]> Git Repo - linux.git/blame - fs/btrfs/compression.c
mm: defer ZONE_DEVICE page initialization to the point where we init pgmap
[linux.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
c8b97818 15#include <linux/backing-dev.h>
c8b97818 16#include <linux/writeback.h>
5a0e3ad6 17#include <linux/slab.h>
fe308533 18#include <linux/sched/mm.h>
19562430 19#include <linux/log2.h>
c8b97818
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
24#include "volumes.h"
25#include "ordered-data.h"
c8b97818
CM
26#include "compression.h"
27#include "extent_io.h"
28#include "extent_map.h"
29
e128f9c3
DS
30static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33{
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43}
44
8140dc30 45static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 46
2ff7e61e 47static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
48 unsigned long disk_size)
49{
0b246afa 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 51
d20f7043 52 return sizeof(struct compressed_bio) +
0b246afa 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
54}
55
f898ac6a 56static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
57 struct compressed_bio *cb,
58 u64 disk_start)
59{
60 int ret;
d20f7043
CM
61 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
f898ac6a 67 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
68 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
7ac687d9 74 kaddr = kmap_atomic(page);
09cbfeaf 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 76 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 77 kunmap_atomic(kaddr);
d20f7043
CM
78
79 if (csum != *cb_sum) {
f898ac6a 80 btrfs_print_data_csum_error(inode, disk_start, csum,
0970a22e 81 *cb_sum, cb->mirror_num);
d20f7043
CM
82 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89fail:
90 return ret;
91}
92
c8b97818
CM
93/* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
4246a0b6 103static void end_compressed_bio_read(struct bio *bio)
c8b97818 104{
c8b97818
CM
105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
cf1167d5 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 110 int ret = 0;
c8b97818 111
4e4cbee9 112 if (bio->bi_status)
c8b97818
CM
113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
a50299ae 118 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
119 goto out;
120
cf1167d5
LB
121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
e6311f24
LB
129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
d20f7043 136 inode = cb->inode;
f898ac6a 137 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 138 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
139 if (ret)
140 goto csum_failed;
141
c8b97818
CM
142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
8140dc30
AJ
145 ret = btrfs_decompress_bio(cb);
146
d20f7043 147csum_failed:
c8b97818
CM
148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
09cbfeaf 156 put_page(page);
c8b97818
CM
157 }
158
159 /* do io completion on the original bio */
771ed689 160 if (cb->errors) {
c8b97818 161 bio_io_error(cb->orig_bio);
d20f7043 162 } else {
2c30c71b
KO
163 int i;
164 struct bio_vec *bvec;
d20f7043
CM
165
166 /*
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
169 */
c09abff8 170 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 171 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 172 SetPageChecked(bvec->bv_page);
2c30c71b 173
4246a0b6 174 bio_endio(cb->orig_bio);
d20f7043 175 }
c8b97818
CM
176
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180out:
181 bio_put(bio);
182}
183
184/*
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
187 */
7bdcefc1
FM
188static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
c8b97818 190{
09cbfeaf
KS
191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
197
7bdcefc1
FM
198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
200
d397712b 201 while (nr_pages > 0) {
c8b97818 202 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
209 }
210 for (i = 0; i < ret; i++) {
7bdcefc1
FM
211 if (cb->errors)
212 SetPageError(pages[i]);
c8b97818 213 end_page_writeback(pages[i]);
09cbfeaf 214 put_page(pages[i]);
c8b97818
CM
215 }
216 nr_pages -= ret;
217 index += ret;
218 }
219 /* the inode may be gone now */
c8b97818
CM
220}
221
222/*
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
226 *
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
229 */
4246a0b6 230static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
231{
232 struct extent_io_tree *tree;
233 struct compressed_bio *cb = bio->bi_private;
234 struct inode *inode;
235 struct page *page;
236 unsigned long index;
237
4e4cbee9 238 if (bio->bi_status)
c8b97818
CM
239 cb->errors = 1;
240
241 /* if there are more bios still pending for this compressed
242 * extent, just exit
243 */
a50299ae 244 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
245 goto out;
246
247 /* ok, we're the last bio for this extent, step one is to
248 * call back into the FS and do all the end_io operations
249 */
250 inode = cb->inode;
251 tree = &BTRFS_I(inode)->io_tree;
70b99e69 252 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
253 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
254 cb->start,
255 cb->start + cb->len - 1,
7bdcefc1 256 NULL,
2dbe0c77
AJ
257 bio->bi_status ?
258 BLK_STS_OK : BLK_STS_NOTSUPP);
70b99e69 259 cb->compressed_pages[0]->mapping = NULL;
c8b97818 260
7bdcefc1 261 end_compressed_writeback(inode, cb);
c8b97818
CM
262 /* note, our inode could be gone now */
263
264 /*
265 * release the compressed pages, these came from alloc_page and
266 * are not attached to the inode at all
267 */
268 index = 0;
269 for (index = 0; index < cb->nr_pages; index++) {
270 page = cb->compressed_pages[index];
271 page->mapping = NULL;
09cbfeaf 272 put_page(page);
c8b97818
CM
273 }
274
275 /* finally free the cb struct */
276 kfree(cb->compressed_pages);
277 kfree(cb);
278out:
279 bio_put(bio);
280}
281
282/*
283 * worker function to build and submit bios for previously compressed pages.
284 * The corresponding pages in the inode should be marked for writeback
285 * and the compressed pages should have a reference on them for dropping
286 * when the IO is complete.
287 *
288 * This also checksums the file bytes and gets things ready for
289 * the end io hooks.
