]> Git Repo - linux.git/blame - mm/gup.c
mm: prevent get_user_pages() from overflowing page refcount
[linux.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
174cd4b1 13#include <linux/sched/signal.h>
2667f50e 14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
df06b37f
KB
23struct follow_page_context {
24 struct dev_pagemap *pgmap;
25 unsigned int page_mask;
26};
27
69e68b4f
KS
28static struct page *no_page_table(struct vm_area_struct *vma,
29 unsigned int flags)
4bbd4c77 30{
69e68b4f
KS
31 /*
32 * When core dumping an enormous anonymous area that nobody
33 * has touched so far, we don't want to allocate unnecessary pages or
34 * page tables. Return error instead of NULL to skip handle_mm_fault,
35 * then get_dump_page() will return NULL to leave a hole in the dump.
36 * But we can only make this optimization where a hole would surely
37 * be zero-filled if handle_mm_fault() actually did handle it.
38 */
39 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
40 return ERR_PTR(-EFAULT);
41 return NULL;
42}
4bbd4c77 43
1027e443
KS
44static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
45 pte_t *pte, unsigned int flags)
46{
47 /* No page to get reference */
48 if (flags & FOLL_GET)
49 return -EFAULT;
50
51 if (flags & FOLL_TOUCH) {
52 pte_t entry = *pte;
53
54 if (flags & FOLL_WRITE)
55 entry = pte_mkdirty(entry);
56 entry = pte_mkyoung(entry);
57
58 if (!pte_same(*pte, entry)) {
59 set_pte_at(vma->vm_mm, address, pte, entry);
60 update_mmu_cache(vma, address, pte);
61 }
62 }
63
64 /* Proper page table entry exists, but no corresponding struct page */
65 return -EEXIST;
66}
67
19be0eaf
LT
68/*
69 * FOLL_FORCE can write to even unwritable pte's, but only
70 * after we've gone through a COW cycle and they are dirty.
71 */
72static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
73{
f6f37321 74 return pte_write(pte) ||
19be0eaf
LT
75 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
76}
77
69e68b4f 78static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
79 unsigned long address, pmd_t *pmd, unsigned int flags,
80 struct dev_pagemap **pgmap)
69e68b4f
KS
81{
82 struct mm_struct *mm = vma->vm_mm;
83 struct page *page;
84 spinlock_t *ptl;
85 pte_t *ptep, pte;
4bbd4c77 86
69e68b4f 87retry:
4bbd4c77 88 if (unlikely(pmd_bad(*pmd)))
69e68b4f 89 return no_page_table(vma, flags);
4bbd4c77
KS
90
91 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
92 pte = *ptep;
93 if (!pte_present(pte)) {
94 swp_entry_t entry;
95 /*
96 * KSM's break_ksm() relies upon recognizing a ksm page
97 * even while it is being migrated, so for that case we
98 * need migration_entry_wait().
99 */
100 if (likely(!(flags & FOLL_MIGRATION)))
101 goto no_page;
0661a336 102 if (pte_none(pte))
4bbd4c77
KS
103 goto no_page;
104 entry = pte_to_swp_entry(pte);
105 if (!is_migration_entry(entry))
106 goto no_page;
107 pte_unmap_unlock(ptep, ptl);
108 migration_entry_wait(mm, pmd, address);
69e68b4f 109 goto retry;
4bbd4c77 110 }
8a0516ed 111 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 112 goto no_page;
19be0eaf 113 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
114 pte_unmap_unlock(ptep, ptl);
115 return NULL;
116 }
4bbd4c77
KS
117
118 page = vm_normal_page(vma, address, pte);
3565fce3
DW
119 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
120 /*
121 * Only return device mapping pages in the FOLL_GET case since
122 * they are only valid while holding the pgmap reference.
123 */
df06b37f
KB
124 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
125 if (*pgmap)
3565fce3
DW
126 page = pte_page(pte);
127 else
128 goto no_page;
129 } else if (unlikely(!page)) {
1027e443
KS
130 if (flags & FOLL_DUMP) {
131 /* Avoid special (like zero) pages in core dumps */
132 page = ERR_PTR(-EFAULT);
133 goto out;
134 }
135
136 if (is_zero_pfn(pte_pfn(pte))) {
137 page = pte_page(pte);
138 } else {
139 int ret;
140
141 ret = follow_pfn_pte(vma, address, ptep, flags);
142 page = ERR_PTR(ret);
143 goto out;
144 }
4bbd4c77
KS
145 }
146
6742d293
KS
147 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
148 int ret;
149 get_page(page);
150 pte_unmap_unlock(ptep, ptl);
151 lock_page(page);
152 ret = split_huge_page(page);
153 unlock_page(page);
154 put_page(page);
155 if (ret)
156 return ERR_PTR(ret);
157 goto retry;
158 }
159
8fde12ca
LT
160 if (flags & FOLL_GET) {
161 if (unlikely(!try_get_page(page))) {
162 page = ERR_PTR(-ENOMEM);
163 goto out;
164 }
165 }
4bbd4c77
KS
166 if (flags & FOLL_TOUCH) {
167 if ((flags & FOLL_WRITE) &&
168 !pte_dirty(pte) && !PageDirty(page))
169 set_page_dirty(page);
170 /*
171 * pte_mkyoung() would be more correct here, but atomic care
172 * is needed to avoid losing the dirty bit: it is easier to use
173 * mark_page_accessed().
174 */
175 mark_page_accessed(page);
176 }
de60f5f1 177 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
178 /* Do not mlock pte-mapped THP */
179 if (PageTransCompound(page))
180 goto out;
181
4bbd4c77
KS
182 /*
183 * The preliminary mapping check is mainly to avoid the
184 * pointless overhead of lock_page on the ZERO_PAGE
185 * which might bounce very badly if there is contention.
186 *
187 * If the page is already locked, we don't need to
188 * handle it now - vmscan will handle it later if and
189 * when it attempts to reclaim the page.
190 */
191 if (page->mapping && trylock_page(page)) {
192 lru_add_drain(); /* push cached pages to LRU */
193 /*
194 * Because we lock page here, and migration is
195 * blocked by the pte's page reference, and we
196 * know the page is still mapped, we don't even
197 * need to check for file-cache page truncation.
198 */
199 mlock_vma_page(page);
200 unlock_page(page);
201 }
202 }
1027e443 203out:
4bbd4c77 204 pte_unmap_unlock(ptep, ptl);
4bbd4c77 205 return page;
4bbd4c77
KS
206no_page:
207 pte_unmap_unlock(ptep, ptl);
208 if (!pte_none(pte))
69e68b4f
KS
209 return NULL;
210 return no_page_table(vma, flags);
211}
212
080dbb61
AK
213static struct page *follow_pmd_mask(struct vm_area_struct *vma,
214 unsigned long address, pud_t *pudp,
df06b37f
KB
215 unsigned int flags,
216 struct follow_page_context *ctx)
69e68b4f 217{
68827280 218 pmd_t *pmd, pmdval;
69e68b4f
KS
219 spinlock_t *ptl;
220 struct page *page;
221 struct mm_struct *mm = vma->vm_mm;
222
080dbb61 223 pmd = pmd_offset(pudp, address);
68827280
YH
224 /*
225 * The READ_ONCE() will stabilize the pmdval in a register or
226 * on the stack so that it will stop changing under the code.
