]> Git Repo - linux.git/blame - drivers/crypto/hisilicon/sec/sec_algs.c
crypto: hisilicon - SEC security accelerator driver
[linux.git] / drivers / crypto / hisilicon / sec / sec_algs.c
CommitLineData
915e4e84
JC
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2016-2017 Hisilicon Limited. */
3#include <linux/crypto.h>
4#include <linux/dma-mapping.h>
5#include <linux/dmapool.h>
6#include <linux/module.h>
7#include <linux/mutex.h>
8#include <linux/slab.h>
9
10#include <crypto/aes.h>
11#include <crypto/algapi.h>
12#include <crypto/des.h>
13#include <crypto/skcipher.h>
14#include <crypto/xts.h>
15#include <crypto/internal/skcipher.h>
16
17#include "sec_drv.h"
18
19#define SEC_MAX_CIPHER_KEY 64
20#define SEC_REQ_LIMIT SZ_32M
21
22struct sec_c_alg_cfg {
23 unsigned c_alg : 3;
24 unsigned c_mode : 3;
25 unsigned key_len : 2;
26 unsigned c_width : 2;
27};
28
29static const struct sec_c_alg_cfg sec_c_alg_cfgs[] = {
30 [SEC_C_DES_ECB_64] = {
31 .c_alg = SEC_C_ALG_DES,
32 .c_mode = SEC_C_MODE_ECB,
33 .key_len = SEC_KEY_LEN_DES,
34 },
35 [SEC_C_DES_CBC_64] = {
36 .c_alg = SEC_C_ALG_DES,
37 .c_mode = SEC_C_MODE_CBC,
38 .key_len = SEC_KEY_LEN_DES,
39 },
40 [SEC_C_3DES_ECB_192_3KEY] = {
41 .c_alg = SEC_C_ALG_3DES,
42 .c_mode = SEC_C_MODE_ECB,
43 .key_len = SEC_KEY_LEN_3DES_3_KEY,
44 },
45 [SEC_C_3DES_ECB_192_2KEY] = {
46 .c_alg = SEC_C_ALG_3DES,
47 .c_mode = SEC_C_MODE_ECB,
48 .key_len = SEC_KEY_LEN_3DES_2_KEY,
49 },
50 [SEC_C_3DES_CBC_192_3KEY] = {
51 .c_alg = SEC_C_ALG_3DES,
52 .c_mode = SEC_C_MODE_CBC,
53 .key_len = SEC_KEY_LEN_3DES_3_KEY,
54 },
55 [SEC_C_3DES_CBC_192_2KEY] = {
56 .c_alg = SEC_C_ALG_3DES,
57 .c_mode = SEC_C_MODE_CBC,
58 .key_len = SEC_KEY_LEN_3DES_2_KEY,
59 },
60 [SEC_C_AES_ECB_128] = {
61 .c_alg = SEC_C_ALG_AES,
62 .c_mode = SEC_C_MODE_ECB,
63 .key_len = SEC_KEY_LEN_AES_128,
64 },
65 [SEC_C_AES_ECB_192] = {
66 .c_alg = SEC_C_ALG_AES,
67 .c_mode = SEC_C_MODE_ECB,
68 .key_len = SEC_KEY_LEN_AES_192,
69 },
70 [SEC_C_AES_ECB_256] = {
71 .c_alg = SEC_C_ALG_AES,
72 .c_mode = SEC_C_MODE_ECB,
73 .key_len = SEC_KEY_LEN_AES_256,
74 },
75 [SEC_C_AES_CBC_128] = {
76 .c_alg = SEC_C_ALG_AES,
77 .c_mode = SEC_C_MODE_CBC,
78 .key_len = SEC_KEY_LEN_AES_128,
79 },
80 [SEC_C_AES_CBC_192] = {
81 .c_alg = SEC_C_ALG_AES,
82 .c_mode = SEC_C_MODE_CBC,
83 .key_len = SEC_KEY_LEN_AES_192,
84 },
85 [SEC_C_AES_CBC_256] = {
86 .c_alg = SEC_C_ALG_AES,
87 .c_mode = SEC_C_MODE_CBC,
88 .key_len = SEC_KEY_LEN_AES_256,
89 },
90 [SEC_C_AES_CTR_128] = {
91 .c_alg = SEC_C_ALG_AES,
92 .c_mode = SEC_C_MODE_CTR,
93 .key_len = SEC_KEY_LEN_AES_128,
94 },
95 [SEC_C_AES_CTR_192] = {
96 .c_alg = SEC_C_ALG_AES,
97 .c_mode = SEC_C_MODE_CTR,
98 .key_len = SEC_KEY_LEN_AES_192,
99 },
100 [SEC_C_AES_CTR_256] = {
101 .c_alg = SEC_C_ALG_AES,
102 .c_mode = SEC_C_MODE_CTR,
103 .key_len = SEC_KEY_LEN_AES_256,
104 },
105 [SEC_C_AES_XTS_128] = {
106 .c_alg = SEC_C_ALG_AES,
107 .c_mode = SEC_C_MODE_XTS,
108 .key_len = SEC_KEY_LEN_AES_128,
109 },
110 [SEC_C_AES_XTS_256] = {
111 .c_alg = SEC_C_ALG_AES,
112 .c_mode = SEC_C_MODE_XTS,
113 .key_len = SEC_KEY_LEN_AES_256,
114 },
115 [SEC_C_NULL] = {
116 },
117};
118
119/*
120 * Mutex used to ensure safe operation of reference count of
121 * alg providers
122 */
123static DEFINE_MUTEX(algs_lock);
124static unsigned int active_devs;
125
126static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
127 struct sec_bd_info *req,
128 enum sec_cipher_alg alg)
129{
130 const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
131
132 memset(req, 0, sizeof(*req));
133 req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
