]>
Commit | Line | Data |
---|---|---|
4bbd4c77 KS |
1 | #include <linux/kernel.h> |
2 | #include <linux/errno.h> | |
3 | #include <linux/err.h> | |
4 | #include <linux/spinlock.h> | |
5 | ||
4bbd4c77 | 6 | #include <linux/mm.h> |
3565fce3 | 7 | #include <linux/memremap.h> |
4bbd4c77 KS |
8 | #include <linux/pagemap.h> |
9 | #include <linux/rmap.h> | |
10 | #include <linux/swap.h> | |
11 | #include <linux/swapops.h> | |
12 | ||
174cd4b1 | 13 | #include <linux/sched/signal.h> |
2667f50e | 14 | #include <linux/rwsem.h> |
f30c59e9 | 15 | #include <linux/hugetlb.h> |
1027e443 | 16 | |
33a709b2 | 17 | #include <asm/mmu_context.h> |
2667f50e | 18 | #include <asm/pgtable.h> |
1027e443 | 19 | #include <asm/tlbflush.h> |
2667f50e | 20 | |
4bbd4c77 KS |
21 | #include "internal.h" |
22 | ||
df06b37f KB |
23 | struct follow_page_context { |
24 | struct dev_pagemap *pgmap; | |
25 | unsigned int page_mask; | |
26 | }; | |
27 | ||
69e68b4f KS |
28 | static struct page *no_page_table(struct vm_area_struct *vma, |
29 | unsigned int flags) | |
4bbd4c77 | 30 | { |
69e68b4f KS |
31 | /* |
32 | * When core dumping an enormous anonymous area that nobody | |
33 | * has touched so far, we don't want to allocate unnecessary pages or | |
34 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
35 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
36 | * But we can only make this optimization where a hole would surely | |
37 | * be zero-filled if handle_mm_fault() actually did handle it. | |
38 | */ | |
39 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
40 | return ERR_PTR(-EFAULT); | |
41 | return NULL; | |
42 | } | |
4bbd4c77 | 43 | |
1027e443 KS |
44 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
45 | pte_t *pte, unsigned int flags) | |
46 | { | |
47 | /* No page to get reference */ | |
48 | if (flags & FOLL_GET) | |
49 | return -EFAULT; | |
50 | ||
51 | if (flags & FOLL_TOUCH) { | |
52 | pte_t entry = *pte; | |
53 | ||
54 | if (flags & FOLL_WRITE) | |
55 | entry = pte_mkdirty(entry); | |
56 | entry = pte_mkyoung(entry); | |
57 | ||
58 | if (!pte_same(*pte, entry)) { | |
59 | set_pte_at(vma->vm_mm, address, pte, entry); | |
60 | update_mmu_cache(vma, address, pte); | |
61 | } | |
62 | } | |
63 | ||
64 | /* Proper page table entry exists, but no corresponding struct page */ | |
65 | return -EEXIST; | |
66 | } | |
67 | ||
19be0eaf LT |
68 | /* |
69 | * FOLL_FORCE can write to even unwritable pte's, but only | |
70 | * after we've gone through a COW cycle and they are dirty. | |
71 | */ | |
72 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
73 | { | |
f6f37321 | 74 | return pte_write(pte) || |
19be0eaf LT |
75 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
76 | } | |
77 | ||
69e68b4f | 78 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
79 | unsigned long address, pmd_t *pmd, unsigned int flags, |
80 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
81 | { |
82 | struct mm_struct *mm = vma->vm_mm; | |
83 | struct page *page; | |
84 | spinlock_t *ptl; | |
85 | pte_t *ptep, pte; | |
4bbd4c77 | 86 | |
69e68b4f | 87 | retry: |
4bbd4c77 | 88 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 89 | return no_page_table(vma, flags); |
4bbd4c77 KS |
90 | |
91 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
92 | pte = *ptep; |
93 | if (!pte_present(pte)) { | |
94 | swp_entry_t entry; | |
95 | /* | |
96 | * KSM's break_ksm() relies upon recognizing a ksm page | |
97 | * even while it is being migrated, so for that case we | |
98 | * need migration_entry_wait(). | |
99 | */ | |
100 | if (likely(!(flags & FOLL_MIGRATION))) | |
101 | goto no_page; | |
0661a336 | 102 | if (pte_none(pte)) |
4bbd4c77 KS |
103 | goto no_page; |
104 | entry = pte_to_swp_entry(pte); | |
105 | if (!is_migration_entry(entry)) | |
106 | goto no_page; | |
107 | pte_unmap_unlock(ptep, ptl); | |
108 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 109 | goto retry; |
4bbd4c77 | 110 | } |
8a0516ed | 111 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 112 | goto no_page; |
19be0eaf | 113 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
114 | pte_unmap_unlock(ptep, ptl); |
115 | return NULL; | |
116 | } | |
4bbd4c77 KS |
117 | |
118 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
119 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
120 | /* | |
121 | * Only return device mapping pages in the FOLL_GET case since | |
122 | * they are only valid while holding the pgmap reference. | |
123 | */ | |
df06b37f KB |
124 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
125 | if (*pgmap) | |
3565fce3 DW |
126 | page = pte_page(pte); |
127 | else | |
128 | goto no_page; | |
129 | } else if (unlikely(!page)) { | |
1027e443 KS |
130 | if (flags & FOLL_DUMP) { |
131 | /* Avoid special (like zero) pages in core dumps */ | |
132 | page = ERR_PTR(-EFAULT); | |
133 | goto out; | |
134 | } | |
135 | ||
136 | if (is_zero_pfn(pte_pfn(pte))) { | |
137 | page = pte_page(pte); | |
138 | } else { | |
139 | int ret; | |
140 | ||
141 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
142 | page = ERR_PTR(ret); | |
143 | goto out; | |
144 | } | |
4bbd4c77 KS |
145 | } |
146 | ||
6742d293 KS |
147 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
148 | int ret; | |
149 | get_page(page); | |
150 | pte_unmap_unlock(ptep, ptl); | |
151 | lock_page(page); | |
152 | ret = split_huge_page(page); | |
153 | unlock_page(page); | |
154 | put_page(page); | |
155 | if (ret) | |
156 | return ERR_PTR(ret); | |
157 | goto retry; | |
158 | } | |
159 | ||
8fde12ca LT |
160 | if (flags & FOLL_GET) { |
161 | if (unlikely(!try_get_page(page))) { | |
162 | page = ERR_PTR(-ENOMEM); | |
163 | goto out; | |
164 | } | |
165 | } | |
4bbd4c77 KS |
166 | if (flags & FOLL_TOUCH) { |
167 | if ((flags & FOLL_WRITE) && | |
168 | !pte_dirty(pte) && !PageDirty(page)) | |
169 | set_page_dirty(page); | |
170 | /* | |
171 | * pte_mkyoung() would be more correct here, but atomic care | |
172 | * is needed to avoid losing the dirty bit: it is easier to use | |
173 | * mark_page_accessed(). | |
174 | */ | |
175 | mark_page_accessed(page); | |
176 | } | |
de60f5f1 | 177 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
178 | /* Do not mlock pte-mapped THP */ |
179 | if (PageTransCompound(page)) | |
180 | goto out; | |
181 | ||
4bbd4c77 KS |
182 | /* |
183 | * The preliminary mapping check is mainly to avoid the | |