290 */
4e4cbee9 291blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
c8b97818
CM
292 unsigned long len, u64 disk_start,
293 unsigned long compressed_len,
294 struct page **compressed_pages,
f82b7359
LB
295 unsigned long nr_pages,
296 unsigned int write_flags)
c8b97818 297{
0b246afa 298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 299 struct bio *bio = NULL;
c8b97818
CM
300 struct compressed_bio *cb;
301 unsigned long bytes_left;
306e16ce 302 int pg_index = 0;
c8b97818
CM
303 struct page *page;
304 u64 first_byte = disk_start;
305 struct block_device *bdev;
4e4cbee9 306 blk_status_t ret;
e55179b3 307 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 308
09cbfeaf 309 WARN_ON(start & ((u64)PAGE_SIZE - 1));
2ff7e61e 310 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 311 if (!cb)
4e4cbee9 312 return BLK_STS_RESOURCE;
a50299ae 313 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
314 cb->errors = 0;
315 cb->inode = inode;
316 cb->start = start;
317 cb->len = len;
d20f7043 318 cb->mirror_num = 0;
c8b97818
CM
319 cb->compressed_pages = compressed_pages;
320 cb->compressed_len = compressed_len;
321 cb->orig_bio = NULL;
322 cb->nr_pages = nr_pages;
323
0b246afa 324 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 325
c821e7f3 326 bio = btrfs_bio_alloc(bdev, first_byte);
f82b7359 327 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
328 bio->bi_private = cb;
329 bio->bi_end_io = end_compressed_bio_write;
a50299ae 330 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
331
332 /* create and submit bios for the compressed pages */
333 bytes_left = compressed_len;
306e16ce 334 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9
CH
335 int submit = 0;
336
306e16ce 337 page = compressed_pages[pg_index];
c8b97818 338 page->mapping = inode->i_mapping;
4f024f37 339 if (bio->bi_iter.bi_size)
00032d38 340 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
c8b97818 341
70b99e69 342 page->mapping = NULL;
4e4cbee9 343 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
09cbfeaf 344 PAGE_SIZE) {
af09abfe
CM
345 /*
346 * inc the count before we submit the bio so
347 * we know the end IO handler won't happen before
348 * we inc the count. Otherwise, the cb might get
349 * freed before we're done setting it up
350 */
a50299ae 351 refcount_inc(&cb->pending_bios);
0b246afa
JM
352 ret = btrfs_bio_wq_end_io(fs_info, bio,
353 BTRFS_WQ_ENDIO_DATA);
79787eaa 354 BUG_ON(ret); /* -ENOMEM */
c8b97818 355
e55179b3 356 if (!skip_sum) {
2ff7e61e 357 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 358 BUG_ON(ret); /* -ENOMEM */
e55179b3 359 }
d20f7043 360
2ff7e61e 361 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 362 if (ret) {
4e4cbee9 363 bio->bi_status = ret;
f5daf2c7
LB
364 bio_endio(bio);
365 }
c8b97818 366
c821e7f3 367 bio = btrfs_bio_alloc(bdev, first_byte);
f82b7359 368 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
369 bio->bi_private = cb;
370 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 371 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 372 }
09cbfeaf 373 if (bytes_left < PAGE_SIZE) {
0b246afa 374 btrfs_info(fs_info,
efe120a0 375 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
376 bytes_left, cb->compressed_len, cb->nr_pages);
377 }
09cbfeaf
KS
378 bytes_left -= PAGE_SIZE;
379 first_byte += PAGE_SIZE;
771ed689 380 cond_resched();
c8b97818 381 }
c8b97818 382
0b246afa 383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 384 BUG_ON(ret); /* -ENOMEM */
c8b97818 385
e55179b3 386 if (!skip_sum) {
2ff7e61e 387 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 388 BUG_ON(ret); /* -ENOMEM */
e55179b3 389 }
d20f7043 390
2ff7e61e 391 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 392 if (ret) {
4e4cbee9 393 bio->bi_status = ret;
f5daf2c7
LB
394 bio_endio(bio);
395 }
c8b97818 396
c8b97818
CM
397 return 0;
398}
399
2a4d0c90
CH
400static u64 bio_end_offset(struct bio *bio)
401{
c45a8f2d 402 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
403
404 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
405}
406
771ed689
CM
407static noinline int add_ra_bio_pages(struct inode *inode,
408 u64 compressed_end,
409 struct compressed_bio *cb)
410{
411 unsigned long end_index;
306e16ce 412 unsigned long pg_index;
771ed689
CM
413 u64 last_offset;
414 u64 isize = i_size_read(inode);
415 int ret;
416 struct page *page;
417 unsigned long nr_pages = 0;
418 struct extent_map *em;
419 struct address_space *mapping = inode->i_mapping;
771ed689
CM
420 struct extent_map_tree *em_tree;
421 struct extent_io_tree *tree;
422 u64 end;
423 int misses = 0;
424
2a4d0c90 425 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
426 em_tree = &BTRFS_I(inode)->extent_tree;
427 tree = &BTRFS_I(inode)->io_tree;
428
429 if (isize == 0)
430 return 0;
431
09cbfeaf 432 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 433
d397712b 434 while (last_offset < compressed_end) {
09cbfeaf 435 pg_index = last_offset >> PAGE_SHIFT;
771ed689 436
306e16ce 437 if (pg_index > end_index)
771ed689
CM
438 break;
439
440 rcu_read_lock();
b93b0163 441 page = radix_tree_lookup(&mapping->i_pages, pg_index);
771ed689 442 rcu_read_unlock();
0cd6144a 443 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
444 misses++;
445 if (misses > 4)
446 break;
447 goto next;
448 }
449
c62d2555
MH
450 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
451 ~__GFP_FS));
771ed689
CM
452 if (!page)
453 break;
454
c62d2555 455 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 456 put_page(page);
771ed689
CM
457 goto next;
458 }
459
09cbfeaf 460 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
461 /*
462 * at this point, we have a locked page in the page cache
463 * for these bytes in the file. But, we have to make
464 * sure they map to this compressed extent on disk.