134 req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
135 req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
136 req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
137
138 req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
139 req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
140}
141
142static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
143 const u8 *key,
144 unsigned int keylen,
145 enum sec_cipher_alg alg)
146{
147 struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
148 struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
149
150 ctx->cipher_alg = alg;
151 memcpy(ctx->key, key, keylen);
152 sec_alg_skcipher_init_template(ctx, &ctx->req_template,
153 ctx->cipher_alg);
154}
155
156static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
157 dma_addr_t *psec_sgl,
158 struct scatterlist *sgl,
159 int count,
160 struct sec_dev_info *info)
161{
162 struct sec_hw_sgl *sgl_current = NULL;
163 struct sec_hw_sgl *sgl_next;
164 dma_addr_t sgl_next_dma;
165 struct scatterlist *sg;
166 int ret, sge_index, i;
167
168 if (!count)
169 return -EINVAL;
170
171 for_each_sg(sgl, sg, count, i) {
172 sge_index = i % SEC_MAX_SGE_NUM;
173 if (sge_index == 0) {
174 sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
175 GFP_KERNEL, &sgl_next_dma);
176 if (!sgl_next) {
177 ret = -ENOMEM;
178 goto err_free_hw_sgls;
179 }
180
181 if (!sgl_current) { /* First one */
182 *psec_sgl = sgl_next_dma;
183 *sec_sgl = sgl_next;
184 } else { /* Chained */
185 sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
186 sgl_current->next_sgl = sgl_next_dma;
187 sgl_current->next = sgl_next;
188 }
189 sgl_current = sgl_next;
190 }
191 sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
192 sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
193 sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
194 }
195 sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
196 sgl_current->next_sgl = 0;
197 (*sec_sgl)->entry_sum_in_chain = count;
198
199 return 0;
200
201err_free_hw_sgls:
202 sgl_current = *sec_sgl;
203 while (sgl_current) {
204 sgl_next = sgl_current->next;
205 dma_pool_free(info->hw_sgl_pool, sgl_current,
206 sgl_current->next_sgl);
207 sgl_current = sgl_next;
208 }
209 *psec_sgl = 0;
210
211 return ret;
212}
213
214static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
215 dma_addr_t psec_sgl, struct sec_dev_info *info)
216{
217 struct sec_hw_sgl *sgl_current, *sgl_next;
218
219 if (!hw_sgl)
220 return;
221 sgl_current = hw_sgl;
222 while (sgl_current->next) {
223 sgl_next = sgl_current->next;
224 dma_pool_free(info->hw_sgl_pool, sgl_current,
225 sgl_current->next_sgl);
226 sgl_current = sgl_next;
227 }
228 dma_pool_free(info->hw_sgl_pool, hw_sgl, psec_sgl);
229}
230
231static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
232 const u8 *key, unsigned int keylen,
233 enum sec_cipher_alg alg)
234{
235 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
236 struct device *dev = ctx->queue->dev_info->dev;
237
238 mutex_lock(&ctx->lock);
239 if (ctx->key) {
240 /* rekeying */
241 memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
242 } else {
243 /* new key */
244 ctx->key = dma_zalloc_coherent(dev, SEC_MAX_CIPHER_KEY,
245 &ctx->pkey, GFP_KERNEL);
246 if (!ctx->key) {
247 mutex_unlock(&ctx->lock);
248 return -ENOMEM;
249 }
250 }
251 mutex_unlock(&ctx->lock);
252 sec_alg_skcipher_init_context(tfm, key, keylen, alg);
253
254 return 0;
255}
256
257static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
258 const u8 *key, unsigned int keylen)
259{
260 enum sec_cipher_alg alg;
