]> Git Repo - linux.git/blame - drivers/net/s2io.c
S2io: Check for device state before handling traffic
[linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
9dc737a7
AR
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
92c48799 87#define DRV_VERSION "2.0.26.1"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
6d517a27
VP
93static int rxd_size[2] = {32,48};
94static int rxd_count[2] = {127,85};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
92b84437
SS
133static inline int is_s2io_card_up(const struct s2io_nic * sp)
134{
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136}
137
1da177e4
LT
138/* Ethtool related variables and Macros. */
139static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
145};
146
fa1f0cb3 147static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
1da177e4 157 {"tmac_any_err_frms"},
bd1034f0 158 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
bd1034f0 173 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
1da177e4 180 {"rmac_discarded_frms"},
bd1034f0
AR
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
1da177e4
LT
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
bd1034f0
AR
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
bd1034f0
AR
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
1da177e4 219 {"rmac_pause_cnt"},
bd1034f0
AR
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
bd1034f0
AR
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
fa1f0cb3
SS
241 {"rxf_wr_cnt"}
242};
243
244static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
260 {"link_fault_cnt"}
261};
262
263static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
bd1034f0
AR
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
8116f3cf
SS
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
bd1034f0
AR
279 ("alarm_transceiver_temp_high"),
280 ("alarm_transceiver_temp_low"),
281 ("alarm_laser_bias_current_high"),
282 ("alarm_laser_bias_current_low"),
283 ("alarm_laser_output_power_high"),
284 ("alarm_laser_output_power_low"),
285 ("warn_transceiver_temp_high"),
286 ("warn_transceiver_temp_low"),
287 ("warn_laser_bias_current_high"),
288 ("warn_laser_bias_current_low"),
289 ("warn_laser_output_power_high"),
290 ("warn_laser_output_power_low"),
7d3d0439
RA
291 ("lro_aggregated_pkts"),
292 ("lro_flush_both_count"),
293 ("lro_out_of_sequence_pkts"),
294 ("lro_flush_due_to_max_pkts"),
295 ("lro_avg_aggr_pkts"),
c53d4945 296 ("mem_alloc_fail_cnt"),
491abf25 297 ("pci_map_fail_cnt"),
491976b2
SH
298 ("watchdog_timer_cnt"),
299 ("mem_allocated"),
300 ("mem_freed"),
301 ("link_up_cnt"),
302 ("link_down_cnt"),
303 ("link_up_time"),
304 ("link_down_time"),
305 ("tx_tcode_buf_abort_cnt"),
306 ("tx_tcode_desc_abort_cnt"),
307 ("tx_tcode_parity_err_cnt"),
308 ("tx_tcode_link_loss_cnt"),
309 ("tx_tcode_list_proc_err_cnt"),
310 ("rx_tcode_parity_err_cnt"),
311 ("rx_tcode_abort_cnt"),
312 ("rx_tcode_parity_abort_cnt"),
313 ("rx_tcode_rda_fail_cnt"),
314 ("rx_tcode_unkn_prot_cnt"),
315 ("rx_tcode_fcs_err_cnt"),
316 ("rx_tcode_buf_size_err_cnt"),
317 ("rx_tcode_rxd_corrupt_cnt"),
8116f3cf
SS
318 ("rx_tcode_unkn_err_cnt"),
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
1da177e4
LT
336};
337
fa1f0cb3
SS
338#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340 ETH_GSTRING_LEN
341#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
348
349#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351
25fff88e
K
352#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
357
be3a6b02
K
358/* Add the vlan */
359static void s2io_vlan_rx_register(struct net_device *dev,
360 struct vlan_group *grp)
361{
1ee6dd77 362 struct s2io_nic *nic = dev->priv;
be3a6b02
K
363 unsigned long flags;
364
365 spin_lock_irqsave(&nic->tx_lock, flags);
366 nic->vlgrp = grp;
367 spin_unlock_irqrestore(&nic->tx_lock, flags);
368}
369
926930b2 370/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 371static int vlan_strip_flag;
926930b2 372
20346722 373/*
1da177e4
LT
374 * Constants to be programmed into the Xena's registers, to configure
375 * the XAUI.
376 */
377
1da177e4 378#define END_SIGN 0x0
f71e1309 379static const u64 herc_act_dtx_cfg[] = {
541ae68f 380 /* Set address */
e960fc5c 381 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 382 /* Write data */
e960fc5c 383 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
384 /* Set address */
385 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
386 /* Write data */
387 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
388 /* Set address */
e960fc5c 389 0x801205150D440000ULL, 0x801205150D4400E0ULL,
390 /* Write data */
391 0x801205150D440004ULL, 0x801205150D4400E4ULL,
392 /* Set address */
541ae68f
K
393 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
394 /* Write data */
395 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
396 /* Done */
397 END_SIGN
398};
399
f71e1309 400static const u64 xena_dtx_cfg[] = {
c92ca04b 401 /* Set address */
1da177e4 402 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
403 /* Write data */
404 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
405 /* Set address */
406 0x8001051500000000ULL, 0x80010515000000E0ULL,
407 /* Write data */
408 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
409 /* Set address */
1da177e4 410 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
411 /* Write data */
412 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
413 END_SIGN
414};
415
20346722 416/*
1da177e4
LT
417 * Constants for Fixing the MacAddress problem seen mostly on
418 * Alpha machines.
419 */
f71e1309 420static const u64 fix_mac[] = {
1da177e4
LT
421 0x0060000000000000ULL, 0x0060600000000000ULL,
422 0x0040600000000000ULL, 0x0000600000000000ULL,
423 0x0020600000000000ULL, 0x0060600000000000ULL,
424 0x0020600000000000ULL, 0x0060600000000000ULL,
425 0x0020600000000000ULL, 0x0060600000000000ULL,
426 0x0020600000000000ULL, 0x0060600000000000ULL,
427 0x0020600000000000ULL, 0x0060600000000000ULL,
428 0x0020600000000000ULL, 0x0060600000000000ULL,
429 0x0020600000000000ULL, 0x0060600000000000ULL,
430 0x0020600000000000ULL, 0x0060600000000000ULL,
431 0x0020600000000000ULL, 0x0060600000000000ULL,
432 0x0020600000000000ULL, 0x0060600000000000ULL,
433 0x0020600000000000ULL, 0x0000600000000000ULL,
434 0x0040600000000000ULL, 0x0060600000000000ULL,
435 END_SIGN
436};
437
b41477f3
AR
438MODULE_LICENSE("GPL");
439MODULE_VERSION(DRV_VERSION);
440
441
1da177e4 442/* Module Loadable parameters. */
b41477f3
AR
443S2IO_PARM_INT(tx_fifo_num, 1);
444S2IO_PARM_INT(rx_ring_num, 1);
445
446
447S2IO_PARM_INT(rx_ring_mode, 1);
448S2IO_PARM_INT(use_continuous_tx_intrs, 1);
449S2IO_PARM_INT(rmac_pause_time, 0x100);
450S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
451S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
452S2IO_PARM_INT(shared_splits, 0);
453S2IO_PARM_INT(tmac_util_period, 5);
454S2IO_PARM_INT(rmac_util_period, 5);
455S2IO_PARM_INT(bimodal, 0);
456S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 457/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 458S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 459/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 460S2IO_PARM_INT(intr_type, 2);
7d3d0439 461/* Large receive offload feature */
b41477f3 462S2IO_PARM_INT(lro, 0);
7d3d0439
RA
463/* Max pkts to be aggregated by LRO at one time. If not specified,
464 * aggregation happens until we hit max IP pkt size(64K)
465 */
b41477f3 466S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 467S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
468
469S2IO_PARM_INT(napi, 1);
470S2IO_PARM_INT(ufo, 0);
926930b2 471S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
472
473static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
474 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
475static unsigned int rx_ring_sz[MAX_RX_RINGS] =
476 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
477static unsigned int rts_frm_len[MAX_RX_RINGS] =
478 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
479
480module_param_array(tx_fifo_len, uint, NULL, 0);
481module_param_array(rx_ring_sz, uint, NULL, 0);
482module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 483
20346722 484/*
1da177e4 485 * S2IO device table.
20346722 486 * This table lists all the devices that this driver supports.
1da177e4
LT
487 */
488static struct pci_device_id s2io_tbl[] __devinitdata = {
489 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
490 PCI_ANY_ID, PCI_ANY_ID},
491 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
492 PCI_ANY_ID, PCI_ANY_ID},
493 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
494 PCI_ANY_ID, PCI_ANY_ID},
495 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
496 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
497 {0,}
498};
499
500MODULE_DEVICE_TABLE(pci, s2io_tbl);
501
d796fdb7
LV
502static struct pci_error_handlers s2io_err_handler = {
503 .error_detected = s2io_io_error_detected,
504 .slot_reset = s2io_io_slot_reset,
505 .resume = s2io_io_resume,
506};
507
1da177e4
LT
508static struct pci_driver s2io_driver = {
509 .name = "S2IO",
510 .id_table = s2io_tbl,
511 .probe = s2io_init_nic,
512 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 513 .err_handler = &s2io_err_handler,
1da177e4
LT
514};
515
516/* A simplifier macro used both by init and free shared_mem Fns(). */
517#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
518
519/**
520 * init_shared_mem - Allocation and Initialization of Memory
521 * @nic: Device private variable.
20346722
K
522 * Description: The function allocates all the memory areas shared
523 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
524 * Rx descriptors and the statistics block.
525 */
526
527static int init_shared_mem(struct s2io_nic *nic)
528{
529 u32 size;
530 void *tmp_v_addr, *tmp_v_addr_next;
531 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 532 struct RxD_block *pre_rxd_blk = NULL;
372cc597 533 int i, j, blk_cnt;
1da177e4
LT
534 int lst_size, lst_per_page;
535 struct net_device *dev = nic->dev;
8ae418cf 536 unsigned long tmp;
1ee6dd77 537 struct buffAdd *ba;
1da177e4 538
1ee6dd77 539 struct mac_info *mac_control;
1da177e4 540 struct config_param *config;
491976b2 541 unsigned long long mem_allocated = 0;
1da177e4
LT
542
543 mac_control = &nic->mac_control;
544 config = &nic->config;
545
546
547 /* Allocation and initialization of TXDLs in FIOFs */
548 size = 0;
549 for (i = 0; i < config->tx_fifo_num; i++) {
550 size += config->tx_cfg[i].fifo_len;
551 }
552 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 553 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 554 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 555 return -EINVAL;
1da177e4
LT
556 }
557
1ee6dd77 558 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
559 lst_per_page = PAGE_SIZE / lst_size;
560
561 for (i = 0; i < config->tx_fifo_num; i++) {
562 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 563 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722
K
564 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
565 GFP_KERNEL);
566 if (!mac_control->fifos[i].list_info) {
0c61ed5f 567 DBG_PRINT(INFO_DBG,
1da177e4
LT
568 "Malloc failed for list_info\n");
569 return -ENOMEM;
570 }
491976b2 571 mem_allocated += list_holder_size;
20346722 572 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
573 }
574 for (i = 0; i < config->tx_fifo_num; i++) {
575 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
576 lst_per_page);
20346722
K
577 mac_control->fifos[i].tx_curr_put_info.offset = 0;
578 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 579 config->tx_cfg[i].fifo_len - 1;
20346722
K
580 mac_control->fifos[i].tx_curr_get_info.offset = 0;
581 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 582 config->tx_cfg[i].fifo_len - 1;
20346722
K
583 mac_control->fifos[i].fifo_no = i;
584 mac_control->fifos[i].nic = nic;
fed5eccd 585 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 586
1da177e4
LT
587 for (j = 0; j < page_num; j++) {
588 int k = 0;
589 dma_addr_t tmp_p;
590 void *tmp_v;
591 tmp_v = pci_alloc_consistent(nic->pdev,
592 PAGE_SIZE, &tmp_p);
593 if (!tmp_v) {
0c61ed5f 594 DBG_PRINT(INFO_DBG,
1da177e4 595 "pci_alloc_consistent ");
0c61ed5f 596 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
597 return -ENOMEM;
598 }
776bd20f 599 /* If we got a zero DMA address(can happen on
600 * certain platforms like PPC), reallocate.
601 * Store virtual address of page we don't want,
602 * to be freed later.
603 */
604 if (!tmp_p) {
605 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 606 DBG_PRINT(INIT_DBG,
776bd20f 607 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 608 DBG_PRINT(INIT_DBG,
6b4d617d 609 "Virtual address %p\n", tmp_v);
776bd20f 610 tmp_v = pci_alloc_consistent(nic->pdev,
611 PAGE_SIZE, &tmp_p);
612 if (!tmp_v) {
0c61ed5f 613 DBG_PRINT(INFO_DBG,
776bd20f 614 "pci_alloc_consistent ");
0c61ed5f 615 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 616 return -ENOMEM;
617 }
491976b2 618 mem_allocated += PAGE_SIZE;
776bd20f 619 }
1da177e4
LT
620 while (k < lst_per_page) {
621 int l = (j * lst_per_page) + k;
622 if (l == config->tx_cfg[i].fifo_len)
20346722
K
623 break;
624 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 625 tmp_v + (k * lst_size);
20346722 626 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
627 tmp_p + (k * lst_size);
628 k++;
629 }
630 }
631 }
1da177e4 632
4384247b 633 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
634 if (!nic->ufo_in_band_v)
635 return -ENOMEM;
491976b2 636 mem_allocated += (size * sizeof(u64));
fed5eccd 637
1da177e4
LT
638 /* Allocation and initialization of RXDs in Rings */
639 size = 0;
640 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
641 if (config->rx_cfg[i].num_rxd %
642 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
643 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
644 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
645 i);
646 DBG_PRINT(ERR_DBG, "RxDs per Block");
647 return FAILURE;
648 }
649 size += config->rx_cfg[i].num_rxd;
20346722 650 mac_control->rings[i].block_count =
da6971d8
AR
651 config->rx_cfg[i].num_rxd /
652 (rxd_count[nic->rxd_mode] + 1 );
653 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
654 mac_control->rings[i].block_count;
1da177e4 655 }
da6971d8 656 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 657 size = (size * (sizeof(struct RxD1)));
da6971d8 658 else
1ee6dd77 659 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
660
661 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
662 mac_control->rings[i].rx_curr_get_info.block_index = 0;
663 mac_control->rings[i].rx_curr_get_info.offset = 0;
664 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 665 config->rx_cfg[i].num_rxd - 1;
20346722
K
666 mac_control->rings[i].rx_curr_put_info.block_index = 0;
667 mac_control->rings[i].rx_curr_put_info.offset = 0;
668 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 669 config->rx_cfg[i].num_rxd - 1;
20346722
K
670 mac_control->rings[i].nic = nic;
671 mac_control->rings[i].ring_no = i;
672
da6971d8
AR
673 blk_cnt = config->rx_cfg[i].num_rxd /
674 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
675 /* Allocating all the Rx blocks */
676 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 677 struct rx_block_info *rx_blocks;
da6971d8
AR
678 int l;
679
680 rx_blocks = &mac_control->rings[i].rx_blocks[j];
681 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
682 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
683 &tmp_p_addr);
684 if (tmp_v_addr == NULL) {
685 /*
20346722
K
686 * In case of failure, free_shared_mem()
687 * is called, which should free any
688 * memory that was alloced till the
1da177e4
LT
689 * failure happened.
690 */
da6971d8 691 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
692 return -ENOMEM;
693 }
491976b2 694 mem_allocated += size;
1da177e4 695 memset(tmp_v_addr, 0, size);
da6971d8
AR
696 rx_blocks->block_virt_addr = tmp_v_addr;
697 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 698 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
699 rxd_count[nic->rxd_mode],
700 GFP_KERNEL);
372cc597
SS
701 if (!rx_blocks->rxds)
702 return -ENOMEM;
491976b2
SH
703 mem_allocated +=
704 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
705 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
706 rx_blocks->rxds[l].virt_addr =
707 rx_blocks->block_virt_addr +
708 (rxd_size[nic->rxd_mode] * l);
709 rx_blocks->rxds[l].dma_addr =
710 rx_blocks->block_dma_addr +
711 (rxd_size[nic->rxd_mode] * l);
712 }
1da177e4
LT
713 }
714 /* Interlinking all Rx Blocks */
715 for (j = 0; j < blk_cnt; j++) {
20346722
K
716 tmp_v_addr =
717 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 718 tmp_v_addr_next =
20346722 719 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 720 blk_cnt].block_virt_addr;
20346722
K
721 tmp_p_addr =
722 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 723 tmp_p_addr_next =
20346722 724 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
725 blk_cnt].block_dma_addr;
726
1ee6dd77 727 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
728 pre_rxd_blk->reserved_2_pNext_RxD_block =
729 (unsigned long) tmp_v_addr_next;
1da177e4
LT
730 pre_rxd_blk->pNext_RxD_Blk_physical =
731 (u64) tmp_p_addr_next;
732 }
733 }
6d517a27 734 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
735 /*
736 * Allocation of Storages for buffer addresses in 2BUFF mode
737 * and the buffers as well.
738 */
739 for (i = 0; i < config->rx_ring_num; i++) {
740 blk_cnt = config->rx_cfg[i].num_rxd /
741 (rxd_count[nic->rxd_mode]+ 1);
742 mac_control->rings[i].ba =
1ee6dd77 743 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 744 GFP_KERNEL);
da6971d8 745 if (!mac_control->rings[i].ba)
1da177e4 746 return -ENOMEM;
491976b2 747 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
748 for (j = 0; j < blk_cnt; j++) {
749 int k = 0;
750 mac_control->rings[i].ba[j] =
1ee6dd77 751 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
752 (rxd_count[nic->rxd_mode] + 1)),
753 GFP_KERNEL);
754 if (!mac_control->rings[i].ba[j])
1da177e4 755 return -ENOMEM;
491976b2
SH
756 mem_allocated += (sizeof(struct buffAdd) * \
757 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
758 while (k != rxd_count[nic->rxd_mode]) {
759 ba = &mac_control->rings[i].ba[j][k];
760
761 ba->ba_0_org = (void *) kmalloc
762 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
763 if (!ba->ba_0_org)
764 return -ENOMEM;
491976b2
SH
765 mem_allocated +=
766 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
767 tmp = (unsigned long)ba->ba_0_org;
768 tmp += ALIGN_SIZE;
769 tmp &= ~((unsigned long) ALIGN_SIZE);
770 ba->ba_0 = (void *) tmp;
771
772 ba->ba_1_org = (void *) kmalloc
773 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
774 if (!ba->ba_1_org)
775 return -ENOMEM;
491976b2
SH
776 mem_allocated
777 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
778 tmp = (unsigned long) ba->ba_1_org;
779 tmp += ALIGN_SIZE;
780 tmp &= ~((unsigned long) ALIGN_SIZE);
781 ba->ba_1 = (void *) tmp;
782 k++;
783 }
1da177e4
LT
784 }
785 }
786 }
1da177e4
LT
787
788 /* Allocation and initialization of Statistics block */
1ee6dd77 789 size = sizeof(struct stat_block);
1da177e4
LT
790 mac_control->stats_mem = pci_alloc_consistent
791 (nic->pdev, size, &mac_control->stats_mem_phy);
792
793 if (!mac_control->stats_mem) {
20346722
K
794 /*
795 * In case of failure, free_shared_mem() is called, which
796 * should free any memory that was alloced till the
1da177e4
LT
797 * failure happened.
798 */
799 return -ENOMEM;
800 }
491976b2 801 mem_allocated += size;
1da177e4
LT
802 mac_control->stats_mem_sz = size;
803
804 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 805 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 806 memset(tmp_v_addr, 0, size);
1da177e4
LT
807 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
808 (unsigned long long) tmp_p_addr);
491976b2 809 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
810 return SUCCESS;
811}
812
20346722
K
813/**
814 * free_shared_mem - Free the allocated Memory
1da177e4
LT
815 * @nic: Device private variable.
816 * Description: This function is to free all memory locations allocated by
817 * the init_shared_mem() function and return it to the kernel.
818 */
819
820static void free_shared_mem(struct s2io_nic *nic)
821{
822 int i, j, blk_cnt, size;
491976b2 823 u32 ufo_size = 0;
1da177e4
LT
824 void *tmp_v_addr;
825 dma_addr_t tmp_p_addr;
1ee6dd77 826 struct mac_info *mac_control;
1da177e4
LT
827 struct config_param *config;
828 int lst_size, lst_per_page;
8910b49f 829 struct net_device *dev;
491976b2 830 int page_num = 0;
1da177e4
LT
831
832 if (!nic)
833 return;
834
8910b49f
MG
835 dev = nic->dev;
836
1da177e4
LT
837 mac_control = &nic->mac_control;
838 config = &nic->config;
839
1ee6dd77 840 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
841 lst_per_page = PAGE_SIZE / lst_size;
842
843 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
844 ufo_size += config->tx_cfg[i].fifo_len;
845 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
846 lst_per_page);
1da177e4
LT
847 for (j = 0; j < page_num; j++) {
848 int mem_blks = (j * lst_per_page);
776bd20f 849 if (!mac_control->fifos[i].list_info)
6aa20a22 850 return;
776bd20f 851 if (!mac_control->fifos[i].list_info[mem_blks].
852 list_virt_addr)
1da177e4
LT
853 break;
854 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
855 mac_control->fifos[i].
856 list_info[mem_blks].
1da177e4 857 list_virt_addr,
20346722
K
858 mac_control->fifos[i].
859 list_info[mem_blks].
1da177e4 860 list_phy_addr);
491976b2
SH
861 nic->mac_control.stats_info->sw_stat.mem_freed
862 += PAGE_SIZE;
1da177e4 863 }
776bd20f 864 /* If we got a zero DMA address during allocation,
865 * free the page now
866 */
867 if (mac_control->zerodma_virt_addr) {
868 pci_free_consistent(nic->pdev, PAGE_SIZE,
869 mac_control->zerodma_virt_addr,
870 (dma_addr_t)0);
6aa20a22 871 DBG_PRINT(INIT_DBG,
6b4d617d
AM
872 "%s: Freeing TxDL with zero DMA addr. ",
873 dev->name);
874 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
875 mac_control->zerodma_virt_addr);
491976b2
SH
876 nic->mac_control.stats_info->sw_stat.mem_freed
877 += PAGE_SIZE;
776bd20f 878 }
20346722 879 kfree(mac_control->fifos[i].list_info);
491976b2
SH
880 nic->mac_control.stats_info->sw_stat.mem_freed +=
881 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
882 }
883
1da177e4 884 size = SIZE_OF_BLOCK;
1da177e4 885 for (i = 0; i < config->rx_ring_num; i++) {
20346722 886 blk_cnt = mac_control->rings[i].block_count;
1da177e4 887 for (j = 0; j < blk_cnt; j++) {
20346722
K
888 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
889 block_virt_addr;
890 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
891 block_dma_addr;
1da177e4
LT
892 if (tmp_v_addr == NULL)
893 break;
894 pci_free_consistent(nic->pdev, size,
895 tmp_v_addr, tmp_p_addr);
491976b2 896 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 897 kfree(mac_control->rings[i].rx_blocks[j].rxds);
491976b2
SH
898 nic->mac_control.stats_info->sw_stat.mem_freed +=
899 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
900 }
901 }
902
6d517a27 903 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
904 /* Freeing buffer storage addresses in 2BUFF mode. */
905 for (i = 0; i < config->rx_ring_num; i++) {
906 blk_cnt = config->rx_cfg[i].num_rxd /
907 (rxd_count[nic->rxd_mode] + 1);
908 for (j = 0; j < blk_cnt; j++) {
909 int k = 0;
910 if (!mac_control->rings[i].ba[j])
911 continue;
912 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 913 struct buffAdd *ba =
da6971d8
AR
914 &mac_control->rings[i].ba[j][k];
915 kfree(ba->ba_0_org);
491976b2
SH
916 nic->mac_control.stats_info->sw_stat.\
917 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 918 kfree(ba->ba_1_org);
491976b2
SH
919 nic->mac_control.stats_info->sw_stat.\
920 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
921 k++;
922 }
923 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
924 nic->mac_control.stats_info->sw_stat.mem_freed +=
925 (sizeof(struct buffAdd) *
926 (rxd_count[nic->rxd_mode] + 1));
1da177e4 927 }
da6971d8 928 kfree(mac_control->rings[i].ba);
491976b2
SH
929 nic->mac_control.stats_info->sw_stat.mem_freed +=
930 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 931 }
1da177e4 932 }
1da177e4
LT
933
934 if (mac_control->stats_mem) {
935 pci_free_consistent(nic->pdev,
936 mac_control->stats_mem_sz,
937 mac_control->stats_mem,
938 mac_control->stats_mem_phy);
491976b2
SH
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 mac_control->stats_mem_sz;
1da177e4 941 }
491976b2 942 if (nic->ufo_in_band_v) {
fed5eccd 943 kfree(nic->ufo_in_band_v);
491976b2
SH
944 nic->mac_control.stats_info->sw_stat.mem_freed
945 += (ufo_size * sizeof(u64));
946 }
1da177e4
LT
947}
948
541ae68f
K
949/**
950 * s2io_verify_pci_mode -
951 */
952
1ee6dd77 953static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 954{
1ee6dd77 955 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
956 register u64 val64 = 0;
957 int mode;
958
959 val64 = readq(&bar0->pci_mode);
960 mode = (u8)GET_PCI_MODE(val64);
961
962 if ( val64 & PCI_MODE_UNKNOWN_MODE)
963 return -1; /* Unknown PCI mode */
964 return mode;
965}
966
c92ca04b
AR
967#define NEC_VENID 0x1033
968#define NEC_DEVID 0x0125
969static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
970{
971 struct pci_dev *tdev = NULL;
26d36b64
AC
972 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
973 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 974 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 975 pci_dev_put(tdev);
c92ca04b
AR
976 return 1;
977 }
978 }
979 return 0;
980}
541ae68f 981
7b32a312 982static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
983/**
984 * s2io_print_pci_mode -
985 */
1ee6dd77 986static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 987{
1ee6dd77 988 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
989 register u64 val64 = 0;
990 int mode;
991 struct config_param *config = &nic->config;
992
993 val64 = readq(&bar0->pci_mode);
994 mode = (u8)GET_PCI_MODE(val64);
995
996 if ( val64 & PCI_MODE_UNKNOWN_MODE)
997 return -1; /* Unknown PCI mode */
998
c92ca04b
AR
999 config->bus_speed = bus_speed[mode];
1000
1001 if (s2io_on_nec_bridge(nic->pdev)) {
1002 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1003 nic->dev->name);
1004 return mode;
1005 }
1006
541ae68f
K
1007 if (val64 & PCI_MODE_32_BITS) {
1008 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1009 } else {
1010 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1011 }
1012
1013 switch(mode) {
1014 case PCI_MODE_PCI_33:
1015 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
1016 break;
1017 case PCI_MODE_PCI_66:
1018 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
1019 break;
1020 case PCI_MODE_PCIX_M1_66:
1021 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
1022 break;
1023 case PCI_MODE_PCIX_M1_100:
1024 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
1025 break;
1026 case PCI_MODE_PCIX_M1_133:
1027 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
1028 break;
1029 case PCI_MODE_PCIX_M2_66:
1030 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1031 break;
1032 case PCI_MODE_PCIX_M2_100:
1033 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1034 break;
1035 case PCI_MODE_PCIX_M2_133:
1036 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1037 break;
1038 default:
1039 return -1; /* Unsupported bus speed */
1040 }
1041
1042 return mode;
1043}
1044
20346722
K
1045/**
1046 * init_nic - Initialization of hardware
1da177e4 1047 * @nic: device peivate variable
20346722
K
1048 * Description: The function sequentially configures every block
1049 * of the H/W from their reset values.
1050 * Return Value: SUCCESS on success and
1da177e4
LT
1051 * '-1' on failure (endian settings incorrect).
1052 */
1053
1054static int init_nic(struct s2io_nic *nic)
1055{
1ee6dd77 1056 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1057 struct net_device *dev = nic->dev;
1058 register u64 val64 = 0;
1059 void __iomem *add;
1060 u32 time;
1061 int i, j;
1ee6dd77 1062 struct mac_info *mac_control;
1da177e4 1063 struct config_param *config;
c92ca04b 1064 int dtx_cnt = 0;
1da177e4 1065 unsigned long long mem_share;
20346722 1066 int mem_size;
1da177e4
LT
1067
1068 mac_control = &nic->mac_control;
1069 config = &nic->config;
1070
5e25b9dd 1071 /* to set the swapper controle on the card */
20346722 1072 if(s2io_set_swapper(nic)) {
1da177e4
LT
1073 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1074 return -1;
1075 }
1076
541ae68f
K
1077 /*
1078 * Herc requires EOI to be removed from reset before XGXS, so..
1079 */
1080 if (nic->device_type & XFRAME_II_DEVICE) {
1081 val64 = 0xA500000000ULL;
1082 writeq(val64, &bar0->sw_reset);
1083 msleep(500);
1084 val64 = readq(&bar0->sw_reset);
1085 }
1086
1da177e4
LT
1087 /* Remove XGXS from reset state */
1088 val64 = 0;
1089 writeq(val64, &bar0->sw_reset);
1da177e4 1090 msleep(500);
20346722 1091 val64 = readq(&bar0->sw_reset);
1da177e4
LT
1092
1093 /* Enable Receiving broadcasts */
1094 add = &bar0->mac_cfg;
1095 val64 = readq(&bar0->mac_cfg);
1096 val64 |= MAC_RMAC_BCAST_ENABLE;
1097 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1098 writel((u32) val64, add);
1099 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1100 writel((u32) (val64 >> 32), (add + 4));
1101
1102 /* Read registers in all blocks */
1103 val64 = readq(&bar0->mac_int_mask);
1104 val64 = readq(&bar0->mc_int_mask);
1105 val64 = readq(&bar0->xgxs_int_mask);
1106
1107 /* Set MTU */
1108 val64 = dev->mtu;
1109 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1110
541ae68f
K
1111 if (nic->device_type & XFRAME_II_DEVICE) {
1112 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1113 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1114 &bar0->dtx_control, UF);
541ae68f
K
1115 if (dtx_cnt & 0x1)
1116 msleep(1); /* Necessary!! */
1da177e4
LT
1117 dtx_cnt++;
1118 }
541ae68f 1119 } else {
c92ca04b
AR
1120 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1121 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1122 &bar0->dtx_control, UF);
1123 val64 = readq(&bar0->dtx_control);
1124 dtx_cnt++;
1da177e4
LT
1125 }
1126 }
1127
1128 /* Tx DMA Initialization */
1129 val64 = 0;
1130 writeq(val64, &bar0->tx_fifo_partition_0);
1131 writeq(val64, &bar0->tx_fifo_partition_1);
1132 writeq(val64, &bar0->tx_fifo_partition_2);
1133 writeq(val64, &bar0->tx_fifo_partition_3);
1134
1135
1136 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1137 val64 |=
1138 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1139 13) | vBIT(config->tx_cfg[i].fifo_priority,
1140 ((i * 32) + 5), 3);
1141
1142 if (i == (config->tx_fifo_num - 1)) {
1143 if (i % 2 == 0)
1144 i++;
1145 }
1146
1147 switch (i) {
1148 case 1:
1149 writeq(val64, &bar0->tx_fifo_partition_0);
1150 val64 = 0;
1151 break;
1152 case 3:
1153 writeq(val64, &bar0->tx_fifo_partition_1);
1154 val64 = 0;
1155 break;
1156 case 5:
1157 writeq(val64, &bar0->tx_fifo_partition_2);
1158 val64 = 0;
1159 break;
1160 case 7:
1161 writeq(val64, &bar0->tx_fifo_partition_3);
1162 break;
1163 }
1164 }
1165
5e25b9dd
K
1166 /*
1167 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1168 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1169 */
541ae68f 1170 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1171 (nic->pdev->revision < 4))
5e25b9dd
K
1172 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1173
1da177e4
LT
1174 val64 = readq(&bar0->tx_fifo_partition_0);
1175 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1176 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1177
20346722
K
1178 /*
1179 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1180 * integrity checking.