465 */
466 set_page_extent_mapped(page);
d0082371 467 lock_extent(tree, last_offset, end);
890871be 468 read_lock(&em_tree->lock);
771ed689 469 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 470 PAGE_SIZE);
890871be 471 read_unlock(&em_tree->lock);
771ed689
CM
472
473 if (!em || last_offset < em->start ||
09cbfeaf 474 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 475 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 476 free_extent_map(em);
d0082371 477 unlock_extent(tree, last_offset, end);
771ed689 478 unlock_page(page);
09cbfeaf 479 put_page(page);
771ed689
CM
480 break;
481 }
482 free_extent_map(em);
483
484 if (page->index == end_index) {
485 char *userpage;
09cbfeaf 486 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
487
488 if (zero_offset) {
489 int zeros;
09cbfeaf 490 zeros = PAGE_SIZE - zero_offset;
7ac687d9 491 userpage = kmap_atomic(page);
771ed689
CM
492 memset(userpage + zero_offset, 0, zeros);
493 flush_dcache_page(page);
7ac687d9 494 kunmap_atomic(userpage);
771ed689
CM
495 }
496 }
497
498 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 499 PAGE_SIZE, 0);
771ed689 500
09cbfeaf 501 if (ret == PAGE_SIZE) {
771ed689 502 nr_pages++;
09cbfeaf 503 put_page(page);
771ed689 504 } else {
d0082371 505 unlock_extent(tree, last_offset, end);
771ed689 506 unlock_page(page);
09cbfeaf 507 put_page(page);
771ed689
CM
508 break;
509 }
510next:
09cbfeaf 511 last_offset += PAGE_SIZE;
771ed689 512 }
771ed689
CM
513 return 0;
514}
515
c8b97818
CM
516/*
517 * for a compressed read, the bio we get passed has all the inode pages
518 * in it. We don't actually do IO on those pages but allocate new ones
519 * to hold the compressed pages on disk.
520 *
4f024f37 521 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 522 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
523 *
524 * After the compressed pages are read, we copy the bytes into the
525 * bio we were passed and then call the bio end_io calls
526 */
4e4cbee9 527blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
528 int mirror_num, unsigned long bio_flags)
529{
0b246afa 530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
531 struct extent_map_tree *em_tree;
532 struct compressed_bio *cb;
c8b97818
CM
533 unsigned long compressed_len;
534 unsigned long nr_pages;
306e16ce 535 unsigned long pg_index;
c8b97818
CM
536 struct page *page;
537 struct block_device *bdev;
538 struct bio *comp_bio;
4f024f37 539 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
540 u64 em_len;
541 u64 em_start;
c8b97818 542 struct extent_map *em;
4e4cbee9 543 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 544 int faili = 0;
d20f7043 545 u32 *sums;
c8b97818 546
c8b97818
CM
547 em_tree = &BTRFS_I(inode)->extent_tree;
548
549 /* we need the actual starting offset of this extent in the file */
890871be 550 read_lock(&em_tree->lock);
c8b97818 551 em = lookup_extent_mapping(em_tree,
263663cd 552 page_offset(bio_first_page_all(bio)),
09cbfeaf 553 PAGE_SIZE);
890871be 554 read_unlock(&em_tree->lock);
285190d9 555 if (!em)
4e4cbee9 556 return BLK_STS_IOERR;
c8b97818 557
d20f7043 558 compressed_len = em->block_len;
2ff7e61e 559 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 560 if (!cb)
561 goto out;
562
a50299ae 563 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
564 cb->errors = 0;
565 cb->inode = inode;
d20f7043
CM
566 cb->mirror_num = mirror_num;
567 sums = &cb->sums;
c8b97818 568
ff5b7ee3 569 cb->start = em->orig_start;
e04ca626
CM
570 em_len = em->len;
571 em_start = em->start;
d20f7043 572
c8b97818 573 free_extent_map(em);
e04ca626 574 em = NULL;
c8b97818 575
81381053 576 cb->len = bio->bi_iter.bi_size;
c8b97818 577 cb->compressed_len = compressed_len;
261507a0 578 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
579 cb->orig_bio = bio;
580
09cbfeaf 581 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 582 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 583 GFP_NOFS);
6b82ce8d 584 if (!cb->compressed_pages)
585 goto fail1;
586
0b246afa 587 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 588
306e16ce
DS
589 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
590 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 591 __GFP_HIGHMEM);
15e3004a
JB
592 if (!cb->compressed_pages[pg_index]) {
593 faili = pg_index - 1;
0e9350de 594 ret = BLK_STS_RESOURCE;
6b82ce8d 595 goto fail2;
15e3004a 596 }
c8b97818 597 }
15e3004a 598 faili = nr_pages - 1;
c8b97818
CM
599 cb->nr_pages = nr_pages;
600
7f042a83 601 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 602
771ed689 603 /* include any pages we added in add_ra-bio_pages */
81381053 604 cb->len = bio->bi_iter.bi_size;
771ed689 605
c821e7f3 606 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
ebcc3263 607 comp_bio->bi_opf = REQ_OP_READ;
c8b97818
CM
608 comp_bio->bi_private = cb;
609 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 610 refcount_set(&cb->pending_bios, 1);
c8b97818 611
306e16ce 612 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
4e4cbee9
CH
613 int submit = 0;
614
306e16ce 615 page = cb->compressed_pages[pg_index];
c8b97818 616 page->mapping = inode->i_mapping;
09cbfeaf 617 page->index = em_start >> PAGE_SHIFT;
d20f7043 618
4f024f37 619 if (comp_bio->bi_iter.bi_size)
00032d38
DS
620 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
621 comp_bio, 0);
c8b97818 622
70b99e69 623 page->mapping = NULL;
4e4cbee9 624 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
09cbfeaf 625 PAGE_SIZE) {
0b246afa
JM
626 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
627 BTRFS_WQ_ENDIO_DATA);
79787eaa 628 BUG_ON(ret); /* -ENOMEM */
c8b97818 629
af09abfe
CM
630 /*
631 * inc the count before we submit the bio so
632 * we know the end IO handler won't happen before
633 * we inc the count. Otherwise, the cb might get
634 * freed before we're done setting it up
635 */
a50299ae 636 refcount_inc(&cb->pending_bios);
af09abfe 637
6cbff00f 638 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e
JM
639 ret = btrfs_lookup_bio_sums(inode, comp_bio,
640 sums);
79787eaa 641 BUG_ON(ret); /* -ENOMEM */
d20f7043 642 }
ed6078f7 643 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 644 fs_info->sectorsize);
d20f7043 645
2ff7e61e 646 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 647 if (ret) {
4e4cbee9 648 comp_bio->bi_status = ret;
4246a0b6
CH
649 bio_endio(comp_bio);
650 }
c8b97818 651
c821e7f3 652 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
ebcc3263 653 comp_bio->bi_opf = REQ_OP_READ;
771ed689
CM
654 comp_bio->bi_private = cb;
655 comp_bio->bi_end_io = end_compressed_bio_read;
656
09cbfeaf 657 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 658 }
09cbfeaf 659 cur_disk_byte += PAGE_SIZE;
c8b97818 660 }
c8b97818 661
0b246afa 662 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 663 BUG_ON(ret); /* -ENOMEM */
c8b97818 664
c2db1073 665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 666 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 667 BUG_ON(ret); /* -ENOMEM */
c2db1073 668 }
d20f7043 669
2ff7e61e 670 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 671 if (ret) {
4e4cbee9 672 comp_bio->bi_status = ret;
4246a0b6
CH
673 bio_endio(comp_bio);
674 }
c8b97818 675
c8b97818 676 return 0;
6b82ce8d 677
678fail2:
15e3004a
JB
679 while (faili >= 0) {
680 __free_page(cb->compressed_pages[faili]);
681 faili--;
682 }
6b82ce8d 683
684 kfree(cb->compressed_pages);
685fail1:
686 kfree(cb);
687out:
688 free_extent_map(em);
689 return ret;
c8b97818 690}
261507a0 691
17b5a6c1
TT
692/*
693 * Heuristic uses systematic sampling to collect data from the input data
694 * range, the logic can be tuned by the following constants:
695 *
696 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
697 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
698 */
699#define SAMPLING_READ_SIZE (16)
700#define SAMPLING_INTERVAL (256)
701
702/*
703 * For statistical analysis of the input data we consider bytes that form a
704 * Galois Field of 256 objects. Each object has an attribute count, ie. how
705 * many times the object appeared in the sample.