261
262 switch (keylen) {
263 case AES_KEYSIZE_128:
264 alg = SEC_C_AES_ECB_128;
265 break;
266 case AES_KEYSIZE_192:
267 alg = SEC_C_AES_ECB_192;
268 break;
269 case AES_KEYSIZE_256:
270 alg = SEC_C_AES_ECB_256;
271 break;
272 default:
273 return -EINVAL;
274 }
275
276 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
277}
278
279static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
280 const u8 *key, unsigned int keylen)
281{
282 enum sec_cipher_alg alg;
283
284 switch (keylen) {
285 case AES_KEYSIZE_128:
286 alg = SEC_C_AES_CBC_128;
287 break;
288 case AES_KEYSIZE_192:
289 alg = SEC_C_AES_CBC_192;
290 break;
291 case AES_KEYSIZE_256:
292 alg = SEC_C_AES_CBC_256;
293 break;
294 default:
295 return -EINVAL;
296 }
297
298 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
299}
300
301static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
302 const u8 *key, unsigned int keylen)
303{
304 enum sec_cipher_alg alg;
305
306 switch (keylen) {
307 case AES_KEYSIZE_128:
308 alg = SEC_C_AES_CTR_128;
309 break;
310 case AES_KEYSIZE_192:
311 alg = SEC_C_AES_CTR_192;
312 break;
313 case AES_KEYSIZE_256:
314 alg = SEC_C_AES_CTR_256;
315 break;
316 default:
317 return -EINVAL;
318 }
319
320 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
321}
322
323static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
324 const u8 *key, unsigned int keylen)
325{
326 enum sec_cipher_alg alg;
327 int ret;
328
329 ret = xts_verify_key(tfm, key, keylen);
330 if (ret)
331 return ret;
332
333 switch (keylen) {
334 case AES_KEYSIZE_128 * 2:
335 alg = SEC_C_AES_XTS_128;
336 break;
337 case AES_KEYSIZE_256 * 2:
338 alg = SEC_C_AES_XTS_256;
339 break;
340 default:
341 return -EINVAL;
342 }
343
344 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
345}
346
347static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
348 const u8 *key, unsigned int keylen)
349{
350 if (keylen != DES_KEY_SIZE)
351 return -EINVAL;
352
353 return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
354}
355
356static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
357 const u8 *key, unsigned int keylen)
358{
359 if (keylen != DES_KEY_SIZE)
360 return -EINVAL;
361
362 return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
363}
364
365static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
366 const u8 *key, unsigned int keylen)
367{
368 if (keylen != DES_KEY_SIZE * 3)
369 return -EINVAL;
370
371 return sec_alg_skcipher_setkey(tfm, key, keylen,
372 SEC_C_3DES_ECB_192_3KEY);
373}
374
375static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
376 const u8 *key, unsigned int keylen)
377{
378 if (keylen != DES3_EDE_KEY_SIZE)
379 return -EINVAL;
380
381 return sec_alg_skcipher_setkey(tfm, key, keylen,
382 SEC_C_3DES_CBC_192_3KEY);
383}
384
385static void sec_alg_free_el(struct sec_request_el *el,
386 struct sec_dev_info *info)
387{
388 sec_free_hw_sgl(el->out, el->dma_out, info);
389 sec_free_hw_sgl(el->in, el->dma_in, info);
390 kfree(el->sgl_in);
391 kfree(el->sgl_out);
392 kfree(el);
393}
394
395/* queuelock must be held */
396int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
397{
398 struct sec_request_el *el, *temp;
399 int ret = 0;
400
401 mutex_lock(&sec_req->lock);
402 list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
403 /*
404 * Add to hardware queue only under following circumstances
405 * 1) Software and hardware queue empty so no chain dependencies
406 * 2) No dependencies as new IV - (check software queue empty
407 * to maintain order)
408 * 3) No dependencies because the mode does no chaining.
