]> Git Repo - linux.git/blame - fs/aio.c
mm/vmalloc: rework the drain logic
[linux.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <[email protected]>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4
LT
45
46#include <asm/kmap_types.h>
7c0f6ba6 47#include <linux/uaccess.h>
a538e3ff 48#include <linux/nospec.h>
1da177e4 49
68d70d03
AV
50#include "internal.h"
51
f3a2752a
CH
52#define KIOCB_KEY 0
53
4e179bca
KO
54#define AIO_RING_MAGIC 0xa10a10a1
55#define AIO_RING_COMPAT_FEATURES 1
56#define AIO_RING_INCOMPAT_FEATURES 0
57struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
fa8a53c3
BL
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
4e179bca
KO
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
241cb28e 70 struct io_event io_events[];
4e179bca
KO
71}; /* 128 bytes + ring size */
72
a79d40e9
JA
73/*
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
76 */
77#define AIO_PLUG_THRESHOLD 2
78
4e179bca 79#define AIO_RING_PAGES 8
4e179bca 80
db446a08 81struct kioctx_table {
d0264c01
TH
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
db446a08
BL
85};
86
e1bdd5f2
KO
87struct kioctx_cpu {
88 unsigned reqs_available;
89};
90
dc48e56d
JA
91struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
94};
95
4e179bca 96struct kioctx {
723be6e3 97 struct percpu_ref users;
36f55889 98 atomic_t dead;
4e179bca 99
e34ecee2
KO
100 struct percpu_ref reqs;
101
4e179bca 102 unsigned long user_id;
4e179bca 103
e1bdd5f2
KO
104 struct __percpu kioctx_cpu *cpu;
105
106 /*
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
109 */
110 unsigned req_batch;
3e845ce0
KO
111 /*
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
114 *
58c85dc2 115 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
116 * aio_setup_ring())
117 */
4e179bca
KO
118 unsigned max_reqs;
119
58c85dc2
KO
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
4e179bca 122
58c85dc2
KO
123 unsigned long mmap_base;
124 unsigned long mmap_size;
125
126 struct page **ring_pages;
127 long nr_pages;
128
f729863a 129 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 130
e02ba72a
AP
131 /*
132 * signals when all in-flight requests are done
133 */
dc48e56d 134 struct ctx_rq_wait *rq_wait;
e02ba72a 135
4e23bcae 136 struct {
34e83fc6
KO
137 /*
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
142 *
143 * We batch accesses to it with a percpu version.
34e83fc6
KO
144 */
145 atomic_t reqs_available;
4e23bcae
KO
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
152
58c85dc2
KO
153 struct {
154 struct mutex ring_lock;
4e23bcae
KO
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
58c85dc2
KO
157
158 struct {
159 unsigned tail;
d856f32a 160 unsigned completed_events;
58c85dc2 161 spinlock_t completion_lock;
4e23bcae 162 } ____cacheline_aligned_in_smp;
58c85dc2
KO
163
164 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 165 struct file *aio_ring_file;
db446a08
BL
166
167 unsigned id;
4e179bca
KO
168};
169
84c4e1f8
LT
170/*
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 */
a3c0d439 174struct fsync_iocb {
a3c0d439 175 struct file *file;
84c4e1f8 176 struct work_struct work;
a3c0d439 177 bool datasync;
530f32fc 178 struct cred *creds;
a3c0d439
CH
179};
180
bfe4037e
CH
181struct poll_iocb {
182 struct file *file;
183 struct wait_queue_head *head;
184 __poll_t events;
af5c72b1 185 bool done;
bfe4037e
CH
186 bool cancelled;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda
ZB
222static DEFINE_SPINLOCK(aio_nr_lock);
223unsigned long aio_nr; /* current system wide number of aio requests */
224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
225/*----end sysctl variables---*/
226
e18b890b
CL
227static struct kmem_cache *kiocb_cachep;
228static struct kmem_cache *kioctx_cachep;
1da177e4 229
71ad7490
BL
230static struct vfsmount *aio_mnt;
231
232static const struct file_operations aio_ring_fops;
233static const struct address_space_operations aio_ctx_aops;
234
235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236{
71ad7490 237 struct file *file;
71ad7490 238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
71ad7490
BL
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
d93aa9d8
AV
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
c9c554f2 248 if (IS_ERR(file))
71ad7490 249 iput(inode);
71ad7490
BL
250 return file;
251}
252
52db59df 253static int aio_init_fs_context(struct fs_context *fc)
71ad7490 254{
52db59df
DH
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
71ad7490
BL
259}
260
1da177e4
LT
261/* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
265static int __init aio_setup(void)
266{
71ad7490
BL
267 static struct file_system_type aio_fs = {
268 .name = "aio",
52db59df 269 .init_fs_context = aio_init_fs_context,
71ad7490
BL
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
04b2fa9f 276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
278 return 0;
279}
385773e0 280__initcall(aio_setup);
1da177e4 281
5e9ae2e5
BL
282static void put_aio_ring_file(struct kioctx *ctx)
283{
284 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
285 struct address_space *i_mapping;
286
5e9ae2e5 287 if (aio_ring_file) {
45063097 288 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
289
290 /* Prevent further access to the kioctx from migratepages */
45063097 291 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
5e9ae2e5 294 ctx->aio_ring_file = NULL;
de04e769 295 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
296
297 fput(aio_ring_file);
298 }
299}
300
1da177e4
LT
301static void aio_free_ring(struct kioctx *ctx)
302{
36bc08cc 303 int i;
1da177e4 304
fa8a53c3
BL
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
36bc08cc 310 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 311 struct page *page;
36bc08cc
GZ
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
8e321fef
BL
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
36bc08cc 319 }
1da177e4 320
ddb8c45b 321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 322 kfree(ctx->ring_pages);
ddb8c45b
SL
323 ctx->ring_pages = NULL;
324 }
36bc08cc
GZ
325}
326
cd544fd1 327static int aio_ring_mremap(struct vm_area_struct *vma, unsigned long flags)
e4a0d3e7 328{
5477e70a 329 struct file *file = vma->vm_file;
e4a0d3e7
PE
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
b2edffdd 332 int i, res = -EINVAL;
e4a0d3e7 333
cd544fd1
DS
334 if (flags & MREMAP_DONTUNMAP)
335 return -EINVAL;
336
e4a0d3e7
PE
337 spin_lock(&mm->ioctx_lock);
338 rcu_read_lock();
339 table = rcu_dereference(mm->ioctx_table);
340 for (i = 0; i < table->nr; i++) {
341 struct kioctx *ctx;
342
d0264c01 343 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 344 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
345 if (!atomic_read(&ctx->dead)) {
346 ctx->user_id = ctx->mmap_base = vma->vm_start;
347 res = 0;
348 }
e4a0d3e7
PE
349 break;
350 }
351 }
352
353 rcu_read_unlock();
354 spin_unlock(&mm->ioctx_lock);
b2edffdd 355 return res;
e4a0d3e7
PE
356}
357
5477e70a
ON
358static const struct vm_operations_struct aio_ring_vm_ops = {
359 .mremap = aio_ring_mremap,
360#if IS_ENABLED(CONFIG_MMU)
361 .fault = filemap_fault,
362 .map_pages = filemap_map_pages,
363 .page_mkwrite = filemap_page_mkwrite,
364#endif
365};
366
367static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
368{
369 vma->vm_flags |= VM_DONTEXPAND;
370 vma->vm_ops = &aio_ring_vm_ops;
371 return 0;
372}
373
36bc08cc
GZ
374static const struct file_operations aio_ring_fops = {
375 .mmap = aio_ring_mmap,
376};
377
0c45355f 378#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
379static int aio_migratepage(struct address_space *mapping, struct page *new,
380 struct page *old, enum migrate_mode mode)
381{
5e9ae2e5 382 struct kioctx *ctx;
36bc08cc 383 unsigned long flags;
fa8a53c3 384 pgoff_t idx;
36bc08cc
GZ
385 int rc;
386
2916ecc0
JG
387 /*
388 * We cannot support the _NO_COPY case here, because copy needs to
389 * happen under the ctx->completion_lock. That does not work with the
390 * migration workflow of MIGRATE_SYNC_NO_COPY.
391 */
392 if (mode == MIGRATE_SYNC_NO_COPY)
393 return -EINVAL;
394
8e321fef
BL
395 rc = 0;
396
fa8a53c3 397 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
398 spin_lock(&mapping->private_lock);
399 ctx = mapping->private_data;
fa8a53c3
BL
400 if (!ctx) {
401 rc = -EINVAL;
402 goto out;
403 }
404
405 /* The ring_lock mutex. The prevents aio_read_events() from writing
406 * to the ring's head, and prevents page migration from mucking in
407 * a partially initialized kiotx.