706 */
707#define BUCKET_SIZE (256)
708
709/*
710 * The size of the sample is based on a statistical sampling rule of thumb.
711 * The common way is to perform sampling tests as long as the number of
712 * elements in each cell is at least 5.
713 *
714 * Instead of 5, we choose 32 to obtain more accurate results.
715 * If the data contain the maximum number of symbols, which is 256, we obtain a
716 * sample size bound by 8192.
717 *
718 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
719 * from up to 512 locations.
720 */
721#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
722 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
723
724struct bucket_item {
725 u32 count;
726};
4e439a0b
TT
727
728struct heuristic_ws {
17b5a6c1
TT
729 /* Partial copy of input data */
730 u8 *sample;
a440d48c 731 u32 sample_size;
17b5a6c1
TT
732 /* Buckets store counters for each byte value */
733 struct bucket_item *bucket;
440c840c
TT
734 /* Sorting buffer */
735 struct bucket_item *bucket_b;
4e439a0b
TT
736 struct list_head list;
737};
738
739static void free_heuristic_ws(struct list_head *ws)
740{
741 struct heuristic_ws *workspace;
742
743 workspace = list_entry(ws, struct heuristic_ws, list);
744
17b5a6c1
TT
745 kvfree(workspace->sample);
746 kfree(workspace->bucket);
440c840c 747 kfree(workspace->bucket_b);
4e439a0b
TT
748 kfree(workspace);
749}
750
751static struct list_head *alloc_heuristic_ws(void)
752{
753 struct heuristic_ws *ws;
754
755 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
756 if (!ws)
757 return ERR_PTR(-ENOMEM);
758
17b5a6c1
TT
759 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
760 if (!ws->sample)
761 goto fail;
762
763 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
764 if (!ws->bucket)
765 goto fail;
4e439a0b 766
440c840c
TT
767 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
768 if (!ws->bucket_b)
769 goto fail;
770
17b5a6c1 771 INIT_LIST_HEAD(&ws->list);
4e439a0b 772 return &ws->list;
17b5a6c1
TT
773fail:
774 free_heuristic_ws(&ws->list);
775 return ERR_PTR(-ENOMEM);
4e439a0b
TT
776}
777
778struct workspaces_list {
d9187649
BL
779 struct list_head idle_ws;
780 spinlock_t ws_lock;
6ac10a6a
DS
781 /* Number of free workspaces */
782 int free_ws;
783 /* Total number of allocated workspaces */
784 atomic_t total_ws;
785 /* Waiters for a free workspace */
d9187649 786 wait_queue_head_t ws_wait;
4e439a0b
TT
787};
788
789static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
790
791static struct workspaces_list btrfs_heuristic_ws;
261507a0 792
e8c9f186 793static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 794 &btrfs_zlib_compress,
a6fa6fae 795 &btrfs_lzo_compress,
5c1aab1d 796 &btrfs_zstd_compress,
261507a0
LZ
797};
798
143bede5 799void __init btrfs_init_compress(void)
261507a0 800{
4e439a0b 801 struct list_head *workspace;
261507a0
LZ
802 int i;
803
4e439a0b
TT
804 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
805 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
806 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
807 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
f77dd0d6 808
4e439a0b
TT
809 workspace = alloc_heuristic_ws();
810 if (IS_ERR(workspace)) {
811 pr_warn(
812 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
813 } else {
814 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
815 btrfs_heuristic_ws.free_ws = 1;
816 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
817 }
818
819 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
820 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
821 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 822 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 823 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
824
825 /*
826 * Preallocate one workspace for each compression type so
827 * we can guarantee forward progress in the worst case
828 */
829 workspace = btrfs_compress_op[i]->alloc_workspace();
830 if (IS_ERR(workspace)) {
62e85577 831 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
832 } else {
833 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
834 btrfs_comp_ws[i].free_ws = 1;
835 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
836 }
261507a0 837 }
261507a0
LZ
838}
839
840/*
e721e49d
DS
841 * This finds an available workspace or allocates a new one.
842 * If it's not possible to allocate a new one, waits until there's one.
843 * Preallocation makes a forward progress guarantees and we do not return
844 * errors.