409 *
410 * In other cases first insert onto the software queue which
411 * is then emptied as requests complete
412 */
413 if (!queue->havesoftqueue ||
414 (kfifo_is_empty(&queue->softqueue) &&
415 sec_queue_empty(queue))) {
416 ret = sec_queue_send(queue, &el->req, sec_req);
417 if (ret == -EAGAIN) {
418 /* Wait unti we can send then try again */
419 /* DEAD if here - should not happen */
420 ret = -EBUSY;
421 goto err_unlock;
422 }
423 } else {
424 kfifo_put(&queue->softqueue, el);
425 }
426 }
427err_unlock:
428 mutex_unlock(&sec_req->lock);
429
430 return ret;
431}
432
433static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
434 struct crypto_async_request *req_base)
435{
436 struct skcipher_request *skreq = container_of(req_base,
437 struct skcipher_request,
438 base);
439 struct sec_request *sec_req = skcipher_request_ctx(skreq);
440 struct sec_request *backlog_req;
441 struct sec_request_el *sec_req_el, *nextrequest;
442 struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
443 struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
444 struct device *dev = ctx->queue->dev_info->dev;
445 int icv_or_skey_en, ret;
446 bool done;
447
448 sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
449 head);
450 icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
451 SEC_BD_W0_ICV_OR_SKEY_EN_S;
452 if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
453 dev_err(dev, "Got an invalid answer %lu %d\n",
454 sec_resp->w1 & SEC_BD_W1_BD_INVALID,
455 icv_or_skey_en);
456 sec_req->err = -EINVAL;
457 /*
458 * We need to muddle on to avoid getting stuck with elements
459 * on the queue. Error will be reported so requester so
460 * it should be able to handle appropriately.
461 */
462 }
463
464 mutex_lock(&ctx->queue->queuelock);
465 /* Put the IV in place for chained cases */
466 switch (ctx->cipher_alg) {
467 case SEC_C_AES_CBC_128:
468 case SEC_C_AES_CBC_192:
469 case SEC_C_AES_CBC_256:
470 if (sec_req_el->req.w0 & SEC_BD_W0_DE)
471 sg_pcopy_to_buffer(sec_req_el->sgl_out,
472 sg_nents(sec_req_el->sgl_out),
473 skreq->iv,
474 crypto_skcipher_ivsize(atfm),
475 sec_req_el->el_length -
476 crypto_skcipher_ivsize(atfm));
477 else
478 sg_pcopy_to_buffer(sec_req_el->sgl_in,
479 sg_nents(sec_req_el->sgl_in),
480 skreq->iv,
481 crypto_skcipher_ivsize(atfm),
482 sec_req_el->el_length -
483 crypto_skcipher_ivsize(atfm));
484 /* No need to sync to the device as coherent DMA */
485 break;
486 case SEC_C_AES_CTR_128:
487 case SEC_C_AES_CTR_192:
488 case SEC_C_AES_CTR_256:
489 crypto_inc(skreq->iv, 16);
490 break;
491 default:
492 /* Do not update */
493 break;
494 }
495
496 if (ctx->queue->havesoftqueue &&
497 !kfifo_is_empty(&ctx->queue->softqueue) &&
498 sec_queue_empty(ctx->queue)) {
499 ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
500 if (ret <= 0)
501 dev_err(dev,
502 "Error getting next element from kfifo %d\n",
503 ret);
504 else
505 /* We know there is space so this cannot fail */
506 sec_queue_send(ctx->queue, &nextrequest->req,
507 nextrequest->sec_req);
508 } else if (!list_empty(&ctx->backlog)) {
509 /* Need to verify there is room first */
510 backlog_req = list_first_entry(&ctx->backlog,
511 typeof(*backlog_req),
512 backlog_head);
513 if (sec_queue_can_enqueue(ctx->queue,
514 backlog_req->num_elements) ||
515 (ctx->queue->havesoftqueue &&
516 kfifo_avail(&ctx->queue->softqueue) >
517 backlog_req->num_elements)) {
518 sec_send_request(backlog_req, ctx->queue);
519 backlog_req->req_base->complete(backlog_req->req_base,
520 -EINPROGRESS);
521 list_del(&backlog_req->backlog_head);
522 }
523 }
524 mutex_unlock(&ctx->queue->queuelock);
525
526 mutex_lock(&sec_req->lock);
527 list_del(&sec_req_el->head);
528 mutex_unlock(&sec_req->lock);
529 sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
530
531 /*
532 * Request is done.