1181 */
1182 val64 = readq(&bar0->tx_pa_cfg);
1183 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1184 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1185 writeq(val64, &bar0->tx_pa_cfg);
1186
1187 /* Rx DMA intialization. */
1188 val64 = 0;
1189 for (i = 0; i < config->rx_ring_num; i++) {
1190 val64 |=
1191 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1192 3);
1193 }
1194 writeq(val64, &bar0->rx_queue_priority);
1195
20346722
K
1196 /*
1197 * Allocating equal share of memory to all the
1da177e4
LT
1198 * configured Rings.
1199 */
1200 val64 = 0;
541ae68f
K
1201 if (nic->device_type & XFRAME_II_DEVICE)
1202 mem_size = 32;
1203 else
1204 mem_size = 64;
1205
1da177e4
LT
1206 for (i = 0; i < config->rx_ring_num; i++) {
1207 switch (i) {
1208 case 0:
20346722
K
1209 mem_share = (mem_size / config->rx_ring_num +
1210 mem_size % config->rx_ring_num);
1da177e4
LT
1211 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1212 continue;
1213 case 1:
20346722 1214 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1215 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1216 continue;
1217 case 2:
20346722 1218 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1219 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1220 continue;
1221 case 3:
20346722 1222 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1223 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1224 continue;
1225 case 4:
20346722 1226 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1227 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1228 continue;
1229 case 5:
20346722 1230 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1231 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1232 continue;
1233 case 6:
20346722 1234 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1235 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1236 continue;
1237 case 7:
20346722 1238 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1239 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1240 continue;
1241 }
1242 }
1243 writeq(val64, &bar0->rx_queue_cfg);
1244
20346722 1245 /*
5e25b9dd
K
1246 * Filling Tx round robin registers
1247 * as per the number of FIFOs
1da177e4 1248 */
5e25b9dd
K
1249 switch (config->tx_fifo_num) {
1250 case 1:
1251 val64 = 0x0000000000000000ULL;
1252 writeq(val64, &bar0->tx_w_round_robin_0);
1253 writeq(val64, &bar0->tx_w_round_robin_1);
1254 writeq(val64, &bar0->tx_w_round_robin_2);
1255 writeq(val64, &bar0->tx_w_round_robin_3);
1256 writeq(val64, &bar0->tx_w_round_robin_4);
1257 break;
1258 case 2:
1259 val64 = 0x0000010000010000ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_0);
1261 val64 = 0x0100000100000100ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_1);
1263 val64 = 0x0001000001000001ULL;
1264 writeq(val64, &bar0->tx_w_round_robin_2);
1265 val64 = 0x0000010000010000ULL;
1266 writeq(val64, &bar0->tx_w_round_robin_3);
1267 val64 = 0x0100000000000000ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_4);
1269 break;
1270 case 3:
1271 val64 = 0x0001000102000001ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_0);
1273 val64 = 0x0001020000010001ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_1);
1275 val64 = 0x0200000100010200ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_2);
1277 val64 = 0x0001000102000001ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_3);
1279 val64 = 0x0001020000000000ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_4);
1281 break;
1282 case 4:
1283 val64 = 0x0001020300010200ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_0);
1285 val64 = 0x0100000102030001ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_1);
1287 val64 = 0x0200010000010203ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_2);
1289 val64 = 0x0001020001000001ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_3);
1291 val64 = 0x0203000100000000ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_4);
1293 break;
1294 case 5:
1295 val64 = 0x0001000203000102ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_0);
1297 val64 = 0x0001020001030004ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_1);
1299 val64 = 0x0001000203000102ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_2);
1301 val64 = 0x0001020001030004ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_3);
1303 val64 = 0x0001000000000000ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_4);
1305 break;
1306 case 6:
1307 val64 = 0x0001020304000102ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_0);
1309 val64 = 0x0304050001020001ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_1);
1311 val64 = 0x0203000100000102ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_2);
1313 val64 = 0x0304000102030405ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_3);
1315 val64 = 0x0001000200000000ULL;
1316 writeq(val64, &bar0->tx_w_round_robin_4);
1317 break;
1318 case 7:
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->tx_w_round_robin_4);
1329 break;
1330 case 8:
1331 val64 = 0x0001020300040105ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_0);
1333 val64 = 0x0200030106000204ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_1);
1335 val64 = 0x0103000502010007ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_2);
1337 val64 = 0x0304010002060500ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_3);
1339 val64 = 0x0103020400000000ULL;
1340 writeq(val64, &bar0->tx_w_round_robin_4);
1341 break;
1342 }
1343
b41477f3 1344 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1345 val64 = readq(&bar0->tx_fifo_partition_0);
1346 val64 |= (TX_FIFO_PARTITION_EN);
1347 writeq(val64, &bar0->tx_fifo_partition_0);
1348
5e25b9dd
K
1349 /* Filling the Rx round robin registers as per the
1350 * number of Rings and steering based on QoS.
1351 */
1352 switch (config->rx_ring_num) {
1353 case 1:
1354 val64 = 0x8080808080808080ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 2:
1358 val64 = 0x0000010000010000ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0100000100000100ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0001000001000001ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
1364 val64 = 0x0000010000010000ULL;
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0100000000000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8080808040404040ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 case 3:
1373 val64 = 0x0001000102000001ULL;
1374 writeq(val64, &bar0->rx_w_round_robin_0);
1375 val64 = 0x0001020000010001ULL;
1376 writeq(val64, &bar0->rx_w_round_robin_1);
1377 val64 = 0x0200000100010200ULL;
1378 writeq(val64, &bar0->rx_w_round_robin_2);
1379 val64 = 0x0001000102000001ULL;
1380 writeq(val64, &bar0->rx_w_round_robin_3);
1381 val64 = 0x0001020000000000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_4);
1383
1384 val64 = 0x8080804040402020ULL;
1385 writeq(val64, &bar0->rts_qos_steering);
1386 break;
1387 case 4:
1388 val64 = 0x0001020300010200ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_0);
1390 val64 = 0x0100000102030001ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_1);
1392 val64 = 0x0200010000010203ULL;
1393 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1394 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1395 writeq(val64, &bar0->rx_w_round_robin_3);
1396 val64 = 0x0203000100000000ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_4);
1398
1399 val64 = 0x8080404020201010ULL;
1400 writeq(val64, &bar0->rts_qos_steering);
1401 break;
1402 case 5:
1403 val64 = 0x0001000203000102ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_0);
1405 val64 = 0x0001020001030004ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_1);
1407 val64 = 0x0001000203000102ULL;
1408 writeq(val64, &bar0->rx_w_round_robin_2);
1409 val64 = 0x0001020001030004ULL;
1410 writeq(val64, &bar0->rx_w_round_robin_3);
1411 val64 = 0x0001000000000000ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_4);
1413
1414 val64 = 0x8080404020201008ULL;
1415 writeq(val64, &bar0->rts_qos_steering);
1416 break;
1417 case 6:
1418 val64 = 0x0001020304000102ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_0);
1420 val64 = 0x0304050001020001ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_1);
1422 val64 = 0x0203000100000102ULL;
1423 writeq(val64, &bar0->rx_w_round_robin_2);
1424 val64 = 0x0304000102030405ULL;
1425 writeq(val64, &bar0->rx_w_round_robin_3);
1426 val64 = 0x0001000200000000ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_4);
1428
1429 val64 = 0x8080404020100804ULL;
1430 writeq(val64, &bar0->rts_qos_steering);
1431 break;
1432 case 7:
1433 val64 = 0x0001020001020300ULL;
1434 writeq(val64, &bar0->rx_w_round_robin_0);
1435 val64 = 0x0102030400010203ULL;
1436 writeq(val64, &bar0->rx_w_round_robin_1);
1437 val64 = 0x0405060001020001ULL;
1438 writeq(val64, &bar0->rx_w_round_robin_2);
1439 val64 = 0x0304050000010200ULL;
1440 writeq(val64, &bar0->rx_w_round_robin_3);
1441 val64 = 0x0102030000000000ULL;
1442 writeq(val64, &bar0->rx_w_round_robin_4);
1443
1444 val64 = 0x8080402010080402ULL;
1445 writeq(val64, &bar0->rts_qos_steering);
1446 break;
1447 case 8:
1448 val64 = 0x0001020300040105ULL;
1449 writeq(val64, &bar0->rx_w_round_robin_0);
1450 val64 = 0x0200030106000204ULL;
1451 writeq(val64, &bar0->rx_w_round_robin_1);
1452 val64 = 0x0103000502010007ULL;
1453 writeq(val64, &bar0->rx_w_round_robin_2);
1454 val64 = 0x0304010002060500ULL;
1455 writeq(val64, &bar0->rx_w_round_robin_3);
1456 val64 = 0x0103020400000000ULL;
1457 writeq(val64, &bar0->rx_w_round_robin_4);
1458
1459 val64 = 0x8040201008040201ULL;
1460 writeq(val64, &bar0->rts_qos_steering);
1461 break;
1462 }
1da177e4
LT
1463
1464 /* UDP Fix */
1465 val64 = 0;
20346722 1466 for (i = 0; i < 8; i++)
1da177e4
LT
1467 writeq(val64, &bar0->rts_frm_len_n[i]);
1468
5e25b9dd
K
1469 /* Set the default rts frame length for the rings configured */
1470 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1471 for (i = 0 ; i < config->rx_ring_num ; i++)
1472 writeq(val64, &bar0->rts_frm_len_n[i]);
1473
1474 /* Set the frame length for the configured rings
1475 * desired by the user
1476 */
1477 for (i = 0; i < config->rx_ring_num; i++) {
1478 /* If rts_frm_len[i] == 0 then it is assumed that user not
1479 * specified frame length steering.
1480 * If the user provides the frame length then program
1481 * the rts_frm_len register for those values or else
1482 * leave it as it is.
1483 */
1484 if (rts_frm_len[i] != 0) {
1485 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1486 &bar0->rts_frm_len_n[i]);
1487 }
1488 }
926930b2 1489
9fc93a41
SS
1490 /* Disable differentiated services steering logic */
1491 for (i = 0; i < 64; i++) {
1492 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1493 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1494 dev->name);
1495 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1496 return FAILURE;
1497 }
1498 }
1499
20346722 1500 /* Program statistics memory */
1da177e4 1501 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1502
541ae68f
K
1503 if (nic->device_type == XFRAME_II_DEVICE) {
1504 val64 = STAT_BC(0x320);
1505 writeq(val64, &bar0->stat_byte_cnt);
1506 }
1507
20346722 1508 /*
1da177e4
LT
1509 * Initializing the sampling rate for the device to calculate the
1510 * bandwidth utilization.
1511 */
1512 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1513 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1514 writeq(val64, &bar0->mac_link_util);
1515
1516
20346722
K
1517 /*
1518 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1519 * Scheme.
1520 */
20346722
K
1521 /*
1522 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1523 * 250 interrupts per sec. Continuous interrupts are enabled
1524 * by default.
1525 */
541ae68f
K
1526 if (nic->device_type == XFRAME_II_DEVICE) {
1527 int count = (nic->config.bus_speed * 125)/2;
1528 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1529 } else {
1530
1531 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1532 }
1533 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1534 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1535 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1536 if (use_continuous_tx_intrs)
1537 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1538 writeq(val64, &bar0->tti_data1_mem);
1539
1540 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1541 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1542 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1543 writeq(val64, &bar0->tti_data2_mem);
1544
1545 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1546 writeq(val64, &bar0->tti_command_mem);
1547
20346722 1548 /*
1da177e4
LT
1549 * Once the operation completes, the Strobe bit of the command
1550 * register will be reset. We poll for this particular condition
1551 * We wait for a maximum of 500ms for the operation to complete,
1552 * if it's not complete by then we return error.
1553 */
1554 time = 0;
1555 while (TRUE) {
1556 val64 = readq(&bar0->tti_command_mem);
1557 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1558 break;
1559 }
1560 if (time > 10) {
1561 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1562 dev->name);
1563 return -1;
1564 }
1565 msleep(50);
1566 time++;
1567 }
1568
b6e3f982
K
1569 if (nic->config.bimodal) {
1570 int k = 0;
1571 for (k = 0; k < config->rx_ring_num; k++) {
1572 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1573 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1574 writeq(val64, &bar0->tti_command_mem);
541ae68f 1575
541ae68f 1576 /*
b6e3f982
K
1577 * Once the operation completes, the Strobe bit of the command
1578 * register will be reset. We poll for this particular condition
1579 * We wait for a maximum of 500ms for the operation to complete,
1580 * if it's not complete by then we return error.
1581 */
1582 time = 0;
1583 while (TRUE) {
1584 val64 = readq(&bar0->tti_command_mem);
1585 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1586 break;
1587 }
1588 if (time > 10) {
1589 DBG_PRINT(ERR_DBG,
1590 "%s: TTI init Failed\n",
1591 dev->name);
1592 return -1;
1593 }
1594 time++;
1595 msleep(50);
1596 }
1597 }
541ae68f 1598 } else {
1da177e4 1599
b6e3f982
K
1600 /* RTI Initialization */
1601 if (nic->device_type == XFRAME_II_DEVICE) {
1602 /*
1603 * Programmed to generate Apprx 500 Intrs per
1604 * second
1605 */
1606 int count = (nic->config.bus_speed * 125)/4;
1607 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1608 } else {
1609 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1610 }
1611 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1612 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1613 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1614
b6e3f982 1615 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1616
b6e3f982 1617 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44 1618 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
eaae7f72 1619 if (nic->config.intr_type == MSI_X)
cc6e7c44
RA
1620 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1621 RTI_DATA2_MEM_RX_UFC_D(0x40));
1622 else
1623 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1624 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1625 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1626
b6e3f982
K
1627 for (i = 0; i < config->rx_ring_num; i++) {
1628 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1629 | RTI_CMD_MEM_OFFSET(i);
1630 writeq(val64, &bar0->rti_command_mem);
1631
1632 /*
1633 * Once the operation completes, the Strobe bit of the
1634 * command register will be reset. We poll for this
1635 * particular condition. We wait for a maximum of 500ms
1636 * for the operation to complete, if it's not complete
1637 * by then we return error.
1638 */
1639 time = 0;
1640 while (TRUE) {
1641 val64 = readq(&bar0->rti_command_mem);
1642 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1643 break;
1644 }
1645 if (time > 10) {
1646 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1647 dev->name);
1648 return -1;
1649 }
1650 time++;
1651 msleep(50);
1652 }
1da177e4 1653 }
1da177e4
LT
1654 }
1655
20346722
K
1656 /*
1657 * Initializing proper values as Pause threshold into all
1da177e4
LT
1658 * the 8 Queues on Rx side.
1659 */
1660 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1661 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1662
1663 /* Disable RMAC PAD STRIPPING */
509a2671 1664 add = &bar0->mac_cfg;
1da177e4
LT
1665 val64 = readq(&bar0->mac_cfg);
1666 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1667 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1668 writel((u32) (val64), add);
1669 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1670 writel((u32) (val64 >> 32), (add + 4));
1671 val64 = readq(&bar0->mac_cfg);
1672
7d3d0439
RA
1673 /* Enable FCS stripping by adapter */
1674 add = &bar0->mac_cfg;
1675 val64 = readq(&bar0->mac_cfg);
1676 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1677 if (nic->device_type == XFRAME_II_DEVICE)
1678 writeq(val64, &bar0->mac_cfg);
1679 else {
1680 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1681 writel((u32) (val64), add);
1682 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1683 writel((u32) (val64 >> 32), (add + 4));
1684 }
1685
20346722
K
1686 /*
1687 * Set the time value to be inserted in the pause frame
1da177e4
LT
1688 * generated by xena.
1689 */
1690 val64 = readq(&bar0->rmac_pause_cfg);
1691 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1692 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1693 writeq(val64, &bar0->rmac_pause_cfg);
1694
20346722 1695 /*
1da177e4
LT
1696 * Set the Threshold Limit for Generating the pause frame
1697 * If the amount of data in any Queue exceeds ratio of
1698 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1699 * pause frame is generated
1700 */
1701 val64 = 0;
1702 for (i = 0; i < 4; i++) {
1703 val64 |=
1704 (((u64) 0xFF00 | nic->mac_control.
1705 mc_pause_threshold_q0q3)
1706 << (i * 2 * 8));
1707 }
1708 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1709
1710 val64 = 0;
1711 for (i = 0; i < 4; i++) {
1712 val64 |=
1713 (((u64) 0xFF00 | nic->mac_control.
1714 mc_pause_threshold_q4q7)
1715 << (i * 2 * 8));
1716 }
1717 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1718
20346722
K
1719 /*
1720 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1721 * exceeded the limit pointed by shared_splits
1722 */
1723 val64 = readq(&bar0->pic_control);
1724 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1725 writeq(val64, &bar0->pic_control);
1726
863c11a9
AR
1727 if (nic->config.bus_speed == 266) {
1728 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1729 writeq(0x0, &bar0->read_retry_delay);
1730 writeq(0x0, &bar0->write_retry_delay);
1731 }
1732
541ae68f
K
1733 /*
1734 * Programming the Herc to split every write transaction
1735 * that does not start on an ADB to reduce disconnects.
1736 */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1738 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1739 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1740 writeq(val64, &bar0->misc_control);
1741 val64 = readq(&bar0->pic_control2);
1742 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1743 writeq(val64, &bar0->pic_control2);
541ae68f 1744 }
c92ca04b
AR
1745 if (strstr(nic->product_name, "CX4")) {
1746 val64 = TMAC_AVG_IPG(0x17);
1747 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1748 }
1749
1da177e4
LT
1750 return SUCCESS;
1751}
a371a07d
K
1752#define LINK_UP_DOWN_INTERRUPT 1
1753#define MAC_RMAC_ERR_TIMER 2
1754
1ee6dd77 1755static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1756{
eaae7f72 1757 if (nic->config.intr_type != INTA)
cc6e7c44 1758 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1759 if (nic->device_type == XFRAME_II_DEVICE)
1760 return LINK_UP_DOWN_INTERRUPT;
1761 else
1762 return MAC_RMAC_ERR_TIMER;
1763}
8116f3cf 1764
9caab458
SS
1765/**
1766 * do_s2io_write_bits - update alarm bits in alarm register
1767 * @value: alarm bits
1768 * @flag: interrupt status
1769 * @addr: address value
1770 * Description: update alarm bits in alarm register
1771 * Return Value:
1772 * NONE.
1773 */
1774static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1775{
1776 u64 temp64;
1777
1778 temp64 = readq(addr);
1779
1780 if(flag == ENABLE_INTRS)
1781 temp64 &= ~((u64) value);
1782 else
1783 temp64 |= ((u64) value);
1784 writeq(temp64, addr);
1785}
1da177e4 1786
9caab458
SS
1787void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1788{
1789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1790 register u64 gen_int_mask = 0;
1791
1792 if (mask & TX_DMA_INTR) {
1793
1794 gen_int_mask |= TXDMA_INT_M;
1795
1796 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1797 TXDMA_PCC_INT | TXDMA_TTI_INT |
1798 TXDMA_LSO_INT | TXDMA_TPA_INT |
1799 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1800
1801 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1802 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1803 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1804 &bar0->pfc_err_mask);
1805
1806 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1807 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1808 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1809
1810 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1811 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1812 PCC_N_SERR | PCC_6_COF_OV_ERR |
1813 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1814 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1815 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1816
1817 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1818 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1819
1820 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1821 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1822 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1823 flag, &bar0->lso_err_mask);
1824
1825 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1826 flag, &bar0->tpa_err_mask);
1827
1828 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1829
1830 }
1831
1832 if (mask & TX_MAC_INTR) {
1833 gen_int_mask |= TXMAC_INT_M;
1834 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1835 &bar0->mac_int_mask);
1836 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1837 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1838 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1839 flag, &bar0->mac_tmac_err_mask);
1840 }
1841
1842 if (mask & TX_XGXS_INTR) {
1843 gen_int_mask |= TXXGXS_INT_M;
1844 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1845 &bar0->xgxs_int_mask);
1846 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1847 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1848 flag, &bar0->xgxs_txgxs_err_mask);
1849 }
1850
1851 if (mask & RX_DMA_INTR) {
1852 gen_int_mask |= RXDMA_INT_M;
1853 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1854 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1855 flag, &bar0->rxdma_int_mask);
1856 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1857 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1858 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1859 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1860 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1861 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1862 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1863 &bar0->prc_pcix_err_mask);
1864 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1865 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1866 &bar0->rpa_err_mask);
1867 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1868 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1869 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1870 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1871 flag, &bar0->rda_err_mask);
1872 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1873 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1874 flag, &bar0->rti_err_mask);
1875 }
1876
1877 if (mask & RX_MAC_INTR) {
1878 gen_int_mask |= RXMAC_INT_M;
1879 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1880 &bar0->mac_int_mask);
1881 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1882 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1883 RMAC_DOUBLE_ECC_ERR |
1884 RMAC_LINK_STATE_CHANGE_INT,
1885 flag, &bar0->mac_rmac_err_mask);
1886 }
1887
1888 if (mask & RX_XGXS_INTR)
1889 {
1890 gen_int_mask |= RXXGXS_INT_M;
1891 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1892 &bar0->xgxs_int_mask);
1893 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1894 &bar0->xgxs_rxgxs_err_mask);
1895 }
1896
1897 if (mask & MC_INTR) {
1898 gen_int_mask |= MC_INT_M;
1899 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1900 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1901 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1902 &bar0->mc_err_mask);
1903 }
1904 nic->general_int_mask = gen_int_mask;
1905
1906 /* Remove this line when alarm interrupts are enabled */
1907 nic->general_int_mask = 0;
1908}
20346722
K
1909/**
1910 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1911 * @nic: device private variable,
1912 * @mask: A mask indicating which Intr block must be modified and,
1913 * @flag: A flag indicating whether to enable or disable the Intrs.
1914 * Description: This function will either disable or enable the interrupts
20346722
K
1915 * depending on the flag argument. The mask argument can be used to
1916 * enable/disable any Intr block.
1da177e4
LT
1917 * Return Value: NONE.
1918 */
1919
1920static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1921{
1ee6dd77 1922 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
1923 register u64 temp64 = 0, intr_mask = 0;
1924
1925 intr_mask = nic->general_int_mask;
1da177e4
LT
1926
1927 /* Top level interrupt classification */
1928 /* PIC Interrupts */
9caab458 1929 if (mask & TX_PIC_INTR) {
1da177e4 1930 /* Enable PIC Intrs in the general intr mask register */
9caab458 1931 intr_mask |= TXPIC_INT_M;
1da177e4 1932 if (flag == ENABLE_INTRS) {
20346722 1933 /*
a371a07d 1934 * If Hercules adapter enable GPIO otherwise
b41477f3 1935 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1936 * interrupts for now.
1937 * TODO
1da177e4 1938 */
a371a07d
K
1939 if (s2io_link_fault_indication(nic) ==
1940 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
1941 do_s2io_write_bits(PIC_INT_GPIO, flag,
1942 &bar0->pic_int_mask);
1943 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1944 &bar0->gpio_int_mask);
1945 } else
a371a07d 1946 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 1947 } else if (flag == DISABLE_INTRS) {
20346722
K
1948 /*
1949 * Disable PIC Intrs in the general
1950 * intr mask register
1da177e4
LT
1951 */
1952 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
1953 }
1954 }
1955
1da177e4
LT
1956 /* Tx traffic interrupts */
1957 if (mask & TX_TRAFFIC_INTR) {
9caab458 1958 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 1959 if (flag == ENABLE_INTRS) {
20346722 1960 /*
1da177e4 1961 * Enable all the Tx side interrupts
20346722 1962 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1963 */
1964 writeq(0x0, &bar0->tx_traffic_mask);
1965 } else if (flag == DISABLE_INTRS) {
20346722
K
1966 /*
1967 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1968 * register.
1969 */
1970 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
1971 }
1972 }
1973
1974 /* Rx traffic interrupts */
1975 if (mask & RX_TRAFFIC_INTR) {
9caab458 1976 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 1977 if (flag == ENABLE_INTRS) {
1da177e4
LT
1978 /* writing 0 Enables all 8 RX interrupt levels */
1979 writeq(0x0, &bar0->rx_traffic_mask);
1980 } else if (flag == DISABLE_INTRS) {
20346722
K
1981 /*
1982 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1983 * register.
1984 */
1985 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
1986 }
1987 }
9caab458
SS
1988
1989 temp64 = readq(&bar0->general_int_mask);
1990 if (flag == ENABLE_INTRS)
1991 temp64 &= ~((u64) intr_mask);
1992 else
1993 temp64 = DISABLE_ALL_INTRS;
1994 writeq(temp64, &bar0->general_int_mask);
1995
1996 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
1997}
1998
19a60522
SS
1999/**
2000 * verify_pcc_quiescent- Checks for PCC quiescent state
2001 * Return: 1 If PCC is quiescence
2002 * 0 If PCC is not quiescence
2003 */
1ee6dd77 2004static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2005{
19a60522 2006 int ret = 0, herc;
1ee6dd77 2007 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2008 u64 val64 = readq(&bar0->adapter_status);
2009
2010 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
2011
2012 if (flag == FALSE) {
44c10138 2013 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2014 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2015 ret = 1;
19a60522
SS
2016 } else {
2017 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2018 ret = 1;
20346722
K
2019 }
2020 } else {
44c10138 2021 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2022 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2023 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2024 ret = 1;
5e25b9dd
K
2025 } else {
2026 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2027 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2028 ret = 1;
20346722
K
2029 }
2030 }
2031
2032 return ret;
2033}
2034/**
2035 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2036 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2037 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2038 * differs and the calling function passes the input argument flag to
2039 * indicate this.
20346722 2040 * Return: 1 If xena is quiescence
1da177e4
LT
2041 * 0 If Xena is not quiescence
2042 */
2043
1ee6dd77 2044static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2045{
19a60522 2046 int mode;
1ee6dd77 2047 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2048 u64 val64 = readq(&bar0->adapter_status);
2049 mode = s2io_verify_pci_mode(sp);
1da177e4 2050
19a60522
SS
2051 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2052 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2053 return 0;
2054 }
2055 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2056 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2057 return 0;
2058 }
2059 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2060 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2061 return 0;
2062 }
2063 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2064 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2065 return 0;
2066 }
2067 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2068 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2069 return 0;
2070 }
2071 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2072 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2073 return 0;
2074 }
2075 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2076 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2077 return 0;
2078 }
2079 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2080 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2081 return 0;
1da177e4
LT
2082 }
2083
19a60522
SS
2084 /*
2085 * In PCI 33 mode, the P_PLL is not used, and therefore,
2086 * the the P_PLL_LOCK bit in the adapter_status register will
2087 * not be asserted.
2088 */
2089 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2090 sp->device_type == XFRAME_II_DEVICE && mode !=
2091 PCI_MODE_PCI_33) {
2092 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2093 return 0;
2094 }
2095 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2096 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2097 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2098 return 0;
2099 }
2100 return 1;
1da177e4
LT
2101}
2102
2103/**
2104 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2105 * @sp: Pointer to device specifc structure
20346722 2106 * Description :
1da177e4
LT
2107 * New procedure to clear mac address reading problems on Alpha platforms
2108 *
2109 */
2110
1ee6dd77 2111static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2112{
1ee6dd77 2113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2114 u64 val64;
2115 int i = 0;
2116
2117 while (fix_mac[i] != END_SIGN) {
2118 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2119 udelay(10);
1da177e4
LT
2120 val64 = readq(&bar0->gpio_control);
2121 }
2122}
2123
2124/**
20346722 2125 * start_nic - Turns the device on
1da177e4 2126 * @nic : device private variable.
20346722
K
2127 * Description:
2128 * This function actually turns the device on. Before this function is
2129 * called,all Registers are configured from their reset states
2130 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2131 * calling this function, the device interrupts are cleared and the NIC is
2132 * literally switched on by writing into the adapter control register.
20346722 2133 * Return Value:
1da177e4
LT
2134 * SUCCESS on success and -1 on failure.
2135 */
2136
2137static int start_nic(struct s2io_nic *nic)
2138{
1ee6dd77 2139 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2140 struct net_device *dev = nic->dev;
2141 register u64 val64 = 0;
20346722 2142 u16 subid, i;
1ee6dd77 2143 struct mac_info *mac_control;
1da177e4
LT
2144 struct config_param *config;
2145
2146 mac_control = &nic->mac_control;
2147 config = &nic->config;
2148
2149 /* PRC Initialization and configuration */
2150 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2151 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2152 &bar0->prc_rxd0_n[i]);
2153
2154 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
2155 if (nic->config.bimodal)
2156 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
2157 if (nic->rxd_mode == RXD_MODE_1)
2158 val64 |= PRC_CTRL_RC_ENABLED;
2159 else
2160 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2161 if (nic->device_type == XFRAME_II_DEVICE)
2162 val64 |= PRC_CTRL_GROUP_READS;
2163 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2164 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2165 writeq(val64, &bar0->prc_ctrl_n[i]);
2166 }
2167
da6971d8
AR
2168 if (nic->rxd_mode == RXD_MODE_3B) {
2169 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2170 val64 = readq(&bar0->rx_pa_cfg);
2171 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2172 writeq(val64, &bar0->rx_pa_cfg);
2173 }
1da177e4 2174
926930b2
SS
2175 if (vlan_tag_strip == 0) {
2176 val64 = readq(&bar0->rx_pa_cfg);
2177 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2178 writeq(val64, &bar0->rx_pa_cfg);
2179 vlan_strip_flag = 0;
2180 }
2181
20346722 2182 /*
1da177e4
LT
2183 * Enabling MC-RLDRAM. After enabling the device, we timeout
2184 * for around 100ms, which is approximately the time required
2185 * for the device to be ready for operation.
2186 */
2187 val64 = readq(&bar0->mc_rldram_mrs);
2188 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2189 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2190 val64 = readq(&bar0->mc_rldram_mrs);
2191
20346722 2192 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2193
2194 /* Enabling ECC Protection. */
2195 val64 = readq(&bar0->adapter_control);
2196 val64 &= ~ADAPTER_ECC_EN;
2197 writeq(val64, &bar0->adapter_control);
2198
20346722
K
2199 /*
2200 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2201 * it.
2202 */
2203 val64 = readq(&bar0->adapter_status);
19a60522 2204 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2205 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2206 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2207 (unsigned long long) val64);
2208 return FAILURE;
2209 }
2210
20346722 2211 /*
1da177e4 2212 * With some switches, link might be already up at this point.
20346722
K
2213 * Because of this weird behavior, when we enable laser,
2214 * we may not get link. We need to handle this. We cannot
2215 * figure out which switch is misbehaving. So we are forced to
2216 * make a global change.
1da177e4
LT
2217 */
2218
2219 /* Enabling Laser. */
2220 val64 = readq(&bar0->adapter_control);
2221 val64 |= ADAPTER_EOI_TX_ON;
2222 writeq(val64, &bar0->adapter_control);
2223
c92ca04b
AR
2224 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2225 /*
2226 * Dont see link state interrupts initally on some switches,
2227 * so directly scheduling the link state task here.