408 */
409 if (!mutex_trylock(&ctx->ring_lock)) {
410 rc = -EAGAIN;
411 goto out;
412 }
413
414 idx = old->index;
415 if (idx < (pgoff_t)ctx->nr_pages) {
416 /* Make sure the old page hasn't already been changed */
417 if (ctx->ring_pages[idx] != old)
418 rc = -EAGAIN;
8e321fef
BL
419 } else
420 rc = -EINVAL;
8e321fef
BL
421
422 if (rc != 0)
fa8a53c3 423 goto out_unlock;
8e321fef 424
36bc08cc
GZ
425 /* Writeback must be complete */
426 BUG_ON(PageWriteback(old));
8e321fef 427 get_page(new);
36bc08cc 428
37109694 429 rc = migrate_page_move_mapping(mapping, new, old, 1);
36bc08cc 430 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 431 put_page(new);
fa8a53c3 432 goto out_unlock;
36bc08cc
GZ
433 }
434
fa8a53c3
BL
435 /* Take completion_lock to prevent other writes to the ring buffer
436 * while the old page is copied to the new. This prevents new
437 * events from being lost.
5e9ae2e5 438 */
fa8a53c3
BL
439 spin_lock_irqsave(&ctx->completion_lock, flags);
440 migrate_page_copy(new, old);
441 BUG_ON(ctx->ring_pages[idx] != old);
442 ctx->ring_pages[idx] = new;
443 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 444
fa8a53c3
BL
445 /* The old page is no longer accessible. */
446 put_page(old);
8e321fef 447
fa8a53c3
BL
448out_unlock:
449 mutex_unlock(&ctx->ring_lock);
450out:
451 spin_unlock(&mapping->private_lock);
36bc08cc 452 return rc;
1da177e4 453}
0c45355f 454#endif
1da177e4 455
36bc08cc 456static const struct address_space_operations aio_ctx_aops = {
835f252c 457 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 458#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 459 .migratepage = aio_migratepage,
0c45355f 460#endif
36bc08cc
GZ
461};
462
2a8a9867 463static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
464{
465 struct aio_ring *ring;
41003a7b 466 struct mm_struct *mm = current->mm;
3dc9acb6 467 unsigned long size, unused;
1da177e4 468 int nr_pages;
36bc08cc
GZ
469 int i;
470 struct file *file;
1da177e4
LT
471
472 /* Compensate for the ring buffer's head/tail overlap entry */
473 nr_events += 2; /* 1 is required, 2 for good luck */
474
475 size = sizeof(struct aio_ring);
476 size += sizeof(struct io_event) * nr_events;
1da177e4 477
36bc08cc 478 nr_pages = PFN_UP(size);
1da177e4
LT
479 if (nr_pages < 0)
480 return -EINVAL;
481
71ad7490 482 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
483 if (IS_ERR(file)) {
484 ctx->aio_ring_file = NULL;
fa8a53c3 485 return -ENOMEM;
36bc08cc
GZ
486 }
487
3dc9acb6
LT
488 ctx->aio_ring_file = file;
489 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
490 / sizeof(struct io_event);
491
492 ctx->ring_pages = ctx->internal_pages;
493 if (nr_pages > AIO_RING_PAGES) {
494 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
495 GFP_KERNEL);
496 if (!ctx->ring_pages) {
497 put_aio_ring_file(ctx);
498 return -ENOMEM;
499 }
500 }
501
36bc08cc
GZ
502 for (i = 0; i < nr_pages; i++) {
503 struct page *page;
45063097 504 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
505 i, GFP_HIGHUSER | __GFP_ZERO);
506 if (!page)
507 break;
508 pr_debug("pid(%d) page[%d]->count=%d\n",
509 current->pid, i, page_count(page));
510 SetPageUptodate(page);
36bc08cc 511 unlock_page(page);
3dc9acb6
LT
512
513 ctx->ring_pages[i] = page;
36bc08cc 514 }
3dc9acb6 515 ctx->nr_pages = i;
1da177e4 516
3dc9acb6
LT
517 if (unlikely(i != nr_pages)) {
518 aio_free_ring(ctx);
fa8a53c3 519 return -ENOMEM;
1da177e4
LT
520 }
521
58c85dc2
KO
522 ctx->mmap_size = nr_pages * PAGE_SIZE;
523 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 524
d8ed45c5 525 if (mmap_write_lock_killable(mm)) {
013373e8
MH
526 ctx->mmap_size = 0;
527 aio_free_ring(ctx);
528 return -EINTR;
529 }
530
45e55300
PC
531 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
532 PROT_READ | PROT_WRITE,
533 MAP_SHARED, 0, &unused, NULL);
d8ed45c5 534 mmap_write_unlock(mm);
58c85dc2 535 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 536 ctx->mmap_size = 0;
1da177e4 537 aio_free_ring(ctx);
fa8a53c3 538 return -ENOMEM;
1da177e4
LT
539 }
540
58c85dc2 541 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 542
58c85dc2
KO
543 ctx->user_id = ctx->mmap_base;
544 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 545
58c85dc2 546 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 547 ring->nr = nr_events; /* user copy */
db446a08 548 ring->id = ~0U;
1da177e4
LT
549 ring->head = ring->tail = 0;
550 ring->magic = AIO_RING_MAGIC;
551 ring->compat_features = AIO_RING_COMPAT_FEATURES;
552 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
553 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 554 kunmap_atomic(ring);
58c85dc2 555 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
556
557 return 0;
558}
559
1da177e4
LT
560#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
561#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
562#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
563
04b2fa9f 564void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 565{
54843f87 566 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
567 struct kioctx *ctx = req->ki_ctx;
568 unsigned long flags;
569
75321b50
CH
570 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
571 return;
0460fef2 572
75321b50
CH
573 spin_lock_irqsave(&ctx->ctx_lock, flags);
574 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 575 req->ki_cancel = cancel;
0460fef2
KO
576 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
577}
578EXPORT_SYMBOL(kiocb_set_cancel_fn);
579
a6d7cff4
TH
580/*
581 * free_ioctx() should be RCU delayed to synchronize against the RCU
582 * protected lookup_ioctx() and also needs process context to call
f729863a 583 * aio_free_ring(). Use rcu_work.
a6d7cff4 584 */
e34ecee2 585static void free_ioctx(struct work_struct *work)
36f55889 586{
f729863a
TH
587 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
588 free_rwork);
e34ecee2 589 pr_debug("freeing %p\n", ctx);
e1bdd5f2 590
e34ecee2 591 aio_free_ring(ctx);
e1bdd5f2 592 free_percpu(ctx->cpu);
9a1049da
TH
593 percpu_ref_exit(&ctx->reqs);
594 percpu_ref_exit(&ctx->users);
36f55889
KO
595 kmem_cache_free(kioctx_cachep, ctx);
596}
597
e34ecee2
KO
598static void free_ioctx_reqs(struct percpu_ref *ref)
599{
600 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
601
e02ba72a 602 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
603 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
604 complete(&ctx->rq_wait->comp);
e02ba72a 605
a6d7cff4 606 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
607 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
608 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
609}
610
36f55889
KO
611/*
612 * When this function runs, the kioctx has been removed from the "hash table"
613 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
614 * now it's safe to cancel any that need to be.
615 */
e34ecee2 616static void free_ioctx_users(struct percpu_ref *ref)
36f55889 617{
e34ecee2 618 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 619 struct aio_kiocb *req;
36f55889
KO
620
621 spin_lock_irq(&ctx->ctx_lock);
622
623 while (!list_empty(&ctx->active_reqs)) {
624 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 625 struct aio_kiocb, ki_list);
888933f8 626 req->ki_cancel(&req->rw);
4faa9996 627 list_del_init(&req->ki_list);
36f55889
KO
628 }
629
630 spin_unlock_irq(&ctx->ctx_lock);
631
e34ecee2
KO
632 percpu_ref_kill(&ctx->reqs);
633 percpu_ref_put(&ctx->reqs);
36f55889
KO
634}
635
db446a08
BL
636static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
637{
638 unsigned i, new_nr;
639 struct kioctx_table *table, *old;
640 struct aio_ring *ring;
641
642 spin_lock(&mm->ioctx_lock);
855ef0de 643 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
644
645 while (1) {
646 if (table)
647 for (i = 0; i < table->nr; i++)
d0264c01 648 if (!rcu_access_pointer(table->table[i])) {
db446a08 649 ctx->id = i;
d0264c01 650 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
651 spin_unlock(&mm->ioctx_lock);
652
fa8a53c3
BL
653 /* While kioctx setup is in progress,
654 * we are protected from page migration
655 * changes ring_pages by ->ring_lock.