227 */
228 pmdval = READ_ONCE(*pmd);
229 if (pmd_none(pmdval))
69e68b4f 230 return no_page_table(vma, flags);
68827280 231 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
232 page = follow_huge_pmd(mm, address, pmd, flags);
233 if (page)
234 return page;
235 return no_page_table(vma, flags);
69e68b4f 236 }
68827280 237 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 238 page = follow_huge_pd(vma, address,
68827280 239 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
240 PMD_SHIFT);
241 if (page)
242 return page;
243 return no_page_table(vma, flags);
244 }
84c3fc4e 245retry:
68827280 246 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
247 if (likely(!(flags & FOLL_MIGRATION)))
248 return no_page_table(vma, flags);
249 VM_BUG_ON(thp_migration_supported() &&
68827280
YH
250 !is_pmd_migration_entry(pmdval));
251 if (is_pmd_migration_entry(pmdval))
84c3fc4e 252 pmd_migration_entry_wait(mm, pmd);
68827280
YH
253 pmdval = READ_ONCE(*pmd);
254 /*
255 * MADV_DONTNEED may convert the pmd to null because
256 * mmap_sem is held in read mode
257 */
258 if (pmd_none(pmdval))
259 return no_page_table(vma, flags);
84c3fc4e
ZY
260 goto retry;
261 }
68827280 262 if (pmd_devmap(pmdval)) {
3565fce3 263 ptl = pmd_lock(mm, pmd);
df06b37f 264 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
265 spin_unlock(ptl);
266 if (page)
267 return page;
268 }
68827280 269 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 270 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 271
68827280 272 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
273 return no_page_table(vma, flags);
274
84c3fc4e 275retry_locked:
6742d293 276 ptl = pmd_lock(mm, pmd);
68827280
YH
277 if (unlikely(pmd_none(*pmd))) {
278 spin_unlock(ptl);
279 return no_page_table(vma, flags);
280 }
84c3fc4e
ZY
281 if (unlikely(!pmd_present(*pmd))) {
282 spin_unlock(ptl);
283 if (likely(!(flags & FOLL_MIGRATION)))
284 return no_page_table(vma, flags);
285 pmd_migration_entry_wait(mm, pmd);
286 goto retry_locked;
287 }
6742d293
KS
288 if (unlikely(!pmd_trans_huge(*pmd))) {
289 spin_unlock(ptl);
df06b37f 290 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 291 }
6742d293
KS
292 if (flags & FOLL_SPLIT) {
293 int ret;
294 page = pmd_page(*pmd);
295 if (is_huge_zero_page(page)) {
296 spin_unlock(ptl);
297 ret = 0;
78ddc534 298 split_huge_pmd(vma, pmd, address);
337d9abf
NH
299 if (pmd_trans_unstable(pmd))
300 ret = -EBUSY;
6742d293 301 } else {
8fde12ca
LT
302 if (unlikely(!try_get_page(page))) {
303 spin_unlock(ptl);
304 return ERR_PTR(-ENOMEM);
305 }
69e68b4f 306 spin_unlock(ptl);
6742d293
KS
307 lock_page(page);
308 ret = split_huge_page(page);
309 unlock_page(page);
310 put_page(page);
baa355fd
KS
311 if (pmd_none(*pmd))
312 return no_page_table(vma, flags);
6742d293
KS
313 }
314
315 return ret ? ERR_PTR(ret) :
df06b37f 316 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 317 }
6742d293
KS
318 page = follow_trans_huge_pmd(vma, address, pmd, flags);
319 spin_unlock(ptl);
df06b37f 320 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 321 return page;
4bbd4c77
KS
322}
323
080dbb61
AK
324static struct page *follow_pud_mask(struct vm_area_struct *vma,
325 unsigned long address, p4d_t *p4dp,
df06b37f
KB
326 unsigned int flags,
327 struct follow_page_context *ctx)
080dbb61
AK
328{
329 pud_t *pud;
330 spinlock_t *ptl;
331 struct page *page;
332 struct mm_struct *mm = vma->vm_mm;
333
334 pud = pud_offset(p4dp, address);
335 if (pud_none(*pud))
336 return no_page_table(vma, flags);
337 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
338 page = follow_huge_pud(mm, address, pud, flags);
339 if (page)
340 return page;
341 return no_page_table(vma, flags);
342 }
4dc71451
AK
343 if (is_hugepd(__hugepd(pud_val(*pud)))) {
344 page = follow_huge_pd(vma, address,
345 __hugepd(pud_val(*pud)), flags,
346 PUD_SHIFT);
347 if (page)
348 return page;
349 return no_page_table(vma, flags);
350 }
080dbb61
AK
351 if (pud_devmap(*pud)) {
352 ptl = pud_lock(mm, pud);
df06b37f 353 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
354 spin_unlock(ptl);
355 if (page)
356 return page;
357 }
358 if (unlikely(pud_bad(*pud)))
359 return no_page_table(vma, flags);
360
df06b37f 361 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
362}
363
080dbb61
AK
364static struct page *follow_p4d_mask(struct vm_area_struct *vma,
365 unsigned long address, pgd_t *pgdp,
df06b37f
KB
366 unsigned int flags,
367 struct follow_page_context *ctx)
080dbb61
AK
368{
369 p4d_t *p4d;
4dc71451 370 struct page *page;
080dbb61
AK
371
372 p4d = p4d_offset(pgdp, address);
373 if (p4d_none(*p4d))
374 return no_page_table(vma, flags);
375 BUILD_BUG_ON(p4d_huge(*p4d));
376 if (unlikely(p4d_bad(*p4d)))
377 return no_page_table(vma, flags);
378
4dc71451
AK
379 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
380 page = follow_huge_pd(vma, address,
381 __hugepd(p4d_val(*p4d)), flags,
382 P4D_SHIFT);
383 if (page)
384 return page;
385 return no_page_table(vma, flags);
386 }
df06b37f 387 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
388}
389
390/**
391 * follow_page_mask - look up a page descriptor from a user-virtual address
392 * @vma: vm_area_struct mapping @address
393 * @address: virtual address to look up
394 * @flags: flags modifying lookup behaviour
78179556
MR
395 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
396 * pointer to output page_mask
080dbb61
AK
397 *
398 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
399 *
78179556
MR
400 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
401 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
402 *
403 * On output, the @ctx->page_mask is set according to the size of the page.
404 *
405 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
406 * an error pointer if there is a mapping to something not represented
407 * by a page descriptor (see also vm_normal_page()).
408 */
409struct page *follow_page_mask(struct vm_area_struct *vma,
410 unsigned long address, unsigned int flags,
df06b37f 411 struct follow_page_context *ctx)
080dbb61
AK
412{
413 pgd_t *pgd;
414 struct page *page;
415 struct mm_struct *mm = vma->vm_mm;
416
df06b37f 417 ctx->page_mask = 0;
080dbb61
AK
418
419 /* make this handle hugepd */
420 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
421 if (!IS_ERR(page)) {
422 BUG_ON(flags & FOLL_GET);
423 return page;
424 }
425
426 pgd = pgd_offset(mm, address);
427
428 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
429 return no_page_table(vma, flags);
430
faaa5b62
AK
431 if (pgd_huge(*pgd)) {
432 page = follow_huge_pgd(mm, address, pgd, flags);
433 if (page)
434 return page;
435 return no_page_table(vma, flags);
436 }
4dc71451
AK
437 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
438 page = follow_huge_pd(vma, address,
439 __hugepd(pgd_val(*pgd)), flags,
440 PGDIR_SHIFT);
441 if (page)
442 return page;
443 return no_page_table(vma, flags);
444 }
faaa5b62 445
df06b37f
KB
446 return follow_p4d_mask(vma, address, pgd, flags, ctx);
447}
448
449struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
450 unsigned int foll_flags)
451{
452 struct follow_page_context ctx = { NULL };
453 struct page *page;
454
455 page = follow_page_mask(vma, address, foll_flags, &ctx);
456 if (ctx.pgmap)
457 put_dev_pagemap(ctx.pgmap);
458 return page;
080dbb61
AK
459}
460
f2b495ca
KS
461static int get_gate_page(struct mm_struct *mm, unsigned long address,
462 unsigned int gup_flags, struct vm_area_struct **vma,
463 struct page **page)
464{
465 pgd_t *pgd;
c2febafc 466 p4d_t *p4d;
f2b495ca
KS
467 pud_t *pud;
468 pmd_t *pmd;
469 pte_t *pte;
470 int ret = -EFAULT;
471
472 /* user gate pages are read-only */
473 if (gup_flags & FOLL_WRITE)
474 return -EFAULT;
475 if (address > TASK_SIZE)
476 pgd = pgd_offset_k(address);
477 else
478 pgd = pgd_offset_gate(mm, address);
479 BUG_ON(pgd_none(*pgd));
c2febafc
KS
480 p4d = p4d_offset(pgd, address);
481 BUG_ON(p4d_none(*p4d));
482 pud = pud_offset(p4d, address);
f2b495ca
KS
483 BUG_ON(pud_none(*pud));
484 pmd = pmd_offset(pud, address);
84c3fc4e 485 if (!pmd_present(*pmd))
f2b495ca
KS
486 return -EFAULT;
487 VM_BUG_ON(pmd_trans_huge(*pmd));
488 pte = pte_offset_map(pmd, address);
489 if (pte_none(*pte))
490 goto unmap;
491 *vma = get_gate_vma(mm);
492 if (!page)
493 goto out;
494 *page = vm_normal_page(*vma, address, *pte);
495 if (!*page) {
496 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
497 goto unmap;
498 *page = pte_page(*pte);
df6ad698
JG
499
500 /*
501 * This should never happen (a device public page in the gate
502 * area).