2228 */
2229 schedule_work(&nic->set_link_task);
2230 }
1da177e4
LT
2231 /* SXE-002: Initialize link and activity LED */
2232 subid = nic->pdev->subsystem_device;
541ae68f
K
2233 if (((subid & 0xFF) >= 0x07) &&
2234 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2235 val64 = readq(&bar0->gpio_control);
2236 val64 |= 0x0000800000000000ULL;
2237 writeq(val64, &bar0->gpio_control);
2238 val64 = 0x0411040400000000ULL;
509a2671 2239 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2240 }
2241
1da177e4
LT
2242 return SUCCESS;
2243}
fed5eccd
AR
2244/**
2245 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2246 */
1ee6dd77
RB
2247static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2248 TxD *txdlp, int get_off)
fed5eccd 2249{
1ee6dd77 2250 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2251 struct sk_buff *skb;
1ee6dd77 2252 struct TxD *txds;
fed5eccd
AR
2253 u16 j, frg_cnt;
2254
2255 txds = txdlp;
26b7625c 2256 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2257 pci_unmap_single(nic->pdev, (dma_addr_t)
2258 txds->Buffer_Pointer, sizeof(u64),
2259 PCI_DMA_TODEVICE);
2260 txds++;
2261 }
2262
2263 skb = (struct sk_buff *) ((unsigned long)
2264 txds->Host_Control);
2265 if (!skb) {
1ee6dd77 2266 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2267 return NULL;
2268 }
2269 pci_unmap_single(nic->pdev, (dma_addr_t)
2270 txds->Buffer_Pointer,
2271 skb->len - skb->data_len,
2272 PCI_DMA_TODEVICE);
2273 frg_cnt = skb_shinfo(skb)->nr_frags;
2274 if (frg_cnt) {
2275 txds++;
2276 for (j = 0; j < frg_cnt; j++, txds++) {
2277 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2278 if (!txds->Buffer_Pointer)
2279 break;
6aa20a22 2280 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2281 txds->Buffer_Pointer,
2282 frag->size, PCI_DMA_TODEVICE);
2283 }
2284 }
1ee6dd77 2285 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2286 return(skb);
2287}
1da177e4 2288
20346722
K
2289/**
2290 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2291 * @nic : device private variable.
20346722 2292 * Description:
1da177e4 2293 * Free all queued Tx buffers.
20346722 2294 * Return Value: void
1da177e4
LT
2295*/
2296
2297static void free_tx_buffers(struct s2io_nic *nic)
2298{
2299 struct net_device *dev = nic->dev;
2300 struct sk_buff *skb;
1ee6dd77 2301 struct TxD *txdp;
1da177e4 2302 int i, j;
1ee6dd77 2303 struct mac_info *mac_control;
1da177e4 2304 struct config_param *config;
fed5eccd 2305 int cnt = 0;
1da177e4
LT
2306
2307 mac_control = &nic->mac_control;
2308 config = &nic->config;
2309
2310 for (i = 0; i < config->tx_fifo_num; i++) {
2311 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
491976b2
SH
2312 txdp = (struct TxD *) \
2313 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2314 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2315 if (skb) {
491976b2
SH
2316 nic->mac_control.stats_info->sw_stat.mem_freed
2317 += skb->truesize;
fed5eccd
AR
2318 dev_kfree_skb(skb);
2319 cnt++;
1da177e4 2320 }
1da177e4
LT
2321 }
2322 DBG_PRINT(INTR_DBG,
2323 "%s:forcibly freeing %d skbs on FIFO%d\n",
2324 dev->name, cnt, i);
20346722
K
2325 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2326 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2327 }
2328}
2329
20346722
K
2330/**
2331 * stop_nic - To stop the nic
1da177e4 2332 * @nic ; device private variable.
20346722
K
2333 * Description:
2334 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2335 * function does. This function is called to stop the device.
2336 * Return Value:
2337 * void.
2338 */
2339
2340static void stop_nic(struct s2io_nic *nic)
2341{
1ee6dd77 2342 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2343 register u64 val64 = 0;
5d3213cc 2344 u16 interruptible;
1ee6dd77 2345 struct mac_info *mac_control;
1da177e4
LT
2346 struct config_param *config;
2347
2348 mac_control = &nic->mac_control;
2349 config = &nic->config;
2350
2351 /* Disable all interrupts */
9caab458 2352 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2353 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2354 interruptible |= TX_PIC_INTR;
1da177e4
LT
2355 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2356
5d3213cc
AR
2357 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2358 val64 = readq(&bar0->adapter_control);
2359 val64 &= ~(ADAPTER_CNTL_EN);
2360 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2361}
2362
20346722
K
2363/**
2364 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2365 * @nic: device private variable
20346722
K
2366 * @ring_no: ring number
2367 * Description:
1da177e4
LT
2368 * The function allocates Rx side skbs and puts the physical
2369 * address of these buffers into the RxD buffer pointers, so that the NIC
2370 * can DMA the received frame into these locations.
2371 * The NIC supports 3 receive modes, viz
2372 * 1. single buffer,
2373 * 2. three buffer and
2374 * 3. Five buffer modes.
20346722
K
2375 * Each mode defines how many fragments the received frame will be split
2376 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2377 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2378 * is split into 3 fragments. As of now only single buffer mode is
2379 * supported.
2380 * Return Value:
2381 * SUCCESS on success or an appropriate -ve value on failure.
2382 */
2383
ac1f60db 2384static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2385{
2386 struct net_device *dev = nic->dev;
2387 struct sk_buff *skb;
1ee6dd77 2388 struct RxD_t *rxdp;
1da177e4 2389 int off, off1, size, block_no, block_no1;
1da177e4 2390 u32 alloc_tab = 0;
20346722 2391 u32 alloc_cnt;
1ee6dd77 2392 struct mac_info *mac_control;
1da177e4 2393 struct config_param *config;
20346722 2394 u64 tmp;
1ee6dd77 2395 struct buffAdd *ba;
1da177e4 2396 unsigned long flags;
1ee6dd77 2397 struct RxD_t *first_rxdp = NULL;
363dc367 2398 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
6d517a27
VP
2399 struct RxD1 *rxdp1;
2400 struct RxD3 *rxdp3;
491abf25 2401 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
1da177e4
LT
2402
2403 mac_control = &nic->mac_control;
2404 config = &nic->config;
20346722
K
2405 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2406 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2407
5d3213cc 2408 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2409 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2410 while (alloc_tab < alloc_cnt) {
20346722 2411 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2412 block_index;
20346722 2413 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2414
da6971d8
AR
2415 rxdp = mac_control->rings[ring_no].
2416 rx_blocks[block_no].rxds[off].virt_addr;
2417
2418 if ((block_no == block_no1) && (off == off1) &&
2419 (rxdp->Host_Control)) {
2420 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2421 dev->name);
1da177e4
LT
2422 DBG_PRINT(INTR_DBG, " info equated\n");
2423 goto end;
2424 }
da6971d8 2425 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2426 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2427 block_index++;
da6971d8
AR
2428 if (mac_control->rings[ring_no].rx_curr_put_info.
2429 block_index == mac_control->rings[ring_no].
2430 block_count)
2431 mac_control->rings[ring_no].rx_curr_put_info.
2432 block_index = 0;
2433 block_no = mac_control->rings[ring_no].
2434 rx_curr_put_info.block_index;
2435 if (off == rxd_count[nic->rxd_mode])
2436 off = 0;
20346722 2437 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2438 offset = off;
2439 rxdp = mac_control->rings[ring_no].
2440 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2441 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2442 dev->name, rxdp);
2443 }
db874e65
SS
2444 if(!napi) {
2445 spin_lock_irqsave(&nic->put_lock, flags);
2446 mac_control->rings[ring_no].put_pos =
2447 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2448 spin_unlock_irqrestore(&nic->put_lock, flags);
2449 } else {
2450 mac_control->rings[ring_no].put_pos =
2451 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2452 }
da6971d8 2453 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
6d517a27 2454 ((nic->rxd_mode == RXD_MODE_3B) &&
da6971d8 2455 (rxdp->Control_2 & BIT(0)))) {
20346722 2456 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2457 offset = off;
1da177e4
LT
2458 goto end;
2459 }
da6971d8
AR
2460 /* calculate size of skb based on ring mode */
2461 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2462 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2463 if (nic->rxd_mode == RXD_MODE_1)
2464 size += NET_IP_ALIGN;
da6971d8 2465 else
6d517a27 2466 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2467
da6971d8
AR
2468 /* allocate skb */
2469 skb = dev_alloc_skb(size);
2470 if(!skb) {
0c61ed5f
RV
2471 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2472 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2473 if (first_rxdp) {
2474 wmb();
2475 first_rxdp->Control_1 |= RXD_OWN_XENA;
2476 }
c53d4945
SH
2477 nic->mac_control.stats_info->sw_stat. \
2478 mem_alloc_fail_cnt++;
da6971d8
AR
2479 return -ENOMEM ;
2480 }
491976b2
SH
2481 nic->mac_control.stats_info->sw_stat.mem_allocated
2482 += skb->truesize;
da6971d8
AR
2483 if (nic->rxd_mode == RXD_MODE_1) {
2484 /* 1 buffer mode - normal operation mode */
6d517a27 2485 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2486 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2487 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2488 rxdp1->Buffer0_ptr = pci_map_single
863c11a9
AR
2489 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2490 PCI_DMA_FROMDEVICE);
491abf25
VP
2491 if( (rxdp1->Buffer0_ptr == 0) ||
2492 (rxdp1->Buffer0_ptr ==
2493 DMA_ERROR_CODE))
2494 goto pci_map_failed;
2495
491976b2
SH
2496 rxdp->Control_2 =
2497 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8 2498
6d517a27 2499 } else if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8 2500 /*
6d517a27
VP
2501 * 2 buffer mode -
2502 * 2 buffer mode provides 128
da6971d8 2503 * byte aligned receive buffers.
da6971d8
AR
2504 */
2505
6d517a27 2506 rxdp3 = (struct RxD3*)rxdp;
491976b2 2507 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2508 Buffer0_ptr = rxdp3->Buffer0_ptr;
2509 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2510 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2511 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2512 rxdp3->Buffer0_ptr = Buffer0_ptr;
2513 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2514
da6971d8
AR
2515 ba = &mac_control->rings[ring_no].ba[block_no][off];
2516 skb_reserve(skb, BUF0_LEN);
2517 tmp = (u64)(unsigned long) skb->data;
2518 tmp += ALIGN_SIZE;
2519 tmp &= ~ALIGN_SIZE;
2520 skb->data = (void *) (unsigned long)tmp;
27a884dc 2521 skb_reset_tail_pointer(skb);
da6971d8 2522
6d517a27
VP
2523 if (!(rxdp3->Buffer0_ptr))
2524 rxdp3->Buffer0_ptr =
75c30b13 2525 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2526 PCI_DMA_FROMDEVICE);
75c30b13
AR
2527 else
2528 pci_dma_sync_single_for_device(nic->pdev,
6d517a27 2529 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2530 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2531 if( (rxdp3->Buffer0_ptr == 0) ||
2532 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2533 goto pci_map_failed;
2534
da6971d8
AR
2535 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2536 if (nic->rxd_mode == RXD_MODE_3B) {
2537 /* Two buffer mode */
2538
2539 /*
6aa20a22 2540 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2541 * L4 payload
2542 */
6d517a27 2543 rxdp3->Buffer2_ptr = pci_map_single
da6971d8
AR
2544 (nic->pdev, skb->data, dev->mtu + 4,
2545 PCI_DMA_FROMDEVICE);
2546
491abf25
VP
2547 if( (rxdp3->Buffer2_ptr == 0) ||
2548 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2549 goto pci_map_failed;
2550
2551 rxdp3->Buffer1_ptr =
6aa20a22 2552 pci_map_single(nic->pdev,
75c30b13
AR
2553 ba->ba_1, BUF1_LEN,
2554 PCI_DMA_FROMDEVICE);
491abf25
VP
2555 if( (rxdp3->Buffer1_ptr == 0) ||
2556 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2557 pci_unmap_single
2558 (nic->pdev,
3e847423 2559 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
2560 dev->mtu + 4,
2561 PCI_DMA_FROMDEVICE);
2562 goto pci_map_failed;
75c30b13 2563 }
da6971d8
AR
2564 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2565 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2566 (dev->mtu + 4);
da6971d8
AR
2567 }
2568 rxdp->Control_2 |= BIT(0);
1da177e4 2569 }
1da177e4 2570 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2571 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2572 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2573 off++;
da6971d8
AR
2574 if (off == (rxd_count[nic->rxd_mode] + 1))
2575 off = 0;
20346722 2576 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2577
da6971d8 2578 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2579 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2580 if (first_rxdp) {
2581 wmb();
2582 first_rxdp->Control_1 |= RXD_OWN_XENA;
2583 }
2584 first_rxdp = rxdp;
2585 }
1da177e4
LT
2586 atomic_inc(&nic->rx_bufs_left[ring_no]);
2587 alloc_tab++;
2588 }
2589
2590 end:
303bcb4b
K
2591 /* Transfer ownership of first descriptor to adapter just before
2592 * exiting. Before that, use memory barrier so that ownership
2593 * and other fields are seen by adapter correctly.
2594 */
2595 if (first_rxdp) {
2596 wmb();
2597 first_rxdp->Control_1 |= RXD_OWN_XENA;
2598 }
2599
1da177e4 2600 return SUCCESS;
491abf25
VP
2601pci_map_failed:
2602 stats->pci_map_fail_cnt++;
2603 stats->mem_freed += skb->truesize;
2604 dev_kfree_skb_irq(skb);
2605 return -ENOMEM;
1da177e4
LT
2606}
2607
da6971d8
AR
2608static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2609{
2610 struct net_device *dev = sp->dev;
2611 int j;
2612 struct sk_buff *skb;
1ee6dd77
RB
2613 struct RxD_t *rxdp;
2614 struct mac_info *mac_control;
2615 struct buffAdd *ba;
6d517a27
VP
2616 struct RxD1 *rxdp1;
2617 struct RxD3 *rxdp3;
da6971d8
AR
2618
2619 mac_control = &sp->mac_control;
2620 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2621 rxdp = mac_control->rings[ring_no].
2622 rx_blocks[blk].rxds[j].virt_addr;
2623 skb = (struct sk_buff *)
2624 ((unsigned long) rxdp->Host_Control);
2625 if (!skb) {
2626 continue;
2627 }
2628 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2629 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2630 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2631 rxdp1->Buffer0_ptr,
2632 dev->mtu +
2633 HEADER_ETHERNET_II_802_3_SIZE
2634 + HEADER_802_2_SIZE +
2635 HEADER_SNAP_SIZE,
2636 PCI_DMA_FROMDEVICE);
1ee6dd77 2637 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2638 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2639 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2640 ba = &mac_control->rings[ring_no].
2641 ba[blk][j];
2642 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2643 rxdp3->Buffer0_ptr,
2644 BUF0_LEN,
da6971d8
AR
2645 PCI_DMA_FROMDEVICE);
2646 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2647 rxdp3->Buffer1_ptr,
2648 BUF1_LEN,
da6971d8
AR
2649 PCI_DMA_FROMDEVICE);
2650 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2651 rxdp3->Buffer2_ptr,
2652 dev->mtu + 4,
da6971d8 2653 PCI_DMA_FROMDEVICE);
1ee6dd77 2654 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2655 }
491976b2 2656 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8
AR
2657 dev_kfree_skb(skb);
2658 atomic_dec(&sp->rx_bufs_left[ring_no]);
2659 }
2660}
2661
1da177e4 2662/**
20346722 2663 * free_rx_buffers - Frees all Rx buffers
1da177e4 2664 * @sp: device private variable.
20346722 2665 * Description:
1da177e4
LT
2666 * This function will free all Rx buffers allocated by host.
2667 * Return Value:
2668 * NONE.
2669 */
2670
2671static void free_rx_buffers(struct s2io_nic *sp)
2672{
2673 struct net_device *dev = sp->dev;
da6971d8 2674 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2675 struct mac_info *mac_control;
1da177e4 2676 struct config_param *config;
1da177e4
LT
2677
2678 mac_control = &sp->mac_control;
2679 config = &sp->config;
2680
2681 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2682 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2683 free_rxd_blk(sp,i,blk);
1da177e4 2684
20346722
K
2685 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2686 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2687 mac_control->rings[i].rx_curr_put_info.offset = 0;
2688 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2689 atomic_set(&sp->rx_bufs_left[i], 0);
2690 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2691 dev->name, buf_cnt, i);
2692 }
2693}
2694
2695/**
2696 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2697 * @napi : pointer to the napi structure.
20346722 2698 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2699 * during one pass through the 'Poll" function.
2700 * Description:
2701 * Comes into picture only if NAPI support has been incorporated. It does
2702 * the same thing that rx_intr_handler does, but not in a interrupt context
2703 * also It will process only a given number of packets.
2704 * Return value:
2705 * 0 on success and 1 if there are No Rx packets to be processed.
2706 */
2707
bea3348e 2708static int s2io_poll(struct napi_struct *napi, int budget)
1da177e4 2709{
bea3348e
SH
2710 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2711 struct net_device *dev = nic->dev;
20346722 2712 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2713 struct mac_info *mac_control;
1da177e4 2714 struct config_param *config;
1ee6dd77 2715 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2716 int i;
1da177e4 2717
7ba013ac 2718 atomic_inc(&nic->isr_cnt);
92b84437
SS
2719
2720 if (!is_s2io_card_up(nic)) {
2721 atomic_dec(&nic->isr_cnt);
2722 return 0;
2723 }
2724
1da177e4
LT
2725 mac_control = &nic->mac_control;
2726 config = &nic->config;
2727
bea3348e 2728 nic->pkts_to_process = budget;
20346722 2729 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2730
19a60522
SS
2731 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2732 readl(&bar0->rx_traffic_int);
1da177e4
LT
2733
2734 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2735 rx_intr_handler(&mac_control->rings[i]);
2736 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2737 if (!nic->pkts_to_process) {
2738 /* Quota for the current iteration has been met */
2739 goto no_rx;
1da177e4 2740 }
1da177e4 2741 }
1da177e4 2742
bea3348e 2743 netif_rx_complete(dev, napi);
1da177e4
LT
2744
2745 for (i = 0; i < config->rx_ring_num; i++) {
2746 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2747 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2748 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2749 break;
2750 }
2751 }
2752 /* Re enable the Rx interrupts. */
c92ca04b 2753 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2754 readl(&bar0->rx_traffic_mask);
7ba013ac 2755 atomic_dec(&nic->isr_cnt);
bea3348e 2756 return pkt_cnt;
1da177e4 2757
20346722 2758no_rx:
1da177e4
LT
2759 for (i = 0; i < config->rx_ring_num; i++) {
2760 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2761 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2762 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2763 break;
2764 }
2765 }
7ba013ac 2766 atomic_dec(&nic->isr_cnt);
bea3348e 2767 return pkt_cnt;
1da177e4 2768}
20346722 2769
b41477f3 2770#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2771/**
b41477f3 2772 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2773 * @dev : pointer to the device structure.
2774 * Description:
b41477f3
AR
2775 * This function will be called by upper layer to check for events on the
2776 * interface in situations where interrupts are disabled. It is used for
2777 * specific in-kernel networking tasks, such as remote consoles and kernel
2778 * debugging over the network (example netdump in RedHat).
612eff0e 2779 */
612eff0e
BH
2780static void s2io_netpoll(struct net_device *dev)
2781{
1ee6dd77
RB
2782 struct s2io_nic *nic = dev->priv;
2783 struct mac_info *mac_control;
612eff0e 2784 struct config_param *config;
1ee6dd77 2785 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2786 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2787 int i;
2788
d796fdb7
LV
2789 if (pci_channel_offline(nic->pdev))
2790 return;
2791
612eff0e
BH
2792 disable_irq(dev->irq);
2793
2794 atomic_inc(&nic->isr_cnt);
2795 mac_control = &nic->mac_control;
2796 config = &nic->config;
2797
612eff0e 2798 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2799 writeq(val64, &bar0->tx_traffic_int);
2800
6aa20a22 2801 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2802 * run out of skbs and will fail and eventually netpoll application such
2803 * as netdump will fail.
2804 */
2805 for (i = 0; i < config->tx_fifo_num; i++)
2806 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2807
b41477f3 2808 /* check for received packet and indicate up to network */
612eff0e
BH
2809 for (i = 0; i < config->rx_ring_num; i++)
2810 rx_intr_handler(&mac_control->rings[i]);
2811
2812 for (i = 0; i < config->rx_ring_num; i++) {
2813 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2814 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2815 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2816 break;
2817 }
2818 }
2819 atomic_dec(&nic->isr_cnt);
2820 enable_irq(dev->irq);
2821 return;
2822}
2823#endif
2824
20346722 2825/**
1da177e4
LT
2826 * rx_intr_handler - Rx interrupt handler
2827 * @nic: device private variable.
20346722
K
2828 * Description:
2829 * If the interrupt is because of a received frame or if the
1da177e4 2830 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2831 * called. It picks out the RxD at which place the last Rx processing had
2832 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2833 * the offset.
2834 * Return Value:
2835 * NONE.
2836 */
1ee6dd77 2837static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2838{
1ee6dd77 2839 struct s2io_nic *nic = ring_data->nic;
1da177e4 2840 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2841 int get_block, put_block, put_offset;
1ee6dd77
RB
2842 struct rx_curr_get_info get_info, put_info;
2843 struct RxD_t *rxdp;
1da177e4 2844 struct sk_buff *skb;
20346722 2845 int pkt_cnt = 0;
7d3d0439 2846 int i;
6d517a27
VP
2847 struct RxD1* rxdp1;
2848 struct RxD3* rxdp3;
7d3d0439 2849
7ba013ac 2850 spin_lock(&nic->rx_lock);
7ba013ac 2851
20346722
K
2852 get_info = ring_data->rx_curr_get_info;
2853 get_block = get_info.block_index;
1ee6dd77 2854 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2855 put_block = put_info.block_index;
da6971d8 2856 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2857 if (!napi) {
2858 spin_lock(&nic->put_lock);
2859 put_offset = ring_data->put_pos;
2860 spin_unlock(&nic->put_lock);
2861 } else
2862 put_offset = ring_data->put_pos;
2863
da6971d8 2864 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2865 /*
2866 * If your are next to put index then it's
2867 * FIFO full condition
2868 */
da6971d8
AR
2869 if ((get_block == put_block) &&
2870 (get_info.offset + 1) == put_info.offset) {
75c30b13 2871 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2872 break;
2873 }
20346722
K
2874 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2875 if (skb == NULL) {
2876 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2877 dev->name);
2878 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2879 spin_unlock(&nic->rx_lock);
20346722 2880 return;
1da177e4 2881 }
da6971d8 2882 if (nic->rxd_mode == RXD_MODE_1) {
6d517a27 2883 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2884 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2885 rxdp1->Buffer0_ptr,
2886 dev->mtu +
2887 HEADER_ETHERNET_II_802_3_SIZE +
2888 HEADER_802_2_SIZE +
2889 HEADER_SNAP_SIZE,
2890 PCI_DMA_FROMDEVICE);
da6971d8 2891 } else if (nic->rxd_mode == RXD_MODE_3B) {
6d517a27 2892 rxdp3 = (struct RxD3*)rxdp;
75c30b13 2893 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
6d517a27
VP
2894 rxdp3->Buffer0_ptr,
2895 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2896 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2897 rxdp3->Buffer2_ptr,
2898 dev->mtu + 4,
2899 PCI_DMA_FROMDEVICE);
da6971d8 2900 }
863c11a9 2901 prefetch(skb->data);
20346722
K
2902 rx_osm_handler(ring_data, rxdp);
2903 get_info.offset++;
da6971d8
AR
2904 ring_data->rx_curr_get_info.offset = get_info.offset;
2905 rxdp = ring_data->rx_blocks[get_block].
2906 rxds[get_info.offset].virt_addr;
2907 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2908 get_info.offset = 0;
da6971d8 2909 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2910 get_block++;
da6971d8
AR
2911 if (get_block == ring_data->block_count)
2912 get_block = 0;
2913 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2914 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2915 }
1da177e4 2916
20346722 2917 nic->pkts_to_process -= 1;
db874e65 2918 if ((napi) && (!nic->pkts_to_process))
20346722 2919 break;
20346722 2920 pkt_cnt++;
1da177e4
LT
2921 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2922 break;
2923 }
7d3d0439
RA
2924 if (nic->lro) {
2925 /* Clear all LRO sessions before exiting */
2926 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2927 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2928 if (lro->in_use) {
2929 update_L3L4_header(nic, lro);
2930 queue_rx_frame(lro->parent);
2931 clear_lro_session(lro);
2932 }
2933 }
2934 }
2935
7ba013ac 2936 spin_unlock(&nic->rx_lock);
1da177e4 2937}
20346722
K
2938
2939/**
1da177e4
LT
2940 * tx_intr_handler - Transmit interrupt handler
2941 * @nic : device private variable
20346722
K
2942 * Description:
2943 * If an interrupt was raised to indicate DMA complete of the
2944 * Tx packet, this function is called. It identifies the last TxD
2945 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2946 * DMA'ed into the NICs internal memory.
2947 * Return Value:
2948 * NONE
2949 */
2950
1ee6dd77 2951static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2952{
1ee6dd77 2953 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2954 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2955 struct tx_curr_get_info get_info, put_info;
1da177e4 2956 struct sk_buff *skb;
1ee6dd77 2957 struct TxD *txdlp;
f9046eb3 2958 u8 err_mask;
1da177e4 2959
20346722 2960 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2961 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2962 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2963 list_virt_addr;
2964 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2965 (get_info.offset != put_info.offset) &&
2966 (txdlp->Host_Control)) {
2967 /* Check for TxD errors */
2968 if (txdlp->Control_1 & TXD_T_CODE) {
2969 unsigned long long err;
2970 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2971 if (err & 0x1) {
2972 nic->mac_control.stats_info->sw_stat.
2973 parity_err_cnt++;
2974 }
491976b2
SH
2975
2976 /* update t_code statistics */
f9046eb3
OH
2977 err_mask = err >> 48;
2978 switch(err_mask) {
491976b2
SH
2979 case 2:
2980 nic->mac_control.stats_info->sw_stat.
2981 tx_buf_abort_cnt++;
2982 break;
2983
2984 case 3:
2985 nic->mac_control.stats_info->sw_stat.
2986 tx_desc_abort_cnt++;
2987 break;
2988
2989 case 7:
2990 nic->mac_control.stats_info->sw_stat.
2991 tx_parity_err_cnt++;
2992 break;
2993
2994 case 10:
2995 nic->mac_control.stats_info->sw_stat.
2996 tx_link_loss_cnt++;
2997 break;
2998
2999 case 15:
3000 nic->mac_control.stats_info->sw_stat.
3001 tx_list_proc_err_cnt++;
3002 break;
3003 }
20346722 3004 }
1da177e4 3005
fed5eccd 3006 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
3007 if (skb == NULL) {
3008 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3009 __FUNCTION__);
3010 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3011 return;
3012 }
3013
20346722 3014 /* Updating the statistics block */
20346722 3015 nic->stats.tx_bytes += skb->len;
491976b2 3016 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
3017 dev_kfree_skb_irq(skb);
3018
3019 get_info.offset++;
863c11a9
AR
3020 if (get_info.offset == get_info.fifo_len + 1)
3021 get_info.offset = 0;
1ee6dd77 3022 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
3023 [get_info.offset].list_virt_addr;
3024 fifo_data->tx_curr_get_info.offset =
3025 get_info.offset;
1da177e4
LT
3026 }
3027
3028 spin_lock(&nic->tx_lock);
3029 if (netif_queue_stopped(dev))
3030 netif_wake_queue(dev);
3031 spin_unlock(&nic->tx_lock);
3032}
3033
bd1034f0
AR
3034/**
3035 * s2io_mdio_write - Function to write in to MDIO registers
3036 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3037 * @addr : address value
3038 * @value : data value
3039 * @dev : pointer to net_device structure
3040 * Description:
3041 * This function is used to write values to the MDIO registers
3042 * NONE
3043 */
3044static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3045{
3046 u64 val64 = 0x0;
1ee6dd77
RB
3047 struct s2io_nic *sp = dev->priv;
3048 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3049
3050 //address transaction
3051 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3052 | MDIO_MMD_DEV_ADDR(mmd_type)
3053 | MDIO_MMS_PRT_ADDR(0x0);
3054 writeq(val64, &bar0->mdio_control);
3055 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3056 writeq(val64, &bar0->mdio_control);
3057 udelay(100);
3058
3059 //Data transaction
3060 val64 = 0x0;
3061 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3062 | MDIO_MMD_DEV_ADDR(mmd_type)
3063 | MDIO_MMS_PRT_ADDR(0x0)
3064 | MDIO_MDIO_DATA(value)
3065 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3066 writeq(val64, &bar0->mdio_control);
3067 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3068 writeq(val64, &bar0->mdio_control);
3069 udelay(100);
3070
3071 val64 = 0x0;
3072 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3073 | MDIO_MMD_DEV_ADDR(mmd_type)
3074 | MDIO_MMS_PRT_ADDR(0x0)
3075 | MDIO_OP(MDIO_OP_READ_TRANS);
3076 writeq(val64, &bar0->mdio_control);
3077 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3078 writeq(val64, &bar0->mdio_control);
3079 udelay(100);
3080
3081}
3082
3083/**
3084 * s2io_mdio_read - Function to write in to MDIO registers
3085 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3086 * @addr : address value
3087 * @dev : pointer to net_device structure
3088 * Description:
3089 * This function is used to read values to the MDIO registers
3090 * NONE
3091 */
3092static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3093{
3094 u64 val64 = 0x0;
3095 u64 rval64 = 0x0;
1ee6dd77
RB
3096 struct s2io_nic *sp = dev->priv;
3097 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3098
3099 /* address transaction */
3100 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3101 | MDIO_MMD_DEV_ADDR(mmd_type)
3102 | MDIO_MMS_PRT_ADDR(0x0);
3103 writeq(val64, &bar0->mdio_control);
3104 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3105 writeq(val64, &bar0->mdio_control);
3106 udelay(100);
3107
3108 /* Data transaction */
3109 val64 = 0x0;
3110 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3111 | MDIO_MMD_DEV_ADDR(mmd_type)
3112 | MDIO_MMS_PRT_ADDR(0x0)
3113 | MDIO_OP(MDIO_OP_READ_TRANS);
3114 writeq(val64, &bar0->mdio_control);
3115 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3116 writeq(val64, &bar0->mdio_control);
3117 udelay(100);
3118
3119 /* Read the value from regs */
3120 rval64 = readq(&bar0->mdio_control);
3121 rval64 = rval64 & 0xFFFF0000;
3122 rval64 = rval64 >> 16;
3123 return rval64;
3124}
3125/**
3126 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3127 * @counter : couter value to be updated
3128 * @flag : flag to indicate the status
3129 * @type : counter type
3130 * Description:
3131 * This function is to check the status of the xpak counters value
3132 * NONE
3133 */
3134
3135static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3136{
3137 u64 mask = 0x3;
3138 u64 val64;
3139 int i;
3140 for(i = 0; i <index; i++)
3141 mask = mask << 0x2;
3142
3143 if(flag > 0)
3144 {
3145 *counter = *counter + 1;
3146 val64 = *regs_stat & mask;
3147 val64 = val64 >> (index * 0x2);
3148 val64 = val64 + 1;
3149 if(val64 == 3)
3150 {
3151 switch(type)
3152 {
3153 case 1:
3154 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3155 "service. Excessive temperatures may "
3156 "result in premature transceiver "
3157 "failure \n");
3158 break;
3159 case 2:
3160 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3161 "service Excessive bias currents may "
3162 "indicate imminent laser diode "
3163 "failure \n");
3164 break;
3165 case 3:
3166 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3167 "service Excessive laser output "
3168 "power may saturate far-end "
3169 "receiver\n");
3170 break;
3171 default:
3172 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3173 "type \n");
3174 }
3175 val64 = 0x0;
3176 }
3177 val64 = val64 << (index * 0x2);
3178 *regs_stat = (*regs_stat & (~mask)) | (val64);
3179
3180 } else {
3181 *regs_stat = *regs_stat & (~mask);
3182 }
3183}
3184
3185/**
3186 * s2io_updt_xpak_counter - Function to update the xpak counters
3187 * @dev : pointer to net_device struct
3188 * Description:
3189 * This function is to upate the status of the xpak counters value
3190 * NONE
3191 */
3192static void s2io_updt_xpak_counter(struct net_device *dev)
3193{
3194 u16 flag = 0x0;
3195 u16 type = 0x0;
3196 u16 val16 = 0x0;
3197 u64 val64 = 0x0;
3198 u64 addr = 0x0;
3199
1ee6dd77
RB
3200 struct s2io_nic *sp = dev->priv;
3201 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3202
3203 /* Check the communication with the MDIO slave */
3204 addr = 0x0000;
3205 val64 = 0x0;
3206 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3207 if((val64 == 0xFFFF) || (val64 == 0x0000))
3208 {
3209 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3210 "Returned %llx\n", (unsigned long long)val64);
3211 return;
3212 }
3213
3214 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3215 if(val64 != 0x2040)
3216 {
3217 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3218 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3219 (unsigned long long)val64);
3220 return;
3221 }
3222
3223 /* Loading the DOM register to MDIO register */
3224 addr = 0xA100;
3225 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3226 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3227
3228 /* Reading the Alarm flags */
3229 addr = 0xA070;
3230 val64 = 0x0;
3231 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3232
3233 flag = CHECKBIT(val64, 0x7);
3234 type = 1;
3235 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3236 &stat_info->xpak_stat.xpak_regs_stat,
3237 0x0, flag, type);
3238
3239 if(CHECKBIT(val64, 0x6))
3240 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3241
3242 flag = CHECKBIT(val64, 0x3);
3243 type = 2;
3244 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3245 &stat_info->xpak_stat.xpak_regs_stat,
3246 0x2, flag, type);
3247
3248 if(CHECKBIT(val64, 0x2))
3249 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3250
3251 flag = CHECKBIT(val64, 0x1);
3252 type = 3;
3253 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3254 &stat_info->xpak_stat.xpak_regs_stat,
3255 0x4, flag, type);
3256
3257 if(CHECKBIT(val64, 0x0))
3258 stat_info->xpak_stat.alarm_laser_output_power_low++;
3259
3260 /* Reading the Warning flags */
3261 addr = 0xA074;
3262 val64 = 0x0;
3263 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3264
3265 if(CHECKBIT(val64, 0x7))
3266 stat_info->xpak_stat.warn_transceiver_temp_high++;
3267
3268 if(CHECKBIT(val64, 0x6))
3269 stat_info->xpak_stat.warn_transceiver_temp_low++;
3270
3271 if(CHECKBIT(val64, 0x3))
3272 stat_info->xpak_stat.warn_laser_bias_current_high++;
3273
3274 if(CHECKBIT(val64, 0x2))
3275 stat_info->xpak_stat.warn_laser_bias_current_low++;
3276
3277 if(CHECKBIT(val64, 0x1))
3278 stat_info->xpak_stat.warn_laser_output_power_high++;
3279
3280 if(CHECKBIT(val64, 0x0))
3281 stat_info->xpak_stat.warn_laser_output_power_low++;
3282}
3283
20346722 3284/**
1da177e4 3285 * wait_for_cmd_complete - waits for a command to complete.
