]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
029190c5 | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
8793d854 | 8 | * Copyright (C) 2006 Google, Inc |
1da177e4 LT |
9 | * |
10 | * Portions derived from Patrick Mochel's sysfs code. | |
11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
1da177e4 | 12 | * |
825a46af | 13 | * 2003-10-10 Written by Simon Derr. |
1da177e4 | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
825a46af | 15 | * 2004 May-July Rework by Paul Jackson. |
8793d854 | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
cf417141 MK |
17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
18 | * by Max Krasnyansky | |
1da177e4 LT |
19 | * |
20 | * This file is subject to the terms and conditions of the GNU General Public | |
21 | * License. See the file COPYING in the main directory of the Linux | |
22 | * distribution for more details. | |
23 | */ | |
24 | ||
1da177e4 LT |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpumask.h> | |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/err.h> | |
29 | #include <linux/errno.h> | |
30 | #include <linux/file.h> | |
31 | #include <linux/fs.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/list.h> | |
68860ec1 | 37 | #include <linux/mempolicy.h> |
1da177e4 | 38 | #include <linux/mm.h> |
f481891f | 39 | #include <linux/memory.h> |
9984de1a | 40 | #include <linux/export.h> |
1da177e4 LT |
41 | #include <linux/mount.h> |
42 | #include <linux/namei.h> | |
43 | #include <linux/pagemap.h> | |
44 | #include <linux/proc_fs.h> | |
6b9c2603 | 45 | #include <linux/rcupdate.h> |
1da177e4 LT |
46 | #include <linux/sched.h> |
47 | #include <linux/seq_file.h> | |
22fb52dd | 48 | #include <linux/security.h> |
1da177e4 | 49 | #include <linux/slab.h> |
1da177e4 LT |
50 | #include <linux/spinlock.h> |
51 | #include <linux/stat.h> | |
52 | #include <linux/string.h> | |
53 | #include <linux/time.h> | |
54 | #include <linux/backing-dev.h> | |
55 | #include <linux/sort.h> | |
56 | ||
57 | #include <asm/uaccess.h> | |
60063497 | 58 | #include <linux/atomic.h> |
3d3f26a7 | 59 | #include <linux/mutex.h> |
956db3ca CW |
60 | #include <linux/workqueue.h> |
61 | #include <linux/cgroup.h> | |
1da177e4 | 62 | |
f90d4118 MX |
63 | /* |
64 | * Workqueue for cpuset related tasks. | |
65 | * | |
66 | * Using kevent workqueue may cause deadlock when memory_migrate | |
67 | * is set. So we create a separate workqueue thread for cpuset. | |
68 | */ | |
69 | static struct workqueue_struct *cpuset_wq; | |
70 | ||
202f72d5 PJ |
71 | /* |
72 | * Tracks how many cpusets are currently defined in system. | |
73 | * When there is only one cpuset (the root cpuset) we can | |
74 | * short circuit some hooks. | |
75 | */ | |
7edc5962 | 76 | int number_of_cpusets __read_mostly; |
202f72d5 | 77 | |
2df167a3 | 78 | /* Forward declare cgroup structures */ |
8793d854 PM |
79 | struct cgroup_subsys cpuset_subsys; |
80 | struct cpuset; | |
81 | ||
3e0d98b9 PJ |
82 | /* See "Frequency meter" comments, below. */ |
83 | ||
84 | struct fmeter { | |
85 | int cnt; /* unprocessed events count */ | |
86 | int val; /* most recent output value */ | |
87 | time_t time; /* clock (secs) when val computed */ | |
88 | spinlock_t lock; /* guards read or write of above */ | |
89 | }; | |
90 | ||
1da177e4 | 91 | struct cpuset { |
8793d854 PM |
92 | struct cgroup_subsys_state css; |
93 | ||
1da177e4 | 94 | unsigned long flags; /* "unsigned long" so bitops work */ |
300ed6cb | 95 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ |
1da177e4 LT |
96 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ |
97 | ||
1da177e4 | 98 | struct cpuset *parent; /* my parent */ |
1da177e4 | 99 | |
3e0d98b9 | 100 | struct fmeter fmeter; /* memory_pressure filter */ |
029190c5 PJ |
101 | |
102 | /* partition number for rebuild_sched_domains() */ | |
103 | int pn; | |
956db3ca | 104 | |
1d3504fc HS |
105 | /* for custom sched domain */ |
106 | int relax_domain_level; | |
107 | ||
732bee7a | 108 | /* used for walking a cpuset hierarchy */ |
956db3ca | 109 | struct list_head stack_list; |
1da177e4 LT |
110 | }; |
111 | ||
8793d854 PM |
112 | /* Retrieve the cpuset for a cgroup */ |
113 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | |
114 | { | |
115 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | |
116 | struct cpuset, css); | |
117 | } | |
118 | ||
119 | /* Retrieve the cpuset for a task */ | |
120 | static inline struct cpuset *task_cs(struct task_struct *task) | |
121 | { | |
122 | return container_of(task_subsys_state(task, cpuset_subsys_id), | |
123 | struct cpuset, css); | |
124 | } | |
8793d854 | 125 | |
b246272e DR |
126 | #ifdef CONFIG_NUMA |
127 | static inline bool task_has_mempolicy(struct task_struct *task) | |
128 | { | |
129 | return task->mempolicy; | |
130 | } | |
131 | #else | |
132 | static inline bool task_has_mempolicy(struct task_struct *task) | |
133 | { | |
134 | return false; | |
135 | } | |
136 | #endif | |
137 | ||
138 | ||
1da177e4 LT |
139 | /* bits in struct cpuset flags field */ |
140 | typedef enum { | |
141 | CS_CPU_EXCLUSIVE, | |
142 | CS_MEM_EXCLUSIVE, | |
78608366 | 143 | CS_MEM_HARDWALL, |
45b07ef3 | 144 | CS_MEMORY_MIGRATE, |
029190c5 | 145 | CS_SCHED_LOAD_BALANCE, |
825a46af PJ |
146 | CS_SPREAD_PAGE, |
147 | CS_SPREAD_SLAB, | |
1da177e4 LT |
148 | } cpuset_flagbits_t; |
149 | ||
150 | /* convenient tests for these bits */ | |
151 | static inline int is_cpu_exclusive(const struct cpuset *cs) | |
152 | { | |
7b5b9ef0 | 153 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
154 | } |
155 | ||
156 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
157 | { | |
7b5b9ef0 | 158 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
159 | } |
160 | ||
78608366 PM |
161 | static inline int is_mem_hardwall(const struct cpuset *cs) |
162 | { | |
163 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | |
164 | } | |
165 | ||
029190c5 PJ |
166 | static inline int is_sched_load_balance(const struct cpuset *cs) |
167 | { | |
168 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | |
169 | } | |
170 | ||
45b07ef3 PJ |
171 | static inline int is_memory_migrate(const struct cpuset *cs) |
172 | { | |
7b5b9ef0 | 173 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
45b07ef3 PJ |
174 | } |
175 | ||
825a46af PJ |
176 | static inline int is_spread_page(const struct cpuset *cs) |
177 | { | |
178 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | |
179 | } | |
180 | ||
181 | static inline int is_spread_slab(const struct cpuset *cs) | |
182 | { | |
183 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | |
184 | } | |
185 | ||
1da177e4 LT |
186 | static struct cpuset top_cpuset = { |
187 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | |
1da177e4 LT |
188 | }; |
189 | ||
1da177e4 | 190 | /* |
2df167a3 PM |
191 | * There are two global mutexes guarding cpuset structures. The first |
192 | * is the main control groups cgroup_mutex, accessed via | |
193 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific | |
194 | * callback_mutex, below. They can nest. It is ok to first take | |
195 | * cgroup_mutex, then nest callback_mutex. We also require taking | |
196 | * task_lock() when dereferencing a task's cpuset pointer. See "The | |
197 | * task_lock() exception", at the end of this comment. | |
053199ed | 198 | * |
3d3f26a7 | 199 | * A task must hold both mutexes to modify cpusets. If a task |
2df167a3 | 200 | * holds cgroup_mutex, then it blocks others wanting that mutex, |
3d3f26a7 | 201 | * ensuring that it is the only task able to also acquire callback_mutex |
053199ed PJ |
202 | * and be able to modify cpusets. It can perform various checks on |
203 | * the cpuset structure first, knowing nothing will change. It can | |
2df167a3 | 204 | * also allocate memory while just holding cgroup_mutex. While it is |
053199ed | 205 | * performing these checks, various callback routines can briefly |
3d3f26a7 IM |
206 | * acquire callback_mutex to query cpusets. Once it is ready to make |
207 | * the changes, it takes callback_mutex, blocking everyone else. | |
053199ed PJ |
208 | * |
209 | * Calls to the kernel memory allocator can not be made while holding | |
3d3f26a7 | 210 | * callback_mutex, as that would risk double tripping on callback_mutex |
053199ed PJ |
211 | * from one of the callbacks into the cpuset code from within |
212 | * __alloc_pages(). | |
213 | * | |
3d3f26a7 | 214 | * If a task is only holding callback_mutex, then it has read-only |
053199ed PJ |
215 | * access to cpusets. |
216 | * | |
58568d2a MX |
217 | * Now, the task_struct fields mems_allowed and mempolicy may be changed |
218 | * by other task, we use alloc_lock in the task_struct fields to protect | |
219 | * them. | |
053199ed | 220 | * |
3d3f26a7 | 221 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
053199ed PJ |
222 | * small pieces of code, such as when reading out possibly multi-word |
223 | * cpumasks and nodemasks. | |
224 | * | |
2df167a3 PM |
225 | * Accessing a task's cpuset should be done in accordance with the |
226 | * guidelines for accessing subsystem state in kernel/cgroup.c | |
1da177e4 LT |
227 | */ |
228 | ||
3d3f26a7 | 229 | static DEFINE_MUTEX(callback_mutex); |
4247bdc6 | 230 | |
75aa1994 DR |
231 | /* |
232 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | |
233 | * buffers. They are statically allocated to prevent using excess stack | |
234 | * when calling cpuset_print_task_mems_allowed(). | |
235 | */ | |
236 | #define CPUSET_NAME_LEN (128) | |
237 | #define CPUSET_NODELIST_LEN (256) | |
238 | static char cpuset_name[CPUSET_NAME_LEN]; | |
239 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | |
240 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | |
241 | ||
cf417141 MK |
242 | /* |
243 | * This is ugly, but preserves the userspace API for existing cpuset | |
8793d854 | 244 | * users. If someone tries to mount the "cpuset" filesystem, we |
cf417141 MK |
245 | * silently switch it to mount "cgroup" instead |
246 | */ | |
f7e83571 AV |
247 | static struct dentry *cpuset_mount(struct file_system_type *fs_type, |
248 | int flags, const char *unused_dev_name, void *data) | |
1da177e4 | 249 | { |
8793d854 | 250 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
f7e83571 | 251 | struct dentry *ret = ERR_PTR(-ENODEV); |
8793d854 PM |
252 | if (cgroup_fs) { |
253 | char mountopts[] = | |
254 | "cpuset,noprefix," | |
255 | "release_agent=/sbin/cpuset_release_agent"; | |
f7e83571 AV |
256 | ret = cgroup_fs->mount(cgroup_fs, flags, |
257 | unused_dev_name, mountopts); | |
8793d854 PM |
258 | put_filesystem(cgroup_fs); |
259 | } | |
260 | return ret; | |
1da177e4 LT |
261 | } |
262 | ||
263 | static struct file_system_type cpuset_fs_type = { | |
264 | .name = "cpuset", | |
f7e83571 | 265 | .mount = cpuset_mount, |
1da177e4 LT |
266 | }; |
267 | ||
1da177e4 | 268 | /* |
300ed6cb | 269 | * Return in pmask the portion of a cpusets's cpus_allowed that |
1da177e4 LT |
270 | * are online. If none are online, walk up the cpuset hierarchy |
271 | * until we find one that does have some online cpus. If we get | |
272 | * all the way to the top and still haven't found any online cpus, | |
5f054e31 RR |
273 | * return cpu_online_mask. Or if passed a NULL cs from an exit'ing |
274 | * task, return cpu_online_mask. | |
1da177e4 LT |
275 | * |
276 | * One way or another, we guarantee to return some non-empty subset | |
5f054e31 | 277 | * of cpu_online_mask. |
1da177e4 | 278 | * |
3d3f26a7 | 279 | * Call with callback_mutex held. |
1da177e4 LT |
280 | */ |
281 | ||
6af866af LZ |
282 | static void guarantee_online_cpus(const struct cpuset *cs, |
283 | struct cpumask *pmask) | |
1da177e4 | 284 | { |
300ed6cb | 285 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) |
1da177e4 LT |
286 | cs = cs->parent; |
287 | if (cs) | |
300ed6cb | 288 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); |
1da177e4 | 289 | else |
300ed6cb LZ |
290 | cpumask_copy(pmask, cpu_online_mask); |
291 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | |
1da177e4 LT |
292 | } |
293 | ||
294 | /* | |
295 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
0e1e7c7a CL |
296 | * are online, with memory. If none are online with memory, walk |
297 | * up the cpuset hierarchy until we find one that does have some | |
298 | * online mems. If we get all the way to the top and still haven't | |
299 | * found any online mems, return node_states[N_HIGH_MEMORY]. | |
1da177e4 LT |
300 | * |
301 | * One way or another, we guarantee to return some non-empty subset | |
0e1e7c7a | 302 | * of node_states[N_HIGH_MEMORY]. |
1da177e4 | 303 | * |
3d3f26a7 | 304 | * Call with callback_mutex held. |
1da177e4 LT |
305 | */ |
306 | ||
307 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |
308 | { | |
0e1e7c7a CL |
309 | while (cs && !nodes_intersects(cs->mems_allowed, |
310 | node_states[N_HIGH_MEMORY])) | |
1da177e4 LT |
311 | cs = cs->parent; |
312 | if (cs) | |
0e1e7c7a CL |
313 | nodes_and(*pmask, cs->mems_allowed, |
314 | node_states[N_HIGH_MEMORY]); | |
1da177e4 | 315 | else |
0e1e7c7a CL |
316 | *pmask = node_states[N_HIGH_MEMORY]; |