503 */
504 if (is_device_public_page(*page))
505 goto unmap;
f2b495ca 506 }
8fde12ca
LT
507 if (unlikely(!try_get_page(*page))) {
508 ret = -ENOMEM;
509 goto unmap;
510 }
f2b495ca
KS
511out:
512 ret = 0;
513unmap:
514 pte_unmap(pte);
515 return ret;
516}
517
9a95f3cf
PC
518/*
519 * mmap_sem must be held on entry. If @nonblocking != NULL and
520 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
521 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
522 */
16744483
KS
523static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
524 unsigned long address, unsigned int *flags, int *nonblocking)
525{
16744483 526 unsigned int fault_flags = 0;
2b740303 527 vm_fault_t ret;
16744483 528
de60f5f1
EM
529 /* mlock all present pages, but do not fault in new pages */
530 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
531 return -ENOENT;
16744483
KS
532 if (*flags & FOLL_WRITE)
533 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
534 if (*flags & FOLL_REMOTE)
535 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
536 if (nonblocking)
537 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
538 if (*flags & FOLL_NOWAIT)
539 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
540 if (*flags & FOLL_TRIED) {
541 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
542 fault_flags |= FAULT_FLAG_TRIED;
543 }
16744483 544
dcddffd4 545 ret = handle_mm_fault(vma, address, fault_flags);
16744483 546 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
547 int err = vm_fault_to_errno(ret, *flags);
548
549 if (err)
550 return err;
16744483
KS
551 BUG();
552 }
553
554 if (tsk) {
555 if (ret & VM_FAULT_MAJOR)
556 tsk->maj_flt++;
557 else
558 tsk->min_flt++;
559 }
560
561 if (ret & VM_FAULT_RETRY) {
96312e61 562 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
563 *nonblocking = 0;
564 return -EBUSY;
565 }
566
567 /*
568 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
569 * necessary, even if maybe_mkwrite decided not to set pte_write. We
570 * can thus safely do subsequent page lookups as if they were reads.
571 * But only do so when looping for pte_write is futile: in some cases
572 * userspace may also be wanting to write to the gotten user page,
573 * which a read fault here might prevent (a readonly page might get
574 * reCOWed by userspace write).
575 */
576 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 577 *flags |= FOLL_COW;
16744483
KS
578 return 0;
579}
580
fa5bb209
KS
581static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
582{
583 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
584 int write = (gup_flags & FOLL_WRITE);
585 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
586
587 if (vm_flags & (VM_IO | VM_PFNMAP))
588 return -EFAULT;
589
7f7ccc2c
WT
590 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
591 return -EFAULT;
592
1b2ee126 593 if (write) {
fa5bb209
KS
594 if (!(vm_flags & VM_WRITE)) {
595 if (!(gup_flags & FOLL_FORCE))
596 return -EFAULT;
597 /*
598 * We used to let the write,force case do COW in a
599 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
600 * set a breakpoint in a read-only mapping of an
601 * executable, without corrupting the file (yet only
602 * when that file had been opened for writing!).
603 * Anon pages in shared mappings are surprising: now
604 * just reject it.
605 */
46435364 606 if (!is_cow_mapping(vm_flags))
fa5bb209 607 return -EFAULT;
fa5bb209
KS
608 }
609 } else if (!(vm_flags & VM_READ)) {
610 if (!(gup_flags & FOLL_FORCE))
611 return -EFAULT;
612 /*
613 * Is there actually any vma we can reach here which does not
614 * have VM_MAYREAD set?
615 */
616 if (!(vm_flags & VM_MAYREAD))
617 return -EFAULT;
618 }
d61172b4
DH
619 /*
620 * gups are always data accesses, not instruction
621 * fetches, so execute=false here
622 */
623 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 624 return -EFAULT;
fa5bb209
KS
625 return 0;
626}
627
4bbd4c77
KS
628/**
629 * __get_user_pages() - pin user pages in memory
630 * @tsk: task_struct of target task
631 * @mm: mm_struct of target mm
632 * @start: starting user address
633 * @nr_pages: number of pages from start to pin
634 * @gup_flags: flags modifying pin behaviour
635 * @pages: array that receives pointers to the pages pinned.
636 * Should be at least nr_pages long. Or NULL, if caller
637 * only intends to ensure the pages are faulted in.
638 * @vmas: array of pointers to vmas corresponding to each page.
639 * Or NULL if the caller does not require them.
640 * @nonblocking: whether waiting for disk IO or mmap_sem contention
641 *
642 * Returns number of pages pinned. This may be fewer than the number
643 * requested. If nr_pages is 0 or negative, returns 0. If no pages
644 * were pinned, returns -errno. Each page returned must be released
645 * with a put_page() call when it is finished with. vmas will only
646 * remain valid while mmap_sem is held.
647 *
9a95f3cf 648 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
649 *
650 * __get_user_pages walks a process's page tables and takes a reference to
651 * each struct page that each user address corresponds to at a given
652 * instant. That is, it takes the page that would be accessed if a user
653 * thread accesses the given user virtual address at that instant.
654 *
655 * This does not guarantee that the page exists in the user mappings when
656 * __get_user_pages returns, and there may even be a completely different
657 * page there in some cases (eg. if mmapped pagecache has been invalidated
658 * and subsequently re faulted). However it does guarantee that the page
659 * won't be freed completely. And mostly callers simply care that the page
660 * contains data that was valid *at some point in time*. Typically, an IO
661 * or similar operation cannot guarantee anything stronger anyway because
662 * locks can't be held over the syscall boundary.
663 *
664 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
665 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
666 * appropriate) must be called after the page is finished with, and
667 * before put_page is called.
668 *
669 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
670 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
671 * *@nonblocking will be set to 0. Further, if @gup_flags does not
672 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
673 * this case.
674 *
675 * A caller using such a combination of @nonblocking and @gup_flags
676 * must therefore hold the mmap_sem for reading only, and recognize
677 * when it's been released. Otherwise, it must be held for either
678 * reading or writing and will not be released.
4bbd4c77
KS
679 *
680 * In most cases, get_user_pages or get_user_pages_fast should be used
681 * instead of __get_user_pages. __get_user_pages should be used only if
682 * you need some special @gup_flags.