533 * The dance is needed as the lock is freed in the completion
534 */
535 mutex_lock(&sec_req->lock);
536 done = list_empty(&sec_req->elements);
537 mutex_unlock(&sec_req->lock);
538 if (done) {
539 if (crypto_skcipher_ivsize(atfm)) {
540 dma_unmap_single(dev, sec_req->dma_iv,
541 crypto_skcipher_ivsize(atfm),
542 DMA_TO_DEVICE);
543 }
544 dma_unmap_sg(dev, skreq->src, sec_req->len_in,
545 DMA_BIDIRECTIONAL);
546 if (skreq->src != skreq->dst)
547 dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
548 DMA_BIDIRECTIONAL);
549 skreq->base.complete(&skreq->base, sec_req->err);
550 }
551}
552
553void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
554{
555 struct sec_request *sec_req = shadow;
556
557 sec_req->cb(resp, sec_req->req_base);
558}
559
560static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
561 int *steps)
562{
563 size_t *sizes;
564 int i;
565
566 /* Split into suitable sized blocks */
567 *steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
568 sizes = kcalloc(*steps, sizeof(*sizes), GFP_KERNEL);
569 if (!sizes)
570 return -ENOMEM;
571
572 for (i = 0; i < *steps - 1; i++)
573 sizes[i] = SEC_REQ_LIMIT;
574 sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
575 *split_sizes = sizes;
576
577 return 0;
578}
579
580static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
581 int steps, struct scatterlist ***splits,
582 int **splits_nents,
583 int sgl_len_in,
584 struct device *dev)
585{
586 int ret, count;
587
588 count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
589 if (!count)
590 return -EINVAL;
591
592 *splits = kcalloc(steps, sizeof(struct scatterlist *), GFP_KERNEL);
593 if (!*splits) {
594 ret = -ENOMEM;
595 goto err_unmap_sg;
596 }
597 *splits_nents = kcalloc(steps, sizeof(int), GFP_KERNEL);
598 if (!*splits_nents) {
599 ret = -ENOMEM;
600 goto err_free_splits;
601 }
602
603 /* output the scatter list before and after this */
604 ret = sg_split(sgl, count, 0, steps, split_sizes,
605 *splits, *splits_nents, GFP_KERNEL);
606 if (ret) {
607 ret = -ENOMEM;
608 goto err_free_splits_nents;
609 }
610
611 return 0;
612
613err_free_splits_nents:
614 kfree(*splits_nents);
615err_free_splits:
616 kfree(*splits);
617err_unmap_sg:
618 dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
619
620 return ret;
621}
622
623/*
624 * Reverses the sec_map_and_split_sg call for messages not yet added to
625 * the queues.
626 */
627static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
628 struct scatterlist **splits, int *splits_nents,
629 int sgl_len_in, struct device *dev)
630{
631 int i;
632
633 for (i = 0; i < steps; i++)
634 kfree(splits[i]);
635 kfree(splits_nents);
636 kfree(splits);
637
638 dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
639}
640
641static struct sec_request_el
642*sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
643 int el_size, bool different_dest,
644 struct scatterlist *sgl_in, int n_ents_in,
645 struct scatterlist *sgl_out, int n_ents_out,
646 struct sec_dev_info *info)
647{
648 struct sec_request_el *el;
649 struct sec_bd_info *req;
650 int ret;
651
652 el = kzalloc(sizeof(*el), GFP_KERNEL);
653 if (!el)
654 return ERR_PTR(-ENOMEM);
655 el->el_length = el_size;
656 req = &el->req;
657 memcpy(req, template, sizeof(*req));
658
659 req->w0 &= ~SEC_BD_W0_CIPHER_M;
660 if (encrypt)
661 req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
662 else
663 req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
664
665 req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
666 req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
667 SEC_BD_W0_C_GRAN_SIZE_19_16_M;
668
669 req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
670 req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
671 SEC_BD_W0_C_GRAN_SIZE_21_20_M;
672
673 /* Writing whole u32 so no need to take care of masking */
674 req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
675 ((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
676 SEC_BD_W2_C_GRAN_SIZE_15_0_M);
677
678 req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
679 req->w1 |= SEC_BD_W1_ADDR_TYPE;
680
681 el->sgl_in = sgl_in;
682
683 ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
684 n_ents_in, info);
685 if (ret)
686 goto err_free_el;
687
688 req->data_addr_lo = lower_32_bits(el->dma_in);
689 req->data_addr_hi = upper_32_bits(el->dma_in);
690
691 if (different_dest) {
692 el->sgl_out = sgl_out;
693 ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
694 el->sgl_out,
695 n_ents_out, info);
696 if (ret)
697 goto err_free_hw_sgl_in;
698
699 req->w0 |= SEC_BD_W0_DE;
700 req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
701 req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
702
703 } else {
704 req->w0 &= ~SEC_BD_W0_DE;
705 req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
706 req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
707 }
708
709 return el;
710
711err_free_hw_sgl_in:
712 sec_free_hw_sgl(el->in, el->dma_in, info);
713err_free_el:
714 kfree(el);
715
716 return ERR_PTR(ret);
717}
718
719static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
720 bool encrypt)
721{
722 struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
723 struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
724 struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
725 struct sec_queue *queue = ctx->queue;
726 struct sec_request *sec_req = skcipher_request_ctx(skreq);
727 struct sec_dev_info *info = queue->dev_info;
728 int i, ret, steps;
729 size_t *split_sizes;
730 struct scatterlist **splits_in;
731 struct scatterlist **splits_out = NULL;
732 int *splits_in_nents;
733 int *splits_out_nents = NULL;
734 struct sec_request_el *el, *temp;
735
736 mutex_init(&sec_req->lock);
737 sec_req->req_base = &skreq->base;
738 sec_req->err = 0;
739 /* SGL mapping out here to allow us to break it up as necessary */
740 sec_req->len_in = sg_nents(skreq->src);
741
742 ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
743 &steps);
744 if (ret)
745 return ret;
746 sec_req->num_elements = steps;
747 ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
748 &splits_in_nents, sec_req->len_in,
749 info->dev);
750 if (ret)
751 goto err_free_split_sizes;
752
753 if (skreq->src != skreq->dst) {
754 sec_req->len_out = sg_nents(skreq->dst);
755 ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
756 &splits_out, &splits_out_nents,
757 sec_req->len_out, info->dev);
758 if (ret)
759 goto err_unmap_in_sg;
760 }
761 /* Shared info stored in seq_req - applies to all BDs */
762 sec_req->tfm_ctx = ctx;
763 sec_req->cb = sec_skcipher_alg_callback;
764 INIT_LIST_HEAD(&sec_req->elements);
765
766 /*
767 * Future optimization.