261507a0 845 */
4e439a0b 846static struct list_head *__find_workspace(int type, bool heuristic)
261507a0
LZ
847{
848 struct list_head *workspace;
849 int cpus = num_online_cpus();
850 int idx = type - 1;
fe308533 851 unsigned nofs_flag;
4e439a0b
TT
852 struct list_head *idle_ws;
853 spinlock_t *ws_lock;
854 atomic_t *total_ws;
855 wait_queue_head_t *ws_wait;
856 int *free_ws;
857
858 if (heuristic) {
859 idle_ws = &btrfs_heuristic_ws.idle_ws;
860 ws_lock = &btrfs_heuristic_ws.ws_lock;
861 total_ws = &btrfs_heuristic_ws.total_ws;
862 ws_wait = &btrfs_heuristic_ws.ws_wait;
863 free_ws = &btrfs_heuristic_ws.free_ws;
864 } else {
865 idle_ws = &btrfs_comp_ws[idx].idle_ws;
866 ws_lock = &btrfs_comp_ws[idx].ws_lock;
867 total_ws = &btrfs_comp_ws[idx].total_ws;
868 ws_wait = &btrfs_comp_ws[idx].ws_wait;
869 free_ws = &btrfs_comp_ws[idx].free_ws;
870 }
261507a0 871
261507a0 872again:
d9187649
BL
873 spin_lock(ws_lock);
874 if (!list_empty(idle_ws)) {
875 workspace = idle_ws->next;
261507a0 876 list_del(workspace);
6ac10a6a 877 (*free_ws)--;
d9187649 878 spin_unlock(ws_lock);
261507a0
LZ
879 return workspace;
880
881 }
6ac10a6a 882 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
883 DEFINE_WAIT(wait);
884
d9187649
BL
885 spin_unlock(ws_lock);
886 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 887 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 888 schedule();
d9187649 889 finish_wait(ws_wait, &wait);
261507a0
LZ
890 goto again;
891 }
6ac10a6a 892 atomic_inc(total_ws);
d9187649 893 spin_unlock(ws_lock);
261507a0 894
fe308533
DS
895 /*
896 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
897 * to turn it off here because we might get called from the restricted
898 * context of btrfs_compress_bio/btrfs_compress_pages
899 */
900 nofs_flag = memalloc_nofs_save();
4e439a0b
TT
901 if (heuristic)
902 workspace = alloc_heuristic_ws();
903 else
904 workspace = btrfs_compress_op[idx]->alloc_workspace();
fe308533
DS
905 memalloc_nofs_restore(nofs_flag);
906
261507a0 907 if (IS_ERR(workspace)) {
6ac10a6a 908 atomic_dec(total_ws);
d9187649 909 wake_up(ws_wait);
e721e49d
DS
910
911 /*
912 * Do not return the error but go back to waiting. There's a
913 * workspace preallocated for each type and the compression
914 * time is bounded so we get to a workspace eventually. This
915 * makes our caller's life easier.
52356716
DS
916 *
917 * To prevent silent and low-probability deadlocks (when the
918 * initial preallocation fails), check if there are any
919 * workspaces at all.
e721e49d 920 */
52356716
DS
921 if (atomic_read(total_ws) == 0) {
922 static DEFINE_RATELIMIT_STATE(_rs,
923 /* once per minute */ 60 * HZ,
924 /* no burst */ 1);
925
926 if (__ratelimit(&_rs)) {
ab8d0fc4 927 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
928 }
929 }
e721e49d 930 goto again;
261507a0
LZ
931 }
932 return workspace;
933}
934
4e439a0b
TT
935static struct list_head *find_workspace(int type)
936{
937 return __find_workspace(type, false);
938}
939
261507a0
LZ
940/*
941 * put a workspace struct back on the list or free it if we have enough
942 * idle ones sitting around
943 */
4e439a0b
TT
944static void __free_workspace(int type, struct list_head *workspace,
945 bool heuristic)
261507a0
LZ
946{
947 int idx = type - 1;
4e439a0b
TT
948 struct list_head *idle_ws;
949 spinlock_t *ws_lock;
950 atomic_t *total_ws;
951 wait_queue_head_t *ws_wait;
952 int *free_ws;
953
954 if (heuristic) {
955 idle_ws = &btrfs_heuristic_ws.idle_ws;
956 ws_lock = &btrfs_heuristic_ws.ws_lock;
957 total_ws = &btrfs_heuristic_ws.total_ws;
958 ws_wait = &btrfs_heuristic_ws.ws_wait;
959 free_ws = &btrfs_heuristic_ws.free_ws;
960 } else {
961 idle_ws = &btrfs_comp_ws[idx].idle_ws;
962 ws_lock = &btrfs_comp_ws[idx].ws_lock;
963 total_ws = &btrfs_comp_ws[idx].total_ws;
964 ws_wait = &btrfs_comp_ws[idx].ws_wait;
965 free_ws = &btrfs_comp_ws[idx].free_ws;
966 }
d9187649
BL
967
968 spin_lock(ws_lock);
26b28dce 969 if (*free_ws <= num_online_cpus()) {
d9187649 970 list_add(workspace, idle_ws);
6ac10a6a 971 (*free_ws)++;
d9187649 972 spin_unlock(ws_lock);
261507a0
LZ
973 goto wake;
974 }
d9187649 975 spin_unlock(ws_lock);
261507a0 976
4e439a0b
TT
977 if (heuristic)
978 free_heuristic_ws(workspace);
979 else
980 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 981 atomic_dec(total_ws);
261507a0 982wake:
093258e6 983 cond_wake_up(ws_wait);
261507a0
LZ
984}
985
4e439a0b
TT
986static void free_workspace(int type, struct list_head *ws)
987{
988 return __free_workspace(type, ws, false);
989}
990
261507a0
LZ
991/*
992 * cleanup function for module exit
993 */
994static void free_workspaces(void)
995{
996 struct list_head *workspace;
997 int i;
998
4e439a0b
TT
999 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1000 workspace = btrfs_heuristic_ws.idle_ws.next;
1001 list_del(workspace);
1002 free_heuristic_ws(workspace);
1003 atomic_dec(&btrfs_heuristic_ws.total_ws);
1004 }
1005
261507a0 1006 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
1007 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1008 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
1009 list_del(workspace);
1010 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 1011 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
1012 }
1013 }
1014}
1015
1016/*
38c31464
DS
1017 * Given an address space and start and length, compress the bytes into @pages
1018 * that are allocated on demand.
261507a0 1019 *
f51d2b59
DS
1020 * @type_level is encoded algorithm and level, where level 0 means whatever
1021 * default the algorithm chooses and is opaque here;
1022 * - compression algo are 0-3
1023 * - the level are bits 4-7
1024 *
4d3a800e
DS
1025 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1026 * and returns number of actually allocated pages
261507a0 1027 *
38c31464
DS
1028 * @total_in is used to return the number of bytes actually read. It
1029 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1030 * ran out of room in the pages array or because we cross the
1031 * max_out threshold.