683 */
0d731759 684static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
685 unsigned long start, unsigned long nr_pages,
686 unsigned int gup_flags, struct page **pages,
687 struct vm_area_struct **vmas, int *nonblocking)
688{
df06b37f 689 long ret = 0, i = 0;
fa5bb209 690 struct vm_area_struct *vma = NULL;
df06b37f 691 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
692
693 if (!nr_pages)
694 return 0;
695
696 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
697
698 /*
699 * If FOLL_FORCE is set then do not force a full fault as the hinting
700 * fault information is unrelated to the reference behaviour of a task
701 * using the address space
702 */
703 if (!(gup_flags & FOLL_FORCE))
704 gup_flags |= FOLL_NUMA;
705
4bbd4c77 706 do {
fa5bb209
KS
707 struct page *page;
708 unsigned int foll_flags = gup_flags;
709 unsigned int page_increm;
710
711 /* first iteration or cross vma bound */
712 if (!vma || start >= vma->vm_end) {
713 vma = find_extend_vma(mm, start);
714 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
715 ret = get_gate_page(mm, start & PAGE_MASK,
716 gup_flags, &vma,
717 pages ? &pages[i] : NULL);
718 if (ret)
08be37b7 719 goto out;
df06b37f 720 ctx.page_mask = 0;
fa5bb209
KS
721 goto next_page;
722 }
4bbd4c77 723
df06b37f
KB
724 if (!vma || check_vma_flags(vma, gup_flags)) {
725 ret = -EFAULT;
726 goto out;
727 }
fa5bb209
KS
728 if (is_vm_hugetlb_page(vma)) {
729 i = follow_hugetlb_page(mm, vma, pages, vmas,
730 &start, &nr_pages, i,
87ffc118 731 gup_flags, nonblocking);
fa5bb209 732 continue;
4bbd4c77 733 }
fa5bb209
KS
734 }
735retry:
736 /*
737 * If we have a pending SIGKILL, don't keep faulting pages and
738 * potentially allocating memory.
739 */
fa45f116 740 if (fatal_signal_pending(current)) {
df06b37f
KB
741 ret = -ERESTARTSYS;
742 goto out;
743 }
fa5bb209 744 cond_resched();
df06b37f
KB
745
746 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 747 if (!page) {
fa5bb209
KS
748 ret = faultin_page(tsk, vma, start, &foll_flags,
749 nonblocking);
750 switch (ret) {
751 case 0:
752 goto retry;
df06b37f
KB
753 case -EBUSY:
754 ret = 0;
755 /* FALLTHRU */
fa5bb209
KS
756 case -EFAULT:
757 case -ENOMEM:
758 case -EHWPOISON:
df06b37f 759 goto out;
fa5bb209
KS
760 case -ENOENT:
761 goto next_page;
4bbd4c77 762 }
fa5bb209 763 BUG();
1027e443
KS
764 } else if (PTR_ERR(page) == -EEXIST) {
765 /*
766 * Proper page table entry exists, but no corresponding
767 * struct page.
768 */
769 goto next_page;
770 } else if (IS_ERR(page)) {
df06b37f
KB
771 ret = PTR_ERR(page);
772 goto out;
1027e443 773 }
fa5bb209
KS
774 if (pages) {
775 pages[i] = page;
776 flush_anon_page(vma, page, start);
777 flush_dcache_page(page);
df06b37f 778 ctx.page_mask = 0;
4bbd4c77 779 }
4bbd4c77 780next_page:
fa5bb209
KS
781 if (vmas) {
782 vmas[i] = vma;
df06b37f 783 ctx.page_mask = 0;
fa5bb209 784 }
df06b37f 785 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
786 if (page_increm > nr_pages)
787 page_increm = nr_pages;
788 i += page_increm;
789 start += page_increm * PAGE_SIZE;
790 nr_pages -= page_increm;
4bbd4c77 791 } while (nr_pages);
df06b37f
KB
792out:
793 if (ctx.pgmap)
794 put_dev_pagemap(ctx.pgmap);
795 return i ? i : ret;
4bbd4c77 796}
4bbd4c77 797
771ab430
TK
798static bool vma_permits_fault(struct vm_area_struct *vma,
799 unsigned int fault_flags)
d4925e00 800{
1b2ee126
DH
801 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
802 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 803 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
804
805 if (!(vm_flags & vma->vm_flags))
806 return false;
807
33a709b2
DH
808 /*
809 * The architecture might have a hardware protection
1b2ee126 810 * mechanism other than read/write that can deny access.
d61172b4
DH
811 *
812 * gup always represents data access, not instruction
813 * fetches, so execute=false here:
33a709b2 814 */
d61172b4 815 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
816 return false;
817
d4925e00
DH
818 return true;
819}
820
4bbd4c77
KS
821/*
822 * fixup_user_fault() - manually resolve a user page fault
823 * @tsk: the task_struct to use for page fault accounting, or
824 * NULL if faults are not to be recorded.
825 * @mm: mm_struct of target mm
826 * @address: user address
827 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
828 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
829 * does not allow retry
4bbd4c77
KS
830 *
831 * This is meant to be called in the specific scenario where for locking reasons
832 * we try to access user memory in atomic context (within a pagefault_disable()
833 * section), this returns -EFAULT, and we want to resolve the user fault before
834 * trying again.
835 *
836 * Typically this is meant to be used by the futex code.
837 *
838 * The main difference with get_user_pages() is that this function will
839 * unconditionally call handle_mm_fault() which will in turn perform all the
840 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 841 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
842 *
843 * This is important for some architectures where those bits also gate the
844 * access permission to the page because they are maintained in software. On
845 * such architectures, gup() will not be enough to make a subsequent access
846 * succeed.
847 *
4a9e1cda
DD
848 * This function will not return with an unlocked mmap_sem. So it has not the
849 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
850 */
851int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
852 unsigned long address, unsigned int fault_flags,
853 bool *unlocked)
4bbd4c77
KS
854{
855 struct vm_area_struct *vma;
2b740303 856 vm_fault_t ret, major = 0;
4a9e1cda
DD
857
858 if (unlocked)
859 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 860
4a9e1cda 861retry:
4bbd4c77
KS
862 vma = find_extend_vma(mm, address);
863 if (!vma || address < vma->vm_start)
864 return -EFAULT;
865
d4925e00 866 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
867 return -EFAULT;
868
dcddffd4 869 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 870 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 871 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
872 int err = vm_fault_to_errno(ret, 0);
873
874 if (err)
875 return err;
4bbd4c77
KS
876 BUG();
877 }
4a9e1cda
DD
878
879 if (ret & VM_FAULT_RETRY) {
880 down_read(&mm->mmap_sem);
881 if (!(fault_flags & FAULT_FLAG_TRIED)) {
882 *unlocked = true;
883 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
884 fault_flags |= FAULT_FLAG_TRIED;
885 goto retry;
886 }
887 }
888
4bbd4c77 889 if (tsk) {
4a9e1cda 890 if (major)
4bbd4c77
KS
891 tsk->maj_flt++;
892 else
893 tsk->min_flt++;
894 }
895 return 0;
896}
add6a0cd 897EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 898
f0818f47
AA
899static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
900 struct mm_struct *mm,
901 unsigned long start,
902 unsigned long nr_pages,
f0818f47
AA
903 struct page **pages,
904 struct vm_area_struct **vmas,
e716712f 905 int *locked,
0fd71a56 906 unsigned int flags)
f0818f47 907{
f0818f47
AA
908 long ret, pages_done;
909 bool lock_dropped;
910
911 if (locked) {
912 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
913 BUG_ON(vmas);
914 /* check caller initialized locked */
915 BUG_ON(*locked != 1);
916 }
917
918 if (pages)
919 flags |= FOLL_GET;
f0818f47
AA
920
921 pages_done = 0;
922 lock_dropped = false;
923 for (;;) {
924 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
925 vmas, locked);
926 if (!locked)
927 /* VM_FAULT_RETRY couldn't trigger, bypass */
928 return ret;
929
930 /* VM_FAULT_RETRY cannot return errors */
931 if (!*locked) {
932 BUG_ON(ret < 0);
933 BUG_ON(ret >= nr_pages);
934 }
935
936 if (!pages)
937 /* If it's a prefault don't insist harder */
938 return ret;
939
940 if (ret > 0) {
941 nr_pages -= ret;
942 pages_done += ret;
943 if (!nr_pages)
944 break;
945 }
946 if (*locked) {
96312e61
AA
947 /*
948 * VM_FAULT_RETRY didn't trigger or it was a
949 * FOLL_NOWAIT.