317 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | |
1da177e4 LT |
318 | } |
319 | ||
f3b39d47 MX |
320 | /* |
321 | * update task's spread flag if cpuset's page/slab spread flag is set | |
322 | * | |
323 | * Called with callback_mutex/cgroup_mutex held | |
324 | */ | |
325 | static void cpuset_update_task_spread_flag(struct cpuset *cs, | |
326 | struct task_struct *tsk) | |
327 | { | |
328 | if (is_spread_page(cs)) | |
329 | tsk->flags |= PF_SPREAD_PAGE; | |
330 | else | |
331 | tsk->flags &= ~PF_SPREAD_PAGE; | |
332 | if (is_spread_slab(cs)) | |
333 | tsk->flags |= PF_SPREAD_SLAB; | |
334 | else | |
335 | tsk->flags &= ~PF_SPREAD_SLAB; | |
336 | } | |
337 | ||
1da177e4 LT |
338 | /* |
339 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
340 | * | |
341 | * One cpuset is a subset of another if all its allowed CPUs and | |
342 | * Memory Nodes are a subset of the other, and its exclusive flags | |
2df167a3 | 343 | * are only set if the other's are set. Call holding cgroup_mutex. |
1da177e4 LT |
344 | */ |
345 | ||
346 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
347 | { | |
300ed6cb | 348 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
1da177e4 LT |
349 | nodes_subset(p->mems_allowed, q->mems_allowed) && |
350 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
351 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
352 | } | |
353 | ||
645fcc9d LZ |
354 | /** |
355 | * alloc_trial_cpuset - allocate a trial cpuset | |
356 | * @cs: the cpuset that the trial cpuset duplicates | |
357 | */ | |
358 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | |
359 | { | |
300ed6cb LZ |
360 | struct cpuset *trial; |
361 | ||
362 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | |
363 | if (!trial) | |
364 | return NULL; | |
365 | ||
366 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | |
367 | kfree(trial); | |
368 | return NULL; | |
369 | } | |
370 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | |
371 | ||
372 | return trial; | |
645fcc9d LZ |
373 | } |
374 | ||
375 | /** | |
376 | * free_trial_cpuset - free the trial cpuset | |
377 | * @trial: the trial cpuset to be freed | |
378 | */ | |
379 | static void free_trial_cpuset(struct cpuset *trial) | |
380 | { | |
300ed6cb | 381 | free_cpumask_var(trial->cpus_allowed); |
645fcc9d LZ |
382 | kfree(trial); |
383 | } | |
384 | ||
1da177e4 LT |
385 | /* |
386 | * validate_change() - Used to validate that any proposed cpuset change | |
387 | * follows the structural rules for cpusets. | |
388 | * | |
389 | * If we replaced the flag and mask values of the current cpuset | |
390 | * (cur) with those values in the trial cpuset (trial), would | |
391 | * our various subset and exclusive rules still be valid? Presumes | |
2df167a3 | 392 | * cgroup_mutex held. |
1da177e4 LT |
393 | * |
394 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
395 | * such as list traversal that depend on the actual address of the | |
396 | * cpuset in the list must use cur below, not trial. | |
397 | * | |
398 | * 'trial' is the address of bulk structure copy of cur, with | |
399 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
400 | * or flags changed to new, trial values. | |
401 | * | |
402 | * Return 0 if valid, -errno if not. | |
403 | */ | |
404 | ||
405 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |
406 | { | |
8793d854 | 407 | struct cgroup *cont; |
1da177e4 LT |
408 | struct cpuset *c, *par; |
409 | ||
410 | /* Each of our child cpusets must be a subset of us */ | |
8793d854 PM |
411 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { |
412 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | |
1da177e4 LT |
413 | return -EBUSY; |
414 | } | |
415 | ||
416 | /* Remaining checks don't apply to root cpuset */ | |
69604067 | 417 | if (cur == &top_cpuset) |
1da177e4 LT |
418 | return 0; |
419 | ||
69604067 PJ |
420 | par = cur->parent; |
421 | ||
1da177e4 LT |
422 | /* We must be a subset of our parent cpuset */ |
423 | if (!is_cpuset_subset(trial, par)) | |
424 | return -EACCES; | |
425 | ||
2df167a3 PM |
426 | /* |
427 | * If either I or some sibling (!= me) is exclusive, we can't | |
428 | * overlap | |
429 | */ | |
8793d854 PM |
430 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { |
431 | c = cgroup_cs(cont); | |
1da177e4 LT |
432 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
433 | c != cur && | |
300ed6cb | 434 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) |
1da177e4 LT |
435 | return -EINVAL; |
436 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | |
437 | c != cur && | |
438 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
439 | return -EINVAL; | |
440 | } | |
441 | ||
020958b6 PJ |
442 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ |
443 | if (cgroup_task_count(cur->css.cgroup)) { | |
300ed6cb | 444 | if (cpumask_empty(trial->cpus_allowed) || |
020958b6 PJ |
445 | nodes_empty(trial->mems_allowed)) { |
446 | return -ENOSPC; | |
447 | } | |
448 | } | |
449 | ||
1da177e4 LT |
450 | return 0; |
451 | } | |
452 | ||
db7f47cf | 453 | #ifdef CONFIG_SMP |
029190c5 | 454 | /* |
cf417141 | 455 | * Helper routine for generate_sched_domains(). |
029190c5 PJ |
456 | * Do cpusets a, b have overlapping cpus_allowed masks? |
457 | */ | |
029190c5 PJ |
458 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
459 | { | |
300ed6cb | 460 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); |
029190c5 PJ |
461 | } |
462 | ||
1d3504fc HS |
463 | static void |
464 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | |
465 | { | |
1d3504fc HS |
466 | if (dattr->relax_domain_level < c->relax_domain_level) |
467 | dattr->relax_domain_level = c->relax_domain_level; | |
468 | return; | |
469 | } | |
470 | ||
f5393693 LJ |
471 | static void |
472 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | |
473 | { | |
474 | LIST_HEAD(q); | |
475 | ||
476 | list_add(&c->stack_list, &q); | |
477 | while (!list_empty(&q)) { | |
478 | struct cpuset *cp; | |
479 | struct cgroup *cont; | |
480 | struct cpuset *child; | |
481 | ||
482 | cp = list_first_entry(&q, struct cpuset, stack_list); | |
483 | list_del(q.next); | |
484 | ||
300ed6cb | 485 | if (cpumask_empty(cp->cpus_allowed)) |
f5393693 LJ |
486 | continue; |
487 | ||
488 | if (is_sched_load_balance(cp)) | |
489 | update_domain_attr(dattr, cp); | |
490 | ||
491 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
492 | child = cgroup_cs(cont); | |
493 | list_add_tail(&child->stack_list, &q); | |
494 | } | |
495 | } | |
496 | } | |
497 | ||
029190c5 | 498 | /* |
cf417141 MK |
499 | * generate_sched_domains() |
500 | * | |
501 | * This function builds a partial partition of the systems CPUs | |
502 | * A 'partial partition' is a set of non-overlapping subsets whose | |
503 | * union is a subset of that set. | |
504 | * The output of this function needs to be passed to kernel/sched.c | |
505 | * partition_sched_domains() routine, which will rebuild the scheduler's | |
506 | * load balancing domains (sched domains) as specified by that partial | |
507 | * partition. | |
029190c5 | 508 | * |
45ce80fb | 509 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt |
029190c5 PJ |
510 | * for a background explanation of this. |
511 | * | |
512 | * Does not return errors, on the theory that the callers of this | |
513 | * routine would rather not worry about failures to rebuild sched | |
514 | * domains when operating in the severe memory shortage situations | |
515 | * that could cause allocation failures below. | |
516 | * | |
cf417141 | 517 | * Must be called with cgroup_lock held. |
029190c5 PJ |
518 | * |
519 | * The three key local variables below are: | |
aeed6824 | 520 | * q - a linked-list queue of cpuset pointers, used to implement a |
029190c5 PJ |
521 | * top-down scan of all cpusets. This scan loads a pointer |
522 | * to each cpuset marked is_sched_load_balance into the | |
523 | * array 'csa'. For our purposes, rebuilding the schedulers | |
524 | * sched domains, we can ignore !is_sched_load_balance cpusets. | |
525 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | |
526 | * that need to be load balanced, for convenient iterative | |
527 | * access by the subsequent code that finds the best partition, | |
528 | * i.e the set of domains (subsets) of CPUs such that the | |
529 | * cpus_allowed of every cpuset marked is_sched_load_balance | |
530 | * is a subset of one of these domains, while there are as | |
531 | * many such domains as possible, each as small as possible. | |
532 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | |
533 | * the kernel/sched.c routine partition_sched_domains() in a | |
534 | * convenient format, that can be easily compared to the prior | |
535 | * value to determine what partition elements (sched domains) | |
536 | * were changed (added or removed.) | |
537 | * | |
538 | * Finding the best partition (set of domains): | |
539 | * The triple nested loops below over i, j, k scan over the | |
540 | * load balanced cpusets (using the array of cpuset pointers in | |
541 | * csa[]) looking for pairs of cpusets that have overlapping | |
542 | * cpus_allowed, but which don't have the same 'pn' partition | |
543 | * number and gives them in the same partition number. It keeps | |
544 | * looping on the 'restart' label until it can no longer find | |
545 | * any such pairs. | |
546 | * | |
547 | * The union of the cpus_allowed masks from the set of | |
548 | * all cpusets having the same 'pn' value then form the one | |
549 | * element of the partition (one sched domain) to be passed to | |
550 | * partition_sched_domains(). | |
551 | */ | |
acc3f5d7 | 552 | static int generate_sched_domains(cpumask_var_t **domains, |
cf417141 | 553 | struct sched_domain_attr **attributes) |
029190c5 | 554 | { |
cf417141 | 555 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
029190c5 PJ |
556 | struct cpuset *cp; /* scans q */ |
557 | struct cpuset **csa; /* array of all cpuset ptrs */ | |
558 | int csn; /* how many cpuset ptrs in csa so far */ | |
559 | int i, j, k; /* indices for partition finding loops */ | |
acc3f5d7 | 560 | cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ |
1d3504fc | 561 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
1583715d | 562 | int ndoms = 0; /* number of sched domains in result */ |
6af866af | 563 | int nslot; /* next empty doms[] struct cpumask slot */ |
029190c5 | 564 | |
029190c5 | 565 | doms = NULL; |
1d3504fc | 566 | dattr = NULL; |
cf417141 | 567 | csa = NULL; |
029190c5 PJ |
568 | |
569 | /* Special case for the 99% of systems with one, full, sched domain */ | |
570 | if (is_sched_load_balance(&top_cpuset)) { | |
acc3f5d7 RR |
571 | ndoms = 1; |
572 | doms = alloc_sched_domains(ndoms); | |
029190c5 | 573 | if (!doms) |
cf417141 MK |
574 | goto done; |
575 | ||
1d3504fc HS |
576 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
577 | if (dattr) { | |
578 | *dattr = SD_ATTR_INIT; | |
93a65575 | 579 | update_domain_attr_tree(dattr, &top_cpuset); |
1d3504fc | 580 | } |
acc3f5d7 | 581 | cpumask_copy(doms[0], top_cpuset.cpus_allowed); |
cf417141 | 582 | |
cf417141 | 583 | goto done; |
029190c5 PJ |
584 | } |
585 | ||
029190c5 PJ |
586 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
587 | if (!csa) | |
588 | goto done; | |
589 | csn = 0; | |
590 | ||
aeed6824 LZ |
591 | list_add(&top_cpuset.stack_list, &q); |
592 | while (!list_empty(&q)) { | |
029190c5 PJ |
593 | struct cgroup *cont; |
594 | struct cpuset *child; /* scans child cpusets of cp */ | |
489a5393 | 595 | |
aeed6824 LZ |
596 | cp = list_first_entry(&q, struct cpuset, stack_list); |
597 | list_del(q.next); | |
598 | ||
300ed6cb | 599 | if (cpumask_empty(cp->cpus_allowed)) |
489a5393 LJ |
600 | continue; |
601 | ||
f5393693 LJ |
602 | /* |
603 | * All child cpusets contain a subset of the parent's cpus, so | |
604 | * just skip them, and then we call update_domain_attr_tree() | |
605 | * to calc relax_domain_level of the corresponding sched | |
606 | * domain. | |
607 | */ | |
608 | if (is_sched_load_balance(cp)) { | |
029190c5 | 609 | csa[csn++] = cp; |
f5393693 LJ |
610 | continue; |
611 | } | |
489a5393 | 612 | |
029190c5 PJ |
613 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
614 | child = cgroup_cs(cont); | |
aeed6824 | 615 | list_add_tail(&child->stack_list, &q); |
029190c5 PJ |
616 | } |
617 | } | |
618 | ||
619 | for (i = 0; i < csn; i++) | |
620 | csa[i]->pn = i; | |
621 | ndoms = csn; | |
622 | ||
623 | restart: | |
624 | /* Find the best partition (set of sched domains) */ | |
625 | for (i = 0; i < csn; i++) { | |
626 | struct cpuset *a = csa[i]; | |
627 | int apn = a->pn; | |
628 | ||
629 | for (j = 0; j < csn; j++) { | |
630 | struct cpuset *b = csa[j]; | |
631 | int bpn = b->pn; | |
632 | ||
633 | if (apn != bpn && cpusets_overlap(a, b)) { | |
634 | for (k = 0; k < csn; k++) { | |
635 | struct cpuset *c = csa[k]; | |
636 | ||
637 | if (c->pn == bpn) | |
638 | c->pn = apn; | |
639 | } | |
640 | ndoms--; /* one less element */ | |
641 | goto restart; | |
642 | } | |
643 | } | |
644 | } | |
645 | ||
cf417141 MK |
646 | /* |
647 | * Now we know how many domains to create. | |