184 | * pointless overhead of lock_page on the ZERO_PAGE | |
185 | * which might bounce very badly if there is contention. | |
186 | * | |
187 | * If the page is already locked, we don't need to | |
188 | * handle it now - vmscan will handle it later if and | |
189 | * when it attempts to reclaim the page. | |
190 | */ | |
191 | if (page->mapping && trylock_page(page)) { | |
192 | lru_add_drain(); /* push cached pages to LRU */ | |
193 | /* | |
194 | * Because we lock page here, and migration is | |
195 | * blocked by the pte's page reference, and we | |
196 | * know the page is still mapped, we don't even | |
197 | * need to check for file-cache page truncation. | |
198 | */ | |
199 | mlock_vma_page(page); | |
200 | unlock_page(page); | |
201 | } | |
202 | } | |
1027e443 | 203 | out: |
4bbd4c77 | 204 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 205 | return page; |
4bbd4c77 KS |
206 | no_page: |
207 | pte_unmap_unlock(ptep, ptl); | |
208 | if (!pte_none(pte)) | |
69e68b4f KS |
209 | return NULL; |
210 | return no_page_table(vma, flags); | |
211 | } | |
212 | ||
080dbb61 AK |
213 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
214 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
215 | unsigned int flags, |
216 | struct follow_page_context *ctx) | |
69e68b4f | 217 | { |
68827280 | 218 | pmd_t *pmd, pmdval; |
69e68b4f KS |
219 | spinlock_t *ptl; |
220 | struct page *page; | |
221 | struct mm_struct *mm = vma->vm_mm; | |
222 | ||
080dbb61 | 223 | pmd = pmd_offset(pudp, address); |
68827280 YH |
224 | /* |
225 | * The READ_ONCE() will stabilize the pmdval in a register or | |
226 | * on the stack so that it will stop changing under the code. | |
227 | */ | |
228 | pmdval = READ_ONCE(*pmd); | |
229 | if (pmd_none(pmdval)) | |
69e68b4f | 230 | return no_page_table(vma, flags); |
68827280 | 231 | if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { |
e66f17ff NH |
232 | page = follow_huge_pmd(mm, address, pmd, flags); |
233 | if (page) | |
234 | return page; | |
235 | return no_page_table(vma, flags); | |
69e68b4f | 236 | } |
68827280 | 237 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 238 | page = follow_huge_pd(vma, address, |
68827280 | 239 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
240 | PMD_SHIFT); |
241 | if (page) | |
242 | return page; | |
243 | return no_page_table(vma, flags); | |
244 | } | |
84c3fc4e | 245 | retry: |
68827280 | 246 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
247 | if (likely(!(flags & FOLL_MIGRATION))) |
248 | return no_page_table(vma, flags); | |
249 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
250 | !is_pmd_migration_entry(pmdval)); |
251 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 252 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
253 | pmdval = READ_ONCE(*pmd); |
254 | /* | |
255 | * MADV_DONTNEED may convert the pmd to null because | |
256 | * mmap_sem is held in read mode | |
257 | */ | |
258 | if (pmd_none(pmdval)) | |
259 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
260 | goto retry; |
261 | } | |
68827280 | 262 | if (pmd_devmap(pmdval)) { |
3565fce3 | 263 | ptl = pmd_lock(mm, pmd); |
df06b37f | 264 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
265 | spin_unlock(ptl); |
266 | if (page) | |
267 | return page; | |
268 | } | |
68827280 | 269 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 270 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 271 | |
68827280 | 272 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
273 | return no_page_table(vma, flags); |
274 | ||
84c3fc4e | 275 | retry_locked: |
6742d293 | 276 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
277 | if (unlikely(pmd_none(*pmd))) { |
278 | spin_unlock(ptl); | |
279 | return no_page_table(vma, flags); | |
280 | } | |
84c3fc4e ZY |
281 | if (unlikely(!pmd_present(*pmd))) { |
282 | spin_unlock(ptl); | |
283 | if (likely(!(flags & FOLL_MIGRATION))) | |
284 | return no_page_table(vma, flags); | |
285 | pmd_migration_entry_wait(mm, pmd); | |
286 | goto retry_locked; | |
287 | } | |
6742d293 KS |
288 | if (unlikely(!pmd_trans_huge(*pmd))) { |
289 | spin_unlock(ptl); | |
df06b37f | 290 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 291 | } |
6742d293 KS |
292 | if (flags & FOLL_SPLIT) { |
293 | int ret; | |
294 | page = pmd_page(*pmd); | |
295 | if (is_huge_zero_page(page)) { | |
296 | spin_unlock(ptl); | |
297 | ret = 0; | |
78ddc534 | 298 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
299 | if (pmd_trans_unstable(pmd)) |
300 | ret = -EBUSY; | |
6742d293 | 301 | } else { |
8fde12ca LT |
302 | if (unlikely(!try_get_page(page))) { |
303 | spin_unlock(ptl); | |
304 | return ERR_PTR(-ENOMEM); | |
305 | } | |
69e68b4f | 306 | spin_unlock(ptl); |
6742d293 KS |
307 | lock_page(page); |
308 | ret = split_huge_page(page); | |
309 | unlock_page(page); | |
310 | put_page(page); | |
baa355fd KS |
311 | if (pmd_none(*pmd)) |
312 | return no_page_table(vma, flags); | |
6742d293 KS |
313 | } |
314 | ||
315 | return ret ? ERR_PTR(ret) : | |
df06b37f | 316 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 317 | } |
6742d293 KS |
318 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
319 | spin_unlock(ptl); | |
df06b37f | 320 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 321 | return page; |
4bbd4c77 KS |
322 | } |
323 | ||
080dbb61 AK |
324 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
325 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
326 | unsigned int flags, |
327 | struct follow_page_context *ctx) | |
080dbb61 AK |
328 | { |
329 | pud_t *pud; | |
330 | spinlock_t *ptl; | |
331 | struct page *page; | |
332 | struct mm_struct *mm = vma->vm_mm; | |
333 | ||
334 | pud = pud_offset(p4dp, address); | |
335 | if (pud_none(*pud)) | |
336 | return no_page_table(vma, flags); | |
337 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | |
338 | page = follow_huge_pud(mm, address, pud, flags); | |
339 | if (page) | |
340 | return page; | |
341 | return no_page_table(vma, flags); | |
342 | } | |
4dc71451 AK |
343 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
344 | page = follow_huge_pd(vma, address, | |
345 | __hugepd(pud_val(*pud)), flags, | |
346 | PUD_SHIFT); | |
347 | if (page) | |
348 | return page; | |
349 | return no_page_table(vma, flags); | |
350 | } | |
080dbb61 AK |