20346722 3286 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3287 * s2io_nic structure.
20346722
K
3288 * Description: Function that waits for a command to Write into RMAC
3289 * ADDR DATA registers to be completed and returns either success or
3290 * error depending on whether the command was complete or not.
1da177e4
LT
3291 * Return value:
3292 * SUCCESS on success and FAILURE on failure.
3293 */
3294
9fc93a41
SS
3295static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3296 int bit_state)
1da177e4 3297{
9fc93a41 3298 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3299 u64 val64;
3300
9fc93a41
SS
3301 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3302 return FAILURE;
3303
3304 do {
c92ca04b 3305 val64 = readq(addr);
9fc93a41
SS
3306 if (bit_state == S2IO_BIT_RESET) {
3307 if (!(val64 & busy_bit)) {
3308 ret = SUCCESS;
3309 break;
3310 }
3311 } else {
3312 if (!(val64 & busy_bit)) {
3313 ret = SUCCESS;
3314 break;
3315 }
1da177e4 3316 }
c92ca04b
AR
3317
3318 if(in_interrupt())
9fc93a41 3319 mdelay(delay);
c92ca04b 3320 else
9fc93a41 3321 msleep(delay);
c92ca04b 3322
9fc93a41
SS
3323 if (++cnt >= 10)
3324 delay = 50;
3325 } while (cnt < 20);
1da177e4
LT
3326 return ret;
3327}
19a60522
SS
3328/*
3329 * check_pci_device_id - Checks if the device id is supported
3330 * @id : device id
3331 * Description: Function to check if the pci device id is supported by driver.
3332 * Return value: Actual device id if supported else PCI_ANY_ID
3333 */
3334static u16 check_pci_device_id(u16 id)
3335{
3336 switch (id) {
3337 case PCI_DEVICE_ID_HERC_WIN:
3338 case PCI_DEVICE_ID_HERC_UNI:
3339 return XFRAME_II_DEVICE;
3340 case PCI_DEVICE_ID_S2IO_UNI:
3341 case PCI_DEVICE_ID_S2IO_WIN:
3342 return XFRAME_I_DEVICE;
3343 default:
3344 return PCI_ANY_ID;
3345 }
3346}
1da177e4 3347
20346722
K
3348/**
3349 * s2io_reset - Resets the card.
1da177e4
LT
3350 * @sp : private member of the device structure.
3351 * Description: Function to Reset the card. This function then also
20346722 3352 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3353 * the card reset also resets the configuration space.
3354 * Return value:
3355 * void.
3356 */
3357
1ee6dd77 3358static void s2io_reset(struct s2io_nic * sp)
1da177e4 3359{
1ee6dd77 3360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3361 u64 val64;
5e25b9dd 3362 u16 subid, pci_cmd;
19a60522
SS
3363 int i;
3364 u16 val16;
491976b2
SH
3365 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3366 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3367
19a60522
SS
3368 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3369 __FUNCTION__, sp->dev->name);
1da177e4 3370
0b1f7ebe 3371 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3372 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3373
1da177e4
LT
3374 val64 = SW_RESET_ALL;
3375 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3376 if (strstr(sp->product_name, "CX4")) {
3377 msleep(750);
3378 }
19a60522
SS
3379 msleep(250);
3380 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3381
19a60522
SS
3382 /* Restore the PCI state saved during initialization. */
3383 pci_restore_state(sp->pdev);
3384 pci_read_config_word(sp->pdev, 0x2, &val16);
3385 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3386 break;
3387 msleep(200);
3388 }
1da177e4 3389
19a60522
SS
3390 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3391 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3392 }
3393
3394 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3395
3396 s2io_init_pci(sp);
1da177e4 3397
20346722
K
3398 /* Set swapper to enable I/O register access */
3399 s2io_set_swapper(sp);
3400
cc6e7c44
RA
3401 /* Restore the MSIX table entries from local variables */
3402 restore_xmsi_data(sp);
3403
5e25b9dd 3404 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3405 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3406 /* Clear "detected parity error" bit */
303bcb4b 3407 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3408
303bcb4b
K
3409 /* Clearing PCIX Ecc status register */
3410 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3411
303bcb4b
K
3412 /* Clearing PCI_STATUS error reflected here */
3413 writeq(BIT(62), &bar0->txpic_int_reg);
3414 }
5e25b9dd 3415
20346722
K
3416 /* Reset device statistics maintained by OS */
3417 memset(&sp->stats, 0, sizeof (struct net_device_stats));
491976b2
SH
3418
3419 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3420 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3421 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3422 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3423 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3424 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3425 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3426 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3427 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3428 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3429 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3430 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3431 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3432 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3433 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3434 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3435 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3436 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3437 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3438
1da177e4
LT
3439 /* SXE-002: Configure link and activity LED to turn it off */
3440 subid = sp->pdev->subsystem_device;
541ae68f
K
3441 if (((subid & 0xFF) >= 0x07) &&
3442 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3443 val64 = readq(&bar0->gpio_control);
3444 val64 |= 0x0000800000000000ULL;
3445 writeq(val64, &bar0->gpio_control);
3446 val64 = 0x0411040400000000ULL;
509a2671 3447 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3448 }
3449
541ae68f
K
3450 /*
3451 * Clear spurious ECC interrupts that would have occured on
3452 * XFRAME II cards after reset.
3453 */
3454 if (sp->device_type == XFRAME_II_DEVICE) {
3455 val64 = readq(&bar0->pcc_err_reg);
3456 writeq(val64, &bar0->pcc_err_reg);
3457 }
3458
d8d70caf
SS
3459 /* restore the previously assigned mac address */
3460 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3461
1da177e4
LT
3462 sp->device_enabled_once = FALSE;
3463}
3464
3465/**
20346722
K
3466 * s2io_set_swapper - to set the swapper controle on the card
3467 * @sp : private member of the device structure,
1da177e4 3468 * pointer to the s2io_nic structure.
20346722 3469 * Description: Function to set the swapper control on the card
1da177e4
LT
3470 * correctly depending on the 'endianness' of the system.
3471 * Return value:
3472 * SUCCESS on success and FAILURE on failure.
3473 */
3474
1ee6dd77 3475static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3476{
3477 struct net_device *dev = sp->dev;
1ee6dd77 3478 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3479 u64 val64, valt, valr;
3480
20346722 3481 /*
1da177e4
LT
3482 * Set proper endian settings and verify the same by reading
3483 * the PIF Feed-back register.
3484 */
3485
3486 val64 = readq(&bar0->pif_rd_swapper_fb);
3487 if (val64 != 0x0123456789ABCDEFULL) {
3488 int i = 0;
3489 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3490 0x8100008181000081ULL, /* FE=1, SE=0 */
3491 0x4200004242000042ULL, /* FE=0, SE=1 */
3492 0}; /* FE=0, SE=0 */
3493
3494 while(i<4) {
3495 writeq(value[i], &bar0->swapper_ctrl);
3496 val64 = readq(&bar0->pif_rd_swapper_fb);
3497 if (val64 == 0x0123456789ABCDEFULL)
3498 break;
3499 i++;
3500 }
3501 if (i == 4) {
3502 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3503 dev->name);
3504 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3505 (unsigned long long) val64);
3506 return FAILURE;
3507 }
3508 valr = value[i];
3509 } else {
3510 valr = readq(&bar0->swapper_ctrl);
3511 }
3512
3513 valt = 0x0123456789ABCDEFULL;
3514 writeq(valt, &bar0->xmsi_address);
3515 val64 = readq(&bar0->xmsi_address);
3516
3517 if(val64 != valt) {
3518 int i = 0;
3519 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3520 0x0081810000818100ULL, /* FE=1, SE=0 */
3521 0x0042420000424200ULL, /* FE=0, SE=1 */
3522 0}; /* FE=0, SE=0 */
3523
3524 while(i<4) {
3525 writeq((value[i] | valr), &bar0->swapper_ctrl);
3526 writeq(valt, &bar0->xmsi_address);
3527 val64 = readq(&bar0->xmsi_address);
3528 if(val64 == valt)
3529 break;
3530 i++;
3531 }
3532 if(i == 4) {
20346722 3533 unsigned long long x = val64;
1da177e4 3534 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3535 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3536 return FAILURE;
3537 }
3538 }
3539 val64 = readq(&bar0->swapper_ctrl);
3540 val64 &= 0xFFFF000000000000ULL;
3541
3542#ifdef __BIG_ENDIAN
20346722
K
3543 /*
3544 * The device by default set to a big endian format, so a
1da177e4
LT
3545 * big endian driver need not set anything.
3546 */
3547 val64 |= (SWAPPER_CTRL_TXP_FE |
3548 SWAPPER_CTRL_TXP_SE |
3549 SWAPPER_CTRL_TXD_R_FE |
3550 SWAPPER_CTRL_TXD_W_FE |
3551 SWAPPER_CTRL_TXF_R_FE |
3552 SWAPPER_CTRL_RXD_R_FE |
3553 SWAPPER_CTRL_RXD_W_FE |
3554 SWAPPER_CTRL_RXF_W_FE |
3555 SWAPPER_CTRL_XMSI_FE |
1da177e4 3556 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3557 if (sp->config.intr_type == INTA)
cc6e7c44 3558 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3559 writeq(val64, &bar0->swapper_ctrl);
3560#else
20346722 3561 /*
1da177e4 3562 * Initially we enable all bits to make it accessible by the
20346722 3563 * driver, then we selectively enable only those bits that
1da177e4
LT
3564 * we want to set.
3565 */
3566 val64 |= (SWAPPER_CTRL_TXP_FE |
3567 SWAPPER_CTRL_TXP_SE |
3568 SWAPPER_CTRL_TXD_R_FE |
3569 SWAPPER_CTRL_TXD_R_SE |
3570 SWAPPER_CTRL_TXD_W_FE |
3571 SWAPPER_CTRL_TXD_W_SE |
3572 SWAPPER_CTRL_TXF_R_FE |
3573 SWAPPER_CTRL_RXD_R_FE |
3574 SWAPPER_CTRL_RXD_R_SE |
3575 SWAPPER_CTRL_RXD_W_FE |
3576 SWAPPER_CTRL_RXD_W_SE |
3577 SWAPPER_CTRL_RXF_W_FE |
3578 SWAPPER_CTRL_XMSI_FE |
1da177e4 3579 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3580 if (sp->config.intr_type == INTA)
cc6e7c44 3581 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3582 writeq(val64, &bar0->swapper_ctrl);
3583#endif
3584 val64 = readq(&bar0->swapper_ctrl);
3585
20346722
K
3586 /*
3587 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3588 * feedback register.
3589 */
3590 val64 = readq(&bar0->pif_rd_swapper_fb);
3591 if (val64 != 0x0123456789ABCDEFULL) {
3592 /* Endian settings are incorrect, calls for another dekko. */
3593 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3594 dev->name);
3595 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3596 (unsigned long long) val64);
3597 return FAILURE;
3598 }
3599
3600 return SUCCESS;
3601}
3602
1ee6dd77 3603static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3604{
1ee6dd77 3605 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3606 u64 val64;
3607 int ret = 0, cnt = 0;
3608
3609 do {
3610 val64 = readq(&bar0->xmsi_access);
3611 if (!(val64 & BIT(15)))
3612 break;
3613 mdelay(1);
3614 cnt++;
3615 } while(cnt < 5);
3616 if (cnt == 5) {
3617 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3618 ret = 1;
3619 }
3620
3621 return ret;
3622}
3623
1ee6dd77 3624static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3625{
1ee6dd77 3626 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3627 u64 val64;
3628 int i;
3629
75c30b13 3630 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3631 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3632 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3633 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3634 writeq(val64, &bar0->xmsi_access);
3635 if (wait_for_msix_trans(nic, i)) {
3636 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3637 continue;
3638 }
3639 }
3640}
3641
1ee6dd77 3642static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3643{
1ee6dd77 3644 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3645 u64 val64, addr, data;
3646 int i;
3647
3648 /* Store and display */
75c30b13 3649 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3650 val64 = (BIT(15) | vBIT(i, 26, 6));
3651 writeq(val64, &bar0->xmsi_access);
3652 if (wait_for_msix_trans(nic, i)) {
3653 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3654 continue;
3655 }
3656 addr = readq(&bar0->xmsi_address);
3657 data = readq(&bar0->xmsi_data);
3658 if (addr && data) {
3659 nic->msix_info[i].addr = addr;
3660 nic->msix_info[i].data = data;
3661 }
3662 }
3663}
3664
1ee6dd77 3665static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3666{
1ee6dd77 3667 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3668 u64 tx_mat, rx_mat;
3669 u16 msi_control; /* Temp variable */
3670 int ret, i, j, msix_indx = 1;
3671
3672 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3673 GFP_KERNEL);
3674 if (nic->entries == NULL) {
491976b2
SH
3675 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3676 __FUNCTION__);
c53d4945 3677 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3678 return -ENOMEM;
3679 }
491976b2
SH
3680 nic->mac_control.stats_info->sw_stat.mem_allocated
3681 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3682 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3683
3684 nic->s2io_entries =
3685 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3686 GFP_KERNEL);
3687 if (nic->s2io_entries == NULL) {
491976b2
SH
3688 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3689 __FUNCTION__);
c53d4945 3690 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3691 kfree(nic->entries);
491976b2
SH
3692 nic->mac_control.stats_info->sw_stat.mem_freed
3693 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3694 return -ENOMEM;
3695 }
491976b2
SH
3696 nic->mac_control.stats_info->sw_stat.mem_allocated
3697 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3698 memset(nic->s2io_entries, 0,
3699 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3700
3701 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3702 nic->entries[i].entry = i;
3703 nic->s2io_entries[i].entry = i;
3704 nic->s2io_entries[i].arg = NULL;
3705 nic->s2io_entries[i].in_use = 0;
3706 }
3707
3708 tx_mat = readq(&bar0->tx_mat0_n[0]);
3709 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3710 tx_mat |= TX_MAT_SET(i, msix_indx);
3711 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3712 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3713 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3714 }
3715 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3716
3717 if (!nic->config.bimodal) {
3718 rx_mat = readq(&bar0->rx_mat);
3719 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3720 rx_mat |= RX_MAT_SET(j, msix_indx);
491976b2
SH
3721 nic->s2io_entries[msix_indx].arg
3722 = &nic->mac_control.rings[j];
cc6e7c44
RA
3723 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3724 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3725 }
3726 writeq(rx_mat, &bar0->rx_mat);
3727 } else {
3728 tx_mat = readq(&bar0->tx_mat0_n[7]);
3729 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3730 tx_mat |= TX_MAT_SET(i, msix_indx);
491976b2
SH
3731 nic->s2io_entries[msix_indx].arg
3732 = &nic->mac_control.rings[j];
cc6e7c44
RA
3733 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3734 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3735 }
3736 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3737 }
3738
c92ca04b 3739 nic->avail_msix_vectors = 0;
cc6e7c44 3740 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3741 /* We fail init if error or we get less vectors than min required */
3742 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3743 nic->avail_msix_vectors = ret;
3744 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3745 }
cc6e7c44
RA
3746 if (ret) {
3747 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3748 kfree(nic->entries);
491976b2
SH
3749 nic->mac_control.stats_info->sw_stat.mem_freed
3750 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3751 kfree(nic->s2io_entries);
491976b2
SH
3752 nic->mac_control.stats_info->sw_stat.mem_freed
3753 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3754 nic->entries = NULL;
3755 nic->s2io_entries = NULL;
c92ca04b 3756 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3757 return -ENOMEM;
3758 }
c92ca04b
AR
3759 if (!nic->avail_msix_vectors)
3760 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3761
3762 /*
3763 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3764 * in the herc NIC. (Temp change, needs to be removed later)
3765 */
3766 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3767 msi_control |= 0x1; /* Enable MSI */
3768 pci_write_config_word(nic->pdev, 0x42, msi_control);
3769
3770 return 0;
3771}
3772
8abc4d5b
SS
3773/* Handle software interrupt used during MSI(X) test */
3774static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3775{
3776 struct s2io_nic *sp = dev_id;
3777
3778 sp->msi_detected = 1;
3779 wake_up(&sp->msi_wait);
3780
3781 return IRQ_HANDLED;
3782}
3783
3784/* Test interrupt path by forcing a a software IRQ */
3785static int __devinit s2io_test_msi(struct s2io_nic *sp)
3786{
3787 struct pci_dev *pdev = sp->pdev;
3788 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3789 int err;
3790 u64 val64, saved64;
3791
3792 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3793 sp->name, sp);
3794 if (err) {
3795 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3796 sp->dev->name, pci_name(pdev), pdev->irq);
3797 return err;
3798 }
3799
3800 init_waitqueue_head (&sp->msi_wait);
3801 sp->msi_detected = 0;
3802
3803 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3804 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3805 val64 |= SCHED_INT_CTRL_TIMER_EN;
3806 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3807 writeq(val64, &bar0->scheduled_int_ctrl);
3808
3809 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3810
3811 if (!sp->msi_detected) {
3812 /* MSI(X) test failed, go back to INTx mode */
3813 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3814 "using MSI(X) during test\n", sp->dev->name,
3815 pci_name(pdev));
3816
3817 err = -EOPNOTSUPP;
3818 }
3819
3820 free_irq(sp->entries[1].vector, sp);
3821
3822 writeq(saved64, &bar0->scheduled_int_ctrl);
3823
3824 return err;
3825}
1da177e4
LT
3826/* ********************************************************* *
3827 * Functions defined below concern the OS part of the driver *
3828 * ********************************************************* */
3829
20346722 3830/**
1da177e4
LT
3831 * s2io_open - open entry point of the driver
3832 * @dev : pointer to the device structure.
3833 * Description:
3834 * This function is the open entry point of the driver. It mainly calls a
3835 * function to allocate Rx buffers and inserts them into the buffer
20346722 3836 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3837 * Return value:
3838 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3839 * file on failure.
3840 */
3841
ac1f60db 3842static int s2io_open(struct net_device *dev)
1da177e4 3843{
1ee6dd77 3844 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3845 int err = 0;
3846
20346722
K
3847 /*
3848 * Make sure you have link off by default every time
1da177e4
LT
3849 * Nic is initialized
3850 */
3851 netif_carrier_off(dev);
0b1f7ebe 3852 sp->last_link_state = 0;
1da177e4 3853
bea3348e
SH
3854 napi_enable(&sp->napi);
3855
eaae7f72 3856 if (sp->config.intr_type == MSI_X) {
8abc4d5b
SS
3857 int ret = s2io_enable_msi_x(sp);
3858
3859 if (!ret) {
3860 u16 msi_control;
3861
3862 ret = s2io_test_msi(sp);
3863
3864 /* rollback MSI-X, will re-enable during add_isr() */
3865 kfree(sp->entries);
3866 sp->mac_control.stats_info->sw_stat.mem_freed +=
3867 (MAX_REQUESTED_MSI_X *
3868 sizeof(struct msix_entry));
3869 kfree(sp->s2io_entries);
3870 sp->mac_control.stats_info->sw_stat.mem_freed +=
3871 (MAX_REQUESTED_MSI_X *
3872 sizeof(struct s2io_msix_entry));
3873 sp->entries = NULL;
3874 sp->s2io_entries = NULL;
3875
3876 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3877 msi_control &= 0xFFFE; /* Disable MSI */
3878 pci_write_config_word(sp->pdev, 0x42, msi_control);
3879
3880 pci_disable_msix(sp->pdev);
3881
3882 }
3883 if (ret) {
3884
3885 DBG_PRINT(ERR_DBG,
3886 "%s: MSI-X requested but failed to enable\n",
3887 dev->name);
eaae7f72 3888 sp->config.intr_type = INTA;
8abc4d5b
SS
3889 }
3890 }
3891
c77dd43e 3892 /* NAPI doesn't work well with MSI(X) */
eaae7f72 3893 if (sp->config.intr_type != INTA) {
c77dd43e
SS
3894 if(sp->config.napi)
3895 sp->config.napi = 0;
3896 }
3897
1da177e4 3898 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3899 err = s2io_card_up(sp);
3900 if (err) {
1da177e4
LT
3901 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3902 dev->name);
e6a8fee2 3903 goto hw_init_failed;
1da177e4
LT
3904 }
3905
3906 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3907 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3908 s2io_card_down(sp);
20346722 3909 err = -ENODEV;
e6a8fee2 3910 goto hw_init_failed;
1da177e4
LT
3911 }
3912
3913 netif_start_queue(dev);
3914 return 0;
20346722 3915
20346722 3916hw_init_failed:
bea3348e 3917 napi_disable(&sp->napi);
eaae7f72 3918 if (sp->config.intr_type == MSI_X) {
491976b2 3919 if (sp->entries) {
cc6e7c44 3920 kfree(sp->entries);
491976b2
SH
3921 sp->mac_control.stats_info->sw_stat.mem_freed
3922 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3923 }
3924 if (sp->s2io_entries) {
cc6e7c44 3925 kfree(sp->s2io_entries);
491976b2
SH
3926 sp->mac_control.stats_info->sw_stat.mem_freed
3927 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3928 }
cc6e7c44 3929 }
20346722 3930 return err;
1da177e4
LT
3931}
3932
3933/**
3934 * s2io_close -close entry point of the driver
3935 * @dev : device pointer.
3936 * Description:
3937 * This is the stop entry point of the driver. It needs to undo exactly
3938 * whatever was done by the open entry point,thus it's usually referred to
3939 * as the close function.Among other things this function mainly stops the
3940 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3941 * Return value:
3942 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3943 * file on failure.
3944 */
3945
ac1f60db 3946static int s2io_close(struct net_device *dev)
1da177e4 3947{
1ee6dd77 3948 struct s2io_nic *sp = dev->priv;
cc6e7c44 3949
1da177e4 3950 netif_stop_queue(dev);
bea3348e 3951 napi_disable(&sp->napi);
1da177e4 3952 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3953 s2io_card_down(sp);
cc6e7c44 3954
1da177e4
LT
3955 return 0;
3956}
3957
3958/**
3959 * s2io_xmit - Tx entry point of te driver
3960 * @skb : the socket buffer containing the Tx data.
3961 * @dev : device pointer.
3962 * Description :
3963 * This function is the Tx entry point of the driver. S2IO NIC supports
3964 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3965 * NOTE: when device cant queue the pkt,just the trans_start variable will
3966 * not be upadted.
3967 * Return value:
3968 * 0 on success & 1 on failure.
3969 */
3970
ac1f60db 3971static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3972{
1ee6dd77 3973 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3974 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3975 register u64 val64;
1ee6dd77
RB
3976 struct TxD *txdp;
3977 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3978 unsigned long flags;
be3a6b02
K
3979 u16 vlan_tag = 0;
3980 int vlan_priority = 0;
1ee6dd77 3981 struct mac_info *mac_control;
1da177e4 3982 struct config_param *config;
75c30b13 3983 int offload_type;
491abf25 3984 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3985
3986 mac_control = &sp->mac_control;
3987 config = &sp->config;
3988
20346722 3989 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
3990
3991 if (unlikely(skb->len <= 0)) {
3992 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3993 dev_kfree_skb_any(skb);
3994 return 0;
3995}
3996
1da177e4 3997 spin_lock_irqsave(&sp->tx_lock, flags);
92b84437 3998 if (!is_s2io_card_up(sp)) {
20346722 3999 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
4000 dev->name);
4001 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
4002 dev_kfree_skb(skb);
4003 return 0;
1da177e4
LT
4004 }
4005
4006 queue = 0;
be3a6b02
K
4007 /* Get Fifo number to Transmit based on vlan priority */
4008 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4009 vlan_tag = vlan_tx_tag_get(skb);
4010 vlan_priority = vlan_tag >> 13;
4011 queue = config->fifo_mapping[vlan_priority];
4012 }
4013
20346722
K
4014 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4015 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 4016 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
4017 list_virt_addr;
4018
4019 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 4020 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4021 if (txdp->Host_Control ||
4022 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4023 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
4024 netif_stop_queue(dev);
4025 dev_kfree_skb(skb);
4026 spin_unlock_irqrestore(&sp->tx_lock, flags);
4027 return 0;
4028 }
0b1f7ebe 4029
75c30b13 4030 offload_type = s2io_offload_type(skb);
75c30b13 4031 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4032 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4033 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4034 }
84fa7933 4035 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4036 txdp->Control_2 |=
4037 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4038 TXD_TX_CKO_UDP_EN);
4039 }
fed5eccd
AR
4040 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4041 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 4042 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 4043
be3a6b02
K
4044 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4045 txdp->Control_2 |= TXD_VLAN_ENABLE;
4046 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4047 }
4048
fed5eccd 4049 frg_len = skb->len - skb->data_len;
75c30b13 4050 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4051 int ufo_size;
4052
75c30b13 4053 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4054 ufo_size &= ~7;
4055 txdp->Control_1 |= TXD_UFO_EN;
4056 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4057 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4058#ifdef __BIG_ENDIAN
4059 sp->ufo_in_band_v[put_off] =
4060 (u64)skb_shinfo(skb)->ip6_frag_id;
4061#else
4062 sp->ufo_in_band_v[put_off] =
4063 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4064#endif
4065 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4066 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4067 sp->ufo_in_band_v,
4068 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
4069 if((txdp->Buffer_Pointer == 0) ||
4070 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4071 goto pci_map_failed;
fed5eccd 4072 txdp++;
fed5eccd 4073 }
1da177e4 4074
fed5eccd
AR
4075 txdp->Buffer_Pointer = pci_map_single
4076 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
4077 if((txdp->Buffer_Pointer == 0) ||
4078 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4079 goto pci_map_failed;
4080
fed5eccd
AR
4081 txdp->Host_Control = (unsigned long) skb;
4082 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4083 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4084 txdp->Control_1 |= TXD_UFO_EN;
4085
4086 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4087 /* For fragmented SKB. */
4088 for (i = 0; i < frg_cnt; i++) {
4089 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4090 /* A '0' length fragment will be ignored */
4091 if (!frag->size)
4092 continue;
1da177e4
LT
4093 txdp++;
4094 txdp->Buffer_Pointer = (u64) pci_map_page
4095 (sp->pdev, frag->page, frag->page_offset,
4096 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4097 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4098 if (offload_type == SKB_GSO_UDP)
fed5eccd 4099 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4100 }
4101 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4102
75c30b13 4103 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4104 frg_cnt++; /* as Txd0 was used for inband header */
4105
1da177e4 4106 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 4107 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
4108 writeq(val64, &tx_fifo->TxDL_Pointer);
4109
4110 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4111 TX_FIFO_LAST_LIST);
75c30b13 4112 if (offload_type)
fed5eccd 4113 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4114
1da177e4
LT
4115 writeq(val64, &tx_fifo->List_Control);
4116
303bcb4b
K
4117 mmiowb();
4118
1da177e4 4119 put_off++;
863c11a9
AR
4120 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4121 put_off = 0;
20346722 4122 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
4123
4124 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4125 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4126 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4127 DBG_PRINT(TX_DBG,
4128 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4129 put_off, get_off);
4130 netif_stop_queue(dev);
4131 }
491976b2 4132 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4
LT
4133 dev->trans_start = jiffies;
4134 spin_unlock_irqrestore(&sp->tx_lock, flags);
4135
491abf25
VP
4136 return 0;
4137pci_map_failed:
4138 stats->pci_map_fail_cnt++;
4139 netif_stop_queue(dev);
4140 stats->mem_freed += skb->truesize;
4141 dev_kfree_skb(skb);
4142 spin_unlock_irqrestore(&sp->tx_lock, flags);
1da177e4
LT
4143 return 0;
4144}
4145
25fff88e
K
4146static void
4147s2io_alarm_handle(unsigned long data)
4148{
1ee6dd77 4149 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4150 struct net_device *dev = sp->dev;
25fff88e 4151
8116f3cf 4152 s2io_handle_errors(dev);
25fff88e
K
4153 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4154}
4155
1ee6dd77 4156static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4157{
4158 int rxb_size, level;
4159
4160 if (!sp->lro) {
4161 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4162 level = rx_buffer_level(sp, rxb_size, rng_n);
4163
4164 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4165 int ret;
4166 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4167 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4168 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
0c61ed5f 4169 DBG_PRINT(INFO_DBG, "Out of memory in %s",
75c30b13
AR
4170 __FUNCTION__);
4171 clear_bit(0, (&sp->tasklet_status));
4172 return -1;
4173 }
4174 clear_bit(0, (&sp->tasklet_status));
4175 } else if (level == LOW)
4176 tasklet_schedule(&sp->task);
4177
4178 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
0c61ed5f
RV
4179 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4180 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4181 }
4182 return 0;
4183}
4184
7d12e780 4185static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4186{
1ee6dd77
RB
4187 struct ring_info *ring = (struct ring_info *)dev_id;
4188 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4189
4190 atomic_inc(&sp->isr_cnt);
cc6e7c44 4191
92b84437
SS
4192 if (!is_s2io_card_up(sp)) {
4193 atomic_dec(&sp->isr_cnt);
4194 return IRQ_HANDLED;
4195 }
4196
75c30b13
AR
4197 rx_intr_handler(ring);
4198 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4199
cc6e7c44 4200 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4201 return IRQ_HANDLED;
4202}
4203
7d12e780 4204static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4205{
1ee6dd77
RB
4206 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4207 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4208
4209 atomic_inc(&sp->isr_cnt);
92b84437
SS
4210
4211 if (!is_s2io_card_up(sp)) {
4212 atomic_dec(&sp->isr_cnt);
4213 return IRQ_HANDLED;
4214 }
4215
cc6e7c44
RA
4216 tx_intr_handler(fifo);
4217 atomic_dec(&sp->isr_cnt);
4218 return IRQ_HANDLED;
4219}
1ee6dd77 4220static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4221{
1ee6dd77 4222 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4223 u64 val64;
4224
4225 val64 = readq(&bar0->pic_int_status);
4226 if (val64 & PIC_INT_GPIO) {
4227 val64 = readq(&bar0->gpio_int_reg);
4228 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4229 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4230 /*
4231 * This is unstable state so clear both up/down
4232 * interrupt and adapter to re-evaluate the link state.