648 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | |
649 | */ | |
acc3f5d7 | 650 | doms = alloc_sched_domains(ndoms); |
700018e0 | 651 | if (!doms) |
cf417141 | 652 | goto done; |
cf417141 MK |
653 | |
654 | /* | |
655 | * The rest of the code, including the scheduler, can deal with | |
656 | * dattr==NULL case. No need to abort if alloc fails. | |
657 | */ | |
1d3504fc | 658 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
029190c5 PJ |
659 | |
660 | for (nslot = 0, i = 0; i < csn; i++) { | |
661 | struct cpuset *a = csa[i]; | |
6af866af | 662 | struct cpumask *dp; |
029190c5 PJ |
663 | int apn = a->pn; |
664 | ||
cf417141 MK |
665 | if (apn < 0) { |
666 | /* Skip completed partitions */ | |
667 | continue; | |
668 | } | |
669 | ||
acc3f5d7 | 670 | dp = doms[nslot]; |
cf417141 MK |
671 | |
672 | if (nslot == ndoms) { | |
673 | static int warnings = 10; | |
674 | if (warnings) { | |
675 | printk(KERN_WARNING | |
676 | "rebuild_sched_domains confused:" | |
677 | " nslot %d, ndoms %d, csn %d, i %d," | |
678 | " apn %d\n", | |
679 | nslot, ndoms, csn, i, apn); | |
680 | warnings--; | |
029190c5 | 681 | } |
cf417141 MK |
682 | continue; |
683 | } | |
029190c5 | 684 | |
6af866af | 685 | cpumask_clear(dp); |
cf417141 MK |
686 | if (dattr) |
687 | *(dattr + nslot) = SD_ATTR_INIT; | |
688 | for (j = i; j < csn; j++) { | |
689 | struct cpuset *b = csa[j]; | |
690 | ||
691 | if (apn == b->pn) { | |
300ed6cb | 692 | cpumask_or(dp, dp, b->cpus_allowed); |
cf417141 MK |
693 | if (dattr) |
694 | update_domain_attr_tree(dattr + nslot, b); | |
695 | ||
696 | /* Done with this partition */ | |
697 | b->pn = -1; | |
029190c5 | 698 | } |
029190c5 | 699 | } |
cf417141 | 700 | nslot++; |
029190c5 PJ |
701 | } |
702 | BUG_ON(nslot != ndoms); | |
703 | ||
cf417141 MK |
704 | done: |
705 | kfree(csa); | |
706 | ||
700018e0 LZ |
707 | /* |
708 | * Fallback to the default domain if kmalloc() failed. | |
709 | * See comments in partition_sched_domains(). | |
710 | */ | |
711 | if (doms == NULL) | |
712 | ndoms = 1; | |
713 | ||
cf417141 MK |
714 | *domains = doms; |
715 | *attributes = dattr; | |
716 | return ndoms; | |
717 | } | |
718 | ||
719 | /* | |
720 | * Rebuild scheduler domains. | |
721 | * | |
722 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | |
723 | * Takes both cgroup_mutex and get_online_cpus(). | |
724 | * | |
725 | * Cannot be directly called from cpuset code handling changes | |
726 | * to the cpuset pseudo-filesystem, because it cannot be called | |
727 | * from code that already holds cgroup_mutex. | |
728 | */ | |
729 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
730 | { | |
731 | struct sched_domain_attr *attr; | |
acc3f5d7 | 732 | cpumask_var_t *doms; |
cf417141 MK |
733 | int ndoms; |
734 | ||
86ef5c9a | 735 | get_online_cpus(); |
cf417141 MK |
736 | |
737 | /* Generate domain masks and attrs */ | |
738 | cgroup_lock(); | |
739 | ndoms = generate_sched_domains(&doms, &attr); | |
740 | cgroup_unlock(); | |
741 | ||
742 | /* Have scheduler rebuild the domains */ | |
743 | partition_sched_domains(ndoms, doms, attr); | |
744 | ||
86ef5c9a | 745 | put_online_cpus(); |
cf417141 | 746 | } |
db7f47cf PM |
747 | #else /* !CONFIG_SMP */ |
748 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
749 | { | |
750 | } | |
751 | ||
e1b8090b | 752 | static int generate_sched_domains(cpumask_var_t **domains, |
db7f47cf PM |
753 | struct sched_domain_attr **attributes) |
754 | { | |
755 | *domains = NULL; | |
756 | return 1; | |
757 | } | |
758 | #endif /* CONFIG_SMP */ | |
029190c5 | 759 | |
cf417141 MK |
760 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
761 | ||
762 | /* | |
763 | * Rebuild scheduler domains, asynchronously via workqueue. | |
764 | * | |
765 | * If the flag 'sched_load_balance' of any cpuset with non-empty | |
766 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | |
767 | * which has that flag enabled, or if any cpuset with a non-empty | |
768 | * 'cpus' is removed, then call this routine to rebuild the | |
769 | * scheduler's dynamic sched domains. | |
770 | * | |
771 | * The rebuild_sched_domains() and partition_sched_domains() | |
772 | * routines must nest cgroup_lock() inside get_online_cpus(), | |
773 | * but such cpuset changes as these must nest that locking the | |
774 | * other way, holding cgroup_lock() for much of the code. | |
775 | * | |
776 | * So in order to avoid an ABBA deadlock, the cpuset code handling | |
777 | * these user changes delegates the actual sched domain rebuilding | |
778 | * to a separate workqueue thread, which ends up processing the | |
779 | * above do_rebuild_sched_domains() function. | |
780 | */ | |
781 | static void async_rebuild_sched_domains(void) | |
782 | { | |
f90d4118 | 783 | queue_work(cpuset_wq, &rebuild_sched_domains_work); |
cf417141 MK |
784 | } |
785 | ||
786 | /* | |
787 | * Accomplishes the same scheduler domain rebuild as the above | |
788 | * async_rebuild_sched_domains(), however it directly calls the | |
789 | * rebuild routine synchronously rather than calling it via an | |
790 | * asynchronous work thread. | |
791 | * | |
792 | * This can only be called from code that is not holding | |
793 | * cgroup_mutex (not nested in a cgroup_lock() call.) | |
794 | */ | |
795 | void rebuild_sched_domains(void) | |
796 | { | |
797 | do_rebuild_sched_domains(NULL); | |
029190c5 PJ |
798 | } |
799 | ||
58f4790b CW |
800 | /** |
801 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | |
802 | * @tsk: task to test | |
803 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
804 | * | |
2df167a3 | 805 | * Call with cgroup_mutex held. May take callback_mutex during call. |
58f4790b CW |
806 | * Called for each task in a cgroup by cgroup_scan_tasks(). |
807 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | |
808 | * words, if its mask is not equal to its cpuset's mask). | |
053199ed | 809 | */ |
9e0c914c AB |
810 | static int cpuset_test_cpumask(struct task_struct *tsk, |
811 | struct cgroup_scanner *scan) | |
58f4790b | 812 | { |
300ed6cb | 813 | return !cpumask_equal(&tsk->cpus_allowed, |
58f4790b CW |
814 | (cgroup_cs(scan->cg))->cpus_allowed); |
815 | } | |
053199ed | 816 | |
58f4790b CW |
817 | /** |
818 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | |
819 | * @tsk: task to test | |
820 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
821 | * | |
822 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | |
823 | * cpus_allowed mask needs to be changed. | |
824 | * | |
825 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
826 | * holding cgroup_lock() at this point. | |
827 | */ | |
9e0c914c AB |
828 | static void cpuset_change_cpumask(struct task_struct *tsk, |
829 | struct cgroup_scanner *scan) | |
58f4790b | 830 | { |
300ed6cb | 831 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); |
58f4790b CW |
832 | } |
833 | ||
0b2f630a MX |
834 | /** |
835 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | |
836 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | |
4e74339a | 837 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
838 | * |
839 | * Called with cgroup_mutex held | |
840 | * | |
841 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
842 | * calling callback functions for each. | |
843 | * | |
4e74339a LZ |
844 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
845 | * if @heap != NULL. | |
0b2f630a | 846 | */ |
4e74339a | 847 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
0b2f630a MX |
848 | { |
849 | struct cgroup_scanner scan; | |
0b2f630a MX |
850 | |
851 | scan.cg = cs->css.cgroup; | |
852 | scan.test_task = cpuset_test_cpumask; | |
853 | scan.process_task = cpuset_change_cpumask; | |
4e74339a LZ |
854 | scan.heap = heap; |
855 | cgroup_scan_tasks(&scan); | |
0b2f630a MX |
856 | } |
857 | ||
58f4790b CW |
858 | /** |
859 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | |
860 | * @cs: the cpuset to consider | |
861 | * @buf: buffer of cpu numbers written to this cpuset | |
862 | */ | |
645fcc9d LZ |
863 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
864 | const char *buf) | |
1da177e4 | 865 | { |
4e74339a | 866 | struct ptr_heap heap; |
58f4790b CW |
867 | int retval; |
868 | int is_load_balanced; | |
1da177e4 | 869 | |
5f054e31 | 870 | /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ |
4c4d50f7 PJ |
871 | if (cs == &top_cpuset) |
872 | return -EACCES; | |
873 | ||
6f7f02e7 | 874 | /* |
c8d9c90c | 875 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
020958b6 PJ |
876 | * Since cpulist_parse() fails on an empty mask, we special case |
877 | * that parsing. The validate_change() call ensures that cpusets | |
878 | * with tasks have cpus. | |
6f7f02e7 | 879 | */ |
020958b6 | 880 | if (!*buf) { |
300ed6cb | 881 | cpumask_clear(trialcs->cpus_allowed); |
6f7f02e7 | 882 | } else { |
300ed6cb | 883 | retval = cpulist_parse(buf, trialcs->cpus_allowed); |
6f7f02e7 DR |
884 | if (retval < 0) |
885 | return retval; | |
37340746 | 886 | |
6ad4c188 | 887 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) |
37340746 | 888 | return -EINVAL; |
6f7f02e7 | 889 | } |
645fcc9d | 890 | retval = validate_change(cs, trialcs); |
85d7b949 DG |
891 | if (retval < 0) |
892 | return retval; | |
029190c5 | 893 | |
8707d8b8 | 894 | /* Nothing to do if the cpus didn't change */ |
300ed6cb | 895 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
8707d8b8 | 896 | return 0; |
58f4790b | 897 | |
4e74339a LZ |
898 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
899 | if (retval) | |
900 | return retval; | |
901 | ||
645fcc9d | 902 | is_load_balanced = is_sched_load_balance(trialcs); |
029190c5 | 903 | |
3d3f26a7 | 904 | mutex_lock(&callback_mutex); |
300ed6cb | 905 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
3d3f26a7 | 906 | mutex_unlock(&callback_mutex); |
029190c5 | 907 | |
8707d8b8 PM |
908 | /* |
909 | * Scan tasks in the cpuset, and update the cpumasks of any | |
58f4790b | 910 | * that need an update. |
8707d8b8 | 911 | */ |
4e74339a LZ |
912 | update_tasks_cpumask(cs, &heap); |
913 | ||
914 | heap_free(&heap); | |
58f4790b | 915 | |
8707d8b8 | 916 | if (is_load_balanced) |
cf417141 | 917 | async_rebuild_sched_domains(); |
85d7b949 | 918 | return 0; |
1da177e4 LT |
919 | } |
920 | ||
e4e364e8 PJ |
921 | /* |
922 | * cpuset_migrate_mm | |
923 | * | |
924 | * Migrate memory region from one set of nodes to another. | |
925 | * | |
926 | * Temporarilly set tasks mems_allowed to target nodes of migration, | |
927 | * so that the migration code can allocate pages on these nodes. | |
928 | * | |
2df167a3 | 929 | * Call holding cgroup_mutex, so current's cpuset won't change |
c8d9c90c | 930 | * during this call, as manage_mutex holds off any cpuset_attach() |
e4e364e8 PJ |
931 | * calls. Therefore we don't need to take task_lock around the |
932 | * call to guarantee_online_mems(), as we know no one is changing | |
2df167a3 | 933 | * our task's cpuset. |
e4e364e8 | 934 | * |
e4e364e8 PJ |
935 | * While the mm_struct we are migrating is typically from some |
936 | * other task, the task_struct mems_allowed that we are hacking | |
937 | * is for our current task, which must allocate new pages for that | |
938 | * migrating memory region. | |
e4e364e8 PJ |
939 | */ |
940 | ||
941 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |
942 | const nodemask_t *to) | |
943 | { | |
944 | struct task_struct *tsk = current; | |
945 | ||
e4e364e8 | 946 | tsk->mems_allowed = *to; |
e4e364e8 PJ |
947 | |
948 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | |
949 | ||
8793d854 | 950 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); |
e4e364e8 PJ |
951 | } |
952 | ||
3b6766fe | 953 | /* |
58568d2a MX |
954 | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy |
955 | * @tsk: the task to change | |
956 | * @newmems: new nodes that the task will be set | |
957 | * | |
958 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | |
959 | * we structure updates as setting all new allowed nodes, then clearing newly | |
960 | * disallowed ones. | |
58568d2a MX |
961 | */ |
962 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | |
963 | nodemask_t *newmems) | |
964 | { | |
b246272e | 965 | bool need_loop; |
89e8a244 | 966 | |
c0ff7453 MX |
967 | /* |
968 | * Allow tasks that have access to memory reserves because they have | |
969 | * been OOM killed to get memory anywhere. | |
970 | */ | |
971 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
972 | return; | |
973 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | |
974 | return; | |
975 | ||
976 | task_lock(tsk); | |
b246272e DR |
977 | /* |
978 | * Determine if a loop is necessary if another thread is doing | |
979 | * get_mems_allowed(). If at least one node remains unchanged and | |
980 | * tsk does not have a mempolicy, then an empty nodemask will not be | |
981 | * possible when mems_allowed is larger than a word. | |
982 | */ | |
983 | need_loop = task_has_mempolicy(tsk) || | |
984 | !nodes_intersects(*newmems, tsk->mems_allowed); | |
c0ff7453 | 985 | |
cc9a6c87 MG |
986 | if (need_loop) |
987 | write_seqcount_begin(&tsk->mems_allowed_seq); | |