351 | if (pud_devmap(*pud)) { |
352 | ptl = pud_lock(mm, pud); | |
df06b37f | 353 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
354 | spin_unlock(ptl); |
355 | if (page) | |
356 | return page; | |
357 | } | |
358 | if (unlikely(pud_bad(*pud))) | |
359 | return no_page_table(vma, flags); | |
360 | ||
df06b37f | 361 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
362 | } |
363 | ||
080dbb61 AK |
364 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
365 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
366 | unsigned int flags, |
367 | struct follow_page_context *ctx) | |
080dbb61 AK |
368 | { |
369 | p4d_t *p4d; | |
4dc71451 | 370 | struct page *page; |
080dbb61 AK |
371 | |
372 | p4d = p4d_offset(pgdp, address); | |
373 | if (p4d_none(*p4d)) | |
374 | return no_page_table(vma, flags); | |
375 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
376 | if (unlikely(p4d_bad(*p4d))) | |
377 | return no_page_table(vma, flags); | |
378 | ||
4dc71451 AK |
379 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
380 | page = follow_huge_pd(vma, address, | |
381 | __hugepd(p4d_val(*p4d)), flags, | |
382 | P4D_SHIFT); | |
383 | if (page) | |
384 | return page; | |
385 | return no_page_table(vma, flags); | |
386 | } | |
df06b37f | 387 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
388 | } |
389 | ||
390 | /** | |
391 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
392 | * @vma: vm_area_struct mapping @address | |
393 | * @address: virtual address to look up | |
394 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
395 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
396 | * pointer to output page_mask | |
080dbb61 AK |
397 | * |
398 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
399 | * | |
78179556 MR |
400 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
401 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
402 | * | |
403 | * On output, the @ctx->page_mask is set according to the size of the page. | |
404 | * | |
405 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
406 | * an error pointer if there is a mapping to something not represented |
407 | * by a page descriptor (see also vm_normal_page()). | |
408 | */ | |
409 | struct page *follow_page_mask(struct vm_area_struct *vma, | |
410 | unsigned long address, unsigned int flags, | |
df06b37f | 411 | struct follow_page_context *ctx) |
080dbb61 AK |
412 | { |
413 | pgd_t *pgd; | |
414 | struct page *page; | |
415 | struct mm_struct *mm = vma->vm_mm; | |
416 | ||
df06b37f | 417 | ctx->page_mask = 0; |
080dbb61 AK |
418 | |
419 | /* make this handle hugepd */ | |
420 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
421 | if (!IS_ERR(page)) { | |
422 | BUG_ON(flags & FOLL_GET); | |
423 | return page; | |
424 | } | |
425 | ||
426 | pgd = pgd_offset(mm, address); | |
427 | ||
428 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
429 | return no_page_table(vma, flags); | |
430 | ||
faaa5b62 AK |
431 | if (pgd_huge(*pgd)) { |
432 | page = follow_huge_pgd(mm, address, pgd, flags); | |
433 | if (page) | |
434 | return page; | |
435 | return no_page_table(vma, flags); | |
436 | } | |
4dc71451 AK |
437 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
438 | page = follow_huge_pd(vma, address, | |
439 | __hugepd(pgd_val(*pgd)), flags, | |
440 | PGDIR_SHIFT); | |
441 | if (page) | |
442 | return page; | |
443 | return no_page_table(vma, flags); | |
444 | } | |
faaa5b62 | 445 | |
df06b37f KB |
446 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
447 | } | |
448 | ||
449 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
450 | unsigned int foll_flags) | |
451 | { | |
452 | struct follow_page_context ctx = { NULL }; | |
453 | struct page *page; | |
454 | ||
455 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
456 | if (ctx.pgmap) | |
457 | put_dev_pagemap(ctx.pgmap); | |
458 | return page; | |
080dbb61 AK |
459 | } |
460 | ||
f2b495ca KS |
461 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
462 | unsigned int gup_flags, struct vm_area_struct **vma, | |
463 | struct page **page) | |
464 | { | |
465 | pgd_t *pgd; | |
c2febafc | 466 | p4d_t *p4d; |
f2b495ca KS |
467 | pud_t *pud; |
468 | pmd_t *pmd; | |
469 | pte_t *pte; | |
470 | int ret = -EFAULT; | |
471 | ||
472 | /* user gate pages are read-only */ | |
473 | if (gup_flags & FOLL_WRITE) | |
474 | return -EFAULT; | |
475 | if (address > TASK_SIZE) | |
476 | pgd = pgd_offset_k(address); | |
477 | else | |
478 | pgd = pgd_offset_gate(mm, address); | |
479 | BUG_ON(pgd_none(*pgd)); | |
c2febafc KS |
480 | p4d = p4d_offset(pgd, address); |
481 | BUG_ON(p4d_none(*p4d)); | |
482 | pud = pud_offset(p4d, address); | |
f2b495ca KS |
483 | BUG_ON(pud_none(*pud)); |
484 | pmd = pmd_offset(pud, address); | |
84c3fc4e | 485 | if (!pmd_present(*pmd)) |
f2b495ca KS |
486 | return -EFAULT; |
487 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
488 | pte = pte_offset_map(pmd, address); | |
489 | if (pte_none(*pte)) | |
490 | goto unmap; | |
491 | *vma = get_gate_vma(mm); | |
492 | if (!page) | |
493 | goto out; | |
494 | *page = vm_normal_page(*vma, address, *pte); | |
495 | if (!*page) { | |
496 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
497 | goto unmap; | |
498 | *page = pte_page(*pte); | |
df6ad698 JG |
499 | |
500 | /* | |
501 | * This should never happen (a device public page in the gate | |
502 | * area). | |
503 | */ | |
504 | if (is_device_public_page(*page)) | |
505 | goto unmap; | |
f2b495ca | 506 | } |
8fde12ca LT |
507 | if (unlikely(!try_get_page(*page))) { |
508 | ret = -ENOMEM; | |
509 | goto unmap; | |
510 | } | |
f2b495ca KS |
511 | out: |
512 | ret = 0; | |
513 | unmap: | |
514 | pte_unmap(pte); | |
515 | return ret; | |
516 | } | |
517 | ||
9a95f3cf PC |
518 | /* |
519 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
520 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
521 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
522 | */ | |
16744483 KS |
523 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
524 | unsigned long address, unsigned int *flags, int *nonblocking) | |
525 | { | |
16744483 | 526 | unsigned int fault_flags = 0; |
2b740303 | 527 | vm_fault_t ret; |
16744483 | 528 | |
de60f5f1 EM |
529 | /* mlock all present pages, but do not fault in new pages */ |
530 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