4233 */
a371a07d
K
4234 val64 |= GPIO_INT_REG_LINK_DOWN;
4235 val64 |= GPIO_INT_REG_LINK_UP;
4236 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4237 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4238 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4239 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4240 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4241 }
c92ca04b
AR
4242 else if (val64 & GPIO_INT_REG_LINK_UP) {
4243 val64 = readq(&bar0->adapter_status);
c92ca04b 4244 /* Enable Adapter */
19a60522
SS
4245 val64 = readq(&bar0->adapter_control);
4246 val64 |= ADAPTER_CNTL_EN;
4247 writeq(val64, &bar0->adapter_control);
4248 val64 |= ADAPTER_LED_ON;
4249 writeq(val64, &bar0->adapter_control);
4250 if (!sp->device_enabled_once)
4251 sp->device_enabled_once = 1;
c92ca04b 4252
19a60522
SS
4253 s2io_link(sp, LINK_UP);
4254 /*
4255 * unmask link down interrupt and mask link-up
4256 * intr
4257 */
4258 val64 = readq(&bar0->gpio_int_mask);
4259 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4260 val64 |= GPIO_INT_MASK_LINK_UP;
4261 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4262
c92ca04b
AR
4263 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4264 val64 = readq(&bar0->adapter_status);
19a60522
SS
4265 s2io_link(sp, LINK_DOWN);
4266 /* Link is down so unmaks link up interrupt */
4267 val64 = readq(&bar0->gpio_int_mask);
4268 val64 &= ~GPIO_INT_MASK_LINK_UP;
4269 val64 |= GPIO_INT_MASK_LINK_DOWN;
4270 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4271
4272 /* turn off LED */
4273 val64 = readq(&bar0->adapter_control);
4274 val64 = val64 &(~ADAPTER_LED_ON);
4275 writeq(val64, &bar0->adapter_control);
a371a07d
K
4276 }
4277 }
c92ca04b 4278 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4279}
4280
8116f3cf
SS
4281/**
4282 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4283 * @value: alarm bits
4284 * @addr: address value
4285 * @cnt: counter variable
4286 * Description: Check for alarm and increment the counter
4287 * Return Value:
4288 * 1 - if alarm bit set
4289 * 0 - if alarm bit is not set
4290 */
4291int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4292 unsigned long long *cnt)
4293{
4294 u64 val64;
4295 val64 = readq(addr);
4296 if ( val64 & value ) {
4297 writeq(val64, addr);
4298 (*cnt)++;
4299 return 1;
4300 }
4301 return 0;
4302
4303}
4304
4305/**
4306 * s2io_handle_errors - Xframe error indication handler
4307 * @nic: device private variable
4308 * Description: Handle alarms such as loss of link, single or
4309 * double ECC errors, critical and serious errors.
4310 * Return Value:
4311 * NONE
4312 */
4313static void s2io_handle_errors(void * dev_id)
4314{
4315 struct net_device *dev = (struct net_device *) dev_id;
4316 struct s2io_nic *sp = dev->priv;
4317 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4318 u64 temp64 = 0,val64=0;
4319 int i = 0;
4320
4321 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4322 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4323
92b84437 4324 if (!is_s2io_card_up(sp))
8116f3cf
SS
4325 return;
4326
4327 if (pci_channel_offline(sp->pdev))
4328 return;
4329
4330 memset(&sw_stat->ring_full_cnt, 0,
4331 sizeof(sw_stat->ring_full_cnt));
4332
4333 /* Handling the XPAK counters update */
4334 if(stats->xpak_timer_count < 72000) {
4335 /* waiting for an hour */
4336 stats->xpak_timer_count++;
4337 } else {
4338 s2io_updt_xpak_counter(dev);
4339 /* reset the count to zero */
4340 stats->xpak_timer_count = 0;
4341 }
4342
4343 /* Handling link status change error Intr */
4344 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4345 val64 = readq(&bar0->mac_rmac_err_reg);
4346 writeq(val64, &bar0->mac_rmac_err_reg);
4347 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4348 schedule_work(&sp->set_link_task);
4349 }
4350
4351 /* In case of a serious error, the device will be Reset. */
4352 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4353 &sw_stat->serious_err_cnt))
4354 goto reset;
4355
4356 /* Check for data parity error */
4357 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4358 &sw_stat->parity_err_cnt))
4359 goto reset;
4360
4361 /* Check for ring full counter */
4362 if (sp->device_type == XFRAME_II_DEVICE) {
4363 val64 = readq(&bar0->ring_bump_counter1);
4364 for (i=0; i<4; i++) {
4365 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4366 temp64 >>= 64 - ((i+1)*16);
4367 sw_stat->ring_full_cnt[i] += temp64;
4368 }
4369
4370 val64 = readq(&bar0->ring_bump_counter2);
4371 for (i=0; i<4; i++) {
4372 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4373 temp64 >>= 64 - ((i+1)*16);
4374 sw_stat->ring_full_cnt[i+4] += temp64;
4375 }
4376 }
4377
4378 val64 = readq(&bar0->txdma_int_status);
4379 /*check for pfc_err*/
4380 if (val64 & TXDMA_PFC_INT) {
4381 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4382 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4383 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4384 &sw_stat->pfc_err_cnt))
4385 goto reset;
4386 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4387 &sw_stat->pfc_err_cnt);
4388 }
4389
4390 /*check for tda_err*/
4391 if (val64 & TXDMA_TDA_INT) {
4392 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4393 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4394 &sw_stat->tda_err_cnt))
4395 goto reset;
4396 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4397 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4398 }
4399 /*check for pcc_err*/
4400 if (val64 & TXDMA_PCC_INT) {
4401 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4402 | PCC_N_SERR | PCC_6_COF_OV_ERR
4403 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4404 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4405 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4406 &sw_stat->pcc_err_cnt))
4407 goto reset;
4408 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4409 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4410 }
4411
4412 /*check for tti_err*/
4413 if (val64 & TXDMA_TTI_INT) {
4414 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4415 &sw_stat->tti_err_cnt))
4416 goto reset;
4417 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4418 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4419 }
4420
4421 /*check for lso_err*/
4422 if (val64 & TXDMA_LSO_INT) {
4423 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4424 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4425 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4426 goto reset;
4427 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4428 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4429 }
4430
4431 /*check for tpa_err*/
4432 if (val64 & TXDMA_TPA_INT) {
4433 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4434 &sw_stat->tpa_err_cnt))
4435 goto reset;
4436 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4437 &sw_stat->tpa_err_cnt);
4438 }
4439
4440 /*check for sm_err*/
4441 if (val64 & TXDMA_SM_INT) {
4442 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4443 &sw_stat->sm_err_cnt))
4444 goto reset;
4445 }
4446
4447 val64 = readq(&bar0->mac_int_status);
4448 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4449 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4450 &bar0->mac_tmac_err_reg,
4451 &sw_stat->mac_tmac_err_cnt))
4452 goto reset;
4453 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4454 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4455 &bar0->mac_tmac_err_reg,
4456 &sw_stat->mac_tmac_err_cnt);
4457 }
4458
4459 val64 = readq(&bar0->xgxs_int_status);
4460 if (val64 & XGXS_INT_STATUS_TXGXS) {
4461 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4462 &bar0->xgxs_txgxs_err_reg,
4463 &sw_stat->xgxs_txgxs_err_cnt))
4464 goto reset;
4465 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4466 &bar0->xgxs_txgxs_err_reg,
4467 &sw_stat->xgxs_txgxs_err_cnt);
4468 }
4469
4470 val64 = readq(&bar0->rxdma_int_status);
4471 if (val64 & RXDMA_INT_RC_INT_M) {
4472 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4473 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4474 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4475 goto reset;
4476 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4477 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4478 &sw_stat->rc_err_cnt);
4479 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4480 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4481 &sw_stat->prc_pcix_err_cnt))
4482 goto reset;
4483 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4484 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4485 &sw_stat->prc_pcix_err_cnt);
4486 }
4487
4488 if (val64 & RXDMA_INT_RPA_INT_M) {
4489 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4490 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4491 goto reset;
4492 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4493 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4494 }
4495
4496 if (val64 & RXDMA_INT_RDA_INT_M) {
4497 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4498 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4499 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4500 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4501 goto reset;
4502 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4503 | RDA_MISC_ERR | RDA_PCIX_ERR,
4504 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4505 }
4506
4507 if (val64 & RXDMA_INT_RTI_INT_M) {
4508 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4509 &sw_stat->rti_err_cnt))
4510 goto reset;
4511 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4512 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4513 }
4514
4515 val64 = readq(&bar0->mac_int_status);
4516 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4517 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4518 &bar0->mac_rmac_err_reg,
4519 &sw_stat->mac_rmac_err_cnt))
4520 goto reset;
4521 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4522 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4523 &sw_stat->mac_rmac_err_cnt);
4524 }
4525
4526 val64 = readq(&bar0->xgxs_int_status);
4527 if (val64 & XGXS_INT_STATUS_RXGXS) {
4528 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4529 &bar0->xgxs_rxgxs_err_reg,
4530 &sw_stat->xgxs_rxgxs_err_cnt))
4531 goto reset;
4532 }
4533
4534 val64 = readq(&bar0->mc_int_status);
4535 if(val64 & MC_INT_STATUS_MC_INT) {
4536 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4537 &sw_stat->mc_err_cnt))
4538 goto reset;
4539
4540 /* Handling Ecc errors */
4541 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4542 writeq(val64, &bar0->mc_err_reg);
4543 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4544 sw_stat->double_ecc_errs++;
4545 if (sp->device_type != XFRAME_II_DEVICE) {
4546 /*
4547 * Reset XframeI only if critical error
4548 */
4549 if (val64 &
4550 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4551 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4552 goto reset;
4553 }
4554 } else
4555 sw_stat->single_ecc_errs++;
4556 }
4557 }
4558 return;
4559
4560reset:
4561 netif_stop_queue(dev);
4562 schedule_work(&sp->rst_timer_task);
4563 sw_stat->soft_reset_cnt++;
4564 return;
4565}
4566
1da177e4
LT
4567/**
4568 * s2io_isr - ISR handler of the device .
4569 * @irq: the irq of the device.
4570 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4571 * Description: This function is the ISR handler of the device. It
4572 * identifies the reason for the interrupt and calls the relevant
4573 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4574 * recv buffers, if their numbers are below the panic value which is
4575 * presently set to 25% of the original number of rcv buffers allocated.
4576 * Return value:
20346722 4577 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4578 * IRQ_NONE: will be returned if interrupt is not from our device
4579 */
7d12e780 4580static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4581{
4582 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4583 struct s2io_nic *sp = dev->priv;
4584 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4585 int i;
19a60522 4586 u64 reason = 0;
1ee6dd77 4587 struct mac_info *mac_control;
1da177e4
LT
4588 struct config_param *config;
4589
d796fdb7
LV
4590 /* Pretend we handled any irq's from a disconnected card */
4591 if (pci_channel_offline(sp->pdev))
4592 return IRQ_NONE;
4593
7ba013ac 4594 atomic_inc(&sp->isr_cnt);
92b84437
SS
4595
4596 if (!is_s2io_card_up(sp)) {
4597 atomic_dec(&sp->isr_cnt);
4598 return IRQ_NONE;
4599 }
4600
1da177e4
LT
4601 mac_control = &sp->mac_control;
4602 config = &sp->config;
4603
20346722 4604 /*
1da177e4
LT
4605 * Identify the cause for interrupt and call the appropriate
4606 * interrupt handler. Causes for the interrupt could be;
4607 * 1. Rx of packet.
4608 * 2. Tx complete.
4609 * 3. Link down.
20346722 4610 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4611 */
4612 reason = readq(&bar0->general_int_status);
4613
4614 if (!reason) {
19a60522
SS
4615 /* The interrupt was not raised by us. */
4616 atomic_dec(&sp->isr_cnt);
4617 return IRQ_NONE;
4618 }
4619 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4620 /* Disable device and get out */
7ba013ac 4621 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4622 return IRQ_NONE;
4623 }
5d3213cc 4624
db874e65
SS
4625 if (napi) {
4626 if (reason & GEN_INTR_RXTRAFFIC) {
bea3348e
SH
4627 if (likely (netif_rx_schedule_prep(dev, &sp->napi))) {
4628 __netif_rx_schedule(dev, &sp->napi);
19a60522 4629 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4630 }
19a60522
SS
4631 else
4632 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4633 }
4634 } else {
4635 /*
4636 * Rx handler is called by default, without checking for the
4637 * cause of interrupt.
4638 * rx_traffic_int reg is an R1 register, writing all 1's
4639 * will ensure that the actual interrupt causing bit get's
4640 * cleared and hence a read can be avoided.
4641 */
19a60522
SS
4642 if (reason & GEN_INTR_RXTRAFFIC)
4643 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4644
db874e65
SS
4645 for (i = 0; i < config->rx_ring_num; i++) {
4646 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4647 }
4648 }
1da177e4 4649
863c11a9
AR
4650 /*
4651 * tx_traffic_int reg is an R1 register, writing all 1's
4652 * will ensure that the actual interrupt causing bit get's
4653 * cleared and hence a read can be avoided.
4654 */
19a60522
SS
4655 if (reason & GEN_INTR_TXTRAFFIC)
4656 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4657
863c11a9
AR
4658 for (i = 0; i < config->tx_fifo_num; i++)
4659 tx_intr_handler(&mac_control->fifos[i]);
20346722 4660
a371a07d
K
4661 if (reason & GEN_INTR_TXPIC)
4662 s2io_txpic_intr_handle(sp);
20346722
K
4663 /*
4664 * If the Rx buffer count is below the panic threshold then
4665 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4666 * else schedule a tasklet to reallocate the buffers.
4667 */
db874e65
SS
4668 if (!napi) {
4669 for (i = 0; i < config->rx_ring_num; i++)
4670 s2io_chk_rx_buffers(sp, i);
4671 }
4672
4673 writeq(0, &bar0->general_int_mask);
4674 readl(&bar0->general_int_status);
4675
7ba013ac 4676 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4677 return IRQ_HANDLED;
4678}
4679
7ba013ac
K
4680/**
4681 * s2io_updt_stats -
4682 */
1ee6dd77 4683static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4684{
1ee6dd77 4685 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4686 u64 val64;
4687 int cnt = 0;
4688
92b84437 4689 if (is_s2io_card_up(sp)) {
7ba013ac
K
4690 /* Apprx 30us on a 133 MHz bus */
4691 val64 = SET_UPDT_CLICKS(10) |
4692 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4693 writeq(val64, &bar0->stat_cfg);
4694 do {
4695 udelay(100);
4696 val64 = readq(&bar0->stat_cfg);
4697 if (!(val64 & BIT(0)))
4698 break;
4699 cnt++;
4700 if (cnt == 5)
4701 break; /* Updt failed */
4702 } while(1);
363dc367 4703 }
7ba013ac
K
4704}
4705
1da177e4 4706/**
20346722 4707 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4708 * @dev : pointer to the device structure.
4709 * Description:
20346722 4710 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4711 * structure and returns a pointer to the same.
4712 * Return value:
4713 * pointer to the updated net_device_stats structure.
4714 */
4715
ac1f60db 4716static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4717{
1ee6dd77
RB
4718 struct s2io_nic *sp = dev->priv;
4719 struct mac_info *mac_control;
1da177e4
LT
4720 struct config_param *config;
4721
20346722 4722
1da177e4
LT
4723 mac_control = &sp->mac_control;
4724 config = &sp->config;
4725
7ba013ac
K
4726 /* Configure Stats for immediate updt */
4727 s2io_updt_stats(sp);
4728
4729 sp->stats.tx_packets =
4730 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4731 sp->stats.tx_errors =
4732 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4733 sp->stats.rx_errors =
ee705dba 4734 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4735 sp->stats.multicast =
4736 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4737 sp->stats.rx_length_errors =
ee705dba 4738 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4739
4740 return (&sp->stats);
4741}
4742
4743/**
4744 * s2io_set_multicast - entry point for multicast address enable/disable.
4745 * @dev : pointer to the device structure
4746 * Description:
20346722
K
4747 * This function is a driver entry point which gets called by the kernel
4748 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4749 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4750 * determine, if multicast address must be enabled or if promiscuous mode
4751 * is to be disabled etc.
4752 * Return value:
4753 * void.
4754 */
4755
4756static void s2io_set_multicast(struct net_device *dev)
4757{
4758 int i, j, prev_cnt;
4759 struct dev_mc_list *mclist;
1ee6dd77
RB
4760 struct s2io_nic *sp = dev->priv;
4761 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4762 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4763 0xfeffffffffffULL;
4764 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4765 void __iomem *add;
4766
4767 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4768 /* Enable all Multicast addresses */
4769 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4770 &bar0->rmac_addr_data0_mem);
4771 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4772 &bar0->rmac_addr_data1_mem);
4773 val64 = RMAC_ADDR_CMD_MEM_WE |
4774 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4775 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4776 writeq(val64, &bar0->rmac_addr_cmd_mem);
4777 /* Wait till command completes */
c92ca04b 4778 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4779 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4780 S2IO_BIT_RESET);
1da177e4
LT
4781
4782 sp->m_cast_flg = 1;
4783 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4784 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4785 /* Disable all Multicast addresses */
4786 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4787 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4788 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4789 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4790 val64 = RMAC_ADDR_CMD_MEM_WE |
4791 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4792 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4793 writeq(val64, &bar0->rmac_addr_cmd_mem);
4794 /* Wait till command completes */
c92ca04b 4795 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4796 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4797 S2IO_BIT_RESET);
1da177e4
LT
4798
4799 sp->m_cast_flg = 0;
4800 sp->all_multi_pos = 0;
4801 }
4802
4803 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4804 /* Put the NIC into promiscuous mode */
4805 add = &bar0->mac_cfg;
4806 val64 = readq(&bar0->mac_cfg);
4807 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4808
4809 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4810 writel((u32) val64, add);
4811 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4812 writel((u32) (val64 >> 32), (add + 4));
4813
926930b2
SS
4814 if (vlan_tag_strip != 1) {
4815 val64 = readq(&bar0->rx_pa_cfg);
4816 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4817 writeq(val64, &bar0->rx_pa_cfg);
4818 vlan_strip_flag = 0;
4819 }
4820
1da177e4
LT
4821 val64 = readq(&bar0->mac_cfg);
4822 sp->promisc_flg = 1;
776bd20f 4823 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4824 dev->name);
4825 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4826 /* Remove the NIC from promiscuous mode */
4827 add = &bar0->mac_cfg;
4828 val64 = readq(&bar0->mac_cfg);
4829 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4830
4831 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4832 writel((u32) val64, add);
4833 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4834 writel((u32) (val64 >> 32), (add + 4));
4835
926930b2
SS
4836 if (vlan_tag_strip != 0) {
4837 val64 = readq(&bar0->rx_pa_cfg);
4838 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4839 writeq(val64, &bar0->rx_pa_cfg);
4840 vlan_strip_flag = 1;
4841 }
4842
1da177e4
LT
4843 val64 = readq(&bar0->mac_cfg);
4844 sp->promisc_flg = 0;
776bd20f 4845 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4846 dev->name);
4847 }
4848
4849 /* Update individual M_CAST address list */
4850 if ((!sp->m_cast_flg) && dev->mc_count) {
4851 if (dev->mc_count >
4852 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4853 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4854 dev->name);
4855 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4856 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4857 return;
4858 }
4859
4860 prev_cnt = sp->mc_addr_count;
4861 sp->mc_addr_count = dev->mc_count;
4862
4863 /* Clear out the previous list of Mc in the H/W. */
4864 for (i = 0; i < prev_cnt; i++) {
4865 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4866 &bar0->rmac_addr_data0_mem);
4867 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4868 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4869 val64 = RMAC_ADDR_CMD_MEM_WE |
4870 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4871 RMAC_ADDR_CMD_MEM_OFFSET
4872 (MAC_MC_ADDR_START_OFFSET + i);
4873 writeq(val64, &bar0->rmac_addr_cmd_mem);
4874
4875 /* Wait for command completes */
c92ca04b 4876 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4877 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4878 S2IO_BIT_RESET)) {
1da177e4
LT
4879 DBG_PRINT(ERR_DBG, "%s: Adding ",
4880 dev->name);
4881 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4882 return;
4883 }
4884 }
4885
4886 /* Create the new Rx filter list and update the same in H/W. */
4887 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4888 i++, mclist = mclist->next) {
4889 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4890 ETH_ALEN);
a7a80d5a 4891 mac_addr = 0;
1da177e4
LT
4892 for (j = 0; j < ETH_ALEN; j++) {
4893 mac_addr |= mclist->dmi_addr[j];
4894 mac_addr <<= 8;
4895 }
4896 mac_addr >>= 8;
4897 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4898 &bar0->rmac_addr_data0_mem);
4899 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4900 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4901 val64 = RMAC_ADDR_CMD_MEM_WE |
4902 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4903 RMAC_ADDR_CMD_MEM_OFFSET
4904 (i + MAC_MC_ADDR_START_OFFSET);
4905 writeq(val64, &bar0->rmac_addr_cmd_mem);
4906
4907 /* Wait for command completes */
c92ca04b 4908 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4909 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4910 S2IO_BIT_RESET)) {
1da177e4
LT
4911 DBG_PRINT(ERR_DBG, "%s: Adding ",
4912 dev->name);
4913 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4914 return;
4915 }
4916 }
4917 }
4918}
4919
4920/**
20346722 4921 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4922 * @dev : pointer to the device structure.
4923 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4924 * Description : This procedure will program the Xframe to receive
1da177e4 4925 * frames with new Mac Address
20346722 4926 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4927 * as defined in errno.h file on failure.
4928 */
4929
26df54bf 4930static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4931{
1ee6dd77
RB
4932 struct s2io_nic *sp = dev->priv;
4933 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4934 register u64 val64, mac_addr = 0;
4935 int i;
d8d70caf 4936 u64 old_mac_addr = 0;
1da177e4 4937
20346722 4938 /*
1da177e4
LT
4939 * Set the new MAC address as the new unicast filter and reflect this
4940 * change on the device address registered with the OS. It will be
20346722 4941 * at offset 0.
1da177e4
LT
4942 */
4943 for (i = 0; i < ETH_ALEN; i++) {
4944 mac_addr <<= 8;
4945 mac_addr |= addr[i];
d8d70caf
SS
4946 old_mac_addr <<= 8;
4947 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4948 }
4949
4950 if(0 == mac_addr)
4951 return SUCCESS;
4952
4953 /* Update the internal structure with this new mac address */
4954 if(mac_addr != old_mac_addr) {
4955 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4956 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4957 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4958 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4959 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4960 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4961 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
1da177e4
LT
4962 }
4963
4964 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4965 &bar0->rmac_addr_data0_mem);
4966
4967 val64 =
4968 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4969 RMAC_ADDR_CMD_MEM_OFFSET(0);
4970 writeq(val64, &bar0->rmac_addr_cmd_mem);
4971 /* Wait till command completes */
c92ca04b 4972 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 4973 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
1da177e4
LT
4974 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4975 return FAILURE;
4976 }
4977
4978 return SUCCESS;
4979}
4980
4981/**
20346722 4982 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4983 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4984 * @info: pointer to the structure with parameters given by ethtool to set
4985 * link information.
4986 * Description:
20346722 4987 * The function sets different link parameters provided by the user onto
1da177e4
LT
4988 * the NIC.
4989 * Return value:
4990 * 0 on success.
4991*/
4992
4993static int s2io_ethtool_sset(struct net_device *dev,
4994 struct ethtool_cmd *info)
4995{
1ee6dd77 4996 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4997 if ((info->autoneg == AUTONEG_ENABLE) ||
4998 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4999 return -EINVAL;
5000 else {
5001 s2io_close(sp->dev);
5002 s2io_open(sp->dev);
5003 }
5004
5005 return 0;
5006}
5007
5008/**
20346722 5009 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5010 * @sp : private member of the device structure, pointer to the
5011 * s2io_nic structure.
5012 * @info : pointer to the structure with parameters given by ethtool
5013 * to return link information.
5014 * Description:
5015 * Returns link specific information like speed, duplex etc.. to ethtool.
5016 * Return value :
5017 * return 0 on success.
5018 */
5019
5020static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5021{
1ee6dd77 5022 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5023 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5024 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5025 info->port = PORT_FIBRE;
5026 /* info->transceiver?? TODO */
5027
5028 if (netif_carrier_ok(sp->dev)) {
5029 info->speed = 10000;
5030 info->duplex = DUPLEX_FULL;
5031 } else {
5032 info->speed = -1;
5033 info->duplex = -1;
5034 }
5035
5036 info->autoneg = AUTONEG_DISABLE;
5037 return 0;
5038}
5039
5040/**
20346722
K
5041 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5042 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5043 * s2io_nic structure.
5044 * @info : pointer to the structure with parameters given by ethtool to
5045 * return driver information.
5046 * Description:
5047 * Returns driver specefic information like name, version etc.. to ethtool.
5048 * Return value:
5049 * void
5050 */
5051
5052static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5053 struct ethtool_drvinfo *info)
5054{
1ee6dd77 5055 struct s2io_nic *sp = dev->priv;
1da177e4 5056
dbc2309d
JL
5057 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5058 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5059 strncpy(info->fw_version, "", sizeof(info->fw_version));
5060 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5061 info->regdump_len = XENA_REG_SPACE;
5062 info->eedump_len = XENA_EEPROM_SPACE;
5063 info->testinfo_len = S2IO_TEST_LEN;
fa1f0cb3
SS
5064
5065 if (sp->device_type == XFRAME_I_DEVICE)
5066 info->n_stats = XFRAME_I_STAT_LEN;
5067 else
5068 info->n_stats = XFRAME_II_STAT_LEN;
1da177e4
LT
5069}
5070
5071/**
5072 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5073 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5074 * s2io_nic structure.
20346722 5075 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5076 * dumping the registers.
5077 * @reg_space: The input argumnet into which all the registers are dumped.
5078 * Description:
5079 * Dumps the entire register space of xFrame NIC into the user given
5080 * buffer area.
5081 * Return value :
5082 * void .
5083*/
5084
5085static void s2io_ethtool_gregs(struct net_device *dev,
5086 struct ethtool_regs *regs, void *space)
5087{
5088 int i;
5089 u64 reg;
5090 u8 *reg_space = (u8 *) space;
1ee6dd77 5091 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5092
5093 regs->len = XENA_REG_SPACE;
5094 regs->version = sp->pdev->subsystem_device;
5095
5096 for (i = 0; i < regs->len; i += 8) {
5097 reg = readq(sp->bar0 + i);
5098 memcpy((reg_space + i), &reg, 8);
5099 }
5100}
5101
5102/**
5103 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5104 * @data : address of the private member of the device structure, which
1da177e4 5105 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5106 * Description: This is actually the timer function that alternates the
5107 * adapter LED bit of the adapter control bit to set/reset every time on
5108 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5109 * once every second.
5110*/
5111static void s2io_phy_id(unsigned long data)
5112{
1ee6dd77
RB
5113 struct s2io_nic *sp = (struct s2io_nic *) data;
5114 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5115 u64 val64 = 0;
5116 u16 subid;
5117
5118 subid = sp->pdev->subsystem_device;
541ae68f
K
5119 if ((sp->device_type == XFRAME_II_DEVICE) ||
5120 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5121 val64 = readq(&bar0->gpio_control);
5122 val64 ^= GPIO_CTRL_GPIO_0;
5123 writeq(val64, &bar0->gpio_control);
5124 } else {
5125 val64 = readq(&bar0->adapter_control);
5126 val64 ^= ADAPTER_LED_ON;
5127 writeq(val64, &bar0->adapter_control);
5128 }
5129
5130 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5131}
5132
5133/**
5134 * s2io_ethtool_idnic - To physically identify the nic on the system.
5135 * @sp : private member of the device structure, which is a pointer to the
5136 * s2io_nic structure.
20346722 5137 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5138 * ethtool.
5139 * Description: Used to physically identify the NIC on the system.
20346722 5140 * The Link LED will blink for a time specified by the user for
1da177e4 5141 * identification.
20346722 5142 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5143 * identification is possible only if it's link is up.