c0ff7453 | 988 | |
cc9a6c87 MG |
989 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); |
990 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); | |
c0ff7453 MX |
991 | |
992 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | |
58568d2a | 993 | tsk->mems_allowed = *newmems; |
cc9a6c87 MG |
994 | |
995 | if (need_loop) | |
996 | write_seqcount_end(&tsk->mems_allowed_seq); | |
997 | ||
c0ff7453 | 998 | task_unlock(tsk); |
58568d2a MX |
999 | } |
1000 | ||
1001 | /* | |
1002 | * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy | |
1003 | * of it to cpuset's new mems_allowed, and migrate pages to new nodes if | |
1004 | * memory_migrate flag is set. Called with cgroup_mutex held. | |
3b6766fe LZ |
1005 | */ |
1006 | static void cpuset_change_nodemask(struct task_struct *p, | |
1007 | struct cgroup_scanner *scan) | |
1008 | { | |
1009 | struct mm_struct *mm; | |
1010 | struct cpuset *cs; | |
1011 | int migrate; | |
1012 | const nodemask_t *oldmem = scan->data; | |
ee24d379 | 1013 | static nodemask_t newmems; /* protected by cgroup_mutex */ |
58568d2a MX |
1014 | |
1015 | cs = cgroup_cs(scan->cg); | |
ee24d379 | 1016 | guarantee_online_mems(cs, &newmems); |
58568d2a | 1017 | |
ee24d379 | 1018 | cpuset_change_task_nodemask(p, &newmems); |
53feb297 | 1019 | |
3b6766fe LZ |
1020 | mm = get_task_mm(p); |
1021 | if (!mm) | |
1022 | return; | |
1023 | ||
3b6766fe LZ |
1024 | migrate = is_memory_migrate(cs); |
1025 | ||
1026 | mpol_rebind_mm(mm, &cs->mems_allowed); | |
1027 | if (migrate) | |
1028 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | |
1029 | mmput(mm); | |
1030 | } | |
1031 | ||
8793d854 PM |
1032 | static void *cpuset_being_rebound; |
1033 | ||
0b2f630a MX |
1034 | /** |
1035 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | |
1036 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | |
1037 | * @oldmem: old mems_allowed of cpuset cs | |
010cfac4 | 1038 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
1039 | * |
1040 | * Called with cgroup_mutex held | |
010cfac4 LZ |
1041 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
1042 | * if @heap != NULL. | |
0b2f630a | 1043 | */ |
010cfac4 LZ |
1044 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, |
1045 | struct ptr_heap *heap) | |
1da177e4 | 1046 | { |
3b6766fe | 1047 | struct cgroup_scanner scan; |
59dac16f | 1048 | |
846a16bf | 1049 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
4225399a | 1050 | |
3b6766fe LZ |
1051 | scan.cg = cs->css.cgroup; |
1052 | scan.test_task = NULL; | |
1053 | scan.process_task = cpuset_change_nodemask; | |
010cfac4 | 1054 | scan.heap = heap; |
3b6766fe | 1055 | scan.data = (nodemask_t *)oldmem; |
4225399a PJ |
1056 | |
1057 | /* | |
3b6766fe LZ |
1058 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't |
1059 | * take while holding tasklist_lock. Forks can happen - the | |
1060 | * mpol_dup() cpuset_being_rebound check will catch such forks, | |
1061 | * and rebind their vma mempolicies too. Because we still hold | |
1062 | * the global cgroup_mutex, we know that no other rebind effort | |
1063 | * will be contending for the global variable cpuset_being_rebound. | |
4225399a | 1064 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
04c19fa6 | 1065 | * is idempotent. Also migrate pages in each mm to new nodes. |
4225399a | 1066 | */ |
010cfac4 | 1067 | cgroup_scan_tasks(&scan); |
4225399a | 1068 | |
2df167a3 | 1069 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
8793d854 | 1070 | cpuset_being_rebound = NULL; |
1da177e4 LT |
1071 | } |
1072 | ||
0b2f630a MX |
1073 | /* |
1074 | * Handle user request to change the 'mems' memory placement | |
1075 | * of a cpuset. Needs to validate the request, update the | |
58568d2a MX |
1076 | * cpusets mems_allowed, and for each task in the cpuset, |
1077 | * update mems_allowed and rebind task's mempolicy and any vma | |
1078 | * mempolicies and if the cpuset is marked 'memory_migrate', | |
1079 | * migrate the tasks pages to the new memory. | |
0b2f630a MX |
1080 | * |
1081 | * Call with cgroup_mutex held. May take callback_mutex during call. | |
1082 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | |
1083 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | |
1084 | * their mempolicies to the cpusets new mems_allowed. | |
1085 | */ | |
645fcc9d LZ |
1086 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
1087 | const char *buf) | |
0b2f630a | 1088 | { |
53feb297 | 1089 | NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL); |
0b2f630a | 1090 | int retval; |
010cfac4 | 1091 | struct ptr_heap heap; |
0b2f630a | 1092 | |
53feb297 MX |
1093 | if (!oldmem) |
1094 | return -ENOMEM; | |
1095 | ||
0b2f630a MX |
1096 | /* |
1097 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | |
1098 | * it's read-only | |
1099 | */ | |
53feb297 MX |
1100 | if (cs == &top_cpuset) { |
1101 | retval = -EACCES; | |
1102 | goto done; | |
1103 | } | |
0b2f630a | 1104 | |
0b2f630a MX |
1105 | /* |
1106 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | |
1107 | * Since nodelist_parse() fails on an empty mask, we special case | |
1108 | * that parsing. The validate_change() call ensures that cpusets | |
1109 | * with tasks have memory. | |
1110 | */ | |
1111 | if (!*buf) { | |
645fcc9d | 1112 | nodes_clear(trialcs->mems_allowed); |
0b2f630a | 1113 | } else { |
645fcc9d | 1114 | retval = nodelist_parse(buf, trialcs->mems_allowed); |
0b2f630a MX |
1115 | if (retval < 0) |
1116 | goto done; | |
1117 | ||
645fcc9d | 1118 | if (!nodes_subset(trialcs->mems_allowed, |
53feb297 MX |
1119 | node_states[N_HIGH_MEMORY])) { |
1120 | retval = -EINVAL; | |
1121 | goto done; | |
1122 | } | |
0b2f630a | 1123 | } |
53feb297 MX |
1124 | *oldmem = cs->mems_allowed; |
1125 | if (nodes_equal(*oldmem, trialcs->mems_allowed)) { | |
0b2f630a MX |
1126 | retval = 0; /* Too easy - nothing to do */ |
1127 | goto done; | |
1128 | } | |
645fcc9d | 1129 | retval = validate_change(cs, trialcs); |
0b2f630a MX |
1130 | if (retval < 0) |
1131 | goto done; | |
1132 | ||
010cfac4 LZ |
1133 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1134 | if (retval < 0) | |
1135 | goto done; | |
1136 | ||
0b2f630a | 1137 | mutex_lock(&callback_mutex); |
645fcc9d | 1138 | cs->mems_allowed = trialcs->mems_allowed; |
0b2f630a MX |
1139 | mutex_unlock(&callback_mutex); |
1140 | ||
53feb297 | 1141 | update_tasks_nodemask(cs, oldmem, &heap); |
010cfac4 LZ |
1142 | |
1143 | heap_free(&heap); | |
0b2f630a | 1144 | done: |
53feb297 | 1145 | NODEMASK_FREE(oldmem); |
0b2f630a MX |
1146 | return retval; |
1147 | } | |
1148 | ||
8793d854 PM |
1149 | int current_cpuset_is_being_rebound(void) |
1150 | { | |
1151 | return task_cs(current) == cpuset_being_rebound; | |
1152 | } | |
1153 | ||
5be7a479 | 1154 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1d3504fc | 1155 | { |
db7f47cf | 1156 | #ifdef CONFIG_SMP |
60495e77 | 1157 | if (val < -1 || val >= sched_domain_level_max) |
30e0e178 | 1158 | return -EINVAL; |
db7f47cf | 1159 | #endif |
1d3504fc HS |
1160 | |
1161 | if (val != cs->relax_domain_level) { | |
1162 | cs->relax_domain_level = val; | |
300ed6cb LZ |
1163 | if (!cpumask_empty(cs->cpus_allowed) && |
1164 | is_sched_load_balance(cs)) | |
cf417141 | 1165 | async_rebuild_sched_domains(); |
1d3504fc HS |
1166 | } |
1167 | ||
1168 | return 0; | |
1169 | } | |
1170 | ||
950592f7 MX |
1171 | /* |
1172 | * cpuset_change_flag - make a task's spread flags the same as its cpuset's | |
1173 | * @tsk: task to be updated | |
1174 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
1175 | * | |
1176 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1177 | * | |
1178 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
1179 | * holding cgroup_lock() at this point. | |
1180 | */ | |
1181 | static void cpuset_change_flag(struct task_struct *tsk, | |
1182 | struct cgroup_scanner *scan) | |
1183 | { | |
1184 | cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk); | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | * update_tasks_flags - update the spread flags of tasks in the cpuset. | |
1189 | * @cs: the cpuset in which each task's spread flags needs to be changed | |
1190 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | |
1191 | * | |
1192 | * Called with cgroup_mutex held | |
1193 | * | |
1194 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1195 | * calling callback functions for each. | |
1196 | * | |
1197 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | |
1198 | * if @heap != NULL. | |
1199 | */ | |
1200 | static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) | |
1201 | { | |
1202 | struct cgroup_scanner scan; | |
1203 | ||
1204 | scan.cg = cs->css.cgroup; | |
1205 | scan.test_task = NULL; | |
1206 | scan.process_task = cpuset_change_flag; | |
1207 | scan.heap = heap; | |
1208 | cgroup_scan_tasks(&scan); | |
1209 | } | |
1210 | ||
1da177e4 LT |
1211 | /* |
1212 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
78608366 PM |
1213 | * bit: the bit to update (see cpuset_flagbits_t) |
1214 | * cs: the cpuset to update | |
1215 | * turning_on: whether the flag is being set or cleared | |
053199ed | 1216 | * |
2df167a3 | 1217 | * Call with cgroup_mutex held. |
1da177e4 LT |
1218 | */ |
1219 | ||
700fe1ab PM |
1220 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
1221 | int turning_on) | |
1da177e4 | 1222 | { |
645fcc9d | 1223 | struct cpuset *trialcs; |
40b6a762 | 1224 | int balance_flag_changed; |
950592f7 MX |
1225 | int spread_flag_changed; |
1226 | struct ptr_heap heap; | |
1227 | int err; | |
1da177e4 | 1228 | |
645fcc9d LZ |
1229 | trialcs = alloc_trial_cpuset(cs); |
1230 | if (!trialcs) | |
1231 | return -ENOMEM; | |
1232 | ||
1da177e4 | 1233 | if (turning_on) |
645fcc9d | 1234 | set_bit(bit, &trialcs->flags); |
1da177e4 | 1235 | else |
645fcc9d | 1236 | clear_bit(bit, &trialcs->flags); |
1da177e4 | 1237 | |
645fcc9d | 1238 | err = validate_change(cs, trialcs); |
85d7b949 | 1239 | if (err < 0) |
645fcc9d | 1240 | goto out; |
029190c5 | 1241 | |
950592f7 MX |
1242 | err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1243 | if (err < 0) | |
1244 | goto out; | |
1245 | ||
029190c5 | 1246 | balance_flag_changed = (is_sched_load_balance(cs) != |
645fcc9d | 1247 | is_sched_load_balance(trialcs)); |
029190c5 | 1248 | |
950592f7 MX |
1249 | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) |
1250 | || (is_spread_page(cs) != is_spread_page(trialcs))); | |
1251 | ||
3d3f26a7 | 1252 | mutex_lock(&callback_mutex); |
645fcc9d | 1253 | cs->flags = trialcs->flags; |
3d3f26a7 | 1254 | mutex_unlock(&callback_mutex); |
85d7b949 | 1255 | |
300ed6cb | 1256 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
cf417141 | 1257 | async_rebuild_sched_domains(); |
029190c5 | 1258 | |
950592f7 MX |
1259 | if (spread_flag_changed) |
1260 | update_tasks_flags(cs, &heap); | |
1261 | heap_free(&heap); | |
645fcc9d LZ |
1262 | out: |
1263 | free_trial_cpuset(trialcs); | |
1264 | return err; | |
1da177e4 LT |
1265 | } |
1266 | ||
3e0d98b9 | 1267 | /* |
80f7228b | 1268 | * Frequency meter - How fast is some event occurring? |
3e0d98b9 PJ |
1269 | * |
1270 | * These routines manage a digitally filtered, constant time based, | |
1271 | * event frequency meter. There are four routines: | |
1272 | * fmeter_init() - initialize a frequency meter. | |
1273 | * fmeter_markevent() - called each time the event happens. | |
1274 | * fmeter_getrate() - returns the recent rate of such events. | |
1275 | * fmeter_update() - internal routine used to update fmeter. | |
1276 | * | |
1277 | * A common data structure is passed to each of these routines, | |
1278 | * which is used to keep track of the state required to manage the | |
1279 | * frequency meter and its digital filter. | |
1280 | * | |
1281 | * The filter works on the number of events marked per unit time. | |
1282 | * The filter is single-pole low-pass recursive (IIR). The time unit | |
1283 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | |
1284 | * simulate 3 decimal digits of precision (multiplied by 1000). | |
1285 | * | |
1286 | * With an FM_COEF of 933, and a time base of 1 second, the filter | |
1287 | * has a half-life of 10 seconds, meaning that if the events quit | |
1288 | * happening, then the rate returned from the fmeter_getrate() | |
1289 | * will be cut in half each 10 seconds, until it converges to zero. | |
1290 | * | |
1291 | * It is not worth doing a real infinitely recursive filter. If more | |
1292 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | |
1293 | * just compute FM_MAXTICKS ticks worth, by which point the level | |
1294 | * will be stable. | |
1295 | * | |
1296 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | |
1297 | * arithmetic overflow in the fmeter_update() routine. | |
1298 | * | |
1299 | * Given the simple 32 bit integer arithmetic used, this meter works | |
1300 | * best for reporting rates between one per millisecond (msec) and | |
1301 | * one per 32 (approx) seconds. At constant rates faster than one | |
1302 | * per msec it maxes out at values just under 1,000,000. At constant | |
1303 | * rates between one per msec, and one per second it will stabilize | |