950 */
f0818f47
AA
951 if (!pages_done)
952 pages_done = ret;
953 break;
954 }
955 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
956 pages += ret;
957 start += ret << PAGE_SHIFT;
958
959 /*
960 * Repeat on the address that fired VM_FAULT_RETRY
961 * without FAULT_FLAG_ALLOW_RETRY but with
962 * FAULT_FLAG_TRIED.
963 */
964 *locked = 1;
965 lock_dropped = true;
966 down_read(&mm->mmap_sem);
967 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
968 pages, NULL, NULL);
969 if (ret != 1) {
970 BUG_ON(ret > 1);
971 if (!pages_done)
972 pages_done = ret;
973 break;
974 }
975 nr_pages--;
976 pages_done++;
977 if (!nr_pages)
978 break;
979 pages++;
980 start += PAGE_SIZE;
981 }
e716712f 982 if (lock_dropped && *locked) {
f0818f47
AA
983 /*
984 * We must let the caller know we temporarily dropped the lock
985 * and so the critical section protected by it was lost.
986 */
987 up_read(&mm->mmap_sem);
988 *locked = 0;
989 }
990 return pages_done;
991}
992
993/*
994 * We can leverage the VM_FAULT_RETRY functionality in the page fault
995 * paths better by using either get_user_pages_locked() or
996 * get_user_pages_unlocked().
997 *
998 * get_user_pages_locked() is suitable to replace the form:
999 *
1000 * down_read(&mm->mmap_sem);
1001 * do_something()
1002 * get_user_pages(tsk, mm, ..., pages, NULL);
1003 * up_read(&mm->mmap_sem);
1004 *
1005 * to:
1006 *
1007 * int locked = 1;
1008 * down_read(&mm->mmap_sem);
1009 * do_something()
1010 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1011 * if (locked)
1012 * up_read(&mm->mmap_sem);
1013 */
c12d2da5 1014long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1015 unsigned int gup_flags, struct page **pages,
f0818f47
AA
1016 int *locked)
1017{
cde70140 1018 return __get_user_pages_locked(current, current->mm, start, nr_pages,
e716712f 1019 pages, NULL, locked,
3b913179 1020 gup_flags | FOLL_TOUCH);
f0818f47 1021}
c12d2da5 1022EXPORT_SYMBOL(get_user_pages_locked);
f0818f47
AA
1023
1024/*
1025 * get_user_pages_unlocked() is suitable to replace the form:
1026 *
1027 * down_read(&mm->mmap_sem);
1028 * get_user_pages(tsk, mm, ..., pages, NULL);
1029 * up_read(&mm->mmap_sem);
1030 *
1031 * with:
1032 *
1033 * get_user_pages_unlocked(tsk, mm, ..., pages);
1034 *
1035 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
1036 * get_user_pages_fast should be used instead if specific gup_flags
1037 * (e.g. FOLL_FORCE) are not required.
f0818f47 1038 */
c12d2da5 1039long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1040 struct page **pages, unsigned int gup_flags)
f0818f47 1041{
c803c9c6
AV
1042 struct mm_struct *mm = current->mm;
1043 int locked = 1;
1044 long ret;
1045
1046 down_read(&mm->mmap_sem);
1047 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
e716712f 1048 &locked, gup_flags | FOLL_TOUCH);
c803c9c6
AV
1049 if (locked)
1050 up_read(&mm->mmap_sem);
1051 return ret;
f0818f47 1052}
c12d2da5 1053EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 1054
4bbd4c77 1055/*
1e987790 1056 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1057 * @tsk: the task_struct to use for page fault accounting, or
1058 * NULL if faults are not to be recorded.
1059 * @mm: mm_struct of target mm
1060 * @start: starting user address
1061 * @nr_pages: number of pages from start to pin
9beae1ea 1062 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1063 * @pages: array that receives pointers to the pages pinned.
1064 * Should be at least nr_pages long. Or NULL, if caller
1065 * only intends to ensure the pages are faulted in.
1066 * @vmas: array of pointers to vmas corresponding to each page.
1067 * Or NULL if the caller does not require them.
5b56d49f
LS
1068 * @locked: pointer to lock flag indicating whether lock is held and
1069 * subsequently whether VM_FAULT_RETRY functionality can be
1070 * utilised. Lock must initially be held.
4bbd4c77
KS
1071 *
1072 * Returns number of pages pinned. This may be fewer than the number
1073 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1074 * were pinned, returns -errno. Each page returned must be released
1075 * with a put_page() call when it is finished with. vmas will only
1076 * remain valid while mmap_sem is held.
1077 *
1078 * Must be called with mmap_sem held for read or write.
1079 *
1080 * get_user_pages walks a process's page tables and takes a reference to
1081 * each struct page that each user address corresponds to at a given
1082 * instant. That is, it takes the page that would be accessed if a user
1083 * thread accesses the given user virtual address at that instant.
1084 *
1085 * This does not guarantee that the page exists in the user mappings when
1086 * get_user_pages returns, and there may even be a completely different
1087 * page there in some cases (eg. if mmapped pagecache has been invalidated
1088 * and subsequently re faulted). However it does guarantee that the page
1089 * won't be freed completely. And mostly callers simply care that the page
1090 * contains data that was valid *at some point in time*. Typically, an IO
1091 * or similar operation cannot guarantee anything stronger anyway because
1092 * locks can't be held over the syscall boundary.
1093 *
9beae1ea
LS
1094 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1095 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1096 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1097 *
1098 * get_user_pages is typically used for fewer-copy IO operations, to get a
1099 * handle on the memory by some means other than accesses via the user virtual
1100 * addresses. The pages may be submitted for DMA to devices or accessed via
1101 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1102 * use the correct cache flushing APIs.
1103 *
1104 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1105 *
1106 * get_user_pages should be phased out in favor of
1107 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1108 * should use get_user_pages because it cannot pass
1109 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1110 */
1e987790
DH
1111long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1112 unsigned long start, unsigned long nr_pages,
9beae1ea 1113 unsigned int gup_flags, struct page **pages,
5b56d49f 1114 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1115{
859110d7 1116 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
e716712f 1117 locked,
9beae1ea 1118 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1119}
1120EXPORT_SYMBOL(get_user_pages_remote);
1121
1122/*
d4edcf0d
DH
1123 * This is the same as get_user_pages_remote(), just with a
1124 * less-flexible calling convention where we assume that the task
5b56d49f
LS
1125 * and mm being operated on are the current task's and don't allow
1126 * passing of a locked parameter. We also obviously don't pass
1127 * FOLL_REMOTE in here.
1e987790 1128 */
c12d2da5 1129long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1130 unsigned int gup_flags, struct page **pages,
1e987790
DH
1131 struct vm_area_struct **vmas)
1132{
cde70140 1133 return __get_user_pages_locked(current, current->mm, start, nr_pages,
e716712f 1134 pages, vmas, NULL,
768ae309 1135 gup_flags | FOLL_TOUCH);
4bbd4c77 1136}
c12d2da5 1137EXPORT_SYMBOL(get_user_pages);
4bbd4c77 1138
2bb6d283
DW
1139#ifdef CONFIG_FS_DAX
1140/*
1141 * This is the same as get_user_pages() in that it assumes we are
1142 * operating on the current task's mm, but it goes further to validate
1143 * that the vmas associated with the address range are suitable for
1144 * longterm elevated page reference counts. For example, filesystem-dax
1145 * mappings are subject to the lifetime enforced by the filesystem and
1146 * we need guarantees that longterm users like RDMA and V4L2 only
1147 * establish mappings that have a kernel enforced revocation mechanism.
1148 *
1149 * "longterm" == userspace controlled elevated page count lifetime.
1150 * Contrast this to iov_iter_get_pages() usages which are transient.