531 | return -ENOENT; | |
16744483 KS |
532 | if (*flags & FOLL_WRITE) |
533 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
534 | if (*flags & FOLL_REMOTE) |
535 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
536 | if (nonblocking) |
537 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
538 | if (*flags & FOLL_NOWAIT) | |
539 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
540 | if (*flags & FOLL_TRIED) { |
541 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
542 | fault_flags |= FAULT_FLAG_TRIED; | |
543 | } | |
16744483 | 544 | |
dcddffd4 | 545 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 546 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
547 | int err = vm_fault_to_errno(ret, *flags); |
548 | ||
549 | if (err) | |
550 | return err; | |
16744483 KS |
551 | BUG(); |
552 | } | |
553 | ||
554 | if (tsk) { | |
555 | if (ret & VM_FAULT_MAJOR) | |
556 | tsk->maj_flt++; | |
557 | else | |
558 | tsk->min_flt++; | |
559 | } | |
560 | ||
561 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 562 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
563 | *nonblocking = 0; |
564 | return -EBUSY; | |
565 | } | |
566 | ||
567 | /* | |
568 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
569 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
570 | * can thus safely do subsequent page lookups as if they were reads. | |
571 | * But only do so when looping for pte_write is futile: in some cases | |
572 | * userspace may also be wanting to write to the gotten user page, | |
573 | * which a read fault here might prevent (a readonly page might get | |
574 | * reCOWed by userspace write). | |
575 | */ | |
576 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 577 | *flags |= FOLL_COW; |
16744483 KS |
578 | return 0; |
579 | } | |
580 | ||
fa5bb209 KS |
581 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
582 | { | |
583 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
584 | int write = (gup_flags & FOLL_WRITE); |
585 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
586 | |
587 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
588 | return -EFAULT; | |
589 | ||
7f7ccc2c WT |
590 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
591 | return -EFAULT; | |
592 | ||
1b2ee126 | 593 | if (write) { |
fa5bb209 KS |
594 | if (!(vm_flags & VM_WRITE)) { |
595 | if (!(gup_flags & FOLL_FORCE)) | |
596 | return -EFAULT; | |
597 | /* | |
598 | * We used to let the write,force case do COW in a | |
599 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
600 | * set a breakpoint in a read-only mapping of an | |
601 | * executable, without corrupting the file (yet only | |
602 | * when that file had been opened for writing!). | |
603 | * Anon pages in shared mappings are surprising: now | |
604 | * just reject it. | |
605 | */ | |
46435364 | 606 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 607 | return -EFAULT; |
fa5bb209 KS |
608 | } |
609 | } else if (!(vm_flags & VM_READ)) { | |
610 | if (!(gup_flags & FOLL_FORCE)) | |
611 | return -EFAULT; | |
612 | /* | |
613 | * Is there actually any vma we can reach here which does not | |
614 | * have VM_MAYREAD set? | |
615 | */ | |
616 | if (!(vm_flags & VM_MAYREAD)) | |
617 | return -EFAULT; | |
618 | } | |
d61172b4 DH |
619 | /* |
620 | * gups are always data accesses, not instruction | |
621 | * fetches, so execute=false here | |
622 | */ | |
623 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 624 | return -EFAULT; |
fa5bb209 KS |
625 | return 0; |
626 | } | |
627 | ||
4bbd4c77 KS |
628 | /** |
629 | * __get_user_pages() - pin user pages in memory | |
630 | * @tsk: task_struct of target task | |
631 | * @mm: mm_struct of target mm | |
632 | * @start: starting user address | |
633 | * @nr_pages: number of pages from start to pin | |
634 | * @gup_flags: flags modifying pin behaviour | |
635 | * @pages: array that receives pointers to the pages pinned. | |
636 | * Should be at least nr_pages long. Or NULL, if caller | |
637 | * only intends to ensure the pages are faulted in. | |
638 | * @vmas: array of pointers to vmas corresponding to each page. | |
639 | * Or NULL if the caller does not require them. | |
640 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
641 | * | |
642 | * Returns number of pages pinned. This may be fewer than the number | |
643 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
644 | * were pinned, returns -errno. Each page returned must be released | |
645 | * with a put_page() call when it is finished with. vmas will only | |
646 | * remain valid while mmap_sem is held. | |
647 | * | |
9a95f3cf | 648 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
649 | * |
650 | * __get_user_pages walks a process's page tables and takes a reference to | |
651 | * each struct page that each user address corresponds to at a given | |
652 | * instant. That is, it takes the page that would be accessed if a user | |
653 | * thread accesses the given user virtual address at that instant. | |
654 | * | |
655 | * This does not guarantee that the page exists in the user mappings when | |
656 | * __get_user_pages returns, and there may even be a completely different | |
657 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
658 | * and subsequently re faulted). However it does guarantee that the page | |
659 | * won't be freed completely. And mostly callers simply care that the page | |
660 | * contains data that was valid *at some point in time*. Typically, an IO | |
661 | * or similar operation cannot guarantee anything stronger anyway because | |
662 | * locks can't be held over the syscall boundary. | |
663 | * | |
664 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
665 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
666 | * appropriate) must be called after the page is finished with, and | |
667 | * before put_page is called. | |
668 | * | |
669 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
670 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
671 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
672 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
673 | * this case. | |
674 | * | |
675 | * A caller using such a combination of @nonblocking and @gup_flags | |
676 | * must therefore hold the mmap_sem for reading only, and recognize | |
677 | * when it's been released. Otherwise, it must be held for either | |