1304 | * to a value N*1000, where N is the rate of events per second. | |
1305 | * At constant rates between one per second and one per 32 seconds, | |
1306 | * it will be choppy, moving up on the seconds that have an event, | |
1307 | * and then decaying until the next event. At rates slower than | |
1308 | * about one in 32 seconds, it decays all the way back to zero between | |
1309 | * each event. | |
1310 | */ | |
1311 | ||
1312 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | |
1313 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | |
1314 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | |
1315 | #define FM_SCALE 1000 /* faux fixed point scale */ | |
1316 | ||
1317 | /* Initialize a frequency meter */ | |
1318 | static void fmeter_init(struct fmeter *fmp) | |
1319 | { | |
1320 | fmp->cnt = 0; | |
1321 | fmp->val = 0; | |
1322 | fmp->time = 0; | |
1323 | spin_lock_init(&fmp->lock); | |
1324 | } | |
1325 | ||
1326 | /* Internal meter update - process cnt events and update value */ | |
1327 | static void fmeter_update(struct fmeter *fmp) | |
1328 | { | |
1329 | time_t now = get_seconds(); | |
1330 | time_t ticks = now - fmp->time; | |
1331 | ||
1332 | if (ticks == 0) | |
1333 | return; | |
1334 | ||
1335 | ticks = min(FM_MAXTICKS, ticks); | |
1336 | while (ticks-- > 0) | |
1337 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | |
1338 | fmp->time = now; | |
1339 | ||
1340 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | |
1341 | fmp->cnt = 0; | |
1342 | } | |
1343 | ||
1344 | /* Process any previous ticks, then bump cnt by one (times scale). */ | |
1345 | static void fmeter_markevent(struct fmeter *fmp) | |
1346 | { | |
1347 | spin_lock(&fmp->lock); | |
1348 | fmeter_update(fmp); | |
1349 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | |
1350 | spin_unlock(&fmp->lock); | |
1351 | } | |
1352 | ||
1353 | /* Process any previous ticks, then return current value. */ | |
1354 | static int fmeter_getrate(struct fmeter *fmp) | |
1355 | { | |
1356 | int val; | |
1357 | ||
1358 | spin_lock(&fmp->lock); | |
1359 | fmeter_update(fmp); | |
1360 | val = fmp->val; | |
1361 | spin_unlock(&fmp->lock); | |
1362 | return val; | |
1363 | } | |
1364 | ||
f780bdb7 BB |
1365 | /* |
1366 | * Protected by cgroup_lock. The nodemasks must be stored globally because | |
94196f51 TH |
1367 | * dynamically allocating them is not allowed in can_attach, and they must |
1368 | * persist until attach. | |
f780bdb7 BB |
1369 | */ |
1370 | static cpumask_var_t cpus_attach; | |
1371 | static nodemask_t cpuset_attach_nodemask_from; | |
1372 | static nodemask_t cpuset_attach_nodemask_to; | |
1373 | ||
2df167a3 | 1374 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
761b3ef5 | 1375 | static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) |
f780bdb7 | 1376 | { |
2f7ee569 | 1377 | struct cpuset *cs = cgroup_cs(cgrp); |
bb9d97b6 TH |
1378 | struct task_struct *task; |
1379 | int ret; | |
1da177e4 | 1380 | |
300ed6cb | 1381 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
1da177e4 | 1382 | return -ENOSPC; |
9985b0ba | 1383 | |
bb9d97b6 TH |
1384 | cgroup_taskset_for_each(task, cgrp, tset) { |
1385 | /* | |
1386 | * Kthreads bound to specific cpus cannot be moved to a new | |
1387 | * cpuset; we cannot change their cpu affinity and | |
1388 | * isolating such threads by their set of allowed nodes is | |
1389 | * unnecessary. Thus, cpusets are not applicable for such | |
1390 | * threads. This prevents checking for success of | |
1391 | * set_cpus_allowed_ptr() on all attached tasks before | |
1392 | * cpus_allowed may be changed. | |
1393 | */ | |
1394 | if (task->flags & PF_THREAD_BOUND) | |
1395 | return -EINVAL; | |
1396 | if ((ret = security_task_setscheduler(task))) | |
1397 | return ret; | |
1398 | } | |
f780bdb7 | 1399 | |
94196f51 | 1400 | /* prepare for attach */ |
f780bdb7 BB |
1401 | if (cs == &top_cpuset) |
1402 | cpumask_copy(cpus_attach, cpu_possible_mask); | |
1403 | else | |
1404 | guarantee_online_cpus(cs, cpus_attach); | |
1405 | ||
1406 | guarantee_online_mems(cs, &cpuset_attach_nodemask_to); | |
f780bdb7 | 1407 | |
94196f51 | 1408 | return 0; |
8793d854 | 1409 | } |
1da177e4 | 1410 | |
761b3ef5 | 1411 | static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) |
8793d854 | 1412 | { |
8793d854 | 1413 | struct mm_struct *mm; |
bb9d97b6 TH |
1414 | struct task_struct *task; |
1415 | struct task_struct *leader = cgroup_taskset_first(tset); | |
2f7ee569 TH |
1416 | struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset); |
1417 | struct cpuset *cs = cgroup_cs(cgrp); | |
1418 | struct cpuset *oldcs = cgroup_cs(oldcgrp); | |
22fb52dd | 1419 | |
bb9d97b6 TH |
1420 | cgroup_taskset_for_each(task, cgrp, tset) { |
1421 | /* | |
1422 | * can_attach beforehand should guarantee that this doesn't | |
1423 | * fail. TODO: have a better way to handle failure here | |
1424 | */ | |
1425 | WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); | |
1426 | ||
1427 | cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); | |
1428 | cpuset_update_task_spread_flag(cs, task); | |
1429 | } | |
22fb52dd | 1430 | |
f780bdb7 BB |
1431 | /* |
1432 | * Change mm, possibly for multiple threads in a threadgroup. This is | |
1433 | * expensive and may sleep. | |
1434 | */ | |
1435 | cpuset_attach_nodemask_from = oldcs->mems_allowed; | |
1436 | cpuset_attach_nodemask_to = cs->mems_allowed; | |
bb9d97b6 | 1437 | mm = get_task_mm(leader); |
4225399a | 1438 | if (mm) { |
f780bdb7 | 1439 | mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); |
2741a559 | 1440 | if (is_memory_migrate(cs)) |
f780bdb7 BB |
1441 | cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from, |
1442 | &cpuset_attach_nodemask_to); | |
4225399a PJ |
1443 | mmput(mm); |
1444 | } | |
1da177e4 LT |
1445 | } |
1446 | ||
1447 | /* The various types of files and directories in a cpuset file system */ | |
1448 | ||
1449 | typedef enum { | |
45b07ef3 | 1450 | FILE_MEMORY_MIGRATE, |
1da177e4 LT |
1451 | FILE_CPULIST, |
1452 | FILE_MEMLIST, | |
1453 | FILE_CPU_EXCLUSIVE, | |
1454 | FILE_MEM_EXCLUSIVE, | |
78608366 | 1455 | FILE_MEM_HARDWALL, |
029190c5 | 1456 | FILE_SCHED_LOAD_BALANCE, |
1d3504fc | 1457 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
3e0d98b9 PJ |
1458 | FILE_MEMORY_PRESSURE_ENABLED, |
1459 | FILE_MEMORY_PRESSURE, | |
825a46af PJ |
1460 | FILE_SPREAD_PAGE, |
1461 | FILE_SPREAD_SLAB, | |
1da177e4 LT |
1462 | } cpuset_filetype_t; |
1463 | ||
700fe1ab PM |
1464 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) |
1465 | { | |
1466 | int retval = 0; | |
1467 | struct cpuset *cs = cgroup_cs(cgrp); | |
1468 | cpuset_filetype_t type = cft->private; | |
1469 | ||
e3712395 | 1470 | if (!cgroup_lock_live_group(cgrp)) |
700fe1ab | 1471 | return -ENODEV; |
700fe1ab PM |
1472 | |
1473 | switch (type) { | |
1da177e4 | 1474 | case FILE_CPU_EXCLUSIVE: |
700fe1ab | 1475 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
1da177e4 LT |
1476 | break; |
1477 | case FILE_MEM_EXCLUSIVE: | |
700fe1ab | 1478 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
1da177e4 | 1479 | break; |
78608366 PM |
1480 | case FILE_MEM_HARDWALL: |
1481 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | |
1482 | break; | |
029190c5 | 1483 | case FILE_SCHED_LOAD_BALANCE: |
700fe1ab | 1484 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
1d3504fc | 1485 | break; |
45b07ef3 | 1486 | case FILE_MEMORY_MIGRATE: |
700fe1ab | 1487 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
45b07ef3 | 1488 | break; |
3e0d98b9 | 1489 | case FILE_MEMORY_PRESSURE_ENABLED: |
700fe1ab | 1490 | cpuset_memory_pressure_enabled = !!val; |
3e0d98b9 PJ |
1491 | break; |
1492 | case FILE_MEMORY_PRESSURE: | |
1493 | retval = -EACCES; | |
1494 | break; | |
825a46af | 1495 | case FILE_SPREAD_PAGE: |
700fe1ab | 1496 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
825a46af PJ |
1497 | break; |
1498 | case FILE_SPREAD_SLAB: | |
700fe1ab | 1499 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
825a46af | 1500 | break; |
1da177e4 LT |
1501 | default: |
1502 | retval = -EINVAL; | |
700fe1ab | 1503 | break; |
1da177e4 | 1504 | } |
8793d854 | 1505 | cgroup_unlock(); |
1da177e4 LT |
1506 | return retval; |
1507 | } | |
1508 | ||
5be7a479 PM |
1509 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) |
1510 | { | |
1511 | int retval = 0; | |
1512 | struct cpuset *cs = cgroup_cs(cgrp); | |
1513 | cpuset_filetype_t type = cft->private; | |
1514 | ||
e3712395 | 1515 | if (!cgroup_lock_live_group(cgrp)) |
5be7a479 | 1516 | return -ENODEV; |
e3712395 | 1517 | |
5be7a479 PM |
1518 | switch (type) { |
1519 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1520 | retval = update_relax_domain_level(cs, val); | |
1521 | break; | |
1522 | default: | |
1523 | retval = -EINVAL; | |
1524 | break; | |
1525 | } | |
1526 | cgroup_unlock(); | |
1527 | return retval; | |
1528 | } | |
1529 | ||
e3712395 PM |
1530 | /* |
1531 | * Common handling for a write to a "cpus" or "mems" file. | |
1532 | */ | |
1533 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | |
1534 | const char *buf) | |
1535 | { | |
1536 | int retval = 0; | |
645fcc9d LZ |
1537 | struct cpuset *cs = cgroup_cs(cgrp); |
1538 | struct cpuset *trialcs; | |
e3712395 PM |
1539 | |
1540 | if (!cgroup_lock_live_group(cgrp)) | |
1541 | return -ENODEV; | |
1542 | ||
645fcc9d | 1543 | trialcs = alloc_trial_cpuset(cs); |
b75f38d6 LZ |
1544 | if (!trialcs) { |
1545 | retval = -ENOMEM; | |
1546 | goto out; | |
1547 | } | |
645fcc9d | 1548 | |
e3712395 PM |
1549 | switch (cft->private) { |
1550 | case FILE_CPULIST: | |
645fcc9d | 1551 | retval = update_cpumask(cs, trialcs, buf); |
e3712395 PM |
1552 | break; |
1553 | case FILE_MEMLIST: | |
645fcc9d | 1554 | retval = update_nodemask(cs, trialcs, buf); |
e3712395 PM |
1555 | break; |
1556 | default: | |
1557 | retval = -EINVAL; | |
1558 | break; | |
1559 | } | |
645fcc9d LZ |
1560 | |
1561 | free_trial_cpuset(trialcs); | |
b75f38d6 | 1562 | out: |
e3712395 PM |
1563 | cgroup_unlock(); |
1564 | return retval; | |
1565 | } | |
1566 | ||
1da177e4 LT |
1567 | /* |
1568 | * These ascii lists should be read in a single call, by using a user | |
1569 | * buffer large enough to hold the entire map. If read in smaller | |
1570 | * chunks, there is no guarantee of atomicity. Since the display format | |
1571 | * used, list of ranges of sequential numbers, is variable length, | |
1572 | * and since these maps can change value dynamically, one could read | |
1573 | * gibberish by doing partial reads while a list was changing. | |
1574 | * A single large read to a buffer that crosses a page boundary is | |
1575 | * ok, because the result being copied to user land is not recomputed | |
1576 | * across a page fault. | |
1577 | */ | |
1578 | ||
9303e0c4 | 1579 | static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs) |
1da177e4 | 1580 | { |
9303e0c4 | 1581 | size_t count; |
1da177e4 | 1582 | |
3d3f26a7 | 1583 | mutex_lock(&callback_mutex); |
9303e0c4 | 1584 | count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); |
3d3f26a7 | 1585 | mutex_unlock(&callback_mutex); |
1da177e4 | 1586 | |
9303e0c4 | 1587 | return count; |
1da177e4 LT |
1588 | } |
1589 | ||
9303e0c4 | 1590 | static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs) |
1da177e4 | 1591 | { |
9303e0c4 | 1592 | size_t count; |
1da177e4 | 1593 | |
3d3f26a7 | 1594 | mutex_lock(&callback_mutex); |
9303e0c4 | 1595 | count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed); |
3d3f26a7 | 1596 | mutex_unlock(&callback_mutex); |
1da177e4 | 1597 | |
9303e0c4 | 1598 | return count; |
1da177e4 LT |
1599 | } |
1600 | ||
8793d854 PM |
1601 | static ssize_t cpuset_common_file_read(struct cgroup *cont, |
1602 | struct cftype *cft, | |
1603 | struct file *file, | |
1604 | char __user *buf, | |
1605 | size_t nbytes, loff_t *ppos) | |
1da177e4 | 1606 | { |
8793d854 | 1607 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 LT |
1608 | cpuset_filetype_t type = cft->private; |
1609 | char *page; | |
1610 | ssize_t retval = 0; | |
1611 | char *s; | |
1da177e4 | 1612 | |
e12ba74d | 1613 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) |
1da177e4 LT |
1614 | return -ENOMEM; |
1615 | ||
1616 | s = page; | |
1617 | ||
1618 | switch (type) { | |
1619 | case FILE_CPULIST: | |
1620 | s += cpuset_sprintf_cpulist(s, cs); | |
1621 | break; | |
1622 | case FILE_MEMLIST: | |
1623 | s += cpuset_sprintf_memlist(s, cs); | |
1624 | break; | |
1da177e4 LT |
1625 | default: |
1626 | retval = -EINVAL; | |
1627 | goto out; | |
1628 | } | |
1629 | *s++ = '\n'; | |
1da177e4 | 1630 | |
eacaa1f5 | 1631 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); |
1da177e4 LT |
1632 | out: |
1633 | free_page((unsigned long)page); | |
1634 | return retval; | |
1635 | } | |
1636 | ||
700fe1ab PM |
1637 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) |
1638 | { | |
1639 | struct cpuset *cs = cgroup_cs(cont); | |
1640 | cpuset_filetype_t type = cft->private; | |
1641 | switch (type) { | |
1642 | case FILE_CPU_EXCLUSIVE: | |
1643 | return is_cpu_exclusive(cs); | |
1644 | case FILE_MEM_EXCLUSIVE: | |