1032 *
38c31464
DS
1033 * @total_out is an in/out parameter, must be set to the input length and will
1034 * be also used to return the total number of compressed bytes
261507a0 1035 *
38c31464 1036 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
1037 * stuff into pages
1038 */
f51d2b59 1039int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1040 u64 start, struct page **pages,
261507a0
LZ
1041 unsigned long *out_pages,
1042 unsigned long *total_in,
e5d74902 1043 unsigned long *total_out)
261507a0
LZ
1044{
1045 struct list_head *workspace;
1046 int ret;
f51d2b59 1047 int type = type_level & 0xF;
261507a0
LZ
1048
1049 workspace = find_workspace(type);
261507a0 1050
f51d2b59 1051 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
261507a0 1052 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
38c31464 1053 start, pages,
4d3a800e 1054 out_pages,
e5d74902 1055 total_in, total_out);
261507a0
LZ
1056 free_workspace(type, workspace);
1057 return ret;
1058}
1059
1060/*
1061 * pages_in is an array of pages with compressed data.
1062 *
1063 * disk_start is the starting logical offset of this array in the file
1064 *
974b1adc 1065 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1066 *
1067 * srclen is the number of bytes in pages_in
1068 *
1069 * The basic idea is that we have a bio that was created by readpages.
1070 * The pages in the bio are for the uncompressed data, and they may not
1071 * be contiguous. They all correspond to the range of bytes covered by
1072 * the compressed extent.
1073 */
8140dc30 1074static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1075{
1076 struct list_head *workspace;
1077 int ret;
8140dc30 1078 int type = cb->compress_type;
261507a0
LZ
1079
1080 workspace = find_workspace(type);
e1ddce71 1081 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
261507a0 1082 free_workspace(type, workspace);
e1ddce71 1083
261507a0
LZ
1084 return ret;
1085}
1086
1087/*
1088 * a less complex decompression routine. Our compressed data fits in a
1089 * single page, and we want to read a single page out of it.
1090 * start_byte tells us the offset into the compressed data we're interested in
1091 */
1092int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1093 unsigned long start_byte, size_t srclen, size_t destlen)
1094{
1095 struct list_head *workspace;
1096 int ret;
1097
1098 workspace = find_workspace(type);
261507a0
LZ
1099
1100 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1101 dest_page, start_byte,
1102 srclen, destlen);
1103
1104 free_workspace(type, workspace);
1105 return ret;
1106}
1107
e67c718b 1108void __cold btrfs_exit_compress(void)
261507a0
LZ
1109{
1110 free_workspaces();
1111}
3a39c18d
LZ
1112
1113/*
1114 * Copy uncompressed data from working buffer to pages.
1115 *
1116 * buf_start is the byte offset we're of the start of our workspace buffer.
1117 *
1118 * total_out is the last byte of the buffer
1119 */
14a3357b 1120int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1121 unsigned long total_out, u64 disk_start,
974b1adc 1122 struct bio *bio)
3a39c18d
LZ
1123{
1124 unsigned long buf_offset;
1125 unsigned long current_buf_start;
1126 unsigned long start_byte;
6e78b3f7 1127 unsigned long prev_start_byte;
3a39c18d
LZ
1128 unsigned long working_bytes = total_out - buf_start;
1129 unsigned long bytes;
1130 char *kaddr;
974b1adc 1131 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1132
1133 /*
1134 * start byte is the first byte of the page we're currently
1135 * copying into relative to the start of the compressed data.
1136 */
974b1adc 1137 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1138
1139 /* we haven't yet hit data corresponding to this page */
1140 if (total_out <= start_byte)
1141 return 1;
1142
1143 /*
1144 * the start of the data we care about is offset into
1145 * the middle of our working buffer
1146 */
1147 if (total_out > start_byte && buf_start < start_byte) {
1148 buf_offset = start_byte - buf_start;
1149 working_bytes -= buf_offset;
1150 } else {
1151 buf_offset = 0;
1152 }
1153 current_buf_start = buf_start;
1154
1155 /* copy bytes from the working buffer into the pages */
1156 while (working_bytes > 0) {
974b1adc
CH
1157 bytes = min_t(unsigned long, bvec.bv_len,
1158 PAGE_SIZE - buf_offset);
3a39c18d 1159 bytes = min(bytes, working_bytes);
974b1adc
CH
1160
1161 kaddr = kmap_atomic(bvec.bv_page);
1162 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1163 kunmap_atomic(kaddr);
974b1adc 1164 flush_dcache_page(bvec.bv_page);
3a39c18d 1165
3a39c18d
LZ
1166 buf_offset += bytes;
1167 working_bytes -= bytes;
1168 current_buf_start += bytes;
1169
1170 /* check if we need to pick another page */
974b1adc
CH
1171 bio_advance(bio, bytes);
1172 if (!bio->bi_iter.bi_size)
1173 return 0;
1174 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1175 prev_start_byte = start_byte;
974b1adc 1176 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1177
974b1adc 1178 /*
6e78b3f7
OS
1179 * We need to make sure we're only adjusting
1180 * our offset into compression working buffer when
1181 * we're switching pages. Otherwise we can incorrectly
1182 * keep copying when we were actually done.
974b1adc 1183 */
6e78b3f7
OS
1184 if (start_byte != prev_start_byte) {
1185 /*
1186 * make sure our new page is covered by this
1187 * working buffer
1188 */
1189 if (total_out <= start_byte)
1190 return 1;
3a39c18d 1191
6e78b3f7
OS
1192 /*
1193 * the next page in the biovec might not be adjacent
1194 * to the last page, but it might still be found
1195 * inside this working buffer. bump our offset pointer
1196 */
1197 if (total_out > start_byte &&
1198 current_buf_start < start_byte) {
1199 buf_offset = start_byte - buf_start;
1200 working_bytes = total_out - start_byte;
1201 current_buf_start = buf_start + buf_offset;
1202 }
3a39c18d
LZ
1203 }
1204 }
1205
1206 return 1;
1207}
c2fcdcdf 1208
19562430
TT
1209/*
1210 * Shannon Entropy calculation
1211 *
1212 * Pure byte distribution analysis fails to determine compressiability of data.
1213 * Try calculating entropy to estimate the average minimum number of bits
1214 * needed to encode the sampled data.
1215 *
1216 * For convenience, return the percentage of needed bits, instead of amount of
1217 * bits directly.