678 | * reading or writing and will not be released. | |
4bbd4c77 KS |
679 | * |
680 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
681 | * instead of __get_user_pages. __get_user_pages should be used only if | |
682 | * you need some special @gup_flags. | |
683 | */ | |
0d731759 | 684 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
685 | unsigned long start, unsigned long nr_pages, |
686 | unsigned int gup_flags, struct page **pages, | |
687 | struct vm_area_struct **vmas, int *nonblocking) | |
688 | { | |
df06b37f | 689 | long ret = 0, i = 0; |
fa5bb209 | 690 | struct vm_area_struct *vma = NULL; |
df06b37f | 691 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
692 | |
693 | if (!nr_pages) | |
694 | return 0; | |
695 | ||
696 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
697 | ||
698 | /* | |
699 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
700 | * fault information is unrelated to the reference behaviour of a task | |
701 | * using the address space | |
702 | */ | |
703 | if (!(gup_flags & FOLL_FORCE)) | |
704 | gup_flags |= FOLL_NUMA; | |
705 | ||
4bbd4c77 | 706 | do { |
fa5bb209 KS |
707 | struct page *page; |
708 | unsigned int foll_flags = gup_flags; | |
709 | unsigned int page_increm; | |
710 | ||
711 | /* first iteration or cross vma bound */ | |
712 | if (!vma || start >= vma->vm_end) { | |
713 | vma = find_extend_vma(mm, start); | |
714 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
715 | ret = get_gate_page(mm, start & PAGE_MASK, |
716 | gup_flags, &vma, | |
717 | pages ? &pages[i] : NULL); | |
718 | if (ret) | |
08be37b7 | 719 | goto out; |
df06b37f | 720 | ctx.page_mask = 0; |
fa5bb209 KS |
721 | goto next_page; |
722 | } | |
4bbd4c77 | 723 | |
df06b37f KB |
724 | if (!vma || check_vma_flags(vma, gup_flags)) { |
725 | ret = -EFAULT; | |
726 | goto out; | |
727 | } | |
fa5bb209 KS |
728 | if (is_vm_hugetlb_page(vma)) { |
729 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
730 | &start, &nr_pages, i, | |
87ffc118 | 731 | gup_flags, nonblocking); |
fa5bb209 | 732 | continue; |
4bbd4c77 | 733 | } |
fa5bb209 KS |
734 | } |
735 | retry: | |
736 | /* | |
737 | * If we have a pending SIGKILL, don't keep faulting pages and | |
738 | * potentially allocating memory. | |
739 | */ | |
fa45f116 | 740 | if (fatal_signal_pending(current)) { |
df06b37f KB |
741 | ret = -ERESTARTSYS; |
742 | goto out; | |
743 | } | |
fa5bb209 | 744 | cond_resched(); |
df06b37f KB |
745 | |
746 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 747 | if (!page) { |
fa5bb209 KS |
748 | ret = faultin_page(tsk, vma, start, &foll_flags, |
749 | nonblocking); | |
750 | switch (ret) { | |
751 | case 0: | |
752 | goto retry; | |
df06b37f KB |
753 | case -EBUSY: |
754 | ret = 0; | |
755 | /* FALLTHRU */ | |
fa5bb209 KS |
756 | case -EFAULT: |
757 | case -ENOMEM: | |
758 | case -EHWPOISON: | |
df06b37f | 759 | goto out; |
fa5bb209 KS |
760 | case -ENOENT: |
761 | goto next_page; | |
4bbd4c77 | 762 | } |
fa5bb209 | 763 | BUG(); |
1027e443 KS |
764 | } else if (PTR_ERR(page) == -EEXIST) { |
765 | /* | |
766 | * Proper page table entry exists, but no corresponding | |
767 | * struct page. | |
768 | */ | |
769 | goto next_page; | |
770 | } else if (IS_ERR(page)) { | |
df06b37f KB |
771 | ret = PTR_ERR(page); |
772 | goto out; | |
1027e443 | 773 | } |
fa5bb209 KS |
774 | if (pages) { |
775 | pages[i] = page; | |
776 | flush_anon_page(vma, page, start); | |
777 | flush_dcache_page(page); | |
df06b37f | 778 | ctx.page_mask = 0; |
4bbd4c77 | 779 | } |
4bbd4c77 | 780 | next_page: |
fa5bb209 KS |
781 | if (vmas) { |
782 | vmas[i] = vma; | |
df06b37f | 783 | ctx.page_mask = 0; |
fa5bb209 | 784 | } |
df06b37f | 785 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
786 | if (page_increm > nr_pages) |
787 | page_increm = nr_pages; | |
788 | i += page_increm; | |
789 | start += page_increm * PAGE_SIZE; | |
790 | nr_pages -= page_increm; | |
4bbd4c77 | 791 | } while (nr_pages); |
df06b37f KB |
792 | out: |
793 | if (ctx.pgmap) | |
794 | put_dev_pagemap(ctx.pgmap); | |
795 | return i ? i : ret; | |
4bbd4c77 | 796 | } |
4bbd4c77 | 797 | |
771ab430 TK |
798 | static bool vma_permits_fault(struct vm_area_struct *vma, |
799 | unsigned int fault_flags) | |
d4925e00 | 800 | { |
1b2ee126 DH |
801 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
802 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 803 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
804 | |
805 | if (!(vm_flags & vma->vm_flags)) | |
806 | return false; | |
807 | ||
33a709b2 DH |
808 | /* |
809 | * The architecture might have a hardware protection | |
1b2ee126 | 810 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
811 | * |
812 | * gup always represents data access, not instruction | |
813 | * fetches, so execute=false here: | |
33a709b2 | 814 | */ |
d61172b4 | 815 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
816 | return false; |
817 | ||
d4925e00 DH |
818 | return true; |
819 | } | |
820 | ||
4bbd4c77 KS |
821 | /* |
822 | * fixup_user_fault() - manually resolve a user page fault | |
823 | * @tsk: the task_struct to use for page fault accounting, or | |
824 | * NULL if faults are not to be recorded. | |
825 | * @mm: mm_struct of target mm | |
826 | * @address: user address | |
827 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
828 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
829 | * does not allow retry | |
4bbd4c77 KS |
830 | * |
831 | * This is meant to be called in the specific scenario where for locking reasons | |
832 | * we try to access user memory in atomic context (within a pagefault_disable() | |
833 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
834 | * trying again. | |
835 | * | |
836 | * Typically this is meant to be used by the futex code. | |
837 | * | |
838 | * The main difference with get_user_pages() is that this function will | |
839 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
840 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 841 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
842 | * |
843 | * This is important for some architectures where those bits also gate the | |
844 | * access permission to the page because they are maintained in software. On | |
845 | * such architectures, gup() will not be enough to make a subsequent access | |
846 | * succeed. | |