656 */
db446a08
BL
657 ring = kmap_atomic(ctx->ring_pages[0]);
658 ring->id = ctx->id;
659 kunmap_atomic(ring);
660 return 0;
661 }
662
663 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
664 spin_unlock(&mm->ioctx_lock);
665
666 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
667 new_nr, GFP_KERNEL);
668 if (!table)
669 return -ENOMEM;
670
671 table->nr = new_nr;
672
673 spin_lock(&mm->ioctx_lock);
855ef0de 674 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
675
676 if (!old) {
677 rcu_assign_pointer(mm->ioctx_table, table);
678 } else if (table->nr > old->nr) {
679 memcpy(table->table, old->table,
680 old->nr * sizeof(struct kioctx *));
681
682 rcu_assign_pointer(mm->ioctx_table, table);
683 kfree_rcu(old, rcu);
684 } else {
685 kfree(table);
686 table = old;
687 }
688 }
689}
690
e34ecee2
KO
691static void aio_nr_sub(unsigned nr)
692{
693 spin_lock(&aio_nr_lock);
694 if (WARN_ON(aio_nr - nr > aio_nr))
695 aio_nr = 0;
696 else
697 aio_nr -= nr;
698 spin_unlock(&aio_nr_lock);
699}
700
1da177e4
LT
701/* ioctx_alloc
702 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
703 */
704static struct kioctx *ioctx_alloc(unsigned nr_events)
705{
41003a7b 706 struct mm_struct *mm = current->mm;
1da177e4 707 struct kioctx *ctx;
e23754f8 708 int err = -ENOMEM;
1da177e4 709
2a8a9867
MFO
710 /*
711 * Store the original nr_events -- what userspace passed to io_setup(),
712 * for counting against the global limit -- before it changes.
713 */
714 unsigned int max_reqs = nr_events;
715
e1bdd5f2
KO
716 /*
717 * We keep track of the number of available ringbuffer slots, to prevent
718 * overflow (reqs_available), and we also use percpu counters for this.
719 *
720 * So since up to half the slots might be on other cpu's percpu counters
721 * and unavailable, double nr_events so userspace sees what they
722 * expected: additionally, we move req_batch slots to/from percpu
723 * counters at a time, so make sure that isn't 0:
724 */
725 nr_events = max(nr_events, num_possible_cpus() * 4);
726 nr_events *= 2;
727
1da177e4 728 /* Prevent overflows */
08397acd 729 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
730 pr_debug("ENOMEM: nr_events too high\n");
731 return ERR_PTR(-EINVAL);
732 }
733
2a8a9867 734 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
735 return ERR_PTR(-EAGAIN);
736
c3762229 737 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
738 if (!ctx)
739 return ERR_PTR(-ENOMEM);
740
2a8a9867 741 ctx->max_reqs = max_reqs;
1da177e4 742
1da177e4 743 spin_lock_init(&ctx->ctx_lock);
0460fef2 744 spin_lock_init(&ctx->completion_lock);
58c85dc2 745 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
746 /* Protect against page migration throughout kiotx setup by keeping
747 * the ring_lock mutex held until setup is complete. */
748 mutex_lock(&ctx->ring_lock);
1da177e4
LT
749 init_waitqueue_head(&ctx->wait);
750
751 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 752
2aad2a86 753 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
754 goto err;
755
2aad2a86 756 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
757 goto err;
758
e1bdd5f2
KO
759 ctx->cpu = alloc_percpu(struct kioctx_cpu);
760 if (!ctx->cpu)
e34ecee2 761 goto err;
1da177e4 762
2a8a9867 763 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 764 if (err < 0)
e34ecee2 765 goto err;
e1bdd5f2 766
34e83fc6 767 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 768 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
769 if (ctx->req_batch < 1)
770 ctx->req_batch = 1;
34e83fc6 771
1da177e4 772 /* limit the number of system wide aios */
9fa1cb39 773 spin_lock(&aio_nr_lock);
2a8a9867
MFO
774 if (aio_nr + ctx->max_reqs > aio_max_nr ||
775 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 776 spin_unlock(&aio_nr_lock);
e34ecee2 777 err = -EAGAIN;
d1b94327 778 goto err_ctx;
2dd542b7
AV
779 }
780 aio_nr += ctx->max_reqs;
9fa1cb39 781 spin_unlock(&aio_nr_lock);
1da177e4 782
1881686f
BL
783 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
784 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 785
da90382c
BL
786 err = ioctx_add_table(ctx, mm);
787 if (err)
e34ecee2 788 goto err_cleanup;
da90382c 789
fa8a53c3
BL
790 /* Release the ring_lock mutex now that all setup is complete. */
791 mutex_unlock(&ctx->ring_lock);
792
caf4167a 793 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 794 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
795 return ctx;
796
e34ecee2
KO
797err_cleanup:
798 aio_nr_sub(ctx->max_reqs);
d1b94327 799err_ctx:
deeb8525
AV
800 atomic_set(&ctx->dead, 1);
801 if (ctx->mmap_size)
802 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 803 aio_free_ring(ctx);
e34ecee2 804err:
fa8a53c3 805 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 806 free_percpu(ctx->cpu);
9a1049da
TH
807 percpu_ref_exit(&ctx->reqs);
808 percpu_ref_exit(&ctx->users);
1da177e4 809 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 810 pr_debug("error allocating ioctx %d\n", err);
e23754f8 811 return ERR_PTR(err);
1da177e4
LT
812}
813
36f55889
KO
814/* kill_ioctx
815 * Cancels all outstanding aio requests on an aio context. Used
816 * when the processes owning a context have all exited to encourage
817 * the rapid destruction of the kioctx.
818 */
fb2d4483 819static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 820 struct ctx_rq_wait *wait)
36f55889 821{
fa88b6f8 822 struct kioctx_table *table;
db446a08 823
b2edffdd
AV
824 spin_lock(&mm->ioctx_lock);
825 if (atomic_xchg(&ctx->dead, 1)) {
826 spin_unlock(&mm->ioctx_lock);
fa88b6f8 827 return -EINVAL;
b2edffdd 828 }
db446a08 829
855ef0de 830 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
831 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
832 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 833 spin_unlock(&mm->ioctx_lock);
4fcc712f 834
a6d7cff4 835 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 836 wake_up_all(&ctx->wait);
4fcc712f 837
fa88b6f8
BL
838 /*
839 * It'd be more correct to do this in free_ioctx(), after all
840 * the outstanding kiocbs have finished - but by then io_destroy
841 * has already returned, so io_setup() could potentially return
842 * -EAGAIN with no ioctxs actually in use (as far as userspace
843 * could tell).
844 */
845 aio_nr_sub(ctx->max_reqs);
4fcc712f 846
fa88b6f8
BL
847 if (ctx->mmap_size)
848 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 849
dc48e56d 850 ctx->rq_wait = wait;
fa88b6f8
BL
851 percpu_ref_kill(&ctx->users);
852 return 0;
1da177e4
LT
853}
854
36f55889
KO
855/*
856 * exit_aio: called when the last user of mm goes away. At this point, there is
857 * no way for any new requests to be submited or any of the io_* syscalls to be
858 * called on the context.
859 *
860 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
861 * them.
1da177e4 862 */
fc9b52cd 863void exit_aio(struct mm_struct *mm)
1da177e4 864{
4b70ac5f 865 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
866 struct ctx_rq_wait wait;
867 int i, skipped;
db446a08 868
4b70ac5f
ON
869 if (!table)
870 return;
db446a08 871
dc48e56d
JA
872 atomic_set(&wait.count, table->nr);
873 init_completion(&wait.comp);
874
875 skipped = 0;
4b70ac5f 876 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
877 struct kioctx *ctx =
878 rcu_dereference_protected(table->table[i], true);
abf137dd 879
dc48e56d
JA
880 if (!ctx) {
881 skipped++;
4b70ac5f 882 continue;
dc48e56d
JA
883 }
884
936af157 885 /*
4b70ac5f
ON
886 * We don't need to bother with munmap() here - exit_mmap(mm)
887 * is coming and it'll unmap everything. And we simply can't,
888 * this is not necessarily our ->mm.
889 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
890 * that it needs to unmap the area, just set it to 0.
936af157 891 */
58c85dc2 892 ctx->mmap_size = 0;
dc48e56d
JA
893 kill_ioctx(mm, ctx, &wait);
894 }
36f55889 895
dc48e56d 896 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 897 /* Wait until all IO for the context are done. */
dc48e56d 898 wait_for_completion(&wait.comp);
1da177e4 899 }
4b70ac5f
ON
900
901 RCU_INIT_POINTER(mm->ioctx_table, NULL);
902 kfree(table);
1da177e4
LT
903}
904
e1bdd5f2
KO
905static void put_reqs_available(struct kioctx *ctx, unsigned nr)
906{
907 struct kioctx_cpu *kcpu;
263782c1 908 unsigned long flags;
e1bdd5f2 909
263782c1 910 local_irq_save(flags);
be6fb451 911 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 912 kcpu->reqs_available += nr;
263782c1 913
e1bdd5f2
KO
914 while (kcpu->reqs_available >= ctx->req_batch * 2) {
915 kcpu->reqs_available -= ctx->req_batch;
916 atomic_add(ctx->req_batch, &ctx->reqs_available);
917 }
918
263782c1 919 local_irq_restore(flags);
e1bdd5f2
KO
920}
921
432c7997 922static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
923{
924 struct kioctx_cpu *kcpu;
925 bool ret = false;
263782c1 926 unsigned long flags;
e1bdd5f2 927
263782c1 928 local_irq_save(flags);
be6fb451 929 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
930 if (!kcpu->reqs_available) {
931 int old, avail = atomic_read(&ctx->reqs_available);
932
933 do {
934 if (avail < ctx->req_batch)
935 goto out;
936
937 old = avail;
938 avail = atomic_cmpxchg(&ctx->reqs_available,
939 avail, avail - ctx->req_batch);
940 } while (avail != old);
941
942 kcpu->reqs_available += ctx->req_batch;
943 }
944
945 ret = true;
946 kcpu->reqs_available--;
947out:
263782c1 948 local_irq_restore(flags);
e1bdd5f2
KO
949 return ret;
950}
951
d856f32a
BL
952/* refill_reqs_available
953 * Updates the reqs_available reference counts used for tracking the
954 * number of free slots in the completion ring. This can be called
955 * from aio_complete() (to optimistically update reqs_available) or
956 * from aio_get_req() (the we're out of events case). It must be
957 * called holding ctx->completion_lock.