1151 */
1152long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1153 unsigned int gup_flags, struct page **pages,
1154 struct vm_area_struct **vmas_arg)
1155{
1156 struct vm_area_struct **vmas = vmas_arg;
1157 struct vm_area_struct *vma_prev = NULL;
1158 long rc, i;
1159
1160 if (!pages)
1161 return -EINVAL;
1162
1163 if (!vmas) {
1164 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1165 GFP_KERNEL);
1166 if (!vmas)
1167 return -ENOMEM;
1168 }
1169
1170 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1171
1172 for (i = 0; i < rc; i++) {
1173 struct vm_area_struct *vma = vmas[i];
1174
1175 if (vma == vma_prev)
1176 continue;
1177
1178 vma_prev = vma;
1179
1180 if (vma_is_fsdax(vma))
1181 break;
1182 }
1183
1184 /*
1185 * Either get_user_pages() failed, or the vma validation
1186 * succeeded, in either case we don't need to put_page() before
1187 * returning.
1188 */
1189 if (i >= rc)
1190 goto out;
1191
1192 for (i = 0; i < rc; i++)
1193 put_page(pages[i]);
1194 rc = -EOPNOTSUPP;
1195out:
1196 if (vmas != vmas_arg)
1197 kfree(vmas);
1198 return rc;
1199}
1200EXPORT_SYMBOL(get_user_pages_longterm);
1201#endif /* CONFIG_FS_DAX */
1202
acc3c8d1
KS
1203/**
1204 * populate_vma_page_range() - populate a range of pages in the vma.
1205 * @vma: target vma
1206 * @start: start address
1207 * @end: end address
1208 * @nonblocking:
1209 *
1210 * This takes care of mlocking the pages too if VM_LOCKED is set.
1211 *
1212 * return 0 on success, negative error code on error.
1213 *
1214 * vma->vm_mm->mmap_sem must be held.
1215 *
1216 * If @nonblocking is NULL, it may be held for read or write and will
1217 * be unperturbed.
1218 *
1219 * If @nonblocking is non-NULL, it must held for read only and may be
1220 * released. If it's released, *@nonblocking will be set to 0.
1221 */
1222long populate_vma_page_range(struct vm_area_struct *vma,
1223 unsigned long start, unsigned long end, int *nonblocking)
1224{
1225 struct mm_struct *mm = vma->vm_mm;
1226 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1227 int gup_flags;
1228
1229 VM_BUG_ON(start & ~PAGE_MASK);
1230 VM_BUG_ON(end & ~PAGE_MASK);
1231 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1232 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1233 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1234
de60f5f1
EM
1235 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1236 if (vma->vm_flags & VM_LOCKONFAULT)
1237 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1238 /*
1239 * We want to touch writable mappings with a write fault in order
1240 * to break COW, except for shared mappings because these don't COW
1241 * and we would not want to dirty them for nothing.
1242 */
1243 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1244 gup_flags |= FOLL_WRITE;
1245
1246 /*
1247 * We want mlock to succeed for regions that have any permissions
1248 * other than PROT_NONE.
1249 */
1250 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1251 gup_flags |= FOLL_FORCE;
1252
1253 /*
1254 * We made sure addr is within a VMA, so the following will
1255 * not result in a stack expansion that recurses back here.
1256 */
1257 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1258 NULL, NULL, nonblocking);
1259}
1260
1261/*
1262 * __mm_populate - populate and/or mlock pages within a range of address space.
1263 *
1264 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1265 * flags. VMAs must be already marked with the desired vm_flags, and
1266 * mmap_sem must not be held.
1267 */
1268int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1269{
1270 struct mm_struct *mm = current->mm;
1271 unsigned long end, nstart, nend;
1272 struct vm_area_struct *vma = NULL;
1273 int locked = 0;
1274 long ret = 0;
1275
acc3c8d1
KS
1276 end = start + len;
1277
1278 for (nstart = start; nstart < end; nstart = nend) {
1279 /*
1280 * We want to fault in pages for [nstart; end) address range.
1281 * Find first corresponding VMA.
1282 */
1283 if (!locked) {
1284 locked = 1;
1285 down_read(&mm->mmap_sem);
1286 vma = find_vma(mm, nstart);
1287 } else if (nstart >= vma->vm_end)
1288 vma = vma->vm_next;
1289 if (!vma || vma->vm_start >= end)
1290 break;
1291 /*
1292 * Set [nstart; nend) to intersection of desired address
1293 * range with the first VMA. Also, skip undesirable VMA types.
1294 */
1295 nend = min(end, vma->vm_end);
1296 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1297 continue;
1298 if (nstart < vma->vm_start)
1299 nstart = vma->vm_start;
1300 /*
1301 * Now fault in a range of pages. populate_vma_page_range()
1302 * double checks the vma flags, so that it won't mlock pages
1303 * if the vma was already munlocked.
1304 */
1305 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1306 if (ret < 0) {
1307 if (ignore_errors) {
1308 ret = 0;
1309 continue; /* continue at next VMA */
1310 }
1311 break;
1312 }
1313 nend = nstart + ret * PAGE_SIZE;
1314 ret = 0;
1315 }
1316 if (locked)
1317 up_read(&mm->mmap_sem);
1318 return ret; /* 0 or negative error code */
1319}
1320
4bbd4c77
KS
1321/**
1322 * get_dump_page() - pin user page in memory while writing it to core dump
1323 * @addr: user address
1324 *
1325 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1326 * to be freed afterwards by put_page().
4bbd4c77
KS
1327 *
1328 * Returns NULL on any kind of failure - a hole must then be inserted into
1329 * the corefile, to preserve alignment with its headers; and also returns
1330 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1331 * allowing a hole to be left in the corefile to save diskspace.
1332 *
1333 * Called without mmap_sem, but after all other threads have been killed.
1334 */
1335#ifdef CONFIG_ELF_CORE
1336struct page *get_dump_page(unsigned long addr)
1337{
1338 struct vm_area_struct *vma;
1339 struct page *page;
1340
1341 if (__get_user_pages(current, current->mm, addr, 1,
1342 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1343 NULL) < 1)
1344 return NULL;
1345 flush_cache_page(vma, addr, page_to_pfn(page));
1346 return page;
1347}
1348#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1349
1350/*
e585513b 1351 * Generic Fast GUP
2667f50e
SC
1352 *
1353 * get_user_pages_fast attempts to pin user pages by walking the page
1354 * tables directly and avoids taking locks. Thus the walker needs to be
1355 * protected from page table pages being freed from under it, and should
1356 * block any THP splits.
1357 *
1358 * One way to achieve this is to have the walker disable interrupts, and
1359 * rely on IPIs from the TLB flushing code blocking before the page table
1360 * pages are freed. This is unsuitable for architectures that do not need
1361 * to broadcast an IPI when invalidating TLBs.
1362 *
1363 * Another way to achieve this is to batch up page table containing pages
1364 * belonging to more than one mm_user, then rcu_sched a callback to free those
1365 * pages. Disabling interrupts will allow the fast_gup walker to both block
1366 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1367 * (which is a relatively rare event). The code below adopts this strategy.
1368 *
1369 * Before activating this code, please be aware that the following assumptions
1370 * are currently made:
1371 *
e585513b
KS
1372 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1373 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1374 *
2667f50e
SC
1375 * *) ptes can be read atomically by the architecture.
1376 *
1377 * *) access_ok is sufficient to validate userspace address ranges.
1378 *
1379 * The last two assumptions can be relaxed by the addition of helper functions.
1380 *
1381 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1382 */
e585513b 1383#ifdef CONFIG_HAVE_GENERIC_GUP
2667f50e 1384
0005d20b
KS
1385#ifndef gup_get_pte
1386/*
1387 * We assume that the PTE can be read atomically. If this is not the case for
1388 * your architecture, please provide the helper.
1389 */
1390static inline pte_t gup_get_pte(pte_t *ptep)
1391{
1392 return READ_ONCE(*ptep);
1393}
1394#endif
1395
b59f65fa
KS
1396static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1397{
1398 while ((*nr) - nr_start) {
1399 struct page *page = pages[--(*nr)];
1400
1401 ClearPageReferenced(page);
1402 put_page(page);
1403 }
1404}
1405
8fde12ca
LT
1406/*
1407 * Return the compund head page with ref appropriately incremented,
1408 * or NULL if that failed.