768 * In the chaining case we can't use a dma pool bounce buffer
769 * but in the case where we know there is no chaining we can
770 */
771 if (crypto_skcipher_ivsize(atfm)) {
772 sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
773 crypto_skcipher_ivsize(atfm),
774 DMA_TO_DEVICE);
775 if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
776 ret = -ENOMEM;
777 goto err_unmap_out_sg;
778 }
779 }
780
781 /* Set them all up then queue - cleaner error handling. */
782 for (i = 0; i < steps; i++) {
783 el = sec_alg_alloc_and_fill_el(&ctx->req_template,
784 encrypt ? 1 : 0,
785 split_sizes[i],
786 skreq->src != skreq->dst,
787 splits_in[i], splits_in_nents[i],
788 splits_out[i],
789 splits_out_nents[i], info);
790 if (IS_ERR(el)) {
791 ret = PTR_ERR(el);
792 goto err_free_elements;
793 }
794 el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
795 el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
796 el->sec_req = sec_req;
797 list_add_tail(&el->head, &sec_req->elements);
798 }
799
800 /*
801 * Only attempt to queue if the whole lot can fit in the queue -
802 * we can't successfully cleanup after a partial queing so this
803 * must succeed or fail atomically.
804 *
805 * Big hammer test of both software and hardware queues - could be
806 * more refined but this is unlikely to happen so no need.
807 */
808
809 /* Cleanup - all elements in pointer arrays have been coppied */
810 kfree(splits_in_nents);
811 kfree(splits_in);
812 kfree(splits_out_nents);
813 kfree(splits_out);
814 kfree(split_sizes);
815
816 /* Grab a big lock for a long time to avoid concurrency issues */
817 mutex_lock(&queue->queuelock);
818
819 /*
820 * Can go on to queue if we have space in either:
821 * 1) The hardware queue and no software queue
822 * 2) The software queue
823 * AND there is nothing in the backlog. If there is backlog we
824 * have to only queue to the backlog queue and return busy.
825 */
826 if ((!sec_queue_can_enqueue(queue, steps) &&
827 (!queue->havesoftqueue ||
828 kfifo_avail(&queue->softqueue) > steps)) ||
829 !list_empty(&ctx->backlog)) {
830 if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
831 list_add_tail(&sec_req->backlog_head, &ctx->backlog);
832 mutex_unlock(&queue->queuelock);
833 return -EBUSY;
834 }
835
836 ret = -EBUSY;
837 mutex_unlock(&queue->queuelock);
838 goto err_free_elements;
839 }
840 ret = sec_send_request(sec_req, queue);
841 mutex_unlock(&queue->queuelock);
842 if (ret)
843 goto err_free_elements;
844
845 return -EINPROGRESS;
846
847err_free_elements:
848 list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
849 list_del(&el->head);
850 sec_alg_free_el(el, info);
851 }
852 if (crypto_skcipher_ivsize(atfm))
853 dma_unmap_single(info->dev, sec_req->dma_iv,
854 crypto_skcipher_ivsize(atfm),
855 DMA_BIDIRECTIONAL);
856err_unmap_out_sg:
857 if (skreq->src != skreq->dst)
858 sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
859 splits_out_nents, sec_req->len_out,
860 info->dev);
861err_unmap_in_sg:
862 sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
863 sec_req->len_in, info->dev);
864err_free_split_sizes:
865 kfree(split_sizes);
866
867 return ret;
868}
869
870static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
871{
872 return sec_alg_skcipher_crypto(req, true);
873}
874
875static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
876{
877 return sec_alg_skcipher_crypto(req, false);
878}
879
880static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
881{
882 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
883
884 mutex_init(&ctx->lock);
885 INIT_LIST_HEAD(&ctx->backlog);