5144 * Return value:
5145 * int , returns 0 on success
5146 */
5147
5148static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5149{
5150 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5151 struct s2io_nic *sp = dev->priv;
5152 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5153 u16 subid;
5154
5155 subid = sp->pdev->subsystem_device;
5156 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
5157 if ((sp->device_type == XFRAME_I_DEVICE) &&
5158 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5159 val64 = readq(&bar0->adapter_control);
5160 if (!(val64 & ADAPTER_CNTL_EN)) {
5161 printk(KERN_ERR
5162 "Adapter Link down, cannot blink LED\n");
5163 return -EFAULT;
5164 }
5165 }
5166 if (sp->id_timer.function == NULL) {
5167 init_timer(&sp->id_timer);
5168 sp->id_timer.function = s2io_phy_id;
5169 sp->id_timer.data = (unsigned long) sp;
5170 }
5171 mod_timer(&sp->id_timer, jiffies);
5172 if (data)
20346722 5173 msleep_interruptible(data * HZ);
1da177e4 5174 else
20346722 5175 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5176 del_timer_sync(&sp->id_timer);
5177
541ae68f 5178 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5179 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5180 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5181 }
5182
5183 return 0;
5184}
5185
0cec35eb
SH
5186static void s2io_ethtool_gringparam(struct net_device *dev,
5187 struct ethtool_ringparam *ering)
5188{
5189 struct s2io_nic *sp = dev->priv;
5190 int i,tx_desc_count=0,rx_desc_count=0;
5191
5192 if (sp->rxd_mode == RXD_MODE_1)
5193 ering->rx_max_pending = MAX_RX_DESC_1;
5194 else if (sp->rxd_mode == RXD_MODE_3B)
5195 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5196
5197 ering->tx_max_pending = MAX_TX_DESC;
b6627672 5198 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5199 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
b6627672 5200
0cec35eb
SH
5201 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5202 ering->tx_pending = tx_desc_count;
5203 rx_desc_count = 0;
b6627672 5204 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5205 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5206
0cec35eb
SH
5207 ering->rx_pending = rx_desc_count;
5208
5209 ering->rx_mini_max_pending = 0;
5210 ering->rx_mini_pending = 0;
5211 if(sp->rxd_mode == RXD_MODE_1)
5212 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5213 else if (sp->rxd_mode == RXD_MODE_3B)
5214 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5215 ering->rx_jumbo_pending = rx_desc_count;
5216}
5217
1da177e4
LT
5218/**
5219 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5220 * @sp : private member of the device structure, which is a pointer to the
5221 * s2io_nic structure.
1da177e4
LT
5222 * @ep : pointer to the structure with pause parameters given by ethtool.
5223 * Description:
5224 * Returns the Pause frame generation and reception capability of the NIC.
5225 * Return value:
5226 * void
5227 */
5228static void s2io_ethtool_getpause_data(struct net_device *dev,
5229 struct ethtool_pauseparam *ep)
5230{
5231 u64 val64;
1ee6dd77
RB
5232 struct s2io_nic *sp = dev->priv;
5233 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5234
5235 val64 = readq(&bar0->rmac_pause_cfg);
5236 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5237 ep->tx_pause = TRUE;
5238 if (val64 & RMAC_PAUSE_RX_ENABLE)
5239 ep->rx_pause = TRUE;
5240 ep->autoneg = FALSE;
5241}
5242
5243/**
5244 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5245 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5246 * s2io_nic structure.
5247 * @ep : pointer to the structure with pause parameters given by ethtool.
5248 * Description:
5249 * It can be used to set or reset Pause frame generation or reception
5250 * support of the NIC.
5251 * Return value:
5252 * int, returns 0 on Success
5253 */
5254
5255static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5256 struct ethtool_pauseparam *ep)
1da177e4
LT
5257{
5258 u64 val64;
1ee6dd77
RB
5259 struct s2io_nic *sp = dev->priv;
5260 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5261
5262 val64 = readq(&bar0->rmac_pause_cfg);
5263 if (ep->tx_pause)
5264 val64 |= RMAC_PAUSE_GEN_ENABLE;
5265 else
5266 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5267 if (ep->rx_pause)
5268 val64 |= RMAC_PAUSE_RX_ENABLE;
5269 else
5270 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5271 writeq(val64, &bar0->rmac_pause_cfg);
5272 return 0;
5273}
5274
5275/**
5276 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5277 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5278 * s2io_nic structure.
5279 * @off : offset at which the data must be written
5280 * @data : Its an output parameter where the data read at the given
20346722 5281 * offset is stored.
1da177e4 5282 * Description:
20346722 5283 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5284 * read data.
5285 * NOTE: Will allow to read only part of the EEPROM visible through the
5286 * I2C bus.
5287 * Return value:
5288 * -1 on failure and 0 on success.
5289 */
5290
5291#define S2IO_DEV_ID 5
1ee6dd77 5292static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5293{
5294 int ret = -1;
5295 u32 exit_cnt = 0;
5296 u64 val64;
1ee6dd77 5297 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5298
ad4ebed0 5299 if (sp->device_type == XFRAME_I_DEVICE) {
5300 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5301 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5302 I2C_CONTROL_CNTL_START;
5303 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5304
ad4ebed0 5305 while (exit_cnt < 5) {
5306 val64 = readq(&bar0->i2c_control);
5307 if (I2C_CONTROL_CNTL_END(val64)) {
5308 *data = I2C_CONTROL_GET_DATA(val64);
5309 ret = 0;
5310 break;
5311 }
5312 msleep(50);
5313 exit_cnt++;
1da177e4 5314 }
1da177e4
LT
5315 }
5316
ad4ebed0 5317 if (sp->device_type == XFRAME_II_DEVICE) {
5318 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5319 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5320 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5321 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5322 val64 |= SPI_CONTROL_REQ;
5323 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5324 while (exit_cnt < 5) {
5325 val64 = readq(&bar0->spi_control);
5326 if (val64 & SPI_CONTROL_NACK) {
5327 ret = 1;
5328 break;
5329 } else if (val64 & SPI_CONTROL_DONE) {
5330 *data = readq(&bar0->spi_data);
5331 *data &= 0xffffff;
5332 ret = 0;
5333 break;
5334 }
5335 msleep(50);
5336 exit_cnt++;
5337 }
5338 }
1da177e4
LT
5339 return ret;
5340}
5341
5342/**
5343 * write_eeprom - actually writes the relevant part of the data value.
5344 * @sp : private member of the device structure, which is a pointer to the
5345 * s2io_nic structure.
5346 * @off : offset at which the data must be written
5347 * @data : The data that is to be written
20346722 5348 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5349 * the Eeprom. (max of 3)
5350 * Description:
5351 * Actually writes the relevant part of the data value into the Eeprom
5352 * through the I2C bus.
5353 * Return value:
5354 * 0 on success, -1 on failure.
5355 */
5356
1ee6dd77 5357static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5358{
5359 int exit_cnt = 0, ret = -1;
5360 u64 val64;
1ee6dd77 5361 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5362
ad4ebed0 5363 if (sp->device_type == XFRAME_I_DEVICE) {
5364 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5365 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5366 I2C_CONTROL_CNTL_START;
5367 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5368
5369 while (exit_cnt < 5) {
5370 val64 = readq(&bar0->i2c_control);
5371 if (I2C_CONTROL_CNTL_END(val64)) {
5372 if (!(val64 & I2C_CONTROL_NACK))
5373 ret = 0;
5374 break;
5375 }
5376 msleep(50);
5377 exit_cnt++;
5378 }
5379 }
1da177e4 5380
ad4ebed0 5381 if (sp->device_type == XFRAME_II_DEVICE) {
5382 int write_cnt = (cnt == 8) ? 0 : cnt;
5383 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5384
5385 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5386 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5387 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5388 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5389 val64 |= SPI_CONTROL_REQ;
5390 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5391 while (exit_cnt < 5) {
5392 val64 = readq(&bar0->spi_control);
5393 if (val64 & SPI_CONTROL_NACK) {
5394 ret = 1;
5395 break;
5396 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5397 ret = 0;
ad4ebed0 5398 break;
5399 }
5400 msleep(50);
5401 exit_cnt++;
1da177e4 5402 }
1da177e4 5403 }
1da177e4
LT
5404 return ret;
5405}
1ee6dd77 5406static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5407{
b41477f3
AR
5408 u8 *vpd_data;
5409 u8 data;
9dc737a7
AR
5410 int i=0, cnt, fail = 0;
5411 int vpd_addr = 0x80;
5412
5413 if (nic->device_type == XFRAME_II_DEVICE) {
5414 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5415 vpd_addr = 0x80;
5416 }
5417 else {
5418 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5419 vpd_addr = 0x50;
5420 }
19a60522 5421 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5422
b41477f3 5423 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5424 if (!vpd_data) {
5425 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5426 return;
c53d4945 5427 }
491976b2 5428 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5429
9dc737a7
AR
5430 for (i = 0; i < 256; i +=4 ) {
5431 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5432 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5433 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5434 for (cnt = 0; cnt <5; cnt++) {
5435 msleep(2);
5436 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5437 if (data == 0x80)
5438 break;
5439 }
5440 if (cnt >= 5) {
5441 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5442 fail = 1;
5443 break;
5444 }
5445 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5446 (u32 *)&vpd_data[i]);
5447 }
19a60522
SS
5448
5449 if(!fail) {
5450 /* read serial number of adapter */
5451 for (cnt = 0; cnt < 256; cnt++) {
5452 if ((vpd_data[cnt] == 'S') &&
5453 (vpd_data[cnt+1] == 'N') &&
5454 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5455 memset(nic->serial_num, 0, VPD_STRING_LEN);
5456 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5457 vpd_data[cnt+2]);
5458 break;
5459 }
5460 }
5461 }
5462
5463 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5464 memset(nic->product_name, 0, vpd_data[1]);
5465 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5466 }
b41477f3 5467 kfree(vpd_data);
491976b2 5468 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5469}
5470
1da177e4
LT
5471/**
5472 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5473 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5474 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5475 * containing all relevant information.
5476 * @data_buf : user defined value to be written into Eeprom.
5477 * Description: Reads the values stored in the Eeprom at given offset
5478 * for a given length. Stores these values int the input argument data
5479 * buffer 'data_buf' and returns these to the caller (ethtool.)
5480 * Return value:
5481 * int 0 on success
5482 */
5483
5484static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5485 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5486{
ad4ebed0 5487 u32 i, valid;
5488 u64 data;
1ee6dd77 5489 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5490
5491 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5492
5493 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5494 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5495
5496 for (i = 0; i < eeprom->len; i += 4) {
5497 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5498 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5499 return -EFAULT;
5500 }
5501 valid = INV(data);
5502 memcpy((data_buf + i), &valid, 4);
5503 }
5504 return 0;
5505}
5506
5507/**
5508 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5509 * @sp : private member of the device structure, which is a pointer to the
5510 * s2io_nic structure.
20346722 5511 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5512 * containing all relevant information.
5513 * @data_buf ; user defined value to be written into Eeprom.
5514 * Description:
5515 * Tries to write the user provided value in the Eeprom, at the offset
5516 * given by the user.
5517 * Return value:
5518 * 0 on success, -EFAULT on failure.
5519 */
5520
5521static int s2io_ethtool_seeprom(struct net_device *dev,
5522 struct ethtool_eeprom *eeprom,
5523 u8 * data_buf)
5524{
5525 int len = eeprom->len, cnt = 0;
ad4ebed0 5526 u64 valid = 0, data;
1ee6dd77 5527 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5528
5529 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5530 DBG_PRINT(ERR_DBG,
5531 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5532 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5533 eeprom->magic);
5534 return -EFAULT;
5535 }
5536
5537 while (len) {
5538 data = (u32) data_buf[cnt] & 0x000000FF;
5539 if (data) {
5540 valid = (u32) (data << 24);
5541 } else
5542 valid = data;
5543
5544 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5545 DBG_PRINT(ERR_DBG,
5546 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5547 DBG_PRINT(ERR_DBG,
5548 "write into the specified offset\n");
5549 return -EFAULT;
5550 }
5551 cnt++;
5552 len--;
5553 }
5554
5555 return 0;
5556}
5557
5558/**
20346722
K
5559 * s2io_register_test - reads and writes into all clock domains.
5560 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5561 * s2io_nic structure.
5562 * @data : variable that returns the result of each of the test conducted b
5563 * by the driver.
5564 * Description:
5565 * Read and write into all clock domains. The NIC has 3 clock domains,
5566 * see that registers in all the three regions are accessible.
5567 * Return value:
5568 * 0 on success.
5569 */
5570
1ee6dd77 5571static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5572{
1ee6dd77 5573 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5574 u64 val64 = 0, exp_val;
1da177e4
LT
5575 int fail = 0;
5576
20346722
K
5577 val64 = readq(&bar0->pif_rd_swapper_fb);
5578 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5579 fail = 1;
5580 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5581 }
5582
5583 val64 = readq(&bar0->rmac_pause_cfg);
5584 if (val64 != 0xc000ffff00000000ULL) {
5585 fail = 1;
5586 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5587 }
5588
5589 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5590 if (sp->device_type == XFRAME_II_DEVICE)
5591 exp_val = 0x0404040404040404ULL;
5592 else
5593 exp_val = 0x0808080808080808ULL;
5594 if (val64 != exp_val) {
1da177e4
LT
5595 fail = 1;
5596 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5597 }
5598
5599 val64 = readq(&bar0->xgxs_efifo_cfg);
5600 if (val64 != 0x000000001923141EULL) {
5601 fail = 1;
5602 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5603 }
5604
5605 val64 = 0x5A5A5A5A5A5A5A5AULL;
5606 writeq(val64, &bar0->xmsi_data);
5607 val64 = readq(&bar0->xmsi_data);
5608 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5609 fail = 1;
5610 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5611 }
5612
5613 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5614 writeq(val64, &bar0->xmsi_data);
5615 val64 = readq(&bar0->xmsi_data);
5616 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5617 fail = 1;
5618 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5619 }
5620
5621 *data = fail;
ad4ebed0 5622 return fail;
1da177e4
LT
5623}
5624
5625/**
20346722 5626 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5627 * @sp : private member of the device structure, which is a pointer to the
5628 * s2io_nic structure.
5629 * @data:variable that returns the result of each of the test conducted by
5630 * the driver.
5631 * Description:
20346722 5632 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5633 * register.
5634 * Return value:
5635 * 0 on success.
5636 */
5637
1ee6dd77 5638static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5639{
5640 int fail = 0;
ad4ebed0 5641 u64 ret_data, org_4F0, org_7F0;
5642 u8 saved_4F0 = 0, saved_7F0 = 0;
5643 struct net_device *dev = sp->dev;
1da177e4
LT
5644
5645 /* Test Write Error at offset 0 */
ad4ebed0 5646 /* Note that SPI interface allows write access to all areas
5647 * of EEPROM. Hence doing all negative testing only for Xframe I.
5648 */
5649 if (sp->device_type == XFRAME_I_DEVICE)
5650 if (!write_eeprom(sp, 0, 0, 3))
5651 fail = 1;
5652
5653 /* Save current values at offsets 0x4F0 and 0x7F0 */
5654 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5655 saved_4F0 = 1;
5656 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5657 saved_7F0 = 1;
1da177e4
LT
5658
5659 /* Test Write at offset 4f0 */
ad4ebed0 5660 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5661 fail = 1;
5662 if (read_eeprom(sp, 0x4F0, &ret_data))
5663 fail = 1;
5664
ad4ebed0 5665 if (ret_data != 0x012345) {
26b7625c
AM
5666 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5667 "Data written %llx Data read %llx\n",
5668 dev->name, (unsigned long long)0x12345,
5669 (unsigned long long)ret_data);
1da177e4 5670 fail = 1;
ad4ebed0 5671 }
1da177e4
LT
5672
5673 /* Reset the EEPROM data go FFFF */
ad4ebed0 5674 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5675
5676 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5677 if (sp->device_type == XFRAME_I_DEVICE)
5678 if (!write_eeprom(sp, 0x07C, 0, 3))
5679 fail = 1;
1da177e4 5680
ad4ebed0 5681 /* Test Write Request at offset 0x7f0 */
5682 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5683 fail = 1;
ad4ebed0 5684 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5685 fail = 1;
5686
ad4ebed0 5687 if (ret_data != 0x012345) {
26b7625c
AM
5688 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5689 "Data written %llx Data read %llx\n",
5690 dev->name, (unsigned long long)0x12345,
5691 (unsigned long long)ret_data);
1da177e4 5692 fail = 1;
ad4ebed0 5693 }
1da177e4
LT
5694
5695 /* Reset the EEPROM data go FFFF */
ad4ebed0 5696 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5697
ad4ebed0 5698 if (sp->device_type == XFRAME_I_DEVICE) {
5699 /* Test Write Error at offset 0x80 */
5700 if (!write_eeprom(sp, 0x080, 0, 3))
5701 fail = 1;
1da177e4 5702
ad4ebed0 5703 /* Test Write Error at offset 0xfc */
5704 if (!write_eeprom(sp, 0x0FC, 0, 3))
5705 fail = 1;
1da177e4 5706
ad4ebed0 5707 /* Test Write Error at offset 0x100 */
5708 if (!write_eeprom(sp, 0x100, 0, 3))
5709 fail = 1;
1da177e4 5710
ad4ebed0 5711 /* Test Write Error at offset 4ec */
5712 if (!write_eeprom(sp, 0x4EC, 0, 3))
5713 fail = 1;
5714 }
5715
5716 /* Restore values at offsets 0x4F0 and 0x7F0 */
5717 if (saved_4F0)
5718 write_eeprom(sp, 0x4F0, org_4F0, 3);
5719 if (saved_7F0)
5720 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5721
5722 *data = fail;
ad4ebed0 5723 return fail;
1da177e4
LT
5724}
5725
5726/**
5727 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5728 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5729 * s2io_nic structure.
20346722 5730 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5731 * the driver.
5732 * Description:
5733 * This invokes the MemBist test of the card. We give around
5734 * 2 secs time for the Test to complete. If it's still not complete
20346722 5735 * within this peiod, we consider that the test failed.
1da177e4
LT
5736 * Return value:
5737 * 0 on success and -1 on failure.
5738 */
5739
1ee6dd77 5740static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5741{
5742 u8 bist = 0;
5743 int cnt = 0, ret = -1;
5744
5745 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5746 bist |= PCI_BIST_START;
5747 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5748
5749 while (cnt < 20) {
5750 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5751 if (!(bist & PCI_BIST_START)) {
5752 *data = (bist & PCI_BIST_CODE_MASK);
5753 ret = 0;
5754 break;
5755 }
5756 msleep(100);
5757 cnt++;
5758 }
5759
5760 return ret;
5761}
5762
5763/**
20346722
K
5764 * s2io-link_test - verifies the link state of the nic
5765 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5766 * s2io_nic structure.
5767 * @data: variable that returns the result of each of the test conducted by
5768 * the driver.
5769 * Description:
20346722 5770 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5771 * argument 'data' appropriately.
5772 * Return value:
5773 * 0 on success.
5774 */
5775
1ee6dd77 5776static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5777{
1ee6dd77 5778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5779 u64 val64;
5780
5781 val64 = readq(&bar0->adapter_status);
c92ca04b 5782 if(!(LINK_IS_UP(val64)))
1da177e4 5783 *data = 1;
c92ca04b
AR
5784 else
5785 *data = 0;
1da177e4 5786
b41477f3 5787 return *data;
1da177e4
LT
5788}
5789
5790/**
20346722
K
5791 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5792 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5793 * s2io_nic structure.
20346722 5794 * @data - variable that returns the result of each of the test
1da177e4
LT
5795 * conducted by the driver.
5796 * Description:
20346722 5797 * This is one of the offline test that tests the read and write
1da177e4
LT
5798 * access to the RldRam chip on the NIC.
5799 * Return value:
5800 * 0 on success.
5801 */
5802
1ee6dd77 5803static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5804{
1ee6dd77 5805 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5806 u64 val64;
ad4ebed0 5807 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5808
5809 val64 = readq(&bar0->adapter_control);
5810 val64 &= ~ADAPTER_ECC_EN;
5811 writeq(val64, &bar0->adapter_control);
5812
5813 val64 = readq(&bar0->mc_rldram_test_ctrl);
5814 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5815 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5816
5817 val64 = readq(&bar0->mc_rldram_mrs);
5818 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5819 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5820
5821 val64 |= MC_RLDRAM_MRS_ENABLE;
5822 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5823
5824 while (iteration < 2) {
5825 val64 = 0x55555555aaaa0000ULL;
5826 if (iteration == 1) {
5827 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5828 }
5829 writeq(val64, &bar0->mc_rldram_test_d0);
5830
5831 val64 = 0xaaaa5a5555550000ULL;
5832 if (iteration == 1) {
5833 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5834 }
5835 writeq(val64, &bar0->mc_rldram_test_d1);
5836
5837 val64 = 0x55aaaaaaaa5a0000ULL;
5838 if (iteration == 1) {
5839 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5840 }
5841 writeq(val64, &bar0->mc_rldram_test_d2);
5842
ad4ebed0 5843 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5844 writeq(val64, &bar0->mc_rldram_test_add);
5845
ad4ebed0 5846 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5847 MC_RLDRAM_TEST_GO;
5848 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5849
5850 for (cnt = 0; cnt < 5; cnt++) {
5851 val64 = readq(&bar0->mc_rldram_test_ctrl);
5852 if (val64 & MC_RLDRAM_TEST_DONE)
5853 break;
5854 msleep(200);
5855 }
5856
5857 if (cnt == 5)
5858 break;
5859
ad4ebed0 5860 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5861 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5862
5863 for (cnt = 0; cnt < 5; cnt++) {
5864 val64 = readq(&bar0->mc_rldram_test_ctrl);
5865 if (val64 & MC_RLDRAM_TEST_DONE)
5866 break;
5867 msleep(500);
5868 }
5869
5870 if (cnt == 5)
5871 break;
5872
5873 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5874 if (!(val64 & MC_RLDRAM_TEST_PASS))
5875 test_fail = 1;
1da177e4
LT
5876
5877 iteration++;
5878 }
5879
ad4ebed0 5880 *data = test_fail;
1da177e4 5881
ad4ebed0 5882 /* Bring the adapter out of test mode */
5883 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5884
5885 return test_fail;
1da177e4
LT
5886}
5887
5888/**
5889 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5890 * @sp : private member of the device structure, which is a pointer to the
5891 * s2io_nic structure.
5892 * @ethtest : pointer to a ethtool command specific structure that will be
5893 * returned to the user.
20346722 5894 * @data : variable that returns the result of each of the test
1da177e4
LT
5895 * conducted by the driver.
5896 * Description:
5897 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5898 * the health of the card.
5899 * Return value:
5900 * void
5901 */
5902
5903static void s2io_ethtool_test(struct net_device *dev,
5904 struct ethtool_test *ethtest,
5905 uint64_t * data)
5906{
1ee6dd77 5907 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5908 int orig_state = netif_running(sp->dev);
5909
5910 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5911 /* Offline Tests. */
20346722 5912 if (orig_state)
1da177e4 5913 s2io_close(sp->dev);
1da177e4
LT
5914
5915 if (s2io_register_test(sp, &data[0]))
5916 ethtest->flags |= ETH_TEST_FL_FAILED;
5917
5918 s2io_reset(sp);
1da177e4
LT
5919
5920 if (s2io_rldram_test(sp, &data[3]))
5921 ethtest->flags |= ETH_TEST_FL_FAILED;
5922
5923 s2io_reset(sp);
1da177e4
LT
5924
5925 if (s2io_eeprom_test(sp, &data[1]))
5926 ethtest->flags |= ETH_TEST_FL_FAILED;
5927
5928 if (s2io_bist_test(sp, &data[4]))
5929 ethtest->flags |= ETH_TEST_FL_FAILED;
5930
5931 if (orig_state)
5932 s2io_open(sp->dev);
5933
5934 data[2] = 0;
5935 } else {
5936 /* Online Tests. */
5937 if (!orig_state) {
5938 DBG_PRINT(ERR_DBG,
5939 "%s: is not up, cannot run test\n",
5940 dev->name);
5941 data[0] = -1;
5942 data[1] = -1;
5943 data[2] = -1;
5944 data[3] = -1;
5945 data[4] = -1;
5946 }
5947
5948 if (s2io_link_test(sp, &data[2]))
5949 ethtest->flags |= ETH_TEST_FL_FAILED;
5950
5951 data[0] = 0;
5952 data[1] = 0;
5953 data[3] = 0;
5954 data[4] = 0;
5955 }
5956}
5957
5958static void s2io_get_ethtool_stats(struct net_device *dev,
5959 struct ethtool_stats *estats,
5960 u64 * tmp_stats)
5961{
8116f3cf 5962 int i = 0, k;
1ee6dd77
RB
5963 struct s2io_nic *sp = dev->priv;
5964 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5965
7ba013ac 5966 s2io_updt_stats(sp);
541ae68f
K
5967 tmp_stats[i++] =
5968 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5969 le32_to_cpu(stat_info->tmac_frms);
5970 tmp_stats[i++] =
5971 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5972 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5973 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5974 tmp_stats[i++] =
5975 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5976 le32_to_cpu(stat_info->tmac_mcst_frms);
5977 tmp_stats[i++] =
5978 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5979 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5980 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5981 tmp_stats[i++] =
5982 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5983 le32_to_cpu(stat_info->tmac_ttl_octets);
5984 tmp_stats[i++] =
5985 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5986 le32_to_cpu(stat_info->tmac_ucst_frms);
5987 tmp_stats[i++] =
5988 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5989 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5990 tmp_stats[i++] =
5991 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5992 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5993 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5994 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5995 tmp_stats[i++] =
5996 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5997 le32_to_cpu(stat_info->tmac_vld_ip);
5998 tmp_stats[i++] =
5999 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6000 le32_to_cpu(stat_info->tmac_drop_ip);
6001 tmp_stats[i++] =
6002 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6003 le32_to_cpu(stat_info->tmac_icmp);
6004 tmp_stats[i++] =
6005 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6006 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6007 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
6008 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6009 le32_to_cpu(stat_info->tmac_udp);
6010 tmp_stats[i++] =
6011 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6012 le32_to_cpu(stat_info->rmac_vld_frms);
6013 tmp_stats[i++] =
6014 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6015 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6016 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6017 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
6018 tmp_stats[i++] =
6019 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6020 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6021 tmp_stats[i++] =
6022 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6023 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6024 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6025 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6026 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6027 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6028 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6029 tmp_stats[i++] =
6030 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6031 le32_to_cpu(stat_info->rmac_ttl_octets);
6032 tmp_stats[i++] =
6033 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6034 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6035 tmp_stats[i++] =
6036 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6037 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
6038 tmp_stats[i++] =
6039 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6040 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6041 tmp_stats[i++] =
6042 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6043 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6044 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6045 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
6046 tmp_stats[i++] =
6047 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6048 le32_to_cpu(stat_info->rmac_usized_frms);
6049 tmp_stats[i++] =
6050 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6051 le32_to_cpu(stat_info->rmac_osized_frms);
6052 tmp_stats[i++] =
6053 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6054 le32_to_cpu(stat_info->rmac_frag_frms);
6055 tmp_stats[i++] =
6056 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6057 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6058 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6059 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6060 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6061 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6062 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6063 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6064 tmp_stats[i++] =
6065 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6066 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6067 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6068 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6069 tmp_stats[i++] =
6070 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6071 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6072 tmp_stats[i++] =
6073 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6074 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6075 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6076 tmp_stats[i++] =
6077 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
6078 le32_to_cpu(stat_info->rmac_udp);
6079 tmp_stats[i++] =
6080 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6081 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6082 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6083 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6084 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6085 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6086 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6087 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6088 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6089 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6090 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6091 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6092 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6093 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6094 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6095 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6096 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6097 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6098 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
6099 tmp_stats[i++] =
6100 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6101 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6102 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6103 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
6104 tmp_stats[i++] =
6105 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6106 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6107 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6108 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6109 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6110 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6111 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6112 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6113 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6114 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6115 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6116 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6117 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6118 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6119 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6120 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6121 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6122 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6123 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6124 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6125 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6126
6127 /* Enhanced statistics exist only for Hercules */
6128 if(sp->device_type == XFRAME_II_DEVICE) {
6129 tmp_stats[i++] =
6130 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6131 tmp_stats[i++] =
6132 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6133 tmp_stats[i++] =
6134 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6135 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6136 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6137 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6138 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6139 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6140 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6141 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6142 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6143 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6144 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6145 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6146 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6147 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6148 }
6149
7ba013ac
K
6150 tmp_stats[i++] = 0;
6151 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6152 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6153 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6154 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6155 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6156 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6157 for (k = 0; k < MAX_RX_RINGS; k++)
6158 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6159 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6160 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6161 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6162 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6163 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6164 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6165 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6166 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6167 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6168 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6169 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6170 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6171 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6172 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6173 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6174 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6175 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6176 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6177 int count = 0;
6aa20a22 6178 /*
bd1034f0
AR
6179 * Since 64-bit divide does not work on all platforms,
6180 * do repeated subtraction.
6181 */
6182 while (tmp >= stat_info->sw_stat.num_aggregations) {
6183 tmp -= stat_info->sw_stat.num_aggregations;
6184 count++;
6185 }
6186 tmp_stats[i++] = count;
fe931395 6187 }
bd1034f0
AR
6188 else
6189 tmp_stats[i++] = 0;
c53d4945 6190 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6191 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6192 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6193 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6194 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6195 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6198 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6199
6200 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6205
6206 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6210 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6211 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6212 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6213 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6214 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6215 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6216 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6217 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6218 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6219 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6220 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6221 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6222 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6223 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6224 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6225 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6226 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6227 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6228 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6229 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6230 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6231 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6232}
6233
ac1f60db 6234static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6235{
6236 return (XENA_REG_SPACE);
6237}
6238
6239
ac1f60db 6240static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6241{
1ee6dd77 6242 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6243
6244 return (sp->rx_csum);
6245}
ac1f60db
AB
6246
6247static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6248{
1ee6dd77 6249 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6250
6251 if (data)
6252 sp->rx_csum = 1;
6253 else
6254 sp->rx_csum = 0;
6255
6256 return 0;
6257}
ac1f60db
AB
6258
6259static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6260{
6261 return (XENA_EEPROM_SPACE);
6262}
6263
ac1f60db 6264static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
6265{
6266 return (S2IO_TEST_LEN);
6267}
ac1f60db
AB
6268
6269static void s2io_ethtool_get_strings(struct net_device *dev,
6270 u32 stringset, u8 * data)
1da177e4 6271{
fa1f0cb3
SS
6272 int stat_size = 0;
6273 struct s2io_nic *sp = dev->priv;
6274
1da177e4
LT
6275 switch (stringset) {
6276 case ETH_SS_TEST:
6277 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6278 break;
6279 case ETH_SS_STATS:
fa1f0cb3
SS
6280 stat_size = sizeof(ethtool_xena_stats_keys);
6281 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6282 if(sp->device_type == XFRAME_II_DEVICE) {
6283 memcpy(data + stat_size,
6284 &ethtool_enhanced_stats_keys,
6285 sizeof(ethtool_enhanced_stats_keys));
6286 stat_size += sizeof(ethtool_enhanced_stats_keys);
6287 }
6288
6289 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6290 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6291 }
6292}
1da177e4
LT
6293static int s2io_ethtool_get_stats_count(struct net_device *dev)
6294{
fa1f0cb3
SS
6295 struct s2io_nic *sp = dev->priv;
6296 int stat_count = 0;
6297 switch(sp->device_type) {
6298 case XFRAME_I_DEVICE:
6299 stat_count = XFRAME_I_STAT_LEN;
6300 break;
6301
6302 case XFRAME_II_DEVICE:
6303 stat_count = XFRAME_II_STAT_LEN;
6304 break;
6305 }
6306
6307 return stat_count;
1da177e4
LT
6308}
6309
ac1f60db 6310static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6311{
6312 if (data)
6313 dev->features |= NETIF_F_IP_CSUM;
6314 else
6315 dev->features &= ~NETIF_F_IP_CSUM;
6316
6317 return 0;
6318}
6319
75c30b13
AR
6320static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6321{
6322 return (dev->features & NETIF_F_TSO) != 0;
6323}
6324static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6325{
6326 if (data)
6327 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6328 else
6329 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6330
6331 return 0;
6332}
1da177e4 6333
7282d491 6334static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6335 .get_settings = s2io_ethtool_gset,
6336 .set_settings = s2io_ethtool_sset,
6337 .get_drvinfo = s2io_ethtool_gdrvinfo,
6338 .get_regs_len = s2io_ethtool_get_regs_len,
6339 .get_regs = s2io_ethtool_gregs,
6340 .get_link = ethtool_op_get_link,
6341 .get_eeprom_len = s2io_get_eeprom_len,
6342 .get_eeprom = s2io_ethtool_geeprom,
6343 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6344 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6345 .get_pauseparam = s2io_ethtool_getpause_data,
6346 .set_pauseparam = s2io_ethtool_setpause_data,
6347 .get_rx_csum = s2io_ethtool_get_rx_csum,
6348 .set_rx_csum = s2io_ethtool_set_rx_csum,
6349 .get_tx_csum = ethtool_op_get_tx_csum,
6350 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6351 .get_sg = ethtool_op_get_sg,
6352 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6353 .get_tso = s2io_ethtool_op_get_tso,
6354 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
6355 .get_ufo = ethtool_op_get_ufo,
6356 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6357 .self_test_count = s2io_ethtool_self_test_count,
6358 .self_test = s2io_ethtool_test,
6359 .get_strings = s2io_ethtool_get_strings,
6360 .phys_id = s2io_ethtool_idnic,
6361 .get_stats_count = s2io_ethtool_get_stats_count,
6362 .get_ethtool_stats = s2io_get_ethtool_stats
6363};
6364
6365/**
20346722 6366 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6367 * @dev : Device pointer.