1645 | return is_mem_exclusive(cs); | |
78608366 PM |
1646 | case FILE_MEM_HARDWALL: |
1647 | return is_mem_hardwall(cs); | |
700fe1ab PM |
1648 | case FILE_SCHED_LOAD_BALANCE: |
1649 | return is_sched_load_balance(cs); | |
1650 | case FILE_MEMORY_MIGRATE: | |
1651 | return is_memory_migrate(cs); | |
1652 | case FILE_MEMORY_PRESSURE_ENABLED: | |
1653 | return cpuset_memory_pressure_enabled; | |
1654 | case FILE_MEMORY_PRESSURE: | |
1655 | return fmeter_getrate(&cs->fmeter); | |
1656 | case FILE_SPREAD_PAGE: | |
1657 | return is_spread_page(cs); | |
1658 | case FILE_SPREAD_SLAB: | |
1659 | return is_spread_slab(cs); | |
1660 | default: | |
1661 | BUG(); | |
1662 | } | |
cf417141 MK |
1663 | |
1664 | /* Unreachable but makes gcc happy */ | |
1665 | return 0; | |
700fe1ab | 1666 | } |
1da177e4 | 1667 | |
5be7a479 PM |
1668 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) |
1669 | { | |
1670 | struct cpuset *cs = cgroup_cs(cont); | |
1671 | cpuset_filetype_t type = cft->private; | |
1672 | switch (type) { | |
1673 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1674 | return cs->relax_domain_level; | |
1675 | default: | |
1676 | BUG(); | |
1677 | } | |
cf417141 MK |
1678 | |
1679 | /* Unrechable but makes gcc happy */ | |
1680 | return 0; | |
5be7a479 PM |
1681 | } |
1682 | ||
1da177e4 LT |
1683 | |
1684 | /* | |
1685 | * for the common functions, 'private' gives the type of file | |
1686 | */ | |
1687 | ||
addf2c73 PM |
1688 | static struct cftype files[] = { |
1689 | { | |
1690 | .name = "cpus", | |
1691 | .read = cpuset_common_file_read, | |
e3712395 PM |
1692 | .write_string = cpuset_write_resmask, |
1693 | .max_write_len = (100U + 6 * NR_CPUS), | |
addf2c73 PM |
1694 | .private = FILE_CPULIST, |
1695 | }, | |
1696 | ||
1697 | { | |
1698 | .name = "mems", | |
1699 | .read = cpuset_common_file_read, | |
e3712395 PM |
1700 | .write_string = cpuset_write_resmask, |
1701 | .max_write_len = (100U + 6 * MAX_NUMNODES), | |
addf2c73 PM |
1702 | .private = FILE_MEMLIST, |
1703 | }, | |
1704 | ||
1705 | { | |
1706 | .name = "cpu_exclusive", | |
1707 | .read_u64 = cpuset_read_u64, | |
1708 | .write_u64 = cpuset_write_u64, | |
1709 | .private = FILE_CPU_EXCLUSIVE, | |
1710 | }, | |
1711 | ||
1712 | { | |
1713 | .name = "mem_exclusive", | |
1714 | .read_u64 = cpuset_read_u64, | |
1715 | .write_u64 = cpuset_write_u64, | |
1716 | .private = FILE_MEM_EXCLUSIVE, | |
1717 | }, | |
1718 | ||
78608366 PM |
1719 | { |
1720 | .name = "mem_hardwall", | |
1721 | .read_u64 = cpuset_read_u64, | |
1722 | .write_u64 = cpuset_write_u64, | |
1723 | .private = FILE_MEM_HARDWALL, | |
1724 | }, | |
1725 | ||
addf2c73 PM |
1726 | { |
1727 | .name = "sched_load_balance", | |
1728 | .read_u64 = cpuset_read_u64, | |
1729 | .write_u64 = cpuset_write_u64, | |
1730 | .private = FILE_SCHED_LOAD_BALANCE, | |
1731 | }, | |
1732 | ||
1733 | { | |
1734 | .name = "sched_relax_domain_level", | |
5be7a479 PM |
1735 | .read_s64 = cpuset_read_s64, |
1736 | .write_s64 = cpuset_write_s64, | |
addf2c73 PM |
1737 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
1738 | }, | |
1739 | ||
1740 | { | |
1741 | .name = "memory_migrate", | |
1742 | .read_u64 = cpuset_read_u64, | |
1743 | .write_u64 = cpuset_write_u64, | |
1744 | .private = FILE_MEMORY_MIGRATE, | |
1745 | }, | |
1746 | ||
1747 | { | |
1748 | .name = "memory_pressure", | |
1749 | .read_u64 = cpuset_read_u64, | |
1750 | .write_u64 = cpuset_write_u64, | |
1751 | .private = FILE_MEMORY_PRESSURE, | |
099fca32 | 1752 | .mode = S_IRUGO, |
addf2c73 PM |
1753 | }, |
1754 | ||
1755 | { | |
1756 | .name = "memory_spread_page", | |
1757 | .read_u64 = cpuset_read_u64, | |
1758 | .write_u64 = cpuset_write_u64, | |
1759 | .private = FILE_SPREAD_PAGE, | |
1760 | }, | |
1761 | ||
1762 | { | |
1763 | .name = "memory_spread_slab", | |
1764 | .read_u64 = cpuset_read_u64, | |
1765 | .write_u64 = cpuset_write_u64, | |
1766 | .private = FILE_SPREAD_SLAB, | |
1767 | }, | |
3e0d98b9 | 1768 | |
4baf6e33 TH |
1769 | { |
1770 | .name = "memory_pressure_enabled", | |
1771 | .flags = CFTYPE_ONLY_ON_ROOT, | |
1772 | .read_u64 = cpuset_read_u64, | |
1773 | .write_u64 = cpuset_write_u64, | |
1774 | .private = FILE_MEMORY_PRESSURE_ENABLED, | |
1775 | }, | |
1da177e4 | 1776 | |
4baf6e33 TH |
1777 | { } /* terminate */ |
1778 | }; | |
1da177e4 | 1779 | |
8793d854 | 1780 | /* |
a77aea92 DL |
1781 | * post_clone() is called during cgroup_create() when the |
1782 | * clone_children mount argument was specified. The cgroup | |
1783 | * can not yet have any tasks. | |
8793d854 PM |
1784 | * |
1785 | * Currently we refuse to set up the cgroup - thereby | |
1786 | * refusing the task to be entered, and as a result refusing | |
1787 | * the sys_unshare() or clone() which initiated it - if any | |
1788 | * sibling cpusets have exclusive cpus or mem. | |
1789 | * | |
1790 | * If this becomes a problem for some users who wish to | |
1791 | * allow that scenario, then cpuset_post_clone() could be | |
1792 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | |
2df167a3 PM |
1793 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex |
1794 | * held. | |
8793d854 | 1795 | */ |
761b3ef5 | 1796 | static void cpuset_post_clone(struct cgroup *cgroup) |
8793d854 PM |
1797 | { |
1798 | struct cgroup *parent, *child; | |
1799 | struct cpuset *cs, *parent_cs; | |
1800 | ||
1801 | parent = cgroup->parent; | |
1802 | list_for_each_entry(child, &parent->children, sibling) { | |
1803 | cs = cgroup_cs(child); | |
1804 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | |
1805 | return; | |
1806 | } | |
1807 | cs = cgroup_cs(cgroup); | |
1808 | parent_cs = cgroup_cs(parent); | |
1809 | ||
523fb486 | 1810 | mutex_lock(&callback_mutex); |
8793d854 | 1811 | cs->mems_allowed = parent_cs->mems_allowed; |
300ed6cb | 1812 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); |
523fb486 | 1813 | mutex_unlock(&callback_mutex); |
8793d854 PM |
1814 | return; |
1815 | } | |
1816 | ||
1da177e4 LT |
1817 | /* |
1818 | * cpuset_create - create a cpuset | |
2df167a3 | 1819 | * cont: control group that the new cpuset will be part of |
1da177e4 LT |
1820 | */ |
1821 | ||
761b3ef5 | 1822 | static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont) |
1da177e4 LT |
1823 | { |
1824 | struct cpuset *cs; | |
8793d854 | 1825 | struct cpuset *parent; |
1da177e4 | 1826 | |
8793d854 | 1827 | if (!cont->parent) { |
8793d854 PM |
1828 | return &top_cpuset.css; |
1829 | } | |
1830 | parent = cgroup_cs(cont->parent); | |
1da177e4 LT |
1831 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); |
1832 | if (!cs) | |
8793d854 | 1833 | return ERR_PTR(-ENOMEM); |
300ed6cb LZ |
1834 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { |
1835 | kfree(cs); | |
1836 | return ERR_PTR(-ENOMEM); | |
1837 | } | |
1da177e4 | 1838 | |
1da177e4 | 1839 | cs->flags = 0; |
825a46af PJ |
1840 | if (is_spread_page(parent)) |
1841 | set_bit(CS_SPREAD_PAGE, &cs->flags); | |
1842 | if (is_spread_slab(parent)) | |
1843 | set_bit(CS_SPREAD_SLAB, &cs->flags); | |
029190c5 | 1844 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
300ed6cb | 1845 | cpumask_clear(cs->cpus_allowed); |
f9a86fcb | 1846 | nodes_clear(cs->mems_allowed); |
3e0d98b9 | 1847 | fmeter_init(&cs->fmeter); |
1d3504fc | 1848 | cs->relax_domain_level = -1; |
1da177e4 LT |
1849 | |
1850 | cs->parent = parent; | |
202f72d5 | 1851 | number_of_cpusets++; |
8793d854 | 1852 | return &cs->css ; |
1da177e4 LT |
1853 | } |
1854 | ||
029190c5 | 1855 | /* |
029190c5 PJ |
1856 | * If the cpuset being removed has its flag 'sched_load_balance' |
1857 | * enabled, then simulate turning sched_load_balance off, which | |
cf417141 | 1858 | * will call async_rebuild_sched_domains(). |
029190c5 PJ |
1859 | */ |
1860 | ||
761b3ef5 | 1861 | static void cpuset_destroy(struct cgroup *cont) |
1da177e4 | 1862 | { |
8793d854 | 1863 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1864 | |
029190c5 | 1865 | if (is_sched_load_balance(cs)) |
700fe1ab | 1866 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
029190c5 | 1867 | |
202f72d5 | 1868 | number_of_cpusets--; |
300ed6cb | 1869 | free_cpumask_var(cs->cpus_allowed); |
8793d854 | 1870 | kfree(cs); |
1da177e4 LT |
1871 | } |
1872 | ||
8793d854 PM |
1873 | struct cgroup_subsys cpuset_subsys = { |
1874 | .name = "cpuset", | |
1875 | .create = cpuset_create, | |
cf417141 | 1876 | .destroy = cpuset_destroy, |
8793d854 PM |
1877 | .can_attach = cpuset_can_attach, |
1878 | .attach = cpuset_attach, | |
8793d854 PM |
1879 | .post_clone = cpuset_post_clone, |
1880 | .subsys_id = cpuset_subsys_id, | |
4baf6e33 | 1881 | .base_cftypes = files, |
8793d854 PM |
1882 | .early_init = 1, |
1883 | }; | |
1884 | ||
1da177e4 LT |
1885 | /** |
1886 | * cpuset_init - initialize cpusets at system boot | |
1887 | * | |
1888 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
1889 | **/ | |
1890 | ||
1891 | int __init cpuset_init(void) | |
1892 | { | |
8793d854 | 1893 | int err = 0; |
1da177e4 | 1894 | |
58568d2a MX |
1895 | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) |
1896 | BUG(); | |
1897 | ||
300ed6cb | 1898 | cpumask_setall(top_cpuset.cpus_allowed); |
f9a86fcb | 1899 | nodes_setall(top_cpuset.mems_allowed); |
1da177e4 | 1900 | |
3e0d98b9 | 1901 | fmeter_init(&top_cpuset.fmeter); |
029190c5 | 1902 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
1d3504fc | 1903 | top_cpuset.relax_domain_level = -1; |
1da177e4 | 1904 | |
1da177e4 LT |
1905 | err = register_filesystem(&cpuset_fs_type); |
1906 | if (err < 0) | |
8793d854 PM |
1907 | return err; |
1908 | ||
2341d1b6 LZ |
1909 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) |
1910 | BUG(); | |
1911 | ||
202f72d5 | 1912 | number_of_cpusets = 1; |
8793d854 | 1913 | return 0; |
1da177e4 LT |
1914 | } |
1915 | ||
956db3ca CW |
1916 | /** |
1917 | * cpuset_do_move_task - move a given task to another cpuset | |
1918 | * @tsk: pointer to task_struct the task to move | |
1919 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
1920 | * | |
1921 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1922 | * Return nonzero to stop the walk through the tasks. | |
1923 | */ | |
9e0c914c AB |
1924 | static void cpuset_do_move_task(struct task_struct *tsk, |
1925 | struct cgroup_scanner *scan) | |
956db3ca | 1926 | { |
7f81b1ae | 1927 | struct cgroup *new_cgroup = scan->data; |
956db3ca | 1928 | |
7f81b1ae | 1929 | cgroup_attach_task(new_cgroup, tsk); |
956db3ca CW |
1930 | } |
1931 | ||
1932 | /** | |
1933 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | |
1934 | * @from: cpuset in which the tasks currently reside | |
1935 | * @to: cpuset to which the tasks will be moved | |
1936 | * | |
c8d9c90c PJ |
1937 | * Called with cgroup_mutex held |
1938 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
956db3ca CW |
1939 | * |
1940 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1941 | * calling callback functions for each. | |
1942 | */ | |
1943 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | |
1944 | { | |
7f81b1ae | 1945 | struct cgroup_scanner scan; |
956db3ca | 1946 | |
7f81b1ae LZ |
1947 | scan.cg = from->css.cgroup; |
1948 | scan.test_task = NULL; /* select all tasks in cgroup */ | |
1949 | scan.process_task = cpuset_do_move_task; | |
1950 | scan.heap = NULL; | |
1951 | scan.data = to->css.cgroup; | |
956db3ca | 1952 | |
7f81b1ae | 1953 | if (cgroup_scan_tasks(&scan)) |
956db3ca CW |
1954 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
1955 | "cgroup_scan_tasks failed\n"); | |
1956 | } | |
1957 | ||
b1aac8bb | 1958 | /* |
cf417141 | 1959 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
b1aac8bb PJ |
1960 | * or memory nodes, we need to walk over the cpuset hierarchy, |
1961 | * removing that CPU or node from all cpusets. If this removes the | |
956db3ca CW |
1962 | * last CPU or node from a cpuset, then move the tasks in the empty |
1963 | * cpuset to its next-highest non-empty parent. | |
b1aac8bb | 1964 | * |
c8d9c90c PJ |
1965 | * Called with cgroup_mutex held |
1966 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
b1aac8bb | 1967 | */ |
956db3ca CW |
1968 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
1969 | { | |
1970 | struct cpuset *parent; | |
1971 | ||
c8d9c90c PJ |
1972 | /* |
1973 | * The cgroup's css_sets list is in use if there are tasks | |
1974 | * in the cpuset; the list is empty if there are none; | |
1975 | * the cs->css.refcnt seems always 0. | |
1976 | */ | |
956db3ca CW |
1977 | if (list_empty(&cs->css.cgroup->css_sets)) |
1978 | return; | |
b1aac8bb | 1979 | |
956db3ca CW |
1980 | /* |
1981 | * Find its next-highest non-empty parent, (top cpuset | |
1982 | * has online cpus, so can't be empty). | |
1983 | */ | |
1984 | parent = cs->parent; | |
300ed6cb | 1985 | while (cpumask_empty(parent->cpus_allowed) || |
b4501295 | 1986 | nodes_empty(parent->mems_allowed)) |
956db3ca | 1987 | parent = parent->parent; |
956db3ca CW |
1988 | |
1989 | move_member_tasks_to_cpuset(cs, parent); | |
1990 | } | |
1991 | ||
1992 | /* | |
1993 | * Walk the specified cpuset subtree and look for empty cpusets. | |
1994 | * The tasks of such cpuset must be moved to a parent cpuset. | |