958 */
959static void refill_reqs_available(struct kioctx *ctx, unsigned head,
960 unsigned tail)
961{
962 unsigned events_in_ring, completed;
963
964 /* Clamp head since userland can write to it. */
965 head %= ctx->nr_events;
966 if (head <= tail)
967 events_in_ring = tail - head;
968 else
969 events_in_ring = ctx->nr_events - (head - tail);
970
971 completed = ctx->completed_events;
972 if (events_in_ring < completed)
973 completed -= events_in_ring;
974 else
975 completed = 0;
976
977 if (!completed)
978 return;
979
980 ctx->completed_events -= completed;
981 put_reqs_available(ctx, completed);
982}
983
984/* user_refill_reqs_available
985 * Called to refill reqs_available when aio_get_req() encounters an
986 * out of space in the completion ring.
987 */
988static void user_refill_reqs_available(struct kioctx *ctx)
989{
990 spin_lock_irq(&ctx->completion_lock);
991 if (ctx->completed_events) {
992 struct aio_ring *ring;
993 unsigned head;
994
995 /* Access of ring->head may race with aio_read_events_ring()
996 * here, but that's okay since whether we read the old version
997 * or the new version, and either will be valid. The important
998 * part is that head cannot pass tail since we prevent
999 * aio_complete() from updating tail by holding
1000 * ctx->completion_lock. Even if head is invalid, the check
1001 * against ctx->completed_events below will make sure we do the
1002 * safe/right thing.
1003 */
1004 ring = kmap_atomic(ctx->ring_pages[0]);
1005 head = ring->head;
1006 kunmap_atomic(ring);
1007
1008 refill_reqs_available(ctx, head, ctx->tail);
1009 }
1010
1011 spin_unlock_irq(&ctx->completion_lock);
1012}
1013
432c7997
CH
1014static bool get_reqs_available(struct kioctx *ctx)
1015{
1016 if (__get_reqs_available(ctx))
1017 return true;
1018 user_refill_reqs_available(ctx);
1019 return __get_reqs_available(ctx);
1020}
1021
1da177e4 1022/* aio_get_req
57282d8f
KO
1023 * Allocate a slot for an aio request.
1024 * Returns NULL if no requests are free.
b53119f1
LT
1025 *
1026 * The refcount is initialized to 2 - one for the async op completion,
1027 * one for the synchronous code that does this.
1da177e4 1028 */
04b2fa9f 1029static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1030{
04b2fa9f 1031 struct aio_kiocb *req;
a1c8eae7 1032
2bc4ca9b 1033 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1034 if (unlikely(!req))
432c7997 1035 return NULL;
1da177e4 1036
fa0ca2ae 1037 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1038 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1039 return NULL;
1040 }
1041
e34ecee2 1042 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1043 req->ki_ctx = ctx;
75321b50 1044 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1045 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1046 req->ki_eventfd = NULL;
080d676d 1047 return req;
1da177e4
LT
1048}
1049
d5470b59 1050static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1051{
db446a08 1052 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1053 struct mm_struct *mm = current->mm;
65c24491 1054 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1055 struct kioctx_table *table;
1056 unsigned id;
1057
1058 if (get_user(id, &ring->id))
1059 return NULL;
1da177e4 1060
abf137dd 1061 rcu_read_lock();
db446a08 1062 table = rcu_dereference(mm->ioctx_table);
abf137dd 1063
db446a08
BL
1064 if (!table || id >= table->nr)
1065 goto out;
1da177e4 1066
a538e3ff 1067 id = array_index_nospec(id, table->nr);
d0264c01 1068 ctx = rcu_dereference(table->table[id]);
f30d704f 1069 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1070 if (percpu_ref_tryget_live(&ctx->users))
1071 ret = ctx;
db446a08
BL
1072 }
1073out:
abf137dd 1074 rcu_read_unlock();
65c24491 1075 return ret;
1da177e4
LT
1076}
1077
b53119f1
LT
1078static inline void iocb_destroy(struct aio_kiocb *iocb)
1079{
74259703
AV
1080 if (iocb->ki_eventfd)
1081 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1082 if (iocb->ki_filp)
1083 fput(iocb->ki_filp);
1084 percpu_ref_put(&iocb->ki_ctx->reqs);
1085 kmem_cache_free(kiocb_cachep, iocb);
1086}
1087
1da177e4
LT
1088/* aio_complete
1089 * Called when the io request on the given iocb is complete.
1da177e4 1090 */
2bb874c0 1091static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1092{
1093 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1094 struct aio_ring *ring;
21b40200 1095 struct io_event *ev_page, *event;
d856f32a 1096 unsigned tail, pos, head;
1da177e4 1097 unsigned long flags;
1da177e4 1098
0460fef2
KO
1099 /*
1100 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1101 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1102 * pointer since we might be called from irq context.
1103 */
1104 spin_lock_irqsave(&ctx->completion_lock, flags);
1105
58c85dc2 1106 tail = ctx->tail;
21b40200
KO
1107 pos = tail + AIO_EVENTS_OFFSET;
1108
58c85dc2 1109 if (++tail >= ctx->nr_events)
4bf69b2a 1110 tail = 0;
1da177e4 1111
58c85dc2 1112 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1113 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1114
a9339b78 1115 *event = iocb->ki_res;
1da177e4 1116
21b40200 1117 kunmap_atomic(ev_page);
58c85dc2 1118 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1119
a9339b78
AV
1120 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1121 (void __user *)(unsigned long)iocb->ki_res.obj,
1122 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1123
1124 /* after flagging the request as done, we
1125 * must never even look at it again
1126 */
1127 smp_wmb(); /* make event visible before updating tail */
1128
58c85dc2 1129 ctx->tail = tail;
1da177e4 1130
58c85dc2 1131 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1132 head = ring->head;
21b40200 1133 ring->tail = tail;
e8e3c3d6 1134 kunmap_atomic(ring);
58c85dc2 1135 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1136
d856f32a
BL
1137 ctx->completed_events++;
1138 if (ctx->completed_events > 1)
1139 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1140 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1141
21b40200 1142 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1143
1144 /*
1145 * Check if the user asked us to deliver the result through an
1146 * eventfd. The eventfd_signal() function is safe to be called
1147 * from IRQ context.
1148 */
74259703 1149 if (iocb->ki_eventfd)
8d1c98b0
DL
1150 eventfd_signal(iocb->ki_eventfd, 1);
1151
6cb2a210
QB
1152 /*
1153 * We have to order our ring_info tail store above and test
1154 * of the wait list below outside the wait lock. This is
1155 * like in wake_up_bit() where clearing a bit has to be
1156 * ordered with the unlocked test.
1157 */
1158 smp_mb();
1159
1da177e4
LT
1160 if (waitqueue_active(&ctx->wait))
1161 wake_up(&ctx->wait);
2bb874c0
AV
1162}
1163
1164static inline void iocb_put(struct aio_kiocb *iocb)
1165{
1166 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1167 aio_complete(iocb);
1168 iocb_destroy(iocb);
1169 }
1da177e4
LT
1170}
1171
2be4e7de 1172/* aio_read_events_ring
a31ad380
KO
1173 * Pull an event off of the ioctx's event ring. Returns the number of
1174 * events fetched
1da177e4 1175 */
a31ad380
KO
1176static long aio_read_events_ring(struct kioctx *ctx,
1177 struct io_event __user *event, long nr)
1da177e4 1178{
1da177e4 1179 struct aio_ring *ring;
5ffac122 1180 unsigned head, tail, pos;
a31ad380
KO
1181 long ret = 0;
1182 int copy_ret;
1183
9c9ce763
DC
1184 /*
1185 * The mutex can block and wake us up and that will cause
1186 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1187 * and repeat. This should be rare enough that it doesn't cause
1188 * peformance issues. See the comment in read_events() for more detail.
1189 */
1190 sched_annotate_sleep();
58c85dc2 1191 mutex_lock(&ctx->ring_lock);
1da177e4 1192
fa8a53c3 1193 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1194 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1195 head = ring->head;
5ffac122 1196 tail = ring->tail;
a31ad380
KO
1197 kunmap_atomic(ring);
1198
2ff396be
JM
1199 /*
1200 * Ensure that once we've read the current tail pointer, that
1201 * we also see the events that were stored up to the tail.