1409 */
1410static inline struct page *try_get_compound_head(struct page *page, int refs)
1411{
1412 struct page *head = compound_head(page);
1413 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1414 return NULL;
1415 if (unlikely(!page_cache_add_speculative(head, refs)))
1416 return NULL;
1417 return head;
1418}
1419
3010a5ea 1420#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e
SC
1421static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1422 int write, struct page **pages, int *nr)
1423{
b59f65fa
KS
1424 struct dev_pagemap *pgmap = NULL;
1425 int nr_start = *nr, ret = 0;
2667f50e 1426 pte_t *ptep, *ptem;
2667f50e
SC
1427
1428 ptem = ptep = pte_offset_map(&pmd, addr);
1429 do {
0005d20b 1430 pte_t pte = gup_get_pte(ptep);
7aef4172 1431 struct page *head, *page;
2667f50e
SC
1432
1433 /*
1434 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1435 * path using the pte_protnone check.
2667f50e 1436 */
e7884f8e
KS
1437 if (pte_protnone(pte))
1438 goto pte_unmap;
1439
1440 if (!pte_access_permitted(pte, write))
1441 goto pte_unmap;
1442
b59f65fa
KS
1443 if (pte_devmap(pte)) {
1444 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1445 if (unlikely(!pgmap)) {
1446 undo_dev_pagemap(nr, nr_start, pages);
1447 goto pte_unmap;
1448 }
1449 } else if (pte_special(pte))
2667f50e
SC
1450 goto pte_unmap;
1451
1452 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1453 page = pte_page(pte);
1454
8fde12ca
LT
1455 head = try_get_compound_head(page, 1);
1456 if (!head)
2667f50e
SC
1457 goto pte_unmap;
1458
1459 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1460 put_page(head);
2667f50e
SC
1461 goto pte_unmap;
1462 }
1463
7aef4172 1464 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1465
1466 SetPageReferenced(page);
2667f50e
SC
1467 pages[*nr] = page;
1468 (*nr)++;
1469
1470 } while (ptep++, addr += PAGE_SIZE, addr != end);
1471
1472 ret = 1;
1473
1474pte_unmap:
832d7aa0
CH
1475 if (pgmap)
1476 put_dev_pagemap(pgmap);
2667f50e
SC
1477 pte_unmap(ptem);
1478 return ret;
1479}
1480#else
1481
1482/*
1483 * If we can't determine whether or not a pte is special, then fail immediately
1484 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1485 * to be special.
1486 *
1487 * For a futex to be placed on a THP tail page, get_futex_key requires a
1488 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1489 * useful to have gup_huge_pmd even if we can't operate on ptes.
1490 */
1491static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1492 int write, struct page **pages, int *nr)
1493{
1494 return 0;
1495}
3010a5ea 1496#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1497
09180ca4 1498#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1499static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1500 unsigned long end, struct page **pages, int *nr)
1501{
1502 int nr_start = *nr;
1503 struct dev_pagemap *pgmap = NULL;
1504
1505 do {
1506 struct page *page = pfn_to_page(pfn);
1507
1508 pgmap = get_dev_pagemap(pfn, pgmap);
1509 if (unlikely(!pgmap)) {
1510 undo_dev_pagemap(nr, nr_start, pages);
1511 return 0;
1512 }
1513 SetPageReferenced(page);
1514 pages[*nr] = page;
1515 get_page(page);
b59f65fa
KS
1516 (*nr)++;
1517 pfn++;
1518 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1519
1520 if (pgmap)
1521 put_dev_pagemap(pgmap);
b59f65fa
KS
1522 return 1;
1523}
1524
a9b6de77 1525static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1526 unsigned long end, struct page **pages, int *nr)
1527{
1528 unsigned long fault_pfn;
a9b6de77
DW
1529 int nr_start = *nr;
1530
1531 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1532 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1533 return 0;
b59f65fa 1534
a9b6de77
DW
1535 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1536 undo_dev_pagemap(nr, nr_start, pages);
1537 return 0;
1538 }
1539 return 1;
b59f65fa
KS
1540}
1541
a9b6de77 1542static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1543 unsigned long end, struct page **pages, int *nr)
1544{
1545 unsigned long fault_pfn;
a9b6de77
DW
1546 int nr_start = *nr;
1547
1548 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1549 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1550 return 0;
b59f65fa 1551
a9b6de77
DW
1552 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1553 undo_dev_pagemap(nr, nr_start, pages);
1554 return 0;
1555 }
1556 return 1;
b59f65fa
KS
1557}
1558#else
a9b6de77 1559static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1560 unsigned long end, struct page **pages, int *nr)
1561{
1562 BUILD_BUG();
1563 return 0;
1564}
1565
a9b6de77 1566static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1567 unsigned long end, struct page **pages, int *nr)
1568{
1569 BUILD_BUG();
1570 return 0;
1571}
1572#endif
1573
2667f50e
SC
1574static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1575 unsigned long end, int write, struct page **pages, int *nr)
1576{
ddc58f27 1577 struct page *head, *page;
2667f50e
SC
1578 int refs;
1579
e7884f8e 1580 if (!pmd_access_permitted(orig, write))
2667f50e
SC
1581 return 0;
1582
b59f65fa 1583 if (pmd_devmap(orig))
a9b6de77 1584 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
b59f65fa 1585
2667f50e 1586 refs = 0;
d63206ee 1587 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 1588 do {
2667f50e
SC
1589 pages[*nr] = page;
1590 (*nr)++;
1591 page++;
1592 refs++;
1593 } while (addr += PAGE_SIZE, addr != end);
1594
8fde12ca
LT
1595 head = try_get_compound_head(pmd_page(orig), refs);
1596 if (!head) {
2667f50e
SC
1597 *nr -= refs;
1598 return 0;
1599 }
1600
1601 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1602 *nr -= refs;
1603 while (refs--)
1604 put_page(head);
1605 return 0;
1606 }
1607
e9348053 1608 SetPageReferenced(head);
2667f50e
SC
1609 return 1;
1610}
1611
1612static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1613 unsigned long end, int write, struct page **pages, int *nr)
1614{
ddc58f27 1615 struct page *head, *page;
2667f50e
SC
1616 int refs;
1617
e7884f8e 1618 if (!pud_access_permitted(orig, write))
2667f50e
SC
1619 return 0;
1620
b59f65fa 1621 if (pud_devmap(orig))
a9b6de77 1622 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
b59f65fa 1623
2667f50e 1624 refs = 0;
d63206ee 1625 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 1626 do {
2667f50e
SC
1627 pages[*nr] = page;
1628 (*nr)++;
1629 page++;
1630 refs++;
1631 } while (addr += PAGE_SIZE, addr != end);
1632
8fde12ca
LT
1633 head = try_get_compound_head(pud_page(orig), refs);
1634 if (!head) {
2667f50e
SC
1635 *nr -= refs;
1636 return 0;
1637 }
1638
1639 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1640 *nr -= refs;
1641 while (refs--)
1642 put_page(head);
1643 return 0;
1644 }
1645
e9348053 1646 SetPageReferenced(head);
2667f50e
SC
1647 return 1;
1648}
1649
f30c59e9
AK
1650static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1651 unsigned long end, int write,
1652 struct page **pages, int *nr)
1653{
1654 int refs;
ddc58f27 1655 struct page *head, *page;
f30c59e9 1656
e7884f8e 1657 if (!pgd_access_permitted(orig, write))
f30c59e9
AK
1658 return 0;
1659
b59f65fa 1660 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 1661 refs = 0;
d63206ee 1662 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 1663 do {
f30c59e9
AK
1664 pages[*nr] = page;
1665 (*nr)++;
1666 page++;
1667 refs++;
1668 } while (addr += PAGE_SIZE, addr != end);
1669
8fde12ca
LT
1670 head = try_get_compound_head(pgd_page(orig), refs);
1671 if (!head) {
f30c59e9
AK
1672 *nr -= refs;
1673 return 0;
1674 }
1675
1676 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1677 *nr -= refs;
1678 while (refs--)
1679 put_page(head);
1680 return 0;
1681 }
1682
e9348053 1683 SetPageReferenced(head);
f30c59e9
AK
1684 return 1;
1685}
1686
2667f50e
SC
1687static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1688 int write, struct page **pages, int *nr)
1689{
1690 unsigned long next;
1691 pmd_t *pmdp;
1692
1693 pmdp = pmd_offset(&pud, addr);
1694 do {
38c5ce93 1695 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1696
1697 next = pmd_addr_end(addr, end);
84c3fc4e 1698 if (!pmd_present(pmd))
2667f50e
SC
1699 return 0;
1700
414fd080
YZ
1701 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1702 pmd_devmap(pmd))) {
2667f50e
SC
1703 /*
1704 * NUMA hinting faults need to be handled in the GUP
1705 * slowpath for accounting purposes and so that they
1706 * can be serialised against THP migration.