6368 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6369 * a proprietary structure used to pass information to the driver.
6370 * @cmd : This is used to distinguish between the different commands that
6371 * can be passed to the IOCTL functions.
6372 * Description:
20346722
K
6373 * Currently there are no special functionality supported in IOCTL, hence
6374 * function always return EOPNOTSUPPORTED
1da177e4
LT
6375 */
6376
ac1f60db 6377static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6378{
6379 return -EOPNOTSUPP;
6380}
6381
6382/**
6383 * s2io_change_mtu - entry point to change MTU size for the device.
6384 * @dev : device pointer.
6385 * @new_mtu : the new MTU size for the device.
6386 * Description: A driver entry point to change MTU size for the device.
6387 * Before changing the MTU the device must be stopped.
6388 * Return value:
6389 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6390 * file on failure.
6391 */
6392
ac1f60db 6393static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6394{
1ee6dd77 6395 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6396
6397 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6398 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6399 dev->name);
6400 return -EPERM;
6401 }
6402
1da177e4 6403 dev->mtu = new_mtu;
d8892c6e 6404 if (netif_running(dev)) {
e6a8fee2 6405 s2io_card_down(sp);
d8892c6e
K
6406 netif_stop_queue(dev);
6407 if (s2io_card_up(sp)) {
6408 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6409 __FUNCTION__);
6410 }
6411 if (netif_queue_stopped(dev))
6412 netif_wake_queue(dev);
6413 } else { /* Device is down */
1ee6dd77 6414 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6415 u64 val64 = new_mtu;
6416
6417 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6418 }
1da177e4
LT
6419
6420 return 0;
6421}
6422
6423/**
6424 * s2io_tasklet - Bottom half of the ISR.
6425 * @dev_adr : address of the device structure in dma_addr_t format.
6426 * Description:
6427 * This is the tasklet or the bottom half of the ISR. This is
20346722 6428 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 6429 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 6430 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
6431 * replenish the Rx buffers in the Rx buffer descriptors.
6432 * Return value:
6433 * void.
6434 */
6435
6436static void s2io_tasklet(unsigned long dev_addr)
6437{
6438 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 6439 struct s2io_nic *sp = dev->priv;
1da177e4 6440 int i, ret;
1ee6dd77 6441 struct mac_info *mac_control;
1da177e4
LT
6442 struct config_param *config;
6443
6444 mac_control = &sp->mac_control;
6445 config = &sp->config;
6446
6447 if (!TASKLET_IN_USE) {
6448 for (i = 0; i < config->rx_ring_num; i++) {
6449 ret = fill_rx_buffers(sp, i);
6450 if (ret == -ENOMEM) {
0c61ed5f 6451 DBG_PRINT(INFO_DBG, "%s: Out of ",
1da177e4 6452 dev->name);
491976b2 6453 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
1da177e4
LT
6454 break;
6455 } else if (ret == -EFILL) {
0c61ed5f 6456 DBG_PRINT(INFO_DBG,
1da177e4
LT
6457 "%s: Rx Ring %d is full\n",
6458 dev->name, i);
6459 break;
6460 }
6461 }
6462 clear_bit(0, (&sp->tasklet_status));
6463 }
6464}
6465
6466/**
6467 * s2io_set_link - Set the LInk status
6468 * @data: long pointer to device private structue
6469 * Description: Sets the link status for the adapter
6470 */
6471
c4028958 6472static void s2io_set_link(struct work_struct *work)
1da177e4 6473{
1ee6dd77 6474 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6475 struct net_device *dev = nic->dev;
1ee6dd77 6476 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6477 register u64 val64;
6478 u16 subid;
6479
22747d6b
FR
6480 rtnl_lock();
6481
6482 if (!netif_running(dev))
6483 goto out_unlock;
6484
92b84437 6485 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6486 /* The card is being reset, no point doing anything */
22747d6b 6487 goto out_unlock;
1da177e4
LT
6488 }
6489
6490 subid = nic->pdev->subsystem_device;
a371a07d
K
6491 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6492 /*
6493 * Allow a small delay for the NICs self initiated
6494 * cleanup to complete.
6495 */
6496 msleep(100);
6497 }
1da177e4
LT
6498
6499 val64 = readq(&bar0->adapter_status);
19a60522
SS
6500 if (LINK_IS_UP(val64)) {
6501 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6502 if (verify_xena_quiescence(nic)) {
6503 val64 = readq(&bar0->adapter_control);
6504 val64 |= ADAPTER_CNTL_EN;
1da177e4 6505 writeq(val64, &bar0->adapter_control);
19a60522
SS
6506 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6507 nic->device_type, subid)) {
6508 val64 = readq(&bar0->gpio_control);
6509 val64 |= GPIO_CTRL_GPIO_0;
6510 writeq(val64, &bar0->gpio_control);
6511 val64 = readq(&bar0->gpio_control);
6512 } else {
6513 val64 |= ADAPTER_LED_ON;
6514 writeq(val64, &bar0->adapter_control);
a371a07d 6515 }
1da177e4 6516 nic->device_enabled_once = TRUE;
19a60522
SS
6517 } else {
6518 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6519 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6520 netif_stop_queue(dev);
1da177e4 6521 }
19a60522 6522 }
92c48799
SS
6523 val64 = readq(&bar0->adapter_control);
6524 val64 |= ADAPTER_LED_ON;
6525 writeq(val64, &bar0->adapter_control);
6526 s2io_link(nic, LINK_UP);
19a60522
SS
6527 } else {
6528 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6529 subid)) {
6530 val64 = readq(&bar0->gpio_control);
6531 val64 &= ~GPIO_CTRL_GPIO_0;
6532 writeq(val64, &bar0->gpio_control);
6533 val64 = readq(&bar0->gpio_control);
1da177e4 6534 }
92c48799
SS
6535 /* turn off LED */
6536 val64 = readq(&bar0->adapter_control);
6537 val64 = val64 &(~ADAPTER_LED_ON);
6538 writeq(val64, &bar0->adapter_control);
19a60522 6539 s2io_link(nic, LINK_DOWN);
1da177e4 6540 }
92b84437 6541 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6542
6543out_unlock:
d8d70caf 6544 rtnl_unlock();
1da177e4
LT
6545}
6546
1ee6dd77
RB
6547static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6548 struct buffAdd *ba,
6549 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6550 u64 *temp2, int size)
5d3213cc
AR
6551{
6552 struct net_device *dev = sp->dev;
491abf25 6553 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6554
6555 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6556 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6557 /* allocate skb */
6558 if (*skb) {
6559 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6560 /*
6561 * As Rx frame are not going to be processed,
6562 * using same mapped address for the Rxd
6563 * buffer pointer
6564 */
6d517a27 6565 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6566 } else {
6567 *skb = dev_alloc_skb(size);
6568 if (!(*skb)) {
0c61ed5f 6569 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6570 DBG_PRINT(INFO_DBG, "memory to allocate ");
6571 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6572 sp->mac_control.stats_info->sw_stat. \
6573 mem_alloc_fail_cnt++;
5d3213cc
AR
6574 return -ENOMEM ;
6575 }
491976b2
SH
6576 sp->mac_control.stats_info->sw_stat.mem_allocated
6577 += (*skb)->truesize;
5d3213cc
AR
6578 /* storing the mapped addr in a temp variable
6579 * such it will be used for next rxd whose
6580 * Host Control is NULL
6581 */
6d517a27 6582 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6583 pci_map_single( sp->pdev, (*skb)->data,
6584 size - NET_IP_ALIGN,
6585 PCI_DMA_FROMDEVICE);
491abf25
VP
6586 if( (rxdp1->Buffer0_ptr == 0) ||
6587 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6588 goto memalloc_failed;
6589 }
5d3213cc
AR
6590 rxdp->Host_Control = (unsigned long) (*skb);
6591 }
6592 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6593 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6594 /* Two buffer Mode */
6595 if (*skb) {
6d517a27
VP
6596 rxdp3->Buffer2_ptr = *temp2;
6597 rxdp3->Buffer0_ptr = *temp0;
6598 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6599 } else {
6600 *skb = dev_alloc_skb(size);
2ceaac75 6601 if (!(*skb)) {
c53d4945
SH
6602 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6603 DBG_PRINT(INFO_DBG, "memory to allocate ");
6604 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6605 sp->mac_control.stats_info->sw_stat. \
6606 mem_alloc_fail_cnt++;
2ceaac75
DR
6607 return -ENOMEM;
6608 }
491976b2
SH
6609 sp->mac_control.stats_info->sw_stat.mem_allocated
6610 += (*skb)->truesize;
6d517a27 6611 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6612 pci_map_single(sp->pdev, (*skb)->data,
6613 dev->mtu + 4,
6614 PCI_DMA_FROMDEVICE);
491abf25
VP
6615 if( (rxdp3->Buffer2_ptr == 0) ||
6616 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6617 goto memalloc_failed;
6618 }
6d517a27 6619 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6620 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6621 PCI_DMA_FROMDEVICE);
491abf25
VP
6622 if( (rxdp3->Buffer0_ptr == 0) ||
6623 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6624 pci_unmap_single (sp->pdev,
3e847423 6625 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6626 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6627 goto memalloc_failed;
6628 }
5d3213cc
AR
6629 rxdp->Host_Control = (unsigned long) (*skb);
6630
6631 /* Buffer-1 will be dummy buffer not used */
6d517a27 6632 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6633 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6634 PCI_DMA_FROMDEVICE);
491abf25
VP
6635 if( (rxdp3->Buffer1_ptr == 0) ||
6636 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6637 pci_unmap_single (sp->pdev,
3e847423
AV
6638 (dma_addr_t)rxdp3->Buffer0_ptr,
6639 BUF0_LEN, PCI_DMA_FROMDEVICE);
6640 pci_unmap_single (sp->pdev,
6641 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6642 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6643 goto memalloc_failed;
6644 }
5d3213cc
AR
6645 }
6646 }
6647 return 0;
491abf25
VP
6648 memalloc_failed:
6649 stats->pci_map_fail_cnt++;
6650 stats->mem_freed += (*skb)->truesize;
6651 dev_kfree_skb(*skb);
6652 return -ENOMEM;
5d3213cc 6653}
491abf25 6654
1ee6dd77
RB
6655static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6656 int size)
5d3213cc
AR
6657{
6658 struct net_device *dev = sp->dev;
6659 if (sp->rxd_mode == RXD_MODE_1) {
6660 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6661 } else if (sp->rxd_mode == RXD_MODE_3B) {
6662 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6663 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6664 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6665 }
6666}
6667
1ee6dd77 6668static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6669{
6670 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6671 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6672 struct config_param *config = &sp->config;
6673 struct net_device *dev = sp->dev;
1ee6dd77 6674 struct RxD_t *rxdp = NULL;
5d3213cc 6675 struct sk_buff *skb = NULL;
1ee6dd77 6676 struct buffAdd *ba = NULL;
5d3213cc
AR
6677 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6678
6679 /* Calculate the size based on ring mode */
6680 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6681 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6682 if (sp->rxd_mode == RXD_MODE_1)
6683 size += NET_IP_ALIGN;
6684 else if (sp->rxd_mode == RXD_MODE_3B)
6685 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6686
6687 for (i = 0; i < config->rx_ring_num; i++) {
6688 blk_cnt = config->rx_cfg[i].num_rxd /
6689 (rxd_count[sp->rxd_mode] +1);
6690
6691 for (j = 0; j < blk_cnt; j++) {
6692 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6693 rxdp = mac_control->rings[i].
6694 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6695 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6696 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6697 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6698 &skb,(u64 *)&temp0_64,
6699 (u64 *)&temp1_64,
ac1f90d6
SS
6700 (u64 *)&temp2_64,
6701 size) == ENOMEM) {
6702 return 0;
6703 }
5d3213cc
AR
6704
6705 set_rxd_buffer_size(sp, rxdp, size);
6706 wmb();
6707 /* flip the Ownership bit to Hardware */
6708 rxdp->Control_1 |= RXD_OWN_XENA;
6709 }
6710 }
6711 }
6712 return 0;
6713
6714}
6715
1ee6dd77 6716static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6717{
e6a8fee2 6718 int ret = 0;
c92ca04b 6719 struct net_device *dev = sp->dev;
e6a8fee2 6720 int err = 0;
1da177e4 6721
eaae7f72 6722 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6723 ret = s2io_enable_msi_x(sp);
6724 if (ret) {
6725 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6726 sp->config.intr_type = INTA;
20346722 6727 }
1da177e4 6728
1ee6dd77 6729 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6730 store_xmsi_data(sp);
c92ca04b 6731
e6a8fee2 6732 /* After proper initialization of H/W, register ISR */
eaae7f72 6733 if (sp->config.intr_type == MSI_X) {
fb6a825b 6734 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6735
e6a8fee2
AR
6736 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6737 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6738 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6739 dev->name, i);
6740 err = request_irq(sp->entries[i].vector,
6741 s2io_msix_fifo_handle, 0, sp->desc[i],
6742 sp->s2io_entries[i].arg);
fb6a825b
SS
6743 /* If either data or addr is zero print it */
6744 if(!(sp->msix_info[i].addr &&
6745 sp->msix_info[i].data)) {
6746 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6747 "Data:0x%lx\n",sp->desc[i],
6748 (unsigned long long)
6749 sp->msix_info[i].addr,
6750 (unsigned long)
6751 ntohl(sp->msix_info[i].data));
6752 } else {
6753 msix_tx_cnt++;
6754 }
e6a8fee2
AR
6755 } else {
6756 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6757 dev->name, i);
6758 err = request_irq(sp->entries[i].vector,
6759 s2io_msix_ring_handle, 0, sp->desc[i],
6760 sp->s2io_entries[i].arg);
fb6a825b
SS
6761 /* If either data or addr is zero print it */
6762 if(!(sp->msix_info[i].addr &&
6763 sp->msix_info[i].data)) {
6764 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6765 "Data:0x%lx\n",sp->desc[i],
6766 (unsigned long long)
6767 sp->msix_info[i].addr,
6768 (unsigned long)
6769 ntohl(sp->msix_info[i].data));
6770 } else {
6771 msix_rx_cnt++;
6772 }
c92ca04b 6773 }
e6a8fee2
AR
6774 if (err) {
6775 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6776 "failed\n", dev->name, i);
6777 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6778 return -1;
6779 }
6780 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6781 }
fb6a825b
SS
6782 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6783 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
e6a8fee2 6784 }
eaae7f72 6785 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
6786 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6787 sp->name, dev);
6788 if (err) {
6789 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6790 dev->name);
6791 return -1;
6792 }
6793 }
6794 return 0;
6795}
1ee6dd77 6796static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6797{
6798 int cnt = 0;
6799 struct net_device *dev = sp->dev;
c77dd43e 6800 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
e6a8fee2 6801
eaae7f72 6802 if (sp->config.intr_type == MSI_X) {
e6a8fee2
AR
6803 int i;
6804 u16 msi_control;
6805
6806 for (i=1; (sp->s2io_entries[i].in_use ==
6807 MSIX_REGISTERED_SUCCESS); i++) {
6808 int vector = sp->entries[i].vector;
6809 void *arg = sp->s2io_entries[i].arg;
6810
6811 free_irq(vector, arg);
6812 }
c77dd43e
SS
6813
6814 kfree(sp->entries);
6815 stats->mem_freed +=
6816 (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
6817 kfree(sp->s2io_entries);
6818 stats->mem_freed +=
6819 (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
6820 sp->entries = NULL;
6821 sp->s2io_entries = NULL;
6822
e6a8fee2
AR
6823 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6824 msi_control &= 0xFFFE; /* Disable MSI */
6825 pci_write_config_word(sp->pdev, 0x42, msi_control);
6826
6827 pci_disable_msix(sp->pdev);
6828 } else {
6829 free_irq(sp->pdev->irq, dev);
c92ca04b
AR
6830 }
6831 /* Waiting till all Interrupt handlers are complete */
6832 cnt = 0;
6833 do {
6834 msleep(10);
6835 if (!atomic_read(&sp->isr_cnt))
6836 break;
6837 cnt++;
6838 } while(cnt < 5);
e6a8fee2
AR
6839}
6840
d796fdb7 6841static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
6842{
6843 int cnt = 0;
1ee6dd77 6844 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6845 unsigned long flags;
6846 register u64 val64 = 0;
6847
6848 del_timer_sync(&sp->alarm_timer);
6849 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 6850 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
6851 msleep(50);
6852 }
92b84437 6853 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2
AR
6854
6855 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
6856 if (do_io)
6857 stop_nic(sp);
e6a8fee2
AR
6858
6859 s2io_rem_isr(sp);
1da177e4
LT
6860
6861 /* Kill tasklet. */
6862 tasklet_kill(&sp->task);
6863
6864 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 6865 while(do_io) {
5d3213cc
AR
6866 /* As per the HW requirement we need to replenish the
6867 * receive buffer to avoid the ring bump. Since there is
6868 * no intention of processing the Rx frame at this pointwe are
6869 * just settting the ownership bit of rxd in Each Rx
6870 * ring to HW and set the appropriate buffer size
6871 * based on the ring mode
6872 */
6873 rxd_owner_bit_reset(sp);
6874
1da177e4 6875 val64 = readq(&bar0->adapter_status);
19a60522
SS
6876 if (verify_xena_quiescence(sp)) {
6877 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6878 break;
6879 }
6880
6881 msleep(50);
6882 cnt++;
6883 if (cnt == 10) {
6884 DBG_PRINT(ERR_DBG,
6885 "s2io_close:Device not Quiescent ");
6886 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6887 (unsigned long long) val64);
6888 break;
6889 }
d796fdb7
LV
6890 }
6891 if (do_io)
6892 s2io_reset(sp);
1da177e4 6893
7ba013ac
K
6894 spin_lock_irqsave(&sp->tx_lock, flags);
6895 /* Free all Tx buffers */
1da177e4 6896 free_tx_buffers(sp);
7ba013ac
K
6897 spin_unlock_irqrestore(&sp->tx_lock, flags);
6898
6899 /* Free all Rx buffers */
6900 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6901 free_rx_buffers(sp);
7ba013ac 6902 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6903
92b84437 6904 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
6905}
6906
d796fdb7
LV
6907static void s2io_card_down(struct s2io_nic * sp)
6908{
6909 do_s2io_card_down(sp, 1);
6910}
6911
1ee6dd77 6912static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6913{
cc6e7c44 6914 int i, ret = 0;
1ee6dd77 6915 struct mac_info *mac_control;
1da177e4
LT
6916 struct config_param *config;
6917 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6918 u16 interruptible;
1da177e4
LT
6919
6920 /* Initialize the H/W I/O registers */
6921 if (init_nic(sp) != 0) {
6922 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6923 dev->name);
e6a8fee2 6924 s2io_reset(sp);
1da177e4
LT
6925 return -ENODEV;
6926 }
6927
20346722
K
6928 /*
6929 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6930 * Rx ring and initializing buffers into 30 Rx blocks
6931 */
6932 mac_control = &sp->mac_control;
6933 config = &sp->config;
6934
6935 for (i = 0; i < config->rx_ring_num; i++) {
6936 if ((ret = fill_rx_buffers(sp, i))) {
6937 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6938 dev->name);
6939 s2io_reset(sp);
6940 free_rx_buffers(sp);
6941 return -ENOMEM;
6942 }
6943 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6944 atomic_read(&sp->rx_bufs_left[i]));
6945 }
19a60522
SS
6946 /* Maintain the state prior to the open */
6947 if (sp->promisc_flg)
6948 sp->promisc_flg = 0;
6949 if (sp->m_cast_flg) {
6950 sp->m_cast_flg = 0;
6951 sp->all_multi_pos= 0;
6952 }
1da177e4
LT
6953
6954 /* Setting its receive mode */
6955 s2io_set_multicast(dev);
6956
7d3d0439 6957 if (sp->lro) {
b41477f3 6958 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6959 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6960 /* Check if we can use(if specified) user provided value */
6961 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6962 sp->lro_max_aggr_per_sess = lro_max_pkts;
6963 }
6964
1da177e4
LT
6965 /* Enable Rx Traffic and interrupts on the NIC */
6966 if (start_nic(sp)) {
6967 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6968 s2io_reset(sp);
e6a8fee2
AR
6969 free_rx_buffers(sp);
6970 return -ENODEV;
6971 }
6972
6973 /* Add interrupt service routine */
6974 if (s2io_add_isr(sp) != 0) {
eaae7f72 6975 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6976 s2io_rem_isr(sp);
6977 s2io_reset(sp);
1da177e4
LT
6978 free_rx_buffers(sp);
6979 return -ENODEV;
6980 }
6981
25fff88e
K
6982 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6983
e6a8fee2
AR
6984 /* Enable tasklet for the device */
6985 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6986
6987 /* Enable select interrupts */
9caab458 6988 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
eaae7f72 6989 if (sp->config.intr_type != INTA)
e6a8fee2
AR
6990 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6991 else {
6992 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 6993 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
6994 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6995 }
6996
92b84437 6997 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
1da177e4
LT
6998 return 0;
6999}
7000
20346722 7001/**
1da177e4
LT
7002 * s2io_restart_nic - Resets the NIC.
7003 * @data : long pointer to the device private structure
7004 * Description:
7005 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7006 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7007 * the run time of the watch dog routine which is run holding a
7008 * spin lock.
7009 */
7010
c4028958 7011static void s2io_restart_nic(struct work_struct *work)
1da177e4 7012{
1ee6dd77 7013 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7014 struct net_device *dev = sp->dev;
1da177e4 7015
22747d6b
FR
7016 rtnl_lock();
7017
7018 if (!netif_running(dev))
7019 goto out_unlock;
7020
e6a8fee2 7021 s2io_card_down(sp);
1da177e4
LT
7022 if (s2io_card_up(sp)) {
7023 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7024 dev->name);
7025 }
7026 netif_wake_queue(dev);
7027 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7028 dev->name);
22747d6b
FR
7029out_unlock:
7030 rtnl_unlock();
1da177e4
LT
7031}
7032
20346722
K
7033/**
7034 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7035 * @dev : Pointer to net device structure
7036 * Description:
7037 * This function is triggered if the Tx Queue is stopped
7038 * for a pre-defined amount of time when the Interface is still up.
7039 * If the Interface is jammed in such a situation, the hardware is
7040 * reset (by s2io_close) and restarted again (by s2io_open) to
7041 * overcome any problem that might have been caused in the hardware.
7042 * Return value:
7043 * void
7044 */
7045
7046static void s2io_tx_watchdog(struct net_device *dev)
7047{
1ee6dd77 7048 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7049
7050 if (netif_carrier_ok(dev)) {
c53d4945 7051 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7052 schedule_work(&sp->rst_timer_task);
bd1034f0 7053 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7054 }
7055}
7056
7057/**
7058 * rx_osm_handler - To perform some OS related operations on SKB.
7059 * @sp: private member of the device structure,pointer to s2io_nic structure.
7060 * @skb : the socket buffer pointer.
7061 * @len : length of the packet
7062 * @cksum : FCS checksum of the frame.
7063 * @ring_no : the ring from which this RxD was extracted.
20346722 7064 * Description:
b41477f3 7065 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7066 * some OS related operations on the SKB before passing it to the upper
7067 * layers. It mainly checks if the checksum is OK, if so adds it to the
7068 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7069 * to the upper layer. If the checksum is wrong, it increments the Rx
7070 * packet error count, frees the SKB and returns error.
7071 * Return value:
7072 * SUCCESS on success and -1 on failure.
7073 */
1ee6dd77 7074static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7075{
1ee6dd77 7076 struct s2io_nic *sp = ring_data->nic;
1da177e4 7077 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
7078 struct sk_buff *skb = (struct sk_buff *)
7079 ((unsigned long) rxdp->Host_Control);
7080 int ring_no = ring_data->ring_no;
1da177e4 7081 u16 l3_csum, l4_csum;
863c11a9 7082 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7083 struct lro *lro;
f9046eb3 7084 u8 err_mask;
da6971d8 7085
20346722 7086 skb->dev = dev;
c92ca04b 7087
863c11a9 7088 if (err) {
bd1034f0
AR
7089 /* Check for parity error */
7090 if (err & 0x1) {
7091 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7092 }
f9046eb3
OH
7093 err_mask = err >> 48;
7094 switch(err_mask) {
491976b2
SH
7095 case 1:
7096 sp->mac_control.stats_info->sw_stat.
7097 rx_parity_err_cnt++;
7098 break;
7099
7100 case 2:
7101 sp->mac_control.stats_info->sw_stat.
7102 rx_abort_cnt++;
7103 break;
7104
7105 case 3:
7106 sp->mac_control.stats_info->sw_stat.
7107 rx_parity_abort_cnt++;
7108 break;
7109
7110 case 4:
7111 sp->mac_control.stats_info->sw_stat.
7112 rx_rda_fail_cnt++;
7113 break;
7114
7115 case 5:
7116 sp->mac_control.stats_info->sw_stat.
7117 rx_unkn_prot_cnt++;
7118 break;
7119
7120 case 6:
7121 sp->mac_control.stats_info->sw_stat.
7122 rx_fcs_err_cnt++;
7123 break;
bd1034f0 7124
491976b2
SH
7125 case 7:
7126 sp->mac_control.stats_info->sw_stat.
7127 rx_buf_size_err_cnt++;
7128 break;
7129
7130 case 8:
7131 sp->mac_control.stats_info->sw_stat.
7132 rx_rxd_corrupt_cnt++;
7133 break;
7134
7135 case 15:
7136 sp->mac_control.stats_info->sw_stat.
7137 rx_unkn_err_cnt++;
7138 break;
7139 }
863c11a9
AR
7140 /*
7141 * Drop the packet if bad transfer code. Exception being
7142 * 0x5, which could be due to unsupported IPv6 extension header.
7143 * In this case, we let stack handle the packet.
7144 * Note that in this case, since checksum will be incorrect,
7145 * stack will validate the same.
7146 */
f9046eb3
OH
7147 if (err_mask != 0x5) {
7148 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7149 dev->name, err_mask);
863c11a9 7150 sp->stats.rx_crc_errors++;
491976b2
SH
7151 sp->mac_control.stats_info->sw_stat.mem_freed
7152 += skb->truesize;
863c11a9
AR
7153 dev_kfree_skb(skb);
7154 atomic_dec(&sp->rx_bufs_left[ring_no]);
7155 rxdp->Host_Control = 0;
7156 return 0;
7157 }
20346722 7158 }
1da177e4 7159
20346722 7160 /* Updating statistics */
573608e4 7161 sp->stats.rx_packets++;
20346722 7162 rxdp->Host_Control = 0;
da6971d8
AR
7163 if (sp->rxd_mode == RXD_MODE_1) {
7164 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7165
da6971d8
AR
7166 sp->stats.rx_bytes += len;
7167 skb_put(skb, len);
7168
6d517a27 7169 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7170 int get_block = ring_data->rx_curr_get_info.block_index;
7171 int get_off = ring_data->rx_curr_get_info.offset;
7172 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7173 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7174 unsigned char *buff = skb_push(skb, buf0_len);
7175
1ee6dd77 7176 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
7177 sp->stats.rx_bytes += buf0_len + buf2_len;
7178 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7179 skb_put(skb, buf2_len);
da6971d8 7180 }
20346722 7181
7d3d0439
RA
7182 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7183 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7184 (sp->rx_csum)) {
7185 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7186 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7187 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7188 /*
1da177e4
LT
7189 * NIC verifies if the Checksum of the received
7190 * frame is Ok or not and accordingly returns
7191 * a flag in the RxD.
7192 */
7193 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
7194 if (sp->lro) {
7195 u32 tcp_len;
7196 u8 *tcp;
7197 int ret = 0;
7198
7199 ret = s2io_club_tcp_session(skb->data, &tcp,
7200 &tcp_len, &lro, rxdp, sp);
7201 switch (ret) {
7202 case 3: /* Begin anew */
7203 lro->parent = skb;
7204 goto aggregate;
7205 case 1: /* Aggregate */
7206 {
7207 lro_append_pkt(sp, lro,
7208 skb, tcp_len);
7209 goto aggregate;
7210 }
7211 case 4: /* Flush session */
7212 {
7213 lro_append_pkt(sp, lro,
7214 skb, tcp_len);
7215 queue_rx_frame(lro->parent);
7216 clear_lro_session(lro);
7217 sp->mac_control.stats_info->
7218 sw_stat.flush_max_pkts++;
7219 goto aggregate;
7220 }
7221 case 2: /* Flush both */
7222 lro->parent->data_len =
7223 lro->frags_len;
7224 sp->mac_control.stats_info->
7225 sw_stat.sending_both++;
7226 queue_rx_frame(lro->parent);
7227 clear_lro_session(lro);
7228 goto send_up;
7229 case 0: /* sessions exceeded */
c92ca04b
AR
7230 case -1: /* non-TCP or not
7231 * L2 aggregatable
7232 */
7d3d0439
RA
7233 case 5: /*
7234 * First pkt in session not
7235 * L3/L4 aggregatable
7236 */
7237 break;
7238 default:
7239 DBG_PRINT(ERR_DBG,
7240 "%s: Samadhana!!\n",
7241 __FUNCTION__);
7242 BUG();
7243 }
7244 }
1da177e4 7245 } else {
20346722
K
7246 /*
7247 * Packet with erroneous checksum, let the
1da177e4
LT
7248 * upper layers deal with it.