1202 */
1203 smp_rmb();
1204
5ffac122 1205 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1206
5ffac122 1207 if (head == tail)
1da177e4
LT
1208 goto out;
1209
edfbbf38
BL
1210 head %= ctx->nr_events;
1211 tail %= ctx->nr_events;
1212
a31ad380
KO
1213 while (ret < nr) {
1214 long avail;
1215 struct io_event *ev;
1216 struct page *page;
1217
5ffac122
KO
1218 avail = (head <= tail ? tail : ctx->nr_events) - head;
1219 if (head == tail)
a31ad380
KO
1220 break;
1221
a31ad380 1222 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1223 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1224 pos %= AIO_EVENTS_PER_PAGE;
1225
d2988bd4
AV
1226 avail = min(avail, nr - ret);
1227 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1228
a31ad380
KO
1229 ev = kmap(page);
1230 copy_ret = copy_to_user(event + ret, ev + pos,
1231 sizeof(*ev) * avail);
1232 kunmap(page);
1233
1234 if (unlikely(copy_ret)) {
1235 ret = -EFAULT;
1236 goto out;
1237 }
1238
1239 ret += avail;
1240 head += avail;
58c85dc2 1241 head %= ctx->nr_events;
1da177e4 1242 }
1da177e4 1243
58c85dc2 1244 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1245 ring->head = head;
91d80a84 1246 kunmap_atomic(ring);
58c85dc2 1247 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1248
5ffac122 1249 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1250out:
58c85dc2 1251 mutex_unlock(&ctx->ring_lock);
a31ad380 1252
1da177e4
LT
1253 return ret;
1254}
1255
a31ad380
KO
1256static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1257 struct io_event __user *event, long *i)
1da177e4 1258{
a31ad380 1259 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1260
a31ad380
KO
1261 if (ret > 0)
1262 *i += ret;
1da177e4 1263
a31ad380
KO
1264 if (unlikely(atomic_read(&ctx->dead)))
1265 ret = -EINVAL;
1da177e4 1266
a31ad380
KO
1267 if (!*i)
1268 *i = ret;
1da177e4 1269
a31ad380 1270 return ret < 0 || *i >= min_nr;
1da177e4
LT
1271}
1272
a31ad380 1273static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1274 struct io_event __user *event,
fa2e62a5 1275 ktime_t until)
1da177e4 1276{
a31ad380 1277 long ret = 0;
1da177e4 1278
a31ad380
KO
1279 /*
1280 * Note that aio_read_events() is being called as the conditional - i.e.
1281 * we're calling it after prepare_to_wait() has set task state to
1282 * TASK_INTERRUPTIBLE.
1283 *
1284 * But aio_read_events() can block, and if it blocks it's going to flip
1285 * the task state back to TASK_RUNNING.
1286 *
1287 * This should be ok, provided it doesn't flip the state back to
1288 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1289 * will only happen if the mutex_lock() call blocks, and we then find
1290 * the ringbuffer empty. So in practice we should be ok, but it's
1291 * something to be aware of when touching this code.
1292 */
2456e855 1293 if (until == 0)
5f785de5
FZ
1294 aio_read_events(ctx, min_nr, nr, event, &ret);
1295 else
1296 wait_event_interruptible_hrtimeout(ctx->wait,
1297 aio_read_events(ctx, min_nr, nr, event, &ret),
1298 until);
a31ad380 1299 return ret;
1da177e4
LT
1300}
1301
1da177e4
LT
1302/* sys_io_setup:
1303 * Create an aio_context capable of receiving at least nr_events.
1304 * ctxp must not point to an aio_context that already exists, and
1305 * must be initialized to 0 prior to the call. On successful
1306 * creation of the aio_context, *ctxp is filled in with the resulting
1307 * handle. May fail with -EINVAL if *ctxp is not initialized,
1308 * if the specified nr_events exceeds internal limits. May fail
1309 * with -EAGAIN if the specified nr_events exceeds the user's limit
1310 * of available events. May fail with -ENOMEM if insufficient kernel
1311 * resources are available. May fail with -EFAULT if an invalid
1312 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1313 * implemented.
1314 */
002c8976 1315SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1316{
1317 struct kioctx *ioctx = NULL;
1318 unsigned long ctx;
1319 long ret;
1320
1321 ret = get_user(ctx, ctxp);
1322 if (unlikely(ret))
1323 goto out;
1324
1325 ret = -EINVAL;
d55b5fda 1326 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1327 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1328 ctx, nr_events);
1da177e4
LT
1329 goto out;
1330 }
1331
1332 ioctx = ioctx_alloc(nr_events);
1333 ret = PTR_ERR(ioctx);
1334 if (!IS_ERR(ioctx)) {
1335 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1336 if (ret)
e02ba72a 1337 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1338 percpu_ref_put(&ioctx->users);
1da177e4
LT
1339 }
1340
1341out:
1342 return ret;
1343}
1344
c00d2c7e
AV
1345#ifdef CONFIG_COMPAT
1346COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1347{
1348 struct kioctx *ioctx = NULL;
1349 unsigned long ctx;
1350 long ret;
1351
1352 ret = get_user(ctx, ctx32p);
1353 if (unlikely(ret))
1354 goto out;
1355
1356 ret = -EINVAL;
1357 if (unlikely(ctx || nr_events == 0)) {
1358 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1359 ctx, nr_events);
1360 goto out;
1361 }
1362
1363 ioctx = ioctx_alloc(nr_events);
1364 ret = PTR_ERR(ioctx);
1365 if (!IS_ERR(ioctx)) {
1366 /* truncating is ok because it's a user address */
1367 ret = put_user((u32)ioctx->user_id, ctx32p);
1368 if (ret)
1369 kill_ioctx(current->mm, ioctx, NULL);
1370 percpu_ref_put(&ioctx->users);
1371 }
1372
1373out:
1374 return ret;
1375}
1376#endif
1377
1da177e4
LT
1378/* sys_io_destroy:
1379 * Destroy the aio_context specified. May cancel any outstanding
1380 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1381 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1382 * is invalid.
1383 */
002c8976 1384SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1385{
1386 struct kioctx *ioctx = lookup_ioctx(ctx);
1387 if (likely(NULL != ioctx)) {
dc48e56d 1388 struct ctx_rq_wait wait;
fb2d4483 1389 int ret;
e02ba72a 1390
dc48e56d
JA
1391 init_completion(&wait.comp);
1392 atomic_set(&wait.count, 1);
1393
e02ba72a
AP
1394 /* Pass requests_done to kill_ioctx() where it can be set
1395 * in a thread-safe way. If we try to set it here then we have
1396 * a race condition if two io_destroy() called simultaneously.
1397 */
dc48e56d 1398 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1399 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1400
1401 /* Wait until all IO for the context are done. Otherwise kernel
1402 * keep using user-space buffers even if user thinks the context
1403 * is destroyed.
1404 */
fb2d4483 1405 if (!ret)
dc48e56d 1406 wait_for_completion(&wait.comp);
e02ba72a 1407
fb2d4483 1408 return ret;
1da177e4 1409 }
acd88d4e 1410 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1411 return -EINVAL;
1412}
1413
3c96c7f4
AV
1414static void aio_remove_iocb(struct aio_kiocb *iocb)
1415{
1416 struct kioctx *ctx = iocb->ki_ctx;
1417 unsigned long flags;
1418
1419 spin_lock_irqsave(&ctx->ctx_lock, flags);
1420 list_del(&iocb->ki_list);
1421 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1422}
1423
54843f87
CH
1424static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1425{
1426 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1427
3c96c7f4
AV
1428 if (!list_empty_careful(&iocb->ki_list))
1429 aio_remove_iocb(iocb);
1430
54843f87
CH
1431 if (kiocb->ki_flags & IOCB_WRITE) {
1432 struct inode *inode = file_inode(kiocb->ki_filp);
1433
1434 /*
1435 * Tell lockdep we inherited freeze protection from submission
1436 * thread.
1437 */
1438 if (S_ISREG(inode->i_mode))
1439 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1440 file_end_write(kiocb->ki_filp);
1441 }
1442
2bb874c0
AV
1443 iocb->ki_res.res = res;
1444 iocb->ki_res.res2 = res2;
1445 iocb_put(iocb);
54843f87
CH
1446}
1447
88a6f18b 1448static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1449{
1450 int ret;
1451
54843f87 1452 req->ki_complete = aio_complete_rw;
ec51f8ee 1453 req->private = NULL;
54843f87
CH
1454 req->ki_pos = iocb->aio_offset;
1455 req->ki_flags = iocb_flags(req->ki_filp);
1456 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1457 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1458 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1459 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1460 /*
1461 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1462 * aio_reqprio is interpreted as an I/O scheduling
1463 * class and priority.