1707 */
8a0516ed 1708 if (pmd_protnone(pmd))
2667f50e
SC
1709 return 0;
1710
1711 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1712 pages, nr))
1713 return 0;
1714
f30c59e9
AK
1715 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1716 /*
1717 * architecture have different format for hugetlbfs
1718 * pmd format and THP pmd format
1719 */
1720 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1721 PMD_SHIFT, next, write, pages, nr))
1722 return 0;
2667f50e 1723 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
2923117b 1724 return 0;
2667f50e
SC
1725 } while (pmdp++, addr = next, addr != end);
1726
1727 return 1;
1728}
1729
c2febafc 1730static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
f30c59e9 1731 int write, struct page **pages, int *nr)
2667f50e
SC
1732{
1733 unsigned long next;
1734 pud_t *pudp;
1735
c2febafc 1736 pudp = pud_offset(&p4d, addr);
2667f50e 1737 do {
e37c6982 1738 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1739
1740 next = pud_addr_end(addr, end);
1741 if (pud_none(pud))
1742 return 0;
f30c59e9 1743 if (unlikely(pud_huge(pud))) {
2667f50e 1744 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1745 pages, nr))
1746 return 0;
1747 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1748 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1749 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1750 return 0;
1751 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1752 return 0;
1753 } while (pudp++, addr = next, addr != end);
1754
1755 return 1;
1756}
1757
c2febafc
KS
1758static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1759 int write, struct page **pages, int *nr)
1760{
1761 unsigned long next;
1762 p4d_t *p4dp;
1763
1764 p4dp = p4d_offset(&pgd, addr);
1765 do {
1766 p4d_t p4d = READ_ONCE(*p4dp);
1767
1768 next = p4d_addr_end(addr, end);
1769 if (p4d_none(p4d))
1770 return 0;
1771 BUILD_BUG_ON(p4d_huge(p4d));
1772 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1773 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1774 P4D_SHIFT, next, write, pages, nr))
1775 return 0;
ce70df08 1776 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
c2febafc
KS
1777 return 0;
1778 } while (p4dp++, addr = next, addr != end);
1779
1780 return 1;
1781}
1782
5b65c467
KS
1783static void gup_pgd_range(unsigned long addr, unsigned long end,
1784 int write, struct page **pages, int *nr)
1785{
1786 unsigned long next;
1787 pgd_t *pgdp;
1788
1789 pgdp = pgd_offset(current->mm, addr);
1790 do {
1791 pgd_t pgd = READ_ONCE(*pgdp);
1792
1793 next = pgd_addr_end(addr, end);
1794 if (pgd_none(pgd))
1795 return;
1796 if (unlikely(pgd_huge(pgd))) {
1797 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1798 pages, nr))
1799 return;
1800 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1801 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1802 PGDIR_SHIFT, next, write, pages, nr))
1803 return;
1804 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1805 return;
1806 } while (pgdp++, addr = next, addr != end);
1807}
1808
1809#ifndef gup_fast_permitted
1810/*
1811 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1812 * we need to fall back to the slow version:
1813 */
1814bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1815{
1816 unsigned long len, end;
1817
1818 len = (unsigned long) nr_pages << PAGE_SHIFT;
1819 end = start + len;
1820 return end >= start;
1821}
1822#endif
1823
2667f50e
SC
1824/*
1825 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
1826 * the regular GUP.
1827 * Note a difference with get_user_pages_fast: this always returns the
1828 * number of pages pinned, 0 if no pages were pinned.
2667f50e
SC
1829 */
1830int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1831 struct page **pages)
1832{
d4faa402 1833 unsigned long len, end;
5b65c467 1834 unsigned long flags;
2667f50e
SC
1835 int nr = 0;
1836
1837 start &= PAGE_MASK;
2667f50e
SC
1838 len = (unsigned long) nr_pages << PAGE_SHIFT;
1839 end = start + len;
1840
96d4f267 1841 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
1842 return 0;
1843
1844 /*
1845 * Disable interrupts. We use the nested form as we can already have
1846 * interrupts disabled by get_futex_key.
1847 *
1848 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
1849 * freed from under us. See struct mmu_table_batch comments in
1850 * include/asm-generic/tlb.h for more details.
2667f50e
SC
1851 *
1852 * We do not adopt an rcu_read_lock(.) here as we also want to
1853 * block IPIs that come from THPs splitting.
1854 */
1855
5b65c467
KS
1856 if (gup_fast_permitted(start, nr_pages, write)) {
1857 local_irq_save(flags);
d4faa402 1858 gup_pgd_range(start, end, write, pages, &nr);
5b65c467
KS
1859 local_irq_restore(flags);
1860 }
2667f50e
SC
1861
1862 return nr;
1863}
1864
1865/**
1866 * get_user_pages_fast() - pin user pages in memory
1867 * @start: starting user address
1868 * @nr_pages: number of pages from start to pin
1869 * @write: whether pages will be written to
1870 * @pages: array that receives pointers to the pages pinned.
1871 * Should be at least nr_pages long.
1872 *
1873 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1874 * If not successful, it will fall back to taking the lock and
1875 * calling get_user_pages().
1876 *
1877 * Returns number of pages pinned. This may be fewer than the number
1878 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1879 * were pinned, returns -errno.
1880 */
1881int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1882 struct page **pages)
1883{
5b65c467 1884 unsigned long addr, len, end;
73e10a61 1885 int nr = 0, ret = 0;
2667f50e
SC
1886
1887 start &= PAGE_MASK;
5b65c467
KS
1888 addr = start;
1889 len = (unsigned long) nr_pages << PAGE_SHIFT;
1890 end = start + len;
1891
c61611f7
MT
1892 if (nr_pages <= 0)
1893 return 0;
1894
96d4f267 1895 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 1896 return -EFAULT;
73e10a61
KS
1897
1898 if (gup_fast_permitted(start, nr_pages, write)) {
5b65c467
KS
1899 local_irq_disable();
1900 gup_pgd_range(addr, end, write, pages, &nr);
1901 local_irq_enable();
73e10a61
KS
1902 ret = nr;
1903 }
2667f50e
SC
1904
1905 if (nr < nr_pages) {
1906 /* Try to get the remaining pages with get_user_pages */
1907 start += nr << PAGE_SHIFT;
1908 pages += nr;
1909
c164154f
LS
1910 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1911 write ? FOLL_WRITE : 0);
2667f50e
SC
1912
1913 /* Have to be a bit careful with return values */
1914 if (nr > 0) {
1915 if (ret < 0)
1916 ret = nr;
1917 else
1918 ret += nr;
1919 }
1920 }
1921
1922 return ret;
1923}
1924
e585513b 1925#endif /* CONFIG_HAVE_GENERIC_GUP */
This page took 0.590881 seconds and 4 git commands to generate.