7249 */
7250 skb->ip_summed = CHECKSUM_NONE;
7251 }
7252 } else {
7253 skb->ip_summed = CHECKSUM_NONE;
7254 }
491976b2 7255 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439
RA
7256 if (!sp->lro) {
7257 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
7258 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7259 vlan_strip_flag)) {
7d3d0439 7260 /* Queueing the vlan frame to the upper layer */
db874e65
SS
7261 if (napi)
7262 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7263 RXD_GET_VLAN_TAG(rxdp->Control_2));
7264 else
7265 vlan_hwaccel_rx(skb, sp->vlgrp,
7266 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7267 } else {
db874e65
SS
7268 if (napi)
7269 netif_receive_skb(skb);
7270 else
7271 netif_rx(skb);
7d3d0439 7272 }
7d3d0439
RA
7273 } else {
7274send_up:
7275 queue_rx_frame(skb);
6aa20a22 7276 }
1da177e4 7277 dev->last_rx = jiffies;
7d3d0439 7278aggregate:
1da177e4 7279 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
7280 return SUCCESS;
7281}
7282
7283/**
7284 * s2io_link - stops/starts the Tx queue.
7285 * @sp : private member of the device structure, which is a pointer to the
7286 * s2io_nic structure.
7287 * @link : inidicates whether link is UP/DOWN.
7288 * Description:
7289 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7290 * status of the NIC is is down or up. This is called by the Alarm
7291 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7292 * Return value:
7293 * void.
7294 */
7295
1ee6dd77 7296static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7297{
7298 struct net_device *dev = (struct net_device *) sp->dev;
7299
7300 if (link != sp->last_link_state) {
7301 if (link == LINK_DOWN) {
7302 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7303 netif_carrier_off(dev);
491976b2
SH
7304 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7305 sp->mac_control.stats_info->sw_stat.link_up_time =
7306 jiffies - sp->start_time;
7307 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7308 } else {
7309 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2
SH
7310 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7311 sp->mac_control.stats_info->sw_stat.link_down_time =
7312 jiffies - sp->start_time;
7313 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4
LT
7314 netif_carrier_on(dev);
7315 }
7316 }
7317 sp->last_link_state = link;
491976b2 7318 sp->start_time = jiffies;
1da177e4
LT
7319}
7320
20346722
K
7321/**
7322 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7323 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7324 * s2io_nic structure.
7325 * Description:
7326 * This function initializes a few of the PCI and PCI-X configuration registers
7327 * with recommended values.
7328 * Return value:
7329 * void
7330 */
7331
1ee6dd77 7332static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7333{
20346722 7334 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7335
7336 /* Enable Data Parity Error Recovery in PCI-X command register. */
7337 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7338 &(pcix_cmd));
1da177e4 7339 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7340 (pcix_cmd | 1));
1da177e4 7341 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7342 &(pcix_cmd));
1da177e4
LT
7343
7344 /* Set the PErr Response bit in PCI command register. */
7345 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7346 pci_write_config_word(sp->pdev, PCI_COMMAND,
7347 (pci_cmd | PCI_COMMAND_PARITY));
7348 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7349}
7350
9dc737a7
AR
7351static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7352{
7353 if ( tx_fifo_num > 8) {
7354 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7355 "supported\n");
7356 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7357 tx_fifo_num = 8;
7358 }
7359 if ( rx_ring_num > 8) {
7360 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7361 "supported\n");
7362 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7363 rx_ring_num = 8;
7364 }
db874e65
SS
7365 if (*dev_intr_type != INTA)
7366 napi = 0;
7367
9dc737a7
AR
7368#ifndef CONFIG_PCI_MSI
7369 if (*dev_intr_type != INTA) {
7370 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7371 "MSI/MSI-X. Defaulting to INTA\n");
7372 *dev_intr_type = INTA;
7373 }
7374#else
eccb8628 7375 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7376 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7377 "Defaulting to INTA\n");
7378 *dev_intr_type = INTA;
7379 }
7380#endif
7381 if ((*dev_intr_type == MSI_X) &&
7382 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7383 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7384 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7385 "Defaulting to INTA\n");
7386 *dev_intr_type = INTA;
7387 }
fb6a825b 7388
6d517a27 7389 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7390 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7391 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7392 rx_ring_mode = 1;
9dc737a7
AR
7393 }
7394 return SUCCESS;
7395}
7396
9fc93a41
SS
7397/**
7398 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7399 * or Traffic class respectively.
7400 * @nic: device peivate variable
7401 * Description: The function configures the receive steering to
7402 * desired receive ring.
7403 * Return Value: SUCCESS on success and
7404 * '-1' on failure (endian settings incorrect).
7405 */
7406static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7407{
7408 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7409 register u64 val64 = 0;
7410
7411 if (ds_codepoint > 63)
7412 return FAILURE;
7413
7414 val64 = RTS_DS_MEM_DATA(ring);
7415 writeq(val64, &bar0->rts_ds_mem_data);
7416
7417 val64 = RTS_DS_MEM_CTRL_WE |
7418 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7419 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7420
7421 writeq(val64, &bar0->rts_ds_mem_ctrl);
7422
7423 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7424 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7425 S2IO_BIT_RESET);
7426}
7427
1da177e4 7428/**
20346722 7429 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7430 * @pdev : structure containing the PCI related information of the device.
7431 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7432 * Description:
7433 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7434 * All OS related initialization including memory and device structure and
7435 * initlaization of the device private variable is done. Also the swapper
7436 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7437 * registers of the device.
7438 * Return value:
7439 * returns 0 on success and negative on failure.
7440 */
7441
7442static int __devinit
7443s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7444{
1ee6dd77 7445 struct s2io_nic *sp;
1da177e4 7446 struct net_device *dev;
1da177e4
LT
7447 int i, j, ret;
7448 int dma_flag = FALSE;
7449 u32 mac_up, mac_down;
7450 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7451 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7452 u16 subid;
1ee6dd77 7453 struct mac_info *mac_control;
1da177e4 7454 struct config_param *config;
541ae68f 7455 int mode;
cc6e7c44 7456 u8 dev_intr_type = intr_type;
1da177e4 7457
9dc737a7
AR
7458 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7459 return ret;
1da177e4
LT
7460
7461 if ((ret = pci_enable_device(pdev))) {
7462 DBG_PRINT(ERR_DBG,
7463 "s2io_init_nic: pci_enable_device failed\n");
7464 return ret;
7465 }
7466
1e7f0bd8 7467 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7468 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7469 dma_flag = TRUE;
1da177e4 7470 if (pci_set_consistent_dma_mask
1e7f0bd8 7471 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7472 DBG_PRINT(ERR_DBG,
7473 "Unable to obtain 64bit DMA for \
7474 consistent allocations\n");
7475 pci_disable_device(pdev);
7476 return -ENOMEM;
7477 }
1e7f0bd8 7478 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7479 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7480 } else {
7481 pci_disable_device(pdev);
7482 return -ENOMEM;
7483 }
eccb8628
VP
7484 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7485 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7486 pci_disable_device(pdev);
7487 return -ENODEV;
1da177e4
LT
7488 }
7489
1ee6dd77 7490 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7491 if (dev == NULL) {
7492 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7493 pci_disable_device(pdev);
7494 pci_release_regions(pdev);
7495 return -ENODEV;
7496 }
7497
7498 pci_set_master(pdev);
7499 pci_set_drvdata(pdev, dev);
7500 SET_MODULE_OWNER(dev);
7501 SET_NETDEV_DEV(dev, &pdev->dev);
7502
7503 /* Private member variable initialized to s2io NIC structure */
7504 sp = dev->priv;
1ee6dd77 7505 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7506 sp->dev = dev;
7507 sp->pdev = pdev;
1da177e4 7508 sp->high_dma_flag = dma_flag;
1da177e4 7509 sp->device_enabled_once = FALSE;
da6971d8
AR
7510 if (rx_ring_mode == 1)
7511 sp->rxd_mode = RXD_MODE_1;
7512 if (rx_ring_mode == 2)
7513 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7514
eaae7f72 7515 sp->config.intr_type = dev_intr_type;
1da177e4 7516
541ae68f
K
7517 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7518 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7519 sp->device_type = XFRAME_II_DEVICE;
7520 else
7521 sp->device_type = XFRAME_I_DEVICE;
7522
7d3d0439 7523 sp->lro = lro;
6aa20a22 7524
1da177e4
LT
7525 /* Initialize some PCI/PCI-X fields of the NIC. */
7526 s2io_init_pci(sp);
7527
20346722 7528 /*
1da177e4 7529 * Setting the device configuration parameters.
20346722
K
7530 * Most of these parameters can be specified by the user during
7531 * module insertion as they are module loadable parameters. If
7532 * these parameters are not not specified during load time, they
1da177e4
LT
7533 * are initialized with default values.
7534 */
7535 mac_control = &sp->mac_control;
7536 config = &sp->config;
7537
7538 /* Tx side parameters. */
1da177e4
LT
7539 config->tx_fifo_num = tx_fifo_num;
7540 for (i = 0; i < MAX_TX_FIFOS; i++) {
7541 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7542 config->tx_cfg[i].fifo_priority = i;
7543 }
7544
20346722
K
7545 /* mapping the QoS priority to the configured fifos */
7546 for (i = 0; i < MAX_TX_FIFOS; i++)
7547 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7548
1da177e4
LT
7549 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7550 for (i = 0; i < config->tx_fifo_num; i++) {
7551 config->tx_cfg[i].f_no_snoop =
7552 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7553 if (config->tx_cfg[i].fifo_len < 65) {
7554 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7555 break;
7556 }
7557 }
fed5eccd
AR
7558 /* + 2 because one Txd for skb->data and one Txd for UFO */
7559 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7560
7561 /* Rx side parameters. */
1da177e4
LT
7562 config->rx_ring_num = rx_ring_num;
7563 for (i = 0; i < MAX_RX_RINGS; i++) {
7564 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7565 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7566 config->rx_cfg[i].ring_priority = i;
7567 }
7568
7569 for (i = 0; i < rx_ring_num; i++) {
7570 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7571 config->rx_cfg[i].f_no_snoop =
7572 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7573 }
7574
7575 /* Setting Mac Control parameters */
7576 mac_control->rmac_pause_time = rmac_pause_time;
7577 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7578 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7579
7580
7581 /* Initialize Ring buffer parameters. */
7582 for (i = 0; i < config->rx_ring_num; i++)
7583 atomic_set(&sp->rx_bufs_left[i], 0);
7584
7ba013ac
K
7585 /* Initialize the number of ISRs currently running */
7586 atomic_set(&sp->isr_cnt, 0);
7587
1da177e4
LT
7588 /* initialize the shared memory used by the NIC and the host */
7589 if (init_shared_mem(sp)) {
7590 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7591 dev->name);
1da177e4
LT
7592 ret = -ENOMEM;
7593 goto mem_alloc_failed;
7594 }
7595
7596 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7597 pci_resource_len(pdev, 0));
7598 if (!sp->bar0) {
19a60522 7599 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7600 dev->name);
7601 ret = -ENOMEM;
7602 goto bar0_remap_failed;
7603 }
7604
7605 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7606 pci_resource_len(pdev, 2));
7607 if (!sp->bar1) {
19a60522 7608 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7609 dev->name);
7610 ret = -ENOMEM;
7611 goto bar1_remap_failed;
7612 }
7613
7614 dev->irq = pdev->irq;
7615 dev->base_addr = (unsigned long) sp->bar0;
7616
7617 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7618 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7619 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7620 (sp->bar1 + (j * 0x00020000));
7621 }
7622
7623 /* Driver entry points */
7624 dev->open = &s2io_open;
7625 dev->stop = &s2io_close;
7626 dev->hard_start_xmit = &s2io_xmit;
7627 dev->get_stats = &s2io_get_stats;
7628 dev->set_multicast_list = &s2io_set_multicast;
7629 dev->do_ioctl = &s2io_ioctl;
7630 dev->change_mtu = &s2io_change_mtu;
7631 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7632 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7633 dev->vlan_rx_register = s2io_vlan_rx_register;
20346722 7634
1da177e4
LT
7635 /*
7636 * will use eth_mac_addr() for dev->set_mac_address
7637 * mac address will be set every time dev->open() is called
7638 */
bea3348e 7639 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
1da177e4 7640
612eff0e
BH
7641#ifdef CONFIG_NET_POLL_CONTROLLER
7642 dev->poll_controller = s2io_netpoll;
7643#endif
7644
1da177e4
LT
7645 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7646 if (sp->high_dma_flag == TRUE)
7647 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7648 dev->features |= NETIF_F_TSO;
f83ef8c0 7649 dev->features |= NETIF_F_TSO6;
db874e65 7650 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7651 dev->features |= NETIF_F_UFO;
7652 dev->features |= NETIF_F_HW_CSUM;
7653 }
1da177e4
LT
7654
7655 dev->tx_timeout = &s2io_tx_watchdog;
7656 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7657 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7658 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7659
e960fc5c 7660 pci_save_state(sp->pdev);
1da177e4
LT
7661
7662 /* Setting swapper control on the NIC, for proper reset operation */
7663 if (s2io_set_swapper(sp)) {
7664 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7665 dev->name);
7666 ret = -EAGAIN;
7667 goto set_swap_failed;
7668 }
7669
541ae68f
K
7670 /* Verify if the Herc works on the slot its placed into */
7671 if (sp->device_type & XFRAME_II_DEVICE) {
7672 mode = s2io_verify_pci_mode(sp);
7673 if (mode < 0) {
7674 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7675 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7676 ret = -EBADSLT;
7677 goto set_swap_failed;
7678 }
7679 }
7680
7681 /* Not needed for Herc */
7682 if (sp->device_type & XFRAME_I_DEVICE) {
7683 /*
7684 * Fix for all "FFs" MAC address problems observed on
7685 * Alpha platforms
7686 */
7687 fix_mac_address(sp);
7688 s2io_reset(sp);
7689 }
1da177e4
LT
7690
7691 /*
1da177e4
LT
7692 * MAC address initialization.
7693 * For now only one mac address will be read and used.
7694 */
7695 bar0 = sp->bar0;
7696 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7697 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7698 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7699 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7700 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7701 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7702 mac_down = (u32) tmp64;
7703 mac_up = (u32) (tmp64 >> 32);
7704
1da177e4
LT
7705 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7706 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7707 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7708 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7709 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7710 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7711
1da177e4
LT
7712 /* Set the factory defined MAC address initially */
7713 dev->addr_len = ETH_ALEN;
7714 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7715
c77dd43e
SS
7716 /* Store the values of the MSIX table in the s2io_nic structure */
7717 store_xmsi_data(sp);
b41477f3
AR
7718 /* reset Nic and bring it to known state */
7719 s2io_reset(sp);
7720
1da177e4 7721 /*
20346722 7722 * Initialize the tasklet status and link state flags
541ae68f 7723 * and the card state parameter
1da177e4 7724 */
1da177e4 7725 sp->tasklet_status = 0;
92b84437 7726 sp->state = 0;
1da177e4 7727
1da177e4
LT
7728 /* Initialize spinlocks */
7729 spin_lock_init(&sp->tx_lock);
db874e65
SS
7730
7731 if (!napi)
7732 spin_lock_init(&sp->put_lock);
7ba013ac 7733 spin_lock_init(&sp->rx_lock);
1da177e4 7734
20346722
K
7735 /*
7736 * SXE-002: Configure link and activity LED to init state
7737 * on driver load.
1da177e4
LT
7738 */
7739 subid = sp->pdev->subsystem_device;
7740 if ((subid & 0xFF) >= 0x07) {
7741 val64 = readq(&bar0->gpio_control);
7742 val64 |= 0x0000800000000000ULL;
7743 writeq(val64, &bar0->gpio_control);
7744 val64 = 0x0411040400000000ULL;
7745 writeq(val64, (void __iomem *) bar0 + 0x2700);
7746 val64 = readq(&bar0->gpio_control);
7747 }
7748
7749 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7750
7751 if (register_netdev(dev)) {
7752 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7753 ret = -ENODEV;
7754 goto register_failed;
7755 }
9dc737a7 7756 s2io_vpd_read(sp);
0c61ed5f 7757 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 7758 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 7759 sp->product_name, pdev->revision);
b41477f3
AR
7760 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7761 s2io_driver_version);
9dc737a7 7762 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7763 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f
K
7764 sp->def_mac_addr[0].mac_addr[0],
7765 sp->def_mac_addr[0].mac_addr[1],
7766 sp->def_mac_addr[0].mac_addr[2],
7767 sp->def_mac_addr[0].mac_addr[3],
7768 sp->def_mac_addr[0].mac_addr[4],
7769 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7770 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7771 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7772 mode = s2io_print_pci_mode(sp);
541ae68f 7773 if (mode < 0) {
9dc737a7 7774 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7775 ret = -EBADSLT;
9dc737a7 7776 unregister_netdev(dev);
541ae68f
K
7777 goto set_swap_failed;
7778 }
541ae68f 7779 }
9dc737a7
AR
7780 switch(sp->rxd_mode) {
7781 case RXD_MODE_1:
7782 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7783 dev->name);
7784 break;
7785 case RXD_MODE_3B:
7786 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7787 dev->name);
7788 break;
9dc737a7 7789 }
db874e65
SS
7790
7791 if (napi)
7792 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
eaae7f72 7793 switch(sp->config.intr_type) {
9dc737a7
AR
7794 case INTA:
7795 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7796 break;
9dc737a7
AR
7797 case MSI_X:
7798 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7799 break;
7800 }
7d3d0439
RA
7801 if (sp->lro)
7802 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7803 dev->name);
db874e65
SS
7804 if (ufo)
7805 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7806 " enabled\n", dev->name);
7ba013ac 7807 /* Initialize device name */
9dc737a7 7808 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7809
b6e3f982
K
7810 /* Initialize bimodal Interrupts */
7811 sp->config.bimodal = bimodal;
7812 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7813 sp->config.bimodal = 0;
7814 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7815 dev->name);
7816 }
7817
20346722
K
7818 /*
7819 * Make Link state as off at this point, when the Link change
7820 * interrupt comes the state will be automatically changed to
1da177e4
LT
7821 * the right state.
7822 */
7823 netif_carrier_off(dev);
1da177e4
LT
7824
7825 return 0;
7826
7827 register_failed:
7828 set_swap_failed:
7829 iounmap(sp->bar1);
7830 bar1_remap_failed:
7831 iounmap(sp->bar0);
7832 bar0_remap_failed:
7833 mem_alloc_failed:
7834 free_shared_mem(sp);
7835 pci_disable_device(pdev);
eccb8628 7836 pci_release_regions(pdev);
1da177e4
LT
7837 pci_set_drvdata(pdev, NULL);
7838 free_netdev(dev);
7839
7840 return ret;
7841}
7842
7843/**
20346722 7844 * s2io_rem_nic - Free the PCI device
1da177e4 7845 * @pdev: structure containing the PCI related information of the device.
20346722 7846 * Description: This function is called by the Pci subsystem to release a
1da177e4 7847 * PCI device and free up all resource held up by the device. This could
20346722 7848 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7849 * from memory.
7850 */
7851
7852static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7853{
7854 struct net_device *dev =
7855 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7856 struct s2io_nic *sp;
1da177e4
LT
7857
7858 if (dev == NULL) {
7859 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7860 return;
7861 }
7862
22747d6b
FR
7863 flush_scheduled_work();
7864
1da177e4
LT
7865 sp = dev->priv;
7866 unregister_netdev(dev);
7867
7868 free_shared_mem(sp);
7869 iounmap(sp->bar0);
7870 iounmap(sp->bar1);
eccb8628 7871 pci_release_regions(pdev);
1da177e4 7872 pci_set_drvdata(pdev, NULL);
1da177e4 7873 free_netdev(dev);
19a60522 7874 pci_disable_device(pdev);
1da177e4
LT
7875}
7876
7877/**
7878 * s2io_starter - Entry point for the driver
7879 * Description: This function is the entry point for the driver. It verifies
7880 * the module loadable parameters and initializes PCI configuration space.
7881 */
7882
7883int __init s2io_starter(void)
7884{
29917620 7885 return pci_register_driver(&s2io_driver);
1da177e4
LT
7886}
7887
7888/**
20346722 7889 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7890 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7891 */
7892
372cc597 7893static __exit void s2io_closer(void)
1da177e4
LT
7894{
7895 pci_unregister_driver(&s2io_driver);
7896 DBG_PRINT(INIT_DBG, "cleanup done\n");
7897}
7898
7899module_init(s2io_starter);
7900module_exit(s2io_closer);
7d3d0439 7901
6aa20a22 7902static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7903 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7904{
7905 int ip_off;
7906 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7907
7908 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7909 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7910 __FUNCTION__);
7911 return -1;
7912 }
7913
7914 /* TODO:
7915 * By default the VLAN field in the MAC is stripped by the card, if this
7916 * feature is turned off in rx_pa_cfg register, then the ip_off field
7917 * has to be shifted by a further 2 bytes
7918 */
7919 switch (l2_type) {
7920 case 0: /* DIX type */
7921 case 4: /* DIX type with VLAN */
7922 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7923 break;
7924 /* LLC, SNAP etc are considered non-mergeable */
7925 default:
7926 return -1;
7927 }
7928
7929 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7930 ip_len = (u8)((*ip)->ihl);
7931 ip_len <<= 2;
7932 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7933
7934 return 0;
7935}
7936
1ee6dd77 7937static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7938 struct tcphdr *tcp)
7939{
7940 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7941 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7942 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7943 return -1;
7944 return 0;
7945}
7946
7947static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7948{
7949 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7950}
7951
1ee6dd77 7952static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7953 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7954{
7955 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7956 lro->l2h = l2h;
7957 lro->iph = ip;
7958 lro->tcph = tcp;
7959 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7960 lro->tcp_ack = ntohl(tcp->ack_seq);
7961 lro->sg_num = 1;
7962 lro->total_len = ntohs(ip->tot_len);
7963 lro->frags_len = 0;
6aa20a22 7964 /*
7d3d0439
RA
7965 * check if we saw TCP timestamp. Other consistency checks have
7966 * already been done.
7967 */
7968 if (tcp->doff == 8) {
7969 u32 *ptr;
7970 ptr = (u32 *)(tcp+1);
7971 lro->saw_ts = 1;
7972 lro->cur_tsval = *(ptr+1);
7973 lro->cur_tsecr = *(ptr+2);
7974 }
7975 lro->in_use = 1;
7976}
7977
1ee6dd77 7978static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7979{
7980 struct iphdr *ip = lro->iph;
7981 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7982 __sum16 nchk;
1ee6dd77 7983 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7984 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7985
7986 /* Update L3 header */
7987 ip->tot_len = htons(lro->total_len);
7988 ip->check = 0;
7989 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7990 ip->check = nchk;
7991
7992 /* Update L4 header */
7993 tcp->ack_seq = lro->tcp_ack;
7994 tcp->window = lro->window;
7995
7996 /* Update tsecr field if this session has timestamps enabled */
7997 if (lro->saw_ts) {
7998 u32 *ptr = (u32 *)(tcp + 1);
7999 *(ptr+2) = lro->cur_tsecr;
8000 }
8001
8002 /* Update counters required for calculation of
8003 * average no. of packets aggregated.
8004 */
8005 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8006 statinfo->sw_stat.num_aggregations++;
8007}
8008
1ee6dd77 8009static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8010 struct tcphdr *tcp, u32 l4_pyld)
8011{
8012 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8013 lro->total_len += l4_pyld;
8014 lro->frags_len += l4_pyld;
8015 lro->tcp_next_seq += l4_pyld;
8016 lro->sg_num++;
8017
8018 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8019 lro->tcp_ack = tcp->ack_seq;
8020 lro->window = tcp->window;
6aa20a22 8021
7d3d0439
RA
8022 if (lro->saw_ts) {
8023 u32 *ptr;
8024 /* Update tsecr and tsval from this packet */
8025 ptr = (u32 *) (tcp + 1);
6aa20a22 8026 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
8027 lro->cur_tsecr = *(ptr + 2);
8028 }
8029}
8030
1ee6dd77 8031static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8032 struct tcphdr *tcp, u32 tcp_pyld_len)
8033{
7d3d0439
RA
8034 u8 *ptr;
8035
79dc1901
AM
8036 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8037
7d3d0439
RA
8038 if (!tcp_pyld_len) {
8039 /* Runt frame or a pure ack */
8040 return -1;
8041 }
8042
8043 if (ip->ihl != 5) /* IP has options */
8044 return -1;
8045
75c30b13
AR
8046 /* If we see CE codepoint in IP header, packet is not mergeable */
8047 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8048 return -1;
8049
8050 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8051 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8052 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8053 /*
8054 * Currently recognize only the ack control word and
8055 * any other control field being set would result in
8056 * flushing the LRO session
8057 */
8058 return -1;
8059 }
8060
6aa20a22 8061 /*
7d3d0439
RA
8062 * Allow only one TCP timestamp option. Don't aggregate if
8063 * any other options are detected.
8064 */
8065 if (tcp->doff != 5 && tcp->doff != 8)
8066 return -1;
8067
8068 if (tcp->doff == 8) {
6aa20a22 8069 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8070 while (*ptr == TCPOPT_NOP)
8071 ptr++;
8072 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8073 return -1;
8074
8075 /* Ensure timestamp value increases monotonically */
8076 if (l_lro)
8077 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8078 return -1;
8079
8080 /* timestamp echo reply should be non-zero */
6aa20a22 8081 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
8082 return -1;
8083 }
8084
8085 return 0;
8086}
8087
8088static int
1ee6dd77
RB
8089s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8090 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8091{
8092 struct iphdr *ip;
8093 struct tcphdr *tcph;
8094 int ret = 0, i;
8095
8096 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8097 rxdp))) {
8098 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8099 ip->saddr, ip->daddr);
8100 } else {
8101 return ret;
8102 }
8103
8104 tcph = (struct tcphdr *)*tcp;
8105 *tcp_len = get_l4_pyld_length(ip, tcph);
8106 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 8107 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
8108 if (l_lro->in_use) {
8109 if (check_for_socket_match(l_lro, ip, tcph))
8110 continue;
8111 /* Sock pair matched */
8112 *lro = l_lro;
8113
8114 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8115 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8116 "0x%x, actual 0x%x\n", __FUNCTION__,
8117 (*lro)->tcp_next_seq,
8118 ntohl(tcph->seq));
8119
8120 sp->mac_control.stats_info->
8121 sw_stat.outof_sequence_pkts++;
8122 ret = 2;
8123 break;
8124 }
8125
8126 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8127 ret = 1; /* Aggregate */
8128 else
8129 ret = 2; /* Flush both */
8130 break;
8131 }
8132 }
8133
8134 if (ret == 0) {
8135 /* Before searching for available LRO objects,
8136 * check if the pkt is L3/L4 aggregatable. If not
8137 * don't create new LRO session. Just send this
8138 * packet up.
8139 */
8140 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8141 return 5;
8142 }
8143
8144 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 8145 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
8146 if (!(l_lro->in_use)) {
8147 *lro = l_lro;
8148 ret = 3; /* Begin anew */
8149 break;
8150 }
8151 }
8152 }
8153
8154 if (ret == 0) { /* sessions exceeded */
8155 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8156 __FUNCTION__);
8157 *lro = NULL;
8158 return ret;
8159 }
8160
8161 switch (ret) {
8162 case 3:
8163 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8164 break;
8165 case 2:
8166 update_L3L4_header(sp, *lro);
8167 break;
8168 case 1:
8169 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8170 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8171 update_L3L4_header(sp, *lro);
8172 ret = 4; /* Flush the LRO */
8173 }
8174 break;
8175 default:
8176 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8177 __FUNCTION__);
8178 break;
8179 }
8180
8181 return ret;
8182}
8183
1ee6dd77 8184static void clear_lro_session(struct lro *lro)
7d3d0439 8185{
1ee6dd77 8186 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8187
8188 memset(lro, 0, lro_struct_size);
8189}
8190
8191static void queue_rx_frame(struct sk_buff *skb)
8192{
8193 struct net_device *dev = skb->dev;
8194
8195 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
8196 if (napi)
8197 netif_receive_skb(skb);
8198 else
8199 netif_rx(skb);
7d3d0439
RA
8200}
8201
1ee6dd77
RB
8202static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8203 struct sk_buff *skb,
7d3d0439
RA
8204 u32 tcp_len)
8205{
75c30b13 8206 struct sk_buff *first = lro->parent;
7d3d0439
RA
8207
8208 first->len += tcp_len;
8209 first->data_len = lro->frags_len;
8210 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8211 if (skb_shinfo(first)->frag_list)
8212 lro->last_frag->next = skb;
7d3d0439
RA
8213 else
8214 skb_shinfo(first)->frag_list = skb;
372cc597 8215 first->truesize += skb->truesize;
75c30b13 8216 lro->last_frag = skb;
7d3d0439
RA
8217 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8218 return;
8219}
d796fdb7
LV
8220
8221/**
8222 * s2io_io_error_detected - called when PCI error is detected
8223 * @pdev: Pointer to PCI device
8453d43f 8224 * @state: The current pci connection state
d796fdb7
LV
8225 *
8226 * This function is called after a PCI bus error affecting
8227 * this device has been detected.
8228 */
8229static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8230 pci_channel_state_t state)
8231{
8232 struct net_device *netdev = pci_get_drvdata(pdev);
8233 struct s2io_nic *sp = netdev->priv;
8234
8235 netif_device_detach(netdev);
8236
8237 if (netif_running(netdev)) {
8238 /* Bring down the card, while avoiding PCI I/O */
8239 do_s2io_card_down(sp, 0);
d796fdb7
LV
8240 }
8241 pci_disable_device(pdev);
8242
8243 return PCI_ERS_RESULT_NEED_RESET;
8244}
8245
8246/**
8247 * s2io_io_slot_reset - called after the pci bus has been reset.
8248 * @pdev: Pointer to PCI device
8249 *
8250 * Restart the card from scratch, as if from a cold-boot.
8251 * At this point, the card has exprienced a hard reset,
8252 * followed by fixups by BIOS, and has its config space
8253 * set up identically to what it was at cold boot.
8254 */
8255static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8256{
8257 struct net_device *netdev = pci_get_drvdata(pdev);
8258 struct s2io_nic *sp = netdev->priv;
8259
8260 if (pci_enable_device(pdev)) {
8261 printk(KERN_ERR "s2io: "
8262 "Cannot re-enable PCI device after reset.\n");
8263 return PCI_ERS_RESULT_DISCONNECT;
8264 }
8265
8266 pci_set_master(pdev);
8267 s2io_reset(sp);
8268
8269 return PCI_ERS_RESULT_RECOVERED;
8270}
8271
8272/**
8273 * s2io_io_resume - called when traffic can start flowing again.
8274 * @pdev: Pointer to PCI device
8275 *
8276 * This callback is called when the error recovery driver tells
8277 * us that its OK to resume normal operation.
8278 */
8279static void s2io_io_resume(struct pci_dev *pdev)
8280{
8281 struct net_device *netdev = pci_get_drvdata(pdev);
8282 struct s2io_nic *sp = netdev->priv;
8283
8284 if (netif_running(netdev)) {
8285 if (s2io_card_up(sp)) {
8286 printk(KERN_ERR "s2io: "
8287 "Can't bring device back up after reset.\n");
8288 return;
8289 }
8290
8291 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8292 s2io_card_down(sp);
8293 printk(KERN_ERR "s2io: "
8294 "Can't resetore mac addr after reset.\n");
8295 return;
8296 }
8297 }
8298
8299 netif_device_attach(netdev);
8300 netif_wake_queue(netdev);
8301}
This page took 1.650701 seconds and 4 git commands to generate.