847 | * | |
4a9e1cda DD |
848 | * This function will not return with an unlocked mmap_sem. So it has not the |
849 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
850 | */ |
851 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
852 | unsigned long address, unsigned int fault_flags, |
853 | bool *unlocked) | |
4bbd4c77 KS |
854 | { |
855 | struct vm_area_struct *vma; | |
2b740303 | 856 | vm_fault_t ret, major = 0; |
4a9e1cda DD |
857 | |
858 | if (unlocked) | |
859 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 860 | |
4a9e1cda | 861 | retry: |
4bbd4c77 KS |
862 | vma = find_extend_vma(mm, address); |
863 | if (!vma || address < vma->vm_start) | |
864 | return -EFAULT; | |
865 | ||
d4925e00 | 866 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
867 | return -EFAULT; |
868 | ||
dcddffd4 | 869 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 870 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 871 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
872 | int err = vm_fault_to_errno(ret, 0); |
873 | ||
874 | if (err) | |
875 | return err; | |
4bbd4c77 KS |
876 | BUG(); |
877 | } | |
4a9e1cda DD |
878 | |
879 | if (ret & VM_FAULT_RETRY) { | |
880 | down_read(&mm->mmap_sem); | |
881 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
882 | *unlocked = true; | |
883 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
884 | fault_flags |= FAULT_FLAG_TRIED; | |
885 | goto retry; | |
886 | } | |
887 | } | |
888 | ||
4bbd4c77 | 889 | if (tsk) { |
4a9e1cda | 890 | if (major) |
4bbd4c77 KS |
891 | tsk->maj_flt++; |
892 | else | |
893 | tsk->min_flt++; | |
894 | } | |
895 | return 0; | |
896 | } | |
add6a0cd | 897 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 898 | |
f0818f47 AA |
899 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
900 | struct mm_struct *mm, | |
901 | unsigned long start, | |
902 | unsigned long nr_pages, | |
f0818f47 AA |
903 | struct page **pages, |
904 | struct vm_area_struct **vmas, | |
e716712f | 905 | int *locked, |
0fd71a56 | 906 | unsigned int flags) |
f0818f47 | 907 | { |
f0818f47 AA |
908 | long ret, pages_done; |
909 | bool lock_dropped; | |
910 | ||
911 | if (locked) { | |
912 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
913 | BUG_ON(vmas); | |
914 | /* check caller initialized locked */ | |
915 | BUG_ON(*locked != 1); | |
916 | } | |
917 | ||
918 | if (pages) | |
919 | flags |= FOLL_GET; | |
f0818f47 AA |
920 | |
921 | pages_done = 0; | |
922 | lock_dropped = false; | |
923 | for (;;) { | |
924 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
925 | vmas, locked); | |
926 | if (!locked) | |
927 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
928 | return ret; | |
929 | ||
930 | /* VM_FAULT_RETRY cannot return errors */ | |
931 | if (!*locked) { | |
932 | BUG_ON(ret < 0); | |
933 | BUG_ON(ret >= nr_pages); | |
934 | } | |
935 | ||
936 | if (!pages) | |
937 | /* If it's a prefault don't insist harder */ | |
938 | return ret; | |
939 | ||
940 | if (ret > 0) { | |
941 | nr_pages -= ret; | |
942 | pages_done += ret; | |
943 | if (!nr_pages) | |
944 | break; | |
945 | } | |
946 | if (*locked) { | |
96312e61 AA |
947 | /* |
948 | * VM_FAULT_RETRY didn't trigger or it was a | |
949 | * FOLL_NOWAIT. | |
950 | */ | |
f0818f47 AA |
951 | if (!pages_done) |
952 | pages_done = ret; | |
953 | break; | |
954 | } | |
955 | /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ | |
956 | pages += ret; | |
957 | start += ret << PAGE_SHIFT; | |
958 | ||
959 | /* | |
960 | * Repeat on the address that fired VM_FAULT_RETRY | |
961 | * without FAULT_FLAG_ALLOW_RETRY but with | |
962 | * FAULT_FLAG_TRIED. | |
963 | */ | |
964 | *locked = 1; | |
965 | lock_dropped = true; | |
966 | down_read(&mm->mmap_sem); | |
967 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
968 | pages, NULL, NULL); | |
969 | if (ret != 1) { | |
970 | BUG_ON(ret > 1); | |
971 | if (!pages_done) | |
972 | pages_done = ret; | |
973 | break; | |
974 | } | |
975 | nr_pages--; | |
976 | pages_done++; | |
977 | if (!nr_pages) | |
978 | break; | |
979 | pages++; | |
980 | start += PAGE_SIZE; | |
981 | } | |
e716712f | 982 | if (lock_dropped && *locked) { |
f0818f47 AA |
983 | /* |
984 | * We must let the caller know we temporarily dropped the lock | |
985 | * and so the critical section protected by it was lost. | |
986 | */ | |
987 | up_read(&mm->mmap_sem); | |
988 | *locked = 0; | |
989 | } | |
990 | return pages_done; | |
991 | } | |
992 | ||
993 | /* | |
994 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
995 | * paths better by using either get_user_pages_locked() or | |
996 | * get_user_pages_unlocked(). | |
997 | * | |
998 | * get_user_pages_locked() is suitable to replace the form: | |
999 | * | |
1000 | * down_read(&mm->mmap_sem); | |
1001 | * do_something() | |
1002 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1003 | * up_read(&mm->mmap_sem); | |
1004 | * | |
1005 | * to: | |
1006 | * | |
1007 | * int locked = 1; | |
1008 | * down_read(&mm->mmap_sem); | |
1009 | * do_something() | |
1010 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
1011 | * if (locked) | |
1012 | * up_read(&mm->mmap_sem); | |
1013 | */ | |
c12d2da5 | 1014 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
3b913179 | 1015 | unsigned int gup_flags, struct page **pages, |
f0818f47 AA |
1016 | int *locked) |
1017 | { | |
cde70140 | 1018 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 1019 | pages, NULL, locked, |
3b913179 | 1020 | gup_flags | FOLL_TOUCH); |
f0818f47 | 1021 | } |
c12d2da5 | 1022 | EXPORT_SYMBOL(get_user_pages_locked); |
f0818f47 AA |
1023 | |
1024 | /* | |
1025 | * get_user_pages_unlocked() is suitable to replace the form: | |
1026 | * | |
1027 | * down_read(&mm->mmap_sem); | |
1028 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1029 | * up_read(&mm->mmap_sem); | |
1030 | * | |
1031 | * with: | |
1032 | * | |
1033 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
1034 | * | |
1035 | * It is functionally equivalent to get_user_pages_fast so | |
80a79516 LS |
1036 | * get_user_pages_fast should be used instead if specific gup_flags |
1037 | * (e.g. FOLL_FORCE) are not required. | |
f0818f47 | 1038 | */ |
c12d2da5 | 1039 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
c164154f | 1040 | struct page **pages, unsigned int gup_flags) |
f0818f47 | 1041 | { |
c803c9c6 AV |
