = "memsw.limit_in_bytes",
2915 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2916 .write = mem_cgroup_write,
2917 .read_u64 = mem_cgroup_read_u64,
2918 },
2919 {
2920 .name = "memsw.failcnt",
2921 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2922 .write = mem_cgroup_reset,
2923 .read_u64 = mem_cgroup_read_u64,
2924 },
2925 { }, /* terminate */
2926};
2927
04fbe921
RG
2928void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2929{
2930 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2931 if (nr_pages > 0)
2932 page_counter_charge(&memcg->kmem, nr_pages);
2933 else
2934 page_counter_uncharge(&memcg->kmem, -nr_pages);
2935 }
2936}
04fbe921 2937
773e9ae7
RG
2938bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2939 gfp_t gfp_mask)
2940{
2941 struct page_counter *fail;
2942
2943 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2944 memcg->tcpmem_pressure = 0;
2945 return true;
2946 }
2947 memcg->tcpmem_pressure = 1;
2948 if (gfp_mask & __GFP_NOFAIL) {
2949 page_counter_charge(&memcg->tcpmem, nr_pages);
2950 return true;
2951 }
2952 return false;
2953}
2954
d12f6d22
RG
2955static int __init memcg1_init(void)
2956{
2957 int node;
2958
2959 for_each_node(node) {
2960 struct mem_cgroup_tree_per_node *rtpn;
2961
2962 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2963
2964 rtpn->rb_root = RB_ROOT;
2965 rtpn->rb_rightmost = NULL;
2966 spin_lock_init(&rtpn->lock);
2967 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2968 }
2969
2970 return 0;
2971}
2972subsys_initcall(memcg1_init);
This page took 0.424848 seconds and 4 git commands to generate.