1464 */
1465 ret = ioprio_check_cap(iocb->aio_reqprio);
1466 if (ret) {
9a6d9a62 1467 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1468 return ret;
d9a08a9e
AM
1469 }
1470
1471 req->ki_ioprio = iocb->aio_reqprio;
1472 } else
76dc8913 1473 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1474
54843f87
CH
1475 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1476 if (unlikely(ret))
84c4e1f8 1477 return ret;
154989e4
CH
1478
1479 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1480 return 0;
54843f87
CH
1481}
1482
87e5e6da
JA
1483static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1484 struct iovec **iovec, bool vectored, bool compat,
1485 struct iov_iter *iter)
eed4e51f 1486{
89319d31
CH
1487 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1488 size_t len = iocb->aio_nbytes;
1489
1490 if (!vectored) {
1491 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1492 *iovec = NULL;
1493 return ret;
1494 }
89cd35c5
CH
1495
1496 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1497}
1498
9061d14a 1499static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1500{
1501 switch (ret) {
1502 case -EIOCBQUEUED:
9061d14a 1503 break;
89319d31
CH
1504 case -ERESTARTSYS:
1505 case -ERESTARTNOINTR:
1506 case -ERESTARTNOHAND:
1507 case -ERESTART_RESTARTBLOCK:
1508 /*
1509 * There's no easy way to restart the syscall since other AIO's
1510 * may be already running. Just fail this IO with EINTR.
1511 */
1512 ret = -EINTR;
df561f66 1513 fallthrough;
89319d31 1514 default:
bc9bff61 1515 req->ki_complete(req, ret, 0);
89319d31
CH
1516 }
1517}
1518
958c13ce 1519static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1520 bool vectored, bool compat)
1da177e4 1521{
00fefb9c 1522 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1523 struct iov_iter iter;
54843f87 1524 struct file *file;
958c13ce 1525 int ret;
1da177e4 1526
54843f87
CH
1527 ret = aio_prep_rw(req, iocb);
1528 if (ret)
1529 return ret;
1530 file = req->ki_filp;
89319d31 1531 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1532 return -EBADF;
54843f87 1533 ret = -EINVAL;
89319d31 1534 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1535 return -EINVAL;
73a7075e 1536
89319d31 1537 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1538 if (ret < 0)
84c4e1f8 1539 return ret;
89319d31
CH
1540 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1541 if (!ret)
9061d14a 1542 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1543 kfree(iovec);
1544 return ret;
1545}
73a7075e 1546
958c13ce 1547static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1548 bool vectored, bool compat)
89319d31 1549{
89319d31
CH
1550 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1551 struct iov_iter iter;
54843f87 1552 struct file *file;
958c13ce 1553 int ret;
41ef4eb8 1554
54843f87
CH
1555 ret = aio_prep_rw(req, iocb);
1556 if (ret)
1557 return ret;
1558 file = req->ki_filp;
1559
89319d31 1560 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1561 return -EBADF;
89319d31 1562 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1563 return -EINVAL;
1da177e4 1564
89319d31 1565 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1566 if (ret < 0)
84c4e1f8 1567 return ret;
89319d31
CH
1568 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1569 if (!ret) {
70fe2f48 1570 /*
92ce4728 1571 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1572 * which will be released by another thread in
1573 * aio_complete_rw(). Fool lockdep by telling it the lock got
1574 * released so that it doesn't complain about the held lock when
1575 * we return to userspace.
70fe2f48 1576 */
92ce4728 1577 if (S_ISREG(file_inode(file)->i_mode)) {
8a3c84b6 1578 sb_start_write(file_inode(file)->i_sb);
a12f1ae6 1579 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1580 }
1581 req->ki_flags |= IOCB_WRITE;
9061d14a 1582 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1583 }
89319d31
CH
1584 kfree(iovec);
1585 return ret;
1da177e4
LT
1586}
1587
a3c0d439
CH
1588static void aio_fsync_work(struct work_struct *work)
1589{
2bb874c0 1590 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1591 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1592
2bb874c0 1593 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1594 revert_creds(old_cred);
1595 put_cred(iocb->fsync.creds);
2bb874c0 1596 iocb_put(iocb);
a3c0d439
CH
1597}
1598
88a6f18b
JA
1599static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1600 bool datasync)
a3c0d439
CH
1601{
1602 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1603 iocb->aio_rw_flags))
1604 return -EINVAL;
a11e1d43 1605
84c4e1f8 1606 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1607 return -EINVAL;
a3c0d439 1608
530f32fc
MS
1609 req->creds = prepare_creds();
1610 if (!req->creds)
1611 return -ENOMEM;
1612
a3c0d439
CH
1613 req->datasync = datasync;
1614 INIT_WORK(&req->work, aio_fsync_work);
1615 schedule_work(&req->work);
9061d14a 1616 return 0;
a3c0d439
CH
1617}
1618
01d7a356
JA
1619static void aio_poll_put_work(struct work_struct *work)
1620{
1621 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1622 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1623
1624 iocb_put(iocb);
1625}
1626
bfe4037e
CH
1627static void aio_poll_complete_work(struct work_struct *work)
1628{
1629 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1630 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1631 struct poll_table_struct pt = { ._key = req->events };
1632 struct kioctx *ctx = iocb->ki_ctx;
1633 __poll_t mask = 0;
1634
1635 if (!READ_ONCE(req->cancelled))
1636 mask = vfs_poll(req->file, &pt) & req->events;
1637
1638 /*
1639 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1640 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1641 * synchronize with them. In the cancellation case the list_del_init
1642 * itself is not actually needed, but harmless so we keep it in to
1643 * avoid further branches in the fast path.
1644 */
1645 spin_lock_irq(&ctx->ctx_lock);
1646 if (!mask && !READ_ONCE(req->cancelled)) {
1647 add_wait_queue(req->head, &req->wait);
1648 spin_unlock_irq(&ctx->ctx_lock);
1649 return;
1650 }
1651 list_del_init(&iocb->ki_list);
af5c72b1
AV
1652 iocb->ki_res.res = mangle_poll(mask);
1653 req->done = true;
bfe4037e
CH
1654 spin_unlock_irq(&ctx->ctx_lock);
1655
af5c72b1 1656 iocb_put(iocb);
bfe4037e
CH
1657}
1658
1659/* assumes we are called with irqs disabled */
1660static int aio_poll_cancel(struct kiocb *iocb)
1661{
1662 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1663 struct poll_iocb *req = &aiocb->poll;
1664
1665 spin_lock(&req->head->lock);
1666 WRITE_ONCE(req->cancelled, true);
1667 if (!list_empty(&req->wait.entry)) {
1668 list_del_init(&req->wait.entry);
1669 schedule_work(&aiocb->poll.work);
1670 }
1671 spin_unlock(&req->head->lock);
1672
1673 return 0;
1674}
1675
1676static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1677 void *key)
1678{
1679 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1680 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1681 __poll_t mask = key_to_poll(key);
d3d6a18d 1682 unsigned long flags;
bfe4037e 1683
bfe4037e 1684 /* for instances that support it check for an event match first: */
af5c72b1
AV
1685 if (mask && !(mask & req->events))
1686 return 0;
e8693bcf 1687
af5c72b1
AV
1688 list_del_init(&req->wait.entry);
1689
1690 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1691 struct kioctx *ctx = iocb->ki_ctx;
1692
d3d6a18d
BVA
1693 /*
1694 * Try to complete the iocb inline if we can. Use
1695 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1696 * call this function with IRQs disabled and because IRQs
1697 * have to be disabled before ctx_lock is obtained.