1042 | struct mm_struct *mm = current->mm; |
1043 | int locked = 1; | |
1044 | long ret; | |
1045 | ||
1046 | down_read(&mm->mmap_sem); | |
1047 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
e716712f | 1048 | &locked, gup_flags | FOLL_TOUCH); |
c803c9c6 AV |
1049 | if (locked) |
1050 | up_read(&mm->mmap_sem); | |
1051 | return ret; | |
f0818f47 | 1052 | } |
c12d2da5 | 1053 | EXPORT_SYMBOL(get_user_pages_unlocked); |
f0818f47 | 1054 | |
4bbd4c77 | 1055 | /* |
1e987790 | 1056 | * get_user_pages_remote() - pin user pages in memory |
4bbd4c77 KS |
1057 | * @tsk: the task_struct to use for page fault accounting, or |
1058 | * NULL if faults are not to be recorded. | |
1059 | * @mm: mm_struct of target mm | |
1060 | * @start: starting user address | |
1061 | * @nr_pages: number of pages from start to pin | |
9beae1ea | 1062 | * @gup_flags: flags modifying lookup behaviour |
4bbd4c77 KS |
1063 | * @pages: array that receives pointers to the pages pinned. |
1064 | * Should be at least nr_pages long. Or NULL, if caller | |
1065 | * only intends to ensure the pages are faulted in. | |
1066 | * @vmas: array of pointers to vmas corresponding to each page. | |
1067 | * Or NULL if the caller does not require them. | |
5b56d49f LS |
1068 | * @locked: pointer to lock flag indicating whether lock is held and |
1069 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1070 | * utilised. Lock must initially be held. | |
4bbd4c77 KS |
1071 | * |
1072 | * Returns number of pages pinned. This may be fewer than the number | |
1073 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1074 | * were pinned, returns -errno. Each page returned must be released | |
1075 | * with a put_page() call when it is finished with. vmas will only | |
1076 | * remain valid while mmap_sem is held. | |
1077 | * | |
1078 | * Must be called with mmap_sem held for read or write. | |
1079 | * | |
1080 | * get_user_pages walks a process's page tables and takes a reference to | |
1081 | * each struct page that each user address corresponds to at a given | |
1082 | * instant. That is, it takes the page that would be accessed if a user | |
1083 | * thread accesses the given user virtual address at that instant. | |
1084 | * | |
1085 | * This does not guarantee that the page exists in the user mappings when | |
1086 | * get_user_pages returns, and there may even be a completely different | |
1087 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1088 | * and subsequently re faulted). However it does guarantee that the page | |
1089 | * won't be freed completely. And mostly callers simply care that the page | |
1090 | * contains data that was valid *at some point in time*. Typically, an IO | |
1091 | * or similar operation cannot guarantee anything stronger anyway because | |
1092 | * locks can't be held over the syscall boundary. | |
1093 | * | |
9beae1ea LS |
1094 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
1095 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1096 | * be called after the page is finished with, and before put_page is called. | |
4bbd4c77 KS |
1097 | * |
1098 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1099 | * handle on the memory by some means other than accesses via the user virtual | |
1100 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1101 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1102 | * use the correct cache flushing APIs. | |
1103 | * | |
1104 | * See also get_user_pages_fast, for performance critical applications. | |
f0818f47 AA |
1105 | * |
1106 | * get_user_pages should be phased out in favor of | |
1107 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1108 | * should use get_user_pages because it cannot pass | |
1109 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
4bbd4c77 | 1110 | */ |
1e987790 DH |
1111 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1112 | unsigned long start, unsigned long nr_pages, | |
9beae1ea | 1113 | unsigned int gup_flags, struct page **pages, |
5b56d49f | 1114 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1115 | { |
859110d7 | 1116 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, |
e716712f | 1117 | locked, |
9beae1ea | 1118 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); |
1e987790 DH |
1119 | } |
1120 | EXPORT_SYMBOL(get_user_pages_remote); | |
1121 | ||
1122 | /* | |
d4edcf0d DH |
1123 | * This is the same as get_user_pages_remote(), just with a |
1124 | * less-flexible calling convention where we assume that the task | |
5b56d49f LS |
1125 | * and mm being operated on are the current task's and don't allow |
1126 | * passing of a locked parameter. We also obviously don't pass | |
1127 | * FOLL_REMOTE in here. | |
1e987790 | 1128 | */ |
c12d2da5 | 1129 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
768ae309 | 1130 | unsigned int gup_flags, struct page **pages, |
1e987790 DH |
1131 | struct vm_area_struct **vmas) |
1132 | { | |
cde70140 | 1133 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 1134 | pages, vmas, NULL, |
768ae309 | 1135 | gup_flags | FOLL_TOUCH); |
4bbd4c77 | 1136 | } |
c12d2da5 | 1137 | EXPORT_SYMBOL(get_user_pages); |
4bbd4c77 | 1138 | |
2bb6d283 DW |
1139 | #ifdef CONFIG_FS_DAX |
1140 | /* | |
1141 | * This is the same as get_user_pages() in that it assumes we are | |
1142 | * operating on the current task's mm, but it goes further to validate | |
1143 | * that the vmas associated with the address range are suitable for | |
1144 | * longterm elevated page reference counts. For example, filesystem-dax | |
1145 | * mappings are subject to the lifetime enforced by the filesystem and | |
1146 | * we need guarantees that longterm users like RDMA and V4L2 only | |
1147 | * establish mappings that have a kernel enforced revocation mechanism. | |
1148 | * | |
1149 | * "longterm" == userspace controlled elevated page count lifetime. | |
1150 | * Contrast this to iov_iter_get_pages() usages which are transient. | |
1151 | */ | |
1152 | long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, | |
1153 | unsigned int gup_flags, struct page **pages, | |
1154 | struct vm_area_struct **vmas_arg) | |
1155 | { | |
1156 | struct vm_area_struct **vmas = vmas_arg; | |
1157 | struct vm_area_struct *vma_prev = NULL; | |
1158 | long rc, i; | |
1159 | ||
1160 | if (!pages) | |
1161 | return -EINVAL; | |
1162 | ||
1163 | if (!vmas) { | |