886 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
887
888 ctx->queue = sec_queue_alloc_start_safe();
889 if (IS_ERR(ctx->queue))
890 return PTR_ERR(ctx->queue);
891
892 mutex_init(&ctx->queue->queuelock);
893 ctx->queue->havesoftqueue = false;
894
895 return 0;
896}
897
898static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
899{
900 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
901 struct device *dev = ctx->queue->dev_info->dev;
902
903 if (ctx->key) {
904 memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
905 dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
906 ctx->pkey);
907 }
908 sec_queue_stop_release(ctx->queue);
909}
910
911static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
912{
913 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
914 int ret;
915
916 ret = sec_alg_skcipher_init(tfm);
917 if (ret)
918 return ret;
919
920 INIT_KFIFO(ctx->queue->softqueue);
921 ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
922 if (ret) {
923 sec_alg_skcipher_exit(tfm);
924 return ret;
925 }
926 ctx->queue->havesoftqueue = true;
927
928 return 0;
929}
930
931static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
932{
933 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
934
935 kfifo_free(&ctx->queue->softqueue);
936 sec_alg_skcipher_exit(tfm);
937}
938
939static struct skcipher_alg sec_algs[] = {
940 {
941 .base = {
942 .cra_name = "ecb(aes)",
943 .cra_driver_name = "hisi_sec_aes_ecb",
944 .cra_priority = 4001,
945 .cra_flags = CRYPTO_ALG_ASYNC,
946 .cra_blocksize = AES_BLOCK_SIZE,
947 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
948 .cra_alignmask = 0,
949 .cra_module = THIS_MODULE,
950 },
951 .init = sec_alg_skcipher_init,
952 .exit = sec_alg_skcipher_exit,
953 .setkey = sec_alg_skcipher_setkey_aes_ecb,
954 .decrypt = sec_alg_skcipher_decrypt,
955 .encrypt = sec_alg_skcipher_encrypt,
956 .min_keysize = AES_MIN_KEY_SIZE,
957 .max_keysize = AES_MAX_KEY_SIZE,
958 .ivsize = 0,
959 }, {
960 .base = {
961 .cra_name = "cbc(aes)",
962 .cra_driver_name = "hisi_sec_aes_cbc",
963 .cra_priority = 4001,
964 .cra_flags = CRYPTO_ALG_ASYNC,
965 .cra_blocksize = AES_BLOCK_SIZE,
966 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
967 .cra_alignmask = 0,
968 .cra_module = THIS_MODULE,
969 },
970 .init = sec_alg_skcipher_init_with_queue,
971 .exit = sec_alg_skcipher_exit_with_queue,
972 .setkey = sec_alg_skcipher_setkey_aes_cbc,
973 .decrypt = sec_alg_skcipher_decrypt,
974 .encrypt = sec_alg_skcipher_encrypt,
975 .min_keysize = AES_MIN_KEY_SIZE,
976 .max_keysize = AES_MAX_KEY_SIZE,
977 .ivsize = AES_BLOCK_SIZE,
978 }, {
979 .base = {
980 .cra_name = "ctr(aes)",
981 .cra_driver_name = "hisi_sec_aes_ctr",
982 .cra_priority = 4001,
983 .cra_flags = CRYPTO_ALG_ASYNC,
984 .cra_blocksize = AES_BLOCK_SIZE,
985 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
986 .cra_alignmask = 0,
987 .cra_module = THIS_MODULE,
988 },
989 .init = sec_alg_skcipher_init_with_queue,
990 .exit = sec_alg_skcipher_exit_with_queue,
991 .setkey = sec_alg_skcipher_setkey_aes_ctr,
992 .decrypt = sec_alg_skcipher_decrypt,
993 .encrypt = sec_alg_skcipher_encrypt,
994 .min_keysize = AES_MIN_KEY_SIZE,
995 .max_keysize = AES_MAX_KEY_SIZE,
996 .ivsize = AES_BLOCK_SIZE,
997 }, {
998 .base = {
999 .cra_name = "xts(aes)",
1000 .cra_driver_name = "hisi_sec_aes_xts",
1001 .cra_priority = 4001,
1002 .cra_flags = CRYPTO_ALG_ASYNC,
1003 .cra_blocksize = AES_BLOCK_SIZE,
1004 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1005 .cra_alignmask = 0,
1006 .cra_module = THIS_MODULE,
1007 },
1008 .init = sec_alg_skcipher_init,