1698 */
af5c72b1
AV
1699 list_del(&iocb->ki_list);
1700 iocb->ki_res.res = mangle_poll(mask);
1701 req->done = true;
01d7a356
JA
1702 if (iocb->ki_eventfd && eventfd_signal_count()) {
1703 iocb = NULL;
1704 INIT_WORK(&req->work, aio_poll_put_work);
1705 schedule_work(&req->work);
1706 }
1707 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1708 if (iocb)
1709 iocb_put(iocb);
af5c72b1
AV
1710 } else {
1711 schedule_work(&req->work);
e8693bcf 1712 }
bfe4037e
CH
1713 return 1;
1714}
1715
1716struct aio_poll_table {
1717 struct poll_table_struct pt;
1718 struct aio_kiocb *iocb;
1719 int error;
1720};
1721
1722static void
1723aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1724 struct poll_table_struct *p)
1725{
1726 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1727
1728 /* multiple wait queues per file are not supported */
1729 if (unlikely(pt->iocb->poll.head)) {
1730 pt->error = -EINVAL;
1731 return;
1732 }
1733
1734 pt->error = 0;
1735 pt->iocb->poll.head = head;
1736 add_wait_queue(head, &pt->iocb->poll.wait);
1737}
1738
958c13ce 1739static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1740{
1741 struct kioctx *ctx = aiocb->ki_ctx;
1742 struct poll_iocb *req = &aiocb->poll;
1743 struct aio_poll_table apt;
af5c72b1 1744 bool cancel = false;
bfe4037e
CH
1745 __poll_t mask;
1746
1747 /* reject any unknown events outside the normal event mask. */
1748 if ((u16)iocb->aio_buf != iocb->aio_buf)
1749 return -EINVAL;
1750 /* reject fields that are not defined for poll */
1751 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1752 return -EINVAL;
1753
1754 INIT_WORK(&req->work, aio_poll_complete_work);
1755 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1756
2bc4ca9b 1757 req->head = NULL;
af5c72b1 1758 req->done = false;
2bc4ca9b
JA
1759 req->cancelled = false;
1760
bfe4037e
CH
1761 apt.pt._qproc = aio_poll_queue_proc;
1762 apt.pt._key = req->events;
1763 apt.iocb = aiocb;
1764 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1765
1766 /* initialized the list so that we can do list_empty checks */
1767 INIT_LIST_HEAD(&req->wait.entry);
1768 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1769
bfe4037e 1770 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1771 spin_lock_irq(&ctx->ctx_lock);
af5c72b1
AV
1772 if (likely(req->head)) {
1773 spin_lock(&req->head->lock);
1774 if (unlikely(list_empty(&req->wait.entry))) {
1775 if (apt.error)
1776 cancel = true;
1777 apt.error = 0;
1778 mask = 0;
1779 }
1780 if (mask || apt.error) {
1781 list_del_init(&req->wait.entry);
1782 } else if (cancel) {
1783 WRITE_ONCE(req->cancelled, true);
1784 } else if (!req->done) { /* actually waiting for an event */
1785 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1786 aiocb->ki_cancel = aio_poll_cancel;
1787 }
1788 spin_unlock(&req->head->lock);
1789 }
1790 if (mask) { /* no async, we'd stolen it */
1791 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1792 apt.error = 0;
bfe4037e 1793 }
bfe4037e 1794 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1795 if (mask)
af5c72b1
AV
1796 iocb_put(aiocb);
1797 return apt.error;
bfe4037e
CH
1798}
1799
88a6f18b 1800static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1801 struct iocb __user *user_iocb, struct aio_kiocb *req,
1802 bool compat)
1da177e4 1803{
84c4e1f8 1804 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1805 if (unlikely(!req->ki_filp))
7316b49c 1806 return -EBADF;
84c4e1f8 1807
88a6f18b 1808 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1809 struct eventfd_ctx *eventfd;
9c3060be
DL
1810 /*
1811 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1812 * instance of the file* now. The file descriptor must be
1813 * an eventfd() fd, and will be signaled for each completed
1814 * event using the eventfd_signal() function.
1815 */
74259703 1816 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1817 if (IS_ERR(eventfd))
18bfb9c6 1818 return PTR_ERR(eventfd);
7316b49c 1819
74259703 1820 req->ki_eventfd = eventfd;
9830f4be
GR
1821 }
1822
7316b49c 1823 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1824 pr_debug("EFAULT: aio_key\n");
7316b49c 1825 return -EFAULT;
1da177e4
LT
1826 }
1827
a9339b78
AV
1828 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1829 req->ki_res.data = iocb->aio_data;
1830 req->ki_res.res = 0;
1831 req->ki_res.res2 = 0;
1da177e4 1832
88a6f18b 1833 switch (iocb->aio_lio_opcode) {
89319d31 1834 case IOCB_CMD_PREAD:
7316b49c 1835 return aio_read(&req->rw, iocb, false, compat);
89319d31 1836 case IOCB_CMD_PWRITE:
7316b49c 1837 return aio_write(&req->rw, iocb, false, compat);
89319d31 1838 case IOCB_CMD_PREADV:
7316b49c 1839 return aio_read(&req->rw, iocb, true, compat);
89319d31 1840 case IOCB_CMD_PWRITEV:
7316b49c 1841 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1842 case IOCB_CMD_FSYNC:
7316b49c 1843 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1844 case IOCB_CMD_FDSYNC:
7316b49c 1845 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1846 case IOCB_CMD_POLL:
7316b49c 1847 return aio_poll(req, iocb);
89319d31 1848 default:
88a6f18b 1849 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1850 return -EINVAL;
89319d31 1851 }
1da177e4
LT
1852}
1853
88a6f18b
JA
1854static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1855 bool compat)
1856{
7316b49c 1857 struct aio_kiocb *req;
88a6f18b 1858 struct iocb iocb;
7316b49c 1859 int err;
88a6f18b
JA
1860
1861 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1862 return -EFAULT;
1863
7316b49c
AV
1864 /* enforce forwards compatibility on users */
1865 if (unlikely(iocb.aio_reserved2)) {
1866 pr_debug("EINVAL: reserve field set\n");
1867 return -EINVAL;
1868 }
1869
1870 /* prevent overflows */
1871 if (unlikely(
1872 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1873 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1874 ((ssize_t)iocb.aio_nbytes < 0)
1875 )) {
1876 pr_debug("EINVAL: overflow check\n");
1877 return -EINVAL;
1878 }
1879
1880 req = aio_get_req(ctx);
1881 if (unlikely(!req))
1882 return -EAGAIN;
1883
1884 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1885
1886 /* Done with the synchronous reference */
1887 iocb_put(req);
1888
1889 /*
1890 * If err is 0, we'd either done aio_complete() ourselves or have
1891 * arranged for that to be done asynchronously. Anything non-zero
1892 * means that we need to destroy req ourselves.
1893 */
1894 if (unlikely(err)) {
1895 iocb_destroy(req);
1896 put_reqs_available(ctx, 1);
1897 }
1898 return err;
88a6f18b
JA
1899}
1900
67ba049f
AV
1901/* sys_io_submit:
1902 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1903 * the number of iocbs queued. May return -EINVAL if the aio_context
1904 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1905 * *iocbpp[0] is not properly initialized, if the operation specified
1906 * is invalid for the file descriptor in the iocb. May fail with
1907 * -EFAULT if any of the data structures point to invalid data. May
1908 * fail with -EBADF if the file descriptor specified in the first
1909 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1910 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1911 * fail with -ENOSYS if not implemented.
1912 */
1913SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1914 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1915{
1916 struct kioctx *ctx;
1917 long ret = 0;
080d676d 1918 int i = 0;
9f5b9425 1919 struct blk_plug plug;
1da177e4
LT
1920
1921 if (unlikely(nr < 0))
1922 return -EINVAL;
1923
1da177e4
LT
1924 ctx = lookup_ioctx(ctx_id);
1925 if (unlikely(!ctx)) {
caf4167a 1926 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1927 return -EINVAL;
1928 }
1929
1da92779
AV
1930 if (nr > ctx->nr_events)
1931 nr = ctx->nr_events;
1932
a79d40e9
JA
1933 if (nr > AIO_PLUG_THRESHOLD)
1934 blk_start_plug(&plug);
67ba049f 1935 for (i = 0; i < nr; i++) {
1da177e4 1936 struct iocb __user *user_iocb;
1da177e4 1937
67ba049f 1938 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1939 ret = -EFAULT;
1940 break;
1941 }
1942
67ba049f 1943 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1944 if (ret)
1945 break;
1946 }
a79d40e9
JA
1947 if (nr > AIO_PLUG_THRESHOLD)
1948 blk_finish_plug(&plug);
1da177e4 1949
723be6e3 1950 percpu_ref_put(&ctx->users);
1da177e4
LT
1951 return i ? i : ret;
1952}
1953
c00d2c7e 1954#ifdef CONFIG_COMPAT
c00d2c7e 1955COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1956 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1957{
67ba049f
AV
1958 struct kioctx *ctx;
1959 long ret = 0;
1960 int i = 0;
1961 struct blk_plug plug;
c00d2c7e
AV
1962
1963 if (unlikely(nr < 0))
1964 return -EINVAL;
1965
67ba049f
AV
1966 ctx = lookup_ioctx(ctx_id);
1967 if (unlikely(!ctx)) {
1968 pr_debug("EINVAL: invalid context id\n");
1969 return -EINVAL;
1970 }
1971
1da92779
AV
1972 if (nr > ctx->nr_events)
1973 nr = ctx->nr_events;
1974
a79d40e9
JA
1975 if (nr > AIO_PLUG_THRESHOLD)
1976 blk_start_plug(&plug);
67ba049f
AV
1977 for (i = 0; i < nr; i++) {
1978 compat_uptr_t user_iocb;
1979
1980 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1981 ret = -EFAULT;
1982 break;
1983 }
1984
1985 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1986 if (ret)
1987 break;
1988 }
a79d40e9
JA
1989 if (nr > AIO_PLUG_THRESHOLD)
1990 blk_finish_plug(&plug);
67ba049f
AV
1991
1992 percpu_ref_put(&ctx->users);
1993 return i ? i : ret;
c00d2c7e
AV
1994}
1995#endif
1996
1da177e4
LT
1997/* sys_io_cancel:
1998 * Attempts to cancel an iocb previously passed to io_submit. If
1999 * the operation is successfully cancelled, the resulting event is
2000 * copied into the memory pointed to by result without being placed
2001 * into the completion queue and 0 is returned. May fail with
2002 * -EFAULT if any of the data structures pointed to are invalid.