1218 *
1219 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1220 * and can be compressible with high probability
1221 *
1222 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1223 *
1224 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1225 */
1226#define ENTROPY_LVL_ACEPTABLE (65)
1227#define ENTROPY_LVL_HIGH (80)
1228
1229/*
1230 * For increasead precision in shannon_entropy calculation,
1231 * let's do pow(n, M) to save more digits after comma:
1232 *
1233 * - maximum int bit length is 64
1234 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1235 * - 13 * 4 = 52 < 64 -> M = 4
1236 *
1237 * So use pow(n, 4).
1238 */
1239static inline u32 ilog2_w(u64 n)
1240{
1241 return ilog2(n * n * n * n);
1242}
1243
1244static u32 shannon_entropy(struct heuristic_ws *ws)
1245{
1246 const u32 entropy_max = 8 * ilog2_w(2);
1247 u32 entropy_sum = 0;
1248 u32 p, p_base, sz_base;
1249 u32 i;
1250
1251 sz_base = ilog2_w(ws->sample_size);
1252 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1253 p = ws->bucket[i].count;
1254 p_base = ilog2_w(p);
1255 entropy_sum += p * (sz_base - p_base);
1256 }
1257
1258 entropy_sum /= ws->sample_size;
1259 return entropy_sum * 100 / entropy_max;
1260}
1261
440c840c
TT
1262#define RADIX_BASE 4U
1263#define COUNTERS_SIZE (1U << RADIX_BASE)
1264
1265static u8 get4bits(u64 num, int shift) {
1266 u8 low4bits;
1267
1268 num >>= shift;
1269 /* Reverse order */
1270 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1271 return low4bits;
1272}
1273
440c840c
TT
1274/*
1275 * Use 4 bits as radix base
1276 * Use 16 u32 counters for calculating new possition in buf array
1277 *
1278 * @array - array that will be sorted
1279 * @array_buf - buffer array to store sorting results
1280 * must be equal in size to @array
1281 * @num - array size
440c840c 1282 */
23ae8c63 1283static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1284 int num)
858177d3 1285{
440c840c
TT
1286 u64 max_num;
1287 u64 buf_num;
1288 u32 counters[COUNTERS_SIZE];
1289 u32 new_addr;
1290 u32 addr;
1291 int bitlen;
1292 int shift;
1293 int i;
858177d3 1294
440c840c
TT
1295 /*
1296 * Try avoid useless loop iterations for small numbers stored in big
1297 * counters. Example: 48 33 4 ... in 64bit array
1298 */
23ae8c63 1299 max_num = array[0].count;
440c840c 1300 for (i = 1; i < num; i++) {
23ae8c63 1301 buf_num = array[i].count;
440c840c
TT
1302 if (buf_num > max_num)
1303 max_num = buf_num;
1304 }
1305
1306 buf_num = ilog2(max_num);
1307 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1308
1309 shift = 0;
1310 while (shift < bitlen) {
1311 memset(counters, 0, sizeof(counters));
1312
1313 for (i = 0; i < num; i++) {
23ae8c63 1314 buf_num = array[i].count;
440c840c
TT
1315 addr = get4bits(buf_num, shift);
1316 counters[addr]++;
1317 }
1318
1319 for (i = 1; i < COUNTERS_SIZE; i++)
1320 counters[i] += counters[i - 1];
1321
1322 for (i = num - 1; i >= 0; i--) {
23ae8c63 1323 buf_num = array[i].count;
440c840c
TT
1324 addr = get4bits(buf_num, shift);
1325 counters[addr]--;
1326 new_addr = counters[addr];
7add17be 1327 array_buf[new_addr] = array[i];
440c840c
TT
1328 }
1329
1330 shift += RADIX_BASE;
1331
1332 /*
1333 * Normal radix expects to move data from a temporary array, to
1334 * the main one. But that requires some CPU time. Avoid that
1335 * by doing another sort iteration to original array instead of
1336 * memcpy()
1337 */
1338 memset(counters, 0, sizeof(counters));
1339
1340 for (i = 0; i < num; i ++) {
23ae8c63 1341 buf_num = array_buf[i].count;
440c840c
TT
1342 addr = get4bits(buf_num, shift);
1343 counters[addr]++;
1344 }
1345
1346 for (i = 1; i < COUNTERS_SIZE; i++)
1347 counters[i] += counters[i - 1];
1348
1349 for (i = num - 1; i >= 0; i--) {
23ae8c63 1350 buf_num = array_buf[i].count;
440c840c
TT
1351 addr = get4bits(buf_num, shift);
1352 counters[addr]--;
1353 new_addr = counters[addr];
7add17be 1354 array[new_addr] = array_buf[i];
440c840c
TT
1355 }
1356
1357 shift += RADIX_BASE;
1358 }
858177d3
TT
1359}
1360
1361/*
1362 * Size of the core byte set - how many bytes cover 90% of the sample
1363 *
1364 * There are several types of structured binary data that use nearly all byte
1365 * values. The distribution can be uniform and counts in all buckets will be
1366 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1367 *
1368 * Other possibility is normal (Gaussian) distribution, where the data could
1369 * be potentially compressible, but we have to take a few more steps to decide
1370 * how much.
1371 *
1372 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1373 * compression algo can easy fix that
1374 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1375 * probability is not compressible
1376 */
1377#define BYTE_CORE_SET_LOW (64)
1378#define BYTE_CORE_SET_HIGH (200)
1379
1380static int byte_core_set_size(struct heuristic_ws *ws)
1381{
1382 u32 i;
1383 u32 coreset_sum = 0;
1384 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1385 struct bucket_item *bucket = ws->bucket;
1386
1387 /* Sort in reverse order */
36243c91 1388 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1389
1390 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1391 coreset_sum += bucket[i].count;
1392
1393 if (coreset_sum > core_set_threshold)
1394 return i;
1395
1396 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1397 coreset_sum += bucket[i].count;
1398 if (coreset_sum > core_set_threshold)
1399 break;
1400 }
1401
1402 return i;
1403}
1404
a288e92c
TT
1405/*
1406 * Count byte values in buckets.
1407 * This heuristic can detect textual data (configs, xml, json, html, etc).
1408 * Because in most text-like data byte set is restricted to limited number of
1409 * possible characters, and that restriction in most cases makes data easy to
1410 * compress.