1009 .exit = sec_alg_skcipher_exit,
1010 .setkey = sec_alg_skcipher_setkey_aes_xts,
1011 .decrypt = sec_alg_skcipher_decrypt,
1012 .encrypt = sec_alg_skcipher_encrypt,
1013 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1014 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1015 .ivsize = AES_BLOCK_SIZE,
1016 }, {
1017 /* Unable to find any test vectors so untested */
1018 .base = {
1019 .cra_name = "ecb(des)",
1020 .cra_driver_name = "hisi_sec_des_ecb",
1021 .cra_priority = 4001,
1022 .cra_flags = CRYPTO_ALG_ASYNC,
1023 .cra_blocksize = DES_BLOCK_SIZE,
1024 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1025 .cra_alignmask = 0,
1026 .cra_module = THIS_MODULE,
1027 },
1028 .init = sec_alg_skcipher_init,
1029 .exit = sec_alg_skcipher_exit,
1030 .setkey = sec_alg_skcipher_setkey_des_ecb,
1031 .decrypt = sec_alg_skcipher_decrypt,
1032 .encrypt = sec_alg_skcipher_encrypt,
1033 .min_keysize = DES_KEY_SIZE,
1034 .max_keysize = DES_KEY_SIZE,
1035 .ivsize = 0,
1036 }, {
1037 .base = {
1038 .cra_name = "cbc(des)",
1039 .cra_driver_name = "hisi_sec_des_cbc",
1040 .cra_priority = 4001,
1041 .cra_flags = CRYPTO_ALG_ASYNC,
1042 .cra_blocksize = DES_BLOCK_SIZE,
1043 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1044 .cra_alignmask = 0,
1045 .cra_module = THIS_MODULE,
1046 },
1047 .init = sec_alg_skcipher_init_with_queue,
1048 .exit = sec_alg_skcipher_exit_with_queue,
1049 .setkey = sec_alg_skcipher_setkey_des_cbc,
1050 .decrypt = sec_alg_skcipher_decrypt,
1051 .encrypt = sec_alg_skcipher_encrypt,
1052 .min_keysize = DES_KEY_SIZE,
1053 .max_keysize = DES_KEY_SIZE,
1054 .ivsize = DES_BLOCK_SIZE,
1055 }, {
1056 .base = {
1057 .cra_name = "cbc(des3_ede)",
1058 .cra_driver_name = "hisi_sec_3des_cbc",
1059 .cra_priority = 4001,
1060 .cra_flags = CRYPTO_ALG_ASYNC,
1061 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1062 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1063 .cra_alignmask = 0,
1064 .cra_module = THIS_MODULE,
1065 },
1066 .init = sec_alg_skcipher_init_with_queue,
1067 .exit = sec_alg_skcipher_exit_with_queue,
1068 .setkey = sec_alg_skcipher_setkey_3des_cbc,
1069 .decrypt = sec_alg_skcipher_decrypt,
1070 .encrypt = sec_alg_skcipher_encrypt,
1071 .min_keysize = DES3_EDE_KEY_SIZE,
1072 .max_keysize = DES3_EDE_KEY_SIZE,
1073 .ivsize = DES3_EDE_BLOCK_SIZE,
1074 }, {
1075 .base = {
1076 .cra_name = "ecb(des3_ede)",
1077 .cra_driver_name = "hisi_sec_3des_ecb",
1078 .cra_priority = 4001,
1079 .cra_flags = CRYPTO_ALG_ASYNC,
1080 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1081 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1082 .cra_alignmask = 0,
1083 .cra_module = THIS_MODULE,
1084 },
1085 .init = sec_alg_skcipher_init,
1086 .exit = sec_alg_skcipher_exit,
1087 .setkey = sec_alg_skcipher_setkey_3des_ecb,
1088 .decrypt = sec_alg_skcipher_decrypt,
1089 .encrypt = sec_alg_skcipher_encrypt,
1090 .min_keysize = DES3_EDE_KEY_SIZE,
1091 .max_keysize = DES3_EDE_KEY_SIZE,
1092 .ivsize = 0,
1093 }
1094};
1095
1096int sec_algs_register(void)
1097{
1098 int ret = 0;
1099
1100 mutex_lock(&algs_lock);
1101 if (++active_devs != 1)
1102 goto unlock;
1103
1104 ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1105 if (ret)
1106 --active_devs;
1107unlock:
1108 mutex_unlock(&algs_lock);
1109
1110 return ret;
1111}
1112
1113void sec_algs_unregister(void)
1114{
1115 mutex_lock(&algs_lock);
1116 if (--active_devs != 0)
1117 goto unlock;
1118 crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1119
1120unlock:
1121 mutex_unlock(&algs_lock);
1122}
This page took 0.148926 seconds and 4 git commands to generate.