1995 | * | |
2df167a3 | 1996 | * Called with cgroup_mutex held. We take callback_mutex to modify |
956db3ca CW |
1997 | * cpus_allowed and mems_allowed. |
1998 | * | |
1999 | * This walk processes the tree from top to bottom, completing one layer | |
2000 | * before dropping down to the next. It always processes a node before | |
2001 | * any of its children. | |
2002 | * | |
2003 | * For now, since we lack memory hot unplug, we'll never see a cpuset | |
2004 | * that has tasks along with an empty 'mems'. But if we did see such | |
2005 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | |
2006 | */ | |
d294eb83 | 2007 | static void scan_for_empty_cpusets(struct cpuset *root) |
b1aac8bb | 2008 | { |
8d1e6266 | 2009 | LIST_HEAD(queue); |
956db3ca CW |
2010 | struct cpuset *cp; /* scans cpusets being updated */ |
2011 | struct cpuset *child; /* scans child cpusets of cp */ | |
8793d854 | 2012 | struct cgroup *cont; |
ee24d379 | 2013 | static nodemask_t oldmems; /* protected by cgroup_mutex */ |
b1aac8bb | 2014 | |
956db3ca CW |
2015 | list_add_tail((struct list_head *)&root->stack_list, &queue); |
2016 | ||
956db3ca | 2017 | while (!list_empty(&queue)) { |
8d1e6266 | 2018 | cp = list_first_entry(&queue, struct cpuset, stack_list); |
956db3ca CW |
2019 | list_del(queue.next); |
2020 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
2021 | child = cgroup_cs(cont); | |
2022 | list_add_tail(&child->stack_list, &queue); | |
2023 | } | |
b4501295 PJ |
2024 | |
2025 | /* Continue past cpusets with all cpus, mems online */ | |
6ad4c188 | 2026 | if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) && |
b4501295 PJ |
2027 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) |
2028 | continue; | |
2029 | ||
ee24d379 | 2030 | oldmems = cp->mems_allowed; |
f9b4fb8d | 2031 | |
956db3ca | 2032 | /* Remove offline cpus and mems from this cpuset. */ |
b4501295 | 2033 | mutex_lock(&callback_mutex); |
300ed6cb | 2034 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, |
6ad4c188 | 2035 | cpu_active_mask); |
956db3ca CW |
2036 | nodes_and(cp->mems_allowed, cp->mems_allowed, |
2037 | node_states[N_HIGH_MEMORY]); | |
b4501295 PJ |
2038 | mutex_unlock(&callback_mutex); |
2039 | ||
2040 | /* Move tasks from the empty cpuset to a parent */ | |
300ed6cb | 2041 | if (cpumask_empty(cp->cpus_allowed) || |
b4501295 | 2042 | nodes_empty(cp->mems_allowed)) |
956db3ca | 2043 | remove_tasks_in_empty_cpuset(cp); |
f9b4fb8d | 2044 | else { |
4e74339a | 2045 | update_tasks_cpumask(cp, NULL); |
ee24d379 | 2046 | update_tasks_nodemask(cp, &oldmems, NULL); |
f9b4fb8d | 2047 | } |
b1aac8bb PJ |
2048 | } |
2049 | } | |
2050 | ||
4c4d50f7 PJ |
2051 | /* |
2052 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | |
2053 | * period. This is necessary in order to make cpusets transparent | |
2054 | * (of no affect) on systems that are actively using CPU hotplug | |
2055 | * but making no active use of cpusets. | |
2056 | * | |
38837fc7 | 2057 | * This routine ensures that top_cpuset.cpus_allowed tracks |
3a101d05 | 2058 | * cpu_active_mask on each CPU hotplug (cpuhp) event. |
cf417141 MK |
2059 | * |
2060 | * Called within get_online_cpus(). Needs to call cgroup_lock() | |
2061 | * before calling generate_sched_domains(). | |
4c4d50f7 | 2062 | */ |
0b2e918a | 2063 | void cpuset_update_active_cpus(void) |
4c4d50f7 | 2064 | { |
cf417141 | 2065 | struct sched_domain_attr *attr; |
acc3f5d7 | 2066 | cpumask_var_t *doms; |
cf417141 MK |
2067 | int ndoms; |
2068 | ||
cf417141 | 2069 | cgroup_lock(); |
0b4217b3 | 2070 | mutex_lock(&callback_mutex); |
6ad4c188 | 2071 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
0b4217b3 | 2072 | mutex_unlock(&callback_mutex); |
cf417141 MK |
2073 | scan_for_empty_cpusets(&top_cpuset); |
2074 | ndoms = generate_sched_domains(&doms, &attr); | |
2075 | cgroup_unlock(); | |
2076 | ||
2077 | /* Have scheduler rebuild the domains */ | |
2078 | partition_sched_domains(ndoms, doms, attr); | |
4c4d50f7 | 2079 | } |
4c4d50f7 | 2080 | |
b1aac8bb | 2081 | #ifdef CONFIG_MEMORY_HOTPLUG |
38837fc7 | 2082 | /* |
0e1e7c7a | 2083 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. |
cf417141 MK |
2084 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. |
2085 | * See also the previous routine cpuset_track_online_cpus(). | |
38837fc7 | 2086 | */ |
f481891f MX |
2087 | static int cpuset_track_online_nodes(struct notifier_block *self, |
2088 | unsigned long action, void *arg) | |
38837fc7 | 2089 | { |
ee24d379 | 2090 | static nodemask_t oldmems; /* protected by cgroup_mutex */ |
5ab116c9 | 2091 | |
cf417141 | 2092 | cgroup_lock(); |
f481891f MX |
2093 | switch (action) { |
2094 | case MEM_ONLINE: | |
ee24d379 | 2095 | oldmems = top_cpuset.mems_allowed; |
0b4217b3 | 2096 | mutex_lock(&callback_mutex); |
f481891f | 2097 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
0b4217b3 | 2098 | mutex_unlock(&callback_mutex); |
ee24d379 | 2099 | update_tasks_nodemask(&top_cpuset, &oldmems, NULL); |
5ab116c9 MX |
2100 | break; |
2101 | case MEM_OFFLINE: | |
2102 | /* | |
2103 | * needn't update top_cpuset.mems_allowed explicitly because | |
2104 | * scan_for_empty_cpusets() will update it. | |
2105 | */ | |
2106 | scan_for_empty_cpusets(&top_cpuset); | |
f481891f MX |
2107 | break; |
2108 | default: | |
2109 | break; | |
2110 | } | |
cf417141 | 2111 | cgroup_unlock(); |
53feb297 | 2112 | |
f481891f | 2113 | return NOTIFY_OK; |
38837fc7 PJ |
2114 | } |
2115 | #endif | |
2116 | ||
1da177e4 LT |
2117 | /** |
2118 | * cpuset_init_smp - initialize cpus_allowed | |
2119 | * | |
2120 | * Description: Finish top cpuset after cpu, node maps are initialized | |
2121 | **/ | |
2122 | ||
2123 | void __init cpuset_init_smp(void) | |
2124 | { | |
6ad4c188 | 2125 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
0e1e7c7a | 2126 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
4c4d50f7 | 2127 | |
f481891f | 2128 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); |
f90d4118 MX |
2129 | |
2130 | cpuset_wq = create_singlethread_workqueue("cpuset"); | |
2131 | BUG_ON(!cpuset_wq); | |
1da177e4 LT |
2132 | } |
2133 | ||
2134 | /** | |
1da177e4 LT |
2135 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
2136 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
6af866af | 2137 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
1da177e4 | 2138 | * |
300ed6cb | 2139 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
1da177e4 | 2140 | * attached to the specified @tsk. Guaranteed to return some non-empty |
5f054e31 | 2141 | * subset of cpu_online_mask, even if this means going outside the |
1da177e4 LT |
2142 | * tasks cpuset. |
2143 | **/ | |
2144 | ||
6af866af | 2145 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
1da177e4 | 2146 | { |
3d3f26a7 | 2147 | mutex_lock(&callback_mutex); |
909d75a3 | 2148 | task_lock(tsk); |
f9a86fcb | 2149 | guarantee_online_cpus(task_cs(tsk), pmask); |
909d75a3 | 2150 | task_unlock(tsk); |
897f0b3c | 2151 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
2152 | } |
2153 | ||
2baab4e9 | 2154 | void cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
9084bb82 ON |
2155 | { |
2156 | const struct cpuset *cs; | |
9084bb82 ON |
2157 | |
2158 | rcu_read_lock(); | |
2159 | cs = task_cs(tsk); | |
2160 | if (cs) | |
1e1b6c51 | 2161 | do_set_cpus_allowed(tsk, cs->cpus_allowed); |
9084bb82 ON |
2162 | rcu_read_unlock(); |
2163 | ||
2164 | /* | |
2165 | * We own tsk->cpus_allowed, nobody can change it under us. | |
2166 | * | |
2167 | * But we used cs && cs->cpus_allowed lockless and thus can | |
2168 | * race with cgroup_attach_task() or update_cpumask() and get | |
2169 | * the wrong tsk->cpus_allowed. However, both cases imply the | |
2170 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | |
2171 | * which takes task_rq_lock(). | |
2172 | * | |
2173 | * If we are called after it dropped the lock we must see all | |
2174 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | |
2175 | * set any mask even if it is not right from task_cs() pov, | |
2176 | * the pending set_cpus_allowed_ptr() will fix things. | |
2baab4e9 PZ |
2177 | * |
2178 | * select_fallback_rq() will fix things ups and set cpu_possible_mask | |
2179 | * if required. | |
9084bb82 | 2180 | */ |
9084bb82 ON |
2181 | } |
2182 | ||
1da177e4 LT |
2183 | void cpuset_init_current_mems_allowed(void) |
2184 | { | |
f9a86fcb | 2185 | nodes_setall(current->mems_allowed); |
1da177e4 LT |
2186 | } |
2187 | ||
909d75a3 PJ |
2188 | /** |
2189 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | |
2190 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | |
2191 | * | |
2192 | * Description: Returns the nodemask_t mems_allowed of the cpuset | |
2193 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
0e1e7c7a | 2194 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the |
909d75a3 PJ |
2195 | * tasks cpuset. |
2196 | **/ | |
2197 | ||
2198 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |
2199 | { | |
2200 | nodemask_t mask; | |
2201 | ||
3d3f26a7 | 2202 | mutex_lock(&callback_mutex); |
909d75a3 | 2203 | task_lock(tsk); |
8793d854 | 2204 | guarantee_online_mems(task_cs(tsk), &mask); |
909d75a3 | 2205 | task_unlock(tsk); |
3d3f26a7 | 2206 | mutex_unlock(&callback_mutex); |
909d75a3 PJ |
2207 | |
2208 | return mask; | |
2209 | } | |
2210 | ||
d9fd8a6d | 2211 | /** |
19770b32 MG |
2212 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
2213 | * @nodemask: the nodemask to be checked | |
d9fd8a6d | 2214 | * |
19770b32 | 2215 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
1da177e4 | 2216 | */ |
19770b32 | 2217 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
1da177e4 | 2218 | { |
19770b32 | 2219 | return nodes_intersects(*nodemask, current->mems_allowed); |
1da177e4 LT |
2220 | } |
2221 | ||
9bf2229f | 2222 | /* |
78608366 PM |
2223 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
2224 | * mem_hardwall ancestor to the specified cpuset. Call holding | |
2225 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | |
2226 | * (an unusual configuration), then returns the root cpuset. | |
9bf2229f | 2227 | */ |
78608366 | 2228 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) |
9bf2229f | 2229 | { |
78608366 | 2230 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) |
9bf2229f PJ |
2231 | cs = cs->parent; |
2232 | return cs; | |
2233 | } | |
2234 | ||
d9fd8a6d | 2235 | /** |
a1bc5a4e DR |
2236 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? |
2237 | * @node: is this an allowed node? | |
02a0e53d | 2238 | * @gfp_mask: memory allocation flags |
d9fd8a6d | 2239 | * |
a1bc5a4e DR |
2240 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2241 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2242 | * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest | |
2243 | * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been | |
2244 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE | |
2245 | * flag, yes. | |
9bf2229f PJ |
2246 | * Otherwise, no. |
2247 | * | |
a1bc5a4e DR |
2248 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to |
2249 | * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() | |
2250 | * might sleep, and might allow a node from an enclosing cpuset. | |
02a0e53d | 2251 | * |
a1bc5a4e DR |
2252 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall |
2253 | * cpusets, and never sleeps. | |
02a0e53d PJ |
2254 | * |
2255 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2256 | * by forcibly using a zonelist starting at a specified node, and by | |
2257 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2258 | * any node on the zonelist except the first. By the time any such | |
2259 | * calls get to this routine, we should just shut up and say 'yes'. | |
2260 | * | |
9bf2229f | 2261 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
c596d9f3 DR |
2262 | * and do not allow allocations outside the current tasks cpuset |
2263 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | |
9bf2229f | 2264 | * GFP_KERNEL allocations are not so marked, so can escape to the |
78608366 | 2265 | * nearest enclosing hardwalled ancestor cpuset. |
9bf2229f | 2266 | * |
02a0e53d PJ |
2267 | * Scanning up parent cpusets requires callback_mutex. The |
2268 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | |
2269 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | |
2270 | * current tasks mems_allowed came up empty on the first pass over | |
2271 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | |
2272 | * cpuset are short of memory, might require taking the callback_mutex | |
2273 | * mutex. | |
9bf2229f | 2274 | * |
36be57ff | 2275 | * The first call here from mm/page_alloc:get_page_from_freelist() |
02a0e53d PJ |
2276 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
2277 | * so no allocation on a node outside the cpuset is allowed (unless | |
2278 | * in interrupt, of course). | |
36be57ff PJ |
2279 | * |
2280 | * The second pass through get_page_from_freelist() doesn't even call | |
2281 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | |
2282 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | |
2283 | * in alloc_flags. That logic and the checks below have the combined | |
2284 | * affect that: | |
9bf2229f PJ |
2285 | * in_interrupt - any node ok (current task context irrelevant) |
2286 | * GFP_ATOMIC - any node ok | |
c596d9f3 | 2287 | * TIF_MEMDIE - any node ok |
78608366 | 2288 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
9bf2229f | 2289 | * GFP_USER - only nodes in current tasks mems allowed ok. |
36be57ff PJ |
2290 | * |
2291 | * Rule: | |
a1bc5a4e | 2292 | * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you |
36be57ff PJ |
2293 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2294 | * the code that might scan up ancestor cpusets and sleep. | |
02a0e53d | 2295 | */ |
a1bc5a4e | 2296 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) |
1da177e4 | 2297 | { |
9bf2229f | 2298 | const struct cpuset *cs; /* current cpuset ancestors */ |
29afd49b | 2299 | int allowed; /* is allocation in zone z allowed? */ |
9bf2229f | 2300 | |
9b819d20 | 2301 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
9bf2229f | 2302 | return 1; |
92d1dbd2 | 2303 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
9bf2229f PJ |
2304 | if (node_isset(node, current->mems_allowed)) |
2305 | return 1; | |
c596d9f3 DR |
2306 | /* |
2307 | * Allow tasks that have access to memory reserves because they have | |
2308 | * been OOM killed to get memory anywhere. | |
2309 | */ | |
2310 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2311 | return 1; | |
9bf2229f PJ |
2312 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
2313 | return 0; | |
2314 | ||
5563e770 BP |
2315 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
2316 | return 1; | |
2317 | ||
9bf2229f | 2318 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
3d3f26a7 | 2319 | mutex_lock(&callback_mutex); |
053199ed | 2320 | |
053199ed | 2321 | task_lock(current); |
78608366 | 2322 | cs = nearest_hardwall_ancestor(task_cs(current)); |
053199ed PJ |
2323 | task_unlock(current); |
2324 | ||
9bf2229f | 2325 | allowed = node_isset(node, cs->mems_allowed); |
3d3f26a7 | 2326 | mutex_unlock(&callback_mutex); |
9bf2229f | 2327 | return allowed; |
1da177e4 LT |
2328 | } |
2329 | ||
02a0e53d | 2330 | /* |
a1bc5a4e DR |
2331 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? |
2332 | * @node: is this an allowed node? | |
02a0e53d PJ |
2333 | * @gfp_mask: memory allocation flags |
2334 | * | |
a1bc5a4e DR |
2335 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2336 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2337 | * yes. If the task has been OOM killed and has access to memory reserves as | |
2338 | * specified by the TIF_MEMDIE flag, yes. | |
2339 | * Otherwise, no. | |
02a0e53d PJ |
2340 | * |
2341 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2342 | * by forcibly using a zonelist starting at a specified node, and by | |
2343 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2344 | * any node on the zonelist except the first. By the time any such | |
2345 | * calls get to this routine, we should just shut up and say 'yes'. | |
2346 | * | |
a1bc5a4e DR |
2347 | * Unlike the cpuset_node_allowed_softwall() variant, above, |
2348 | * this variant requires that the node be in the current task's | |
02a0e53d PJ |
2349 | * mems_allowed or that we're in interrupt. It does not scan up the |
2350 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | |
2351 | * It never sleeps. | |
2352 | */ | |
a1bc5a4e | 2353 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) |
02a0e53d | 2354 | { |
02a0e53d PJ |
2355 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
2356 | return 1; | |
02a0e53d PJ |
2357 | if (node_isset(node, current->mems_allowed)) |
2358 | return 1; | |
dedf8b79 DW |
2359 | /* |
2360 | * Allow tasks that have access to memory reserves because they have | |
2361 | * been OOM killed to get memory anywhere. | |
2362 | */ | |
2363 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2364 | return 1; | |
02a0e53d PJ |
2365 | return 0; |
2366 | } | |
2367 | ||
505970b9 PJ |
2368 | /** |
2369 | * cpuset_unlock - release lock on cpuset changes | |
2370 | * | |
2371 | * Undo the lock taken in a previous cpuset_lock() call. | |
2372 | */ | |
2373 | ||
2374 | void cpuset_unlock(void) | |
2375 | { | |
3d3f26a7 | 2376 | mutex_unlock(&callback_mutex); |
505970b9 PJ |
2377 | } |
2378 | ||
825a46af | 2379 | /** |
6adef3eb JS |
2380 | * cpuset_mem_spread_node() - On which node to begin search for a file page |
2381 | * cpuset_slab_spread_node() - On which node to begin search for a slab page | |
825a46af PJ |
2382 | * |
2383 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | |
2384 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | |
2385 | * and if the memory allocation used cpuset_mem_spread_node() | |
2386 | * to determine on which node to start looking, as it will for | |
2387 | * certain page cache or slab cache pages such as used for file | |
2388 | * system buffers and inode caches, then instead of starting on the | |
2389 | * local node to look for a free page, rather spread the starting | |
2390 | * node around the tasks mems_allowed nodes. | |
2391 | * | |
2392 | * We don't have to worry about the returned node being offline | |
2393 | * because "it can't happen", and even if it did, it would be ok. | |
2394 | * | |
2395 | * The routines calling guarantee_online_mems() are careful to | |
2396 | * only set nodes in task->mems_allowed that are online. So it | |
2397 | * should not be possible for the following code to return an | |
2398 | * offline node. But if it did, that would be ok, as this routine | |
2399 | * is not returning the node where the allocation must be, only | |
2400 | * the node where the search should start. The zonelist passed to | |
2401 | * __alloc_pages() will include all nodes. If the slab allocator | |
2402 | * is passed an offline node, it will fall back to the local node. | |
2403 | * See kmem_cache_alloc_node(). | |
2404 | */ | |
2405 | ||
6adef3eb | 2406 | static int cpuset_spread_node(int *rotor) |
825a46af PJ |
2407 | { |
2408 | int node; | |
2409 | ||
6adef3eb | 2410 | node = next_node(*rotor, current->mems_allowed); |
825a46af PJ |
2411 | if (node == MAX_NUMNODES) |
2412 | node = first_node(current->mems_allowed); | |
6adef3eb | 2413 | *rotor = node; |
825a46af PJ |
2414 | return node; |
2415 | } | |
6adef3eb JS |
2416 | |
2417 | int cpuset_mem_spread_node(void) | |
2418 | { | |
778d3b0f MH |
2419 | if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) |
2420 | current->cpuset_mem_spread_rotor = | |
2421 | node_random(¤t->mems_allowed); | |
2422 | ||
6adef3eb JS |
2423 | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); |
2424 | } | |
2425 | ||
2426 | int cpuset_slab_spread_node(void) | |
2427 | { | |
778d3b0f MH |
2428 | if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) |
2429 | current->cpuset_slab_spread_rotor = | |
2430 | node_random(¤t->mems_allowed); | |
2431 | ||
6adef3eb JS |
2432 | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); |
2433 | } | |
2434 | ||
825a46af PJ |
2435 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
2436 | ||
ef08e3b4 | 2437 | /** |
bbe373f2 DR |
2438 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
2439 | * @tsk1: pointer to task_struct of some task. | |
2440 | * @tsk2: pointer to task_struct of some other task. | |
2441 | * | |
2442 | * Description: Return true if @tsk1's mems_allowed intersects the | |
2443 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | |
2444 | * one of the task's memory usage might impact the memory available | |
2445 | * to the other. | |
ef08e3b4 PJ |
2446 | **/ |
2447 | ||
bbe373f2 DR |
2448 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
2449 | const struct task_struct *tsk2) | |
ef08e3b4 | 2450 | { |
bbe373f2 | 2451 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
ef08e3b4 PJ |
2452 | } |
2453 | ||
75aa1994 DR |
2454 | /** |
2455 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | |
2456 | * @task: pointer to task_struct of some task. | |
2457 | * | |
2458 | * Description: Prints @task's name, cpuset name, and cached copy of its | |
2459 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow | |
2460 | * dereferencing task_cs(task). | |
2461 | */ | |
2462 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | |
2463 | { | |
2464 | struct dentry *dentry; | |
2465 | ||
2466 | dentry = task_cs(tsk)->css.cgroup->dentry; | |
2467 | spin_lock(&cpuset_buffer_lock); | |
2468 | snprintf(cpuset_name, CPUSET_NAME_LEN, | |
2469 | dentry ? (const char *)dentry->d_name.name : "/"); | |
2470 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | |
2471 | tsk->mems_allowed); | |
2472 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | |
2473 | tsk->comm, cpuset_name, cpuset_nodelist); | |
2474 | spin_unlock(&cpuset_buffer_lock); | |
2475 | } | |
2476 | ||
3e0d98b9 PJ |
2477 | /* |
2478 | * Collection of memory_pressure is suppressed unless | |
2479 | * this flag is enabled by writing "1" to the special | |
2480 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | |
2481 | */ | |
2482 | ||
c5b2aff8 | 2483 | int cpuset_memory_pressure_enabled __read_mostly; |
3e0d98b9 PJ |
2484 | |
2485 | /** | |
2486 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | |
2487 | * | |
2488 | * Keep a running average of the rate of synchronous (direct) | |
2489 | * page reclaim efforts initiated by tasks in each cpuset. | |
2490 | * | |
2491 | * This represents the rate at which some task in the cpuset | |
2492 | * ran low on memory on all nodes it was allowed to use, and | |
2493 | * had to enter the kernels page reclaim code in an effort to | |
2494 | * create more free memory by tossing clean pages or swapping | |
2495 | * or writing dirty pages. | |
2496 | * | |
2497 | * Display to user space in the per-cpuset read-only file | |
2498 | * "memory_pressure". Value displayed is an integer | |
2499 | * representing the recent rate of entry into the synchronous | |
2500 | * (direct) page reclaim by any task attached to the cpuset. | |
2501 | **/ | |
2502 | ||
2503 | void __cpuset_memory_pressure_bump(void) | |
2504 | { | |
3e0d98b9 | 2505 | task_lock(current); |
8793d854 | 2506 | fmeter_markevent(&task_cs(current)->fmeter); |
3e0d98b9 PJ |
2507 | task_unlock(current); |
2508 | } | |
2509 | ||
8793d854 | 2510 | #ifdef CONFIG_PROC_PID_CPUSET |
1da177e4 LT |
2511 | /* |
2512 | * proc_cpuset_show() | |
2513 | * - Print tasks cpuset path into seq_file. | |
2514 | * - Used for /proc/<pid>/cpuset. | |
053199ed PJ |
2515 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2516 | * doesn't really matter if tsk->cpuset changes after we read it, | |
c8d9c90c | 2517 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it |
2df167a3 | 2518 | * anyway. |
1da177e4 | 2519 | */ |
029190c5 | 2520 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) |
1da177e4 | 2521 | { |
13b41b09 | 2522 | struct pid *pid; |
1da177e4 LT |
2523 | struct task_struct *tsk; |
2524 | char *buf; | |
8793d854 | 2525 | struct cgroup_subsys_state *css; |
99f89551 | 2526 | int retval; |
1da177e4 | 2527 | |
99f89551 | 2528 | retval = -ENOMEM; |
1da177e4 LT |
2529 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
2530 | if (!buf) | |
99f89551 EB |
2531 | goto out; |
2532 | ||
2533 | retval = -ESRCH; | |
13b41b09 EB |
2534 | pid = m->private; |
2535 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
99f89551 EB |
2536 | if (!tsk) |
2537 | goto out_free; | |
1da177e4 | 2538 | |
99f89551 | 2539 | retval = -EINVAL; |
8793d854 PM |
2540 | cgroup_lock(); |
2541 | css = task_subsys_state(tsk, cpuset_subsys_id); | |
2542 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | |
1da177e4 | 2543 | if (retval < 0) |
99f89551 | 2544 | goto out_unlock; |
1da177e4 LT |
2545 | seq_puts(m, buf); |
2546 | seq_putc(m, '\n'); | |
99f89551 | 2547 | out_unlock: |
8793d854 | 2548 | cgroup_unlock(); |
99f89551 EB |
2549 | put_task_struct(tsk); |
2550 | out_free: | |
1da177e4 | 2551 | kfree(buf); |
99f89551 | 2552 | out: |
1da177e4 LT |
2553 | return retval; |
2554 | } | |
2555 | ||
2556 | static int cpuset_open(struct inode *inode, struct file *file) | |
2557 | { | |
13b41b09 EB |
2558 | struct pid *pid = PROC_I(inode)->pid; |
2559 | return single_open(file, proc_cpuset_show, pid); | |
1da177e4 LT |
2560 | } |
2561 | ||
9a32144e | 2562 | const struct file_operations proc_cpuset_operations = { |
1da177e4 LT |
2563 | .open = cpuset_open, |
2564 | .read = seq_read, | |
2565 | .llseek = seq_lseek, | |
2566 | .release = single_release, | |
2567 | }; | |
8793d854 | 2568 | #endif /* CONFIG_PROC_PID_CPUSET */ |
1da177e4 | 2569 | |
d01d4827 | 2570 | /* Display task mems_allowed in /proc/<pid>/status file. */ |
df5f8314 EB |
2571 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
2572 | { | |
df5f8314 | 2573 | seq_printf(m, "Mems_allowed:\t"); |
30e8e136 | 2574 | seq_nodemask(m, &task->mems_allowed); |
df5f8314 | 2575 | seq_printf(m, "\n"); |
39106dcf | 2576 | seq_printf(m, "Mems_allowed_list:\t"); |
30e8e136 | 2577 | seq_nodemask_list(m, &task->mems_allowed); |
39106dcf | 2578 | seq_printf(m, "\n"); |
1da177e4 | 2579 | } |