1411 *
1412 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1413 * less - compressible
1414 * more - need additional analysis
1415 */
1416#define BYTE_SET_THRESHOLD (64)
1417
1418static u32 byte_set_size(const struct heuristic_ws *ws)
1419{
1420 u32 i;
1421 u32 byte_set_size = 0;
1422
1423 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1424 if (ws->bucket[i].count > 0)
1425 byte_set_size++;
1426 }
1427
1428 /*
1429 * Continue collecting count of byte values in buckets. If the byte
1430 * set size is bigger then the threshold, it's pointless to continue,
1431 * the detection technique would fail for this type of data.
1432 */
1433 for (; i < BUCKET_SIZE; i++) {
1434 if (ws->bucket[i].count > 0) {
1435 byte_set_size++;
1436 if (byte_set_size > BYTE_SET_THRESHOLD)
1437 return byte_set_size;
1438 }
1439 }
1440
1441 return byte_set_size;
1442}
1443
1fe4f6fa
TT
1444static bool sample_repeated_patterns(struct heuristic_ws *ws)
1445{
1446 const u32 half_of_sample = ws->sample_size / 2;
1447 const u8 *data = ws->sample;
1448
1449 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1450}
1451
a440d48c
TT
1452static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1453 struct heuristic_ws *ws)
1454{
1455 struct page *page;
1456 u64 index, index_end;
1457 u32 i, curr_sample_pos;
1458 u8 *in_data;
1459
1460 /*
1461 * Compression handles the input data by chunks of 128KiB
1462 * (defined by BTRFS_MAX_UNCOMPRESSED)
1463 *
1464 * We do the same for the heuristic and loop over the whole range.
1465 *
1466 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1467 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1468 */
1469 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1470 end = start + BTRFS_MAX_UNCOMPRESSED;
1471
1472 index = start >> PAGE_SHIFT;
1473 index_end = end >> PAGE_SHIFT;
1474
1475 /* Don't miss unaligned end */
1476 if (!IS_ALIGNED(end, PAGE_SIZE))
1477 index_end++;
1478
1479 curr_sample_pos = 0;
1480 while (index < index_end) {
1481 page = find_get_page(inode->i_mapping, index);
1482 in_data = kmap(page);
1483 /* Handle case where the start is not aligned to PAGE_SIZE */
1484 i = start % PAGE_SIZE;
1485 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1486 /* Don't sample any garbage from the last page */
1487 if (start > end - SAMPLING_READ_SIZE)
1488 break;
1489 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1490 SAMPLING_READ_SIZE);
1491 i += SAMPLING_INTERVAL;
1492 start += SAMPLING_INTERVAL;
1493 curr_sample_pos += SAMPLING_READ_SIZE;
1494 }
1495 kunmap(page);
1496 put_page(page);
1497
1498 index++;
1499 }
1500
1501 ws->sample_size = curr_sample_pos;
1502}
1503
c2fcdcdf
TT
1504/*
1505 * Compression heuristic.
1506 *
1507 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1508 * quickly (compared to direct compression) detect data characteristics
1509 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1510 * data.
1511 *
1512 * The following types of analysis can be performed:
1513 * - detect mostly zero data
1514 * - detect data with low "byte set" size (text, etc)
1515 * - detect data with low/high "core byte" set
1516 *
1517 * Return non-zero if the compression should be done, 0 otherwise.
1518 */
1519int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1520{
4e439a0b
TT
1521 struct list_head *ws_list = __find_workspace(0, true);
1522 struct heuristic_ws *ws;
a440d48c
TT
1523 u32 i;
1524 u8 byte;
19562430 1525 int ret = 0;
c2fcdcdf 1526
4e439a0b
TT
1527 ws = list_entry(ws_list, struct heuristic_ws, list);
1528
a440d48c
TT
1529 heuristic_collect_sample(inode, start, end, ws);
1530
1fe4f6fa
TT
1531 if (sample_repeated_patterns(ws)) {
1532 ret = 1;
1533 goto out;
1534 }
1535
a440d48c
TT
1536 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1537
1538 for (i = 0; i < ws->sample_size; i++) {
1539 byte = ws->sample[i];
1540 ws->bucket[byte].count++;
c2fcdcdf
TT
1541 }
1542
a288e92c
TT
1543 i = byte_set_size(ws);
1544 if (i < BYTE_SET_THRESHOLD) {
1545 ret = 2;
1546 goto out;
1547 }
1548
858177d3
TT
1549 i = byte_core_set_size(ws);
1550 if (i <= BYTE_CORE_SET_LOW) {
1551 ret = 3;
1552 goto out;
1553 }
1554
1555 if (i >= BYTE_CORE_SET_HIGH) {
1556 ret = 0;
1557 goto out;
1558 }
1559
19562430
TT
1560 i = shannon_entropy(ws);
1561 if (i <= ENTROPY_LVL_ACEPTABLE) {
1562 ret = 4;
1563 goto out;
1564 }
1565
1566 /*
1567 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1568 * needed to give green light to compression.
1569 *
1570 * For now just assume that compression at that level is not worth the
1571 * resources because:
1572 *
1573 * 1. it is possible to defrag the data later
1574 *
1575 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1576 * values, every bucket has counter at level ~54. The heuristic would
1577 * be confused. This can happen when data have some internal repeated
1578 * patterns like "abbacbbc...". This can be detected by analyzing
1579 * pairs of bytes, which is too costly.
1580 */
1581 if (i < ENTROPY_LVL_HIGH) {
1582 ret = 5;
1583 goto out;
1584 } else {
1585 ret = 0;
1586 goto out;
1587 }
1588
1fe4f6fa 1589out:
4e439a0b 1590 __free_workspace(0, ws_list, true);
c2fcdcdf
TT
1591 return ret;
1592}
f51d2b59
DS
1593
1594unsigned int btrfs_compress_str2level(const char *str)
1595{
1596 if (strncmp(str, "zlib", 4) != 0)
1597 return 0;
1598
fa4d885a
AB
1599 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1600 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1601 return str[5] - '0';
f51d2b59 1602
eae8d825 1603 return BTRFS_ZLIB_DEFAULT_LEVEL;
f51d2b59 1604}
This page took 0.706221 seconds and 4 git commands to generate.