2003 * May fail with -EINVAL if aio_context specified by ctx_id is
2004 * invalid. May fail with -EAGAIN if the iocb specified was not
2005 * cancelled. Will fail with -ENOSYS if not implemented.
2006 */
002c8976
HC
2007SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2008 struct io_event __user *, result)
1da177e4 2009{
1da177e4 2010 struct kioctx *ctx;
04b2fa9f 2011 struct aio_kiocb *kiocb;
888933f8 2012 int ret = -EINVAL;
1da177e4 2013 u32 key;
a9339b78 2014 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2015
f3a2752a 2016 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2017 return -EFAULT;
f3a2752a
CH
2018 if (unlikely(key != KIOCB_KEY))
2019 return -EINVAL;
1da177e4
LT
2020
2021 ctx = lookup_ioctx(ctx_id);
2022 if (unlikely(!ctx))
2023 return -EINVAL;
2024
2025 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2026 /* TODO: use a hash or array, this sucks. */
2027 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2028 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2029 ret = kiocb->ki_cancel(&kiocb->rw);
2030 list_del_init(&kiocb->ki_list);
2031 break;
2032 }
888933f8 2033 }
1da177e4
LT
2034 spin_unlock_irq(&ctx->ctx_lock);
2035
906b973c 2036 if (!ret) {
bec68faa
KO
2037 /*
2038 * The result argument is no longer used - the io_event is
2039 * always delivered via the ring buffer. -EINPROGRESS indicates
2040 * cancellation is progress:
906b973c 2041 */
bec68faa 2042 ret = -EINPROGRESS;
906b973c 2043 }
1da177e4 2044
723be6e3 2045 percpu_ref_put(&ctx->users);
1da177e4
LT
2046
2047 return ret;
2048}
2049
fa2e62a5
DD
2050static long do_io_getevents(aio_context_t ctx_id,
2051 long min_nr,
2052 long nr,
2053 struct io_event __user *events,
2054 struct timespec64 *ts)
2055{
2056 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2057 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2058 long ret = -EINVAL;
2059
2060 if (likely(ioctx)) {
2061 if (likely(min_nr <= nr && min_nr >= 0))
2062 ret = read_events(ioctx, min_nr, nr, events, until);
2063 percpu_ref_put(&ioctx->users);
2064 }
2065
2066 return ret;
2067}
2068
1da177e4
LT
2069/* io_getevents:
2070 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2071 * the completion queue for the aio_context specified by ctx_id. If
2072 * it succeeds, the number of read events is returned. May fail with
2073 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2074 * out of range, if timeout is out of range. May fail with -EFAULT
2075 * if any of the memory specified is invalid. May return 0 or
2076 * < min_nr if the timeout specified by timeout has elapsed
2077 * before sufficient events are available, where timeout == NULL
2078 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2079 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2080 */
3ca47e95 2081#ifdef CONFIG_64BIT
7a35397f 2082
002c8976
HC
2083SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2084 long, min_nr,
2085 long, nr,
2086 struct io_event __user *, events,
7a35397f 2087 struct __kernel_timespec __user *, timeout)
1da177e4 2088{
fa2e62a5 2089 struct timespec64 ts;
7a074e96
CH
2090 int ret;
2091
2092 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2093 return -EFAULT;
2094
2095 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2096 if (!ret && signal_pending(current))
2097 ret = -EINTR;
2098 return ret;
2099}
1da177e4 2100
7a35397f
DD
2101#endif
2102
9ba546c0
CH
2103struct __aio_sigset {
2104 const sigset_t __user *sigmask;
2105 size_t sigsetsize;
2106};
2107
7a074e96
CH
2108SYSCALL_DEFINE6(io_pgetevents,
2109 aio_context_t, ctx_id,
2110 long, min_nr,
2111 long, nr,
2112 struct io_event __user *, events,
7a35397f 2113 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2114 const struct __aio_sigset __user *, usig)
2115{
2116 struct __aio_sigset ksig = { NULL, };
7a074e96 2117 struct timespec64 ts;
97abc889 2118 bool interrupted;
7a074e96
CH
2119 int ret;
2120
2121 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2122 return -EFAULT;
2123
2124 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2125 return -EFAULT;
2126
b772434b 2127 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2128 if (ret)
2129 return ret;
7a074e96
CH
2130
2131 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2132
2133 interrupted = signal_pending(current);
b772434b 2134 restore_saved_sigmask_unless(interrupted);
97abc889 2135 if (interrupted && !ret)
7a35397f 2136 ret = -ERESTARTNOHAND;
7a074e96 2137
7a35397f
DD
2138 return ret;
2139}
2140
2141#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2142
2143SYSCALL_DEFINE6(io_pgetevents_time32,
2144 aio_context_t, ctx_id,
2145 long, min_nr,
2146 long, nr,
2147 struct io_event __user *, events,
2148 struct old_timespec32 __user *, timeout,
2149 const struct __aio_sigset __user *, usig)
2150{
2151 struct __aio_sigset ksig = { NULL, };
7a35397f 2152 struct timespec64 ts;
97abc889 2153 bool interrupted;
7a35397f
DD
2154 int ret;
2155
2156 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2157 return -EFAULT;
2158
2159 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2160 return -EFAULT;
2161
ded653cc 2162
b772434b 2163 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2164 if (ret)
2165 return ret;
7a074e96
CH
2166
2167 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2168
2169 interrupted = signal_pending(current);
b772434b 2170 restore_saved_sigmask_unless(interrupted);
97abc889 2171 if (interrupted && !ret)
854a6ed5 2172 ret = -ERESTARTNOHAND;
fa2e62a5 2173
7a074e96 2174 return ret;
1da177e4 2175}
c00d2c7e 2176
7a35397f
DD
2177#endif
2178
2179#if defined(CONFIG_COMPAT_32BIT_TIME)
2180
8dabe724
AB
2181SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2182 __s32, min_nr,
2183 __s32, nr,
2184 struct io_event __user *, events,
2185 struct old_timespec32 __user *, timeout)
c00d2c7e 2186{
fa2e62a5 2187 struct timespec64 t;
7a074e96
CH
2188 int ret;
2189
9afc5eee 2190 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2191 return -EFAULT;
2192
2193 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2194 if (!ret && signal_pending(current))
2195 ret = -EINTR;
2196 return ret;
2197}
2198
7a35397f
DD
2199#endif
2200
2201#ifdef CONFIG_COMPAT
c00d2c7e 2202
7a074e96 2203struct __compat_aio_sigset {
97eba80f 2204 compat_uptr_t sigmask;
7a074e96
CH
2205 compat_size_t sigsetsize;
2206};
2207
7a35397f
DD
2208#if defined(CONFIG_COMPAT_32BIT_TIME)
2209
7a074e96
CH
2210COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2211 compat_aio_context_t, ctx_id,
2212 compat_long_t, min_nr,
2213 compat_long_t, nr,
2214 struct io_event __user *, events,
9afc5eee 2215 struct old_timespec32 __user *, timeout,
7a074e96
CH
2216 const struct __compat_aio_sigset __user *, usig)
2217{
97eba80f 2218 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2219 struct timespec64 t;
97abc889 2220 bool interrupted;
7a074e96
CH
2221 int ret;
2222
9afc5eee 2223 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2224 return -EFAULT;
2225
2226 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2227 return -EFAULT;
2228
97eba80f 2229 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2230 if (ret)
2231 return ret;
c00d2c7e 2232
7a074e96 2233 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2234
2235 interrupted = signal_pending(current);
b772434b 2236 restore_saved_sigmask_unless(interrupted);
97abc889 2237 if (interrupted && !ret)
854a6ed5 2238 ret = -ERESTARTNOHAND;
fa2e62a5 2239
7a074e96 2240 return ret;
c00d2c7e 2241}
7a35397f
DD
2242
2243#endif
2244
2245COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2246 compat_aio_context_t, ctx_id,
2247 compat_long_t, min_nr,
2248 compat_long_t, nr,
2249 struct io_event __user *, events,
2250 struct __kernel_timespec __user *, timeout,
2251 const struct __compat_aio_sigset __user *, usig)
2252{
97eba80f 2253 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2254 struct timespec64 t;
97abc889 2255 bool interrupted;
7a35397f
DD
2256 int ret;
2257
2258 if (timeout && get_timespec64(&t, timeout))
2259 return -EFAULT;
2260
2261 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2262 return -EFAULT;
2263
97eba80f 2264 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2265 if (ret)
2266 return ret;
2267
2268 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2269
2270 interrupted = signal_pending(current);
b772434b 2271 restore_saved_sigmask_unless(interrupted);
97abc889 2272 if (interrupted && !ret)
7a35397f 2273 ret = -ERESTARTNOHAND;
fa2e62a5 2274
7a074e96 2275 return ret;
c00d2c7e
AV
2276}
2277#endif
This page took 1.478607 seconds and 4 git commands to generate.