1164 | vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), | |
1165 | GFP_KERNEL); | |
1166 | if (!vmas) | |
1167 | return -ENOMEM; | |
1168 | } | |
1169 | ||
1170 | rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); | |
1171 | ||
1172 | for (i = 0; i < rc; i++) { | |
1173 | struct vm_area_struct *vma = vmas[i]; | |
1174 | ||
1175 | if (vma == vma_prev) | |
1176 | continue; | |
1177 | ||
1178 | vma_prev = vma; | |
1179 | ||
1180 | if (vma_is_fsdax(vma)) | |
1181 | break; | |
1182 | } | |
1183 | ||
1184 | /* | |
1185 | * Either get_user_pages() failed, or the vma validation | |
1186 | * succeeded, in either case we don't need to put_page() before | |
1187 | * returning. | |
1188 | */ | |
1189 | if (i >= rc) | |
1190 | goto out; | |
1191 | ||
1192 | for (i = 0; i < rc; i++) | |
1193 | put_page(pages[i]); | |
1194 | rc = -EOPNOTSUPP; | |
1195 | out: | |
1196 | if (vmas != vmas_arg) | |
1197 | kfree(vmas); | |
1198 | return rc; | |
1199 | } | |
1200 | EXPORT_SYMBOL(get_user_pages_longterm); | |
1201 | #endif /* CONFIG_FS_DAX */ | |
1202 | ||
acc3c8d1 KS |
1203 | /** |
1204 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1205 | * @vma: target vma | |
1206 | * @start: start address | |
1207 | * @end: end address | |
1208 | * @nonblocking: | |
1209 | * | |
1210 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1211 | * | |
1212 | * return 0 on success, negative error code on error. | |
1213 | * | |
1214 | * vma->vm_mm->mmap_sem must be held. | |
1215 | * | |
1216 | * If @nonblocking is NULL, it may be held for read or write and will | |
1217 | * be unperturbed. | |
1218 | * | |
1219 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1220 | * released. If it's released, *@nonblocking will be set to 0. | |
1221 | */ | |
1222 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1223 | unsigned long start, unsigned long end, int *nonblocking) | |
1224 | { | |
1225 | struct mm_struct *mm = vma->vm_mm; | |
1226 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1227 | int gup_flags; | |
1228 | ||
1229 | VM_BUG_ON(start & ~PAGE_MASK); | |
1230 | VM_BUG_ON(end & ~PAGE_MASK); | |
1231 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1232 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1233 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1234 | ||
de60f5f1 EM |
1235 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; |
1236 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1237 | gup_flags &= ~FOLL_POPULATE; | |
acc3c8d1 KS |
1238 | /* |
1239 | * We want to touch writable mappings with a write fault in order | |
1240 | * to break COW, except for shared mappings because these don't COW | |
1241 | * and we would not want to dirty them for nothing. | |
1242 | */ | |
1243 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1244 | gup_flags |= FOLL_WRITE; | |
1245 | ||
1246 | /* | |
1247 | * We want mlock to succeed for regions that have any permissions | |
1248 | * other than PROT_NONE. | |
1249 | */ | |
1250 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1251 | gup_flags |= FOLL_FORCE; | |
1252 | ||
1253 | /* | |
1254 | * We made sure addr is within a VMA, so the following will | |
1255 | * not result in a stack expansion that recurses back here. | |
1256 | */ | |
1257 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1258 | NULL, NULL, nonblocking); | |
1259 | } | |
1260 | ||
1261 | /* | |
1262 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1263 | * | |
1264 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1265 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1266 | * mmap_sem must not be held. | |
1267 | */ | |
1268 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1269 | { | |
1270 | struct mm_struct *mm = current->mm; | |
1271 | unsigned long end, nstart, nend; | |
1272 | struct vm_area_struct *vma = NULL; | |
1273 | int locked = 0; | |
1274 | long ret = 0; | |
1275 | ||
acc3c8d1 KS |
1276 | end = start + len; |
1277 | ||
1278 | for (nstart = start; nstart < end; nstart = nend) { | |
1279 | /* | |
1280 | * We want to fault in pages for [nstart; end) address range. | |
1281 | * Find first corresponding VMA. | |
1282 | */ | |
1283 | if (!locked) { | |
1284 | locked = 1; | |
1285 | down_read(&mm->mmap_sem); | |
1286 | vma = find_vma(mm, nstart); | |
1287 | } else if (nstart >= vma->vm_end) | |
1288 | vma = vma->vm_next; | |
1289 | if (!vma || vma->vm_start >= end) | |
1290 | break; | |
1291 | /* | |
1292 | * Set [nstart; nend) to intersection of desired address | |
1293 | * range with the first VMA. Also, skip undesirable VMA types. | |
1294 | */ | |
1295 | nend = min(end, vma->vm_end); | |
1296 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1297 | continue; | |
1298 | if (nstart < vma->vm_start) | |
1299 | nstart = vma->vm_start; | |
1300 | /* | |
1301 | * Now fault in a range of pages. populate_vma_page_range() | |
1302 | * double checks the vma flags, so that it won't mlock pages | |
1303 | * if the vma was already munlocked. | |
1304 | */ | |
1305 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1306 | if (ret < 0) { | |
1307 | if (ignore_errors) { | |
1308 | ret = 0; | |
1309 | continue; /* continue at next VMA */ | |
1310 | } | |
1311 | break; | |
1312 | } | |
1313 | nend = nstart + ret * PAGE_SIZE; | |
1314 | ret = 0; | |
1315 | } | |
1316 | if (locked) | |
1317 | up_read(&mm->mmap_sem); | |
1318 | return ret; /* 0 or negative error code */ | |
1319 | } | |
1320 | ||
4bbd4c77 KS |
1321 | /** |
1322 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1323 | * @addr: user address | |
1324 | * | |
1325 | * Returns struct page pointer of user page pinned for dump, | |
ea1754a0 | 1326 | * to be freed afterwards by put_page(). |
4bbd4c77 KS |
1327 | * |
1328 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1329 | * the corefile, to preserve alignment with its headers; and also returns | |
1330 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1331 | * allowing a hole to be left in the corefile to save diskspace. | |
1332 | * | |
1333 | * Called without mmap_sem, but after all other threads have been killed. | |
1334 | */ | |
1335 | #ifdef CONFIG_ELF_CORE | |
1336 | struct page *get_dump_page(unsigned long addr) | |
1337 | { | |
1338 | struct vm_area_struct *vma; | |
1339 | struct page *page; | |
1340 | ||
1341 | if (__get_user_pages(current, current->mm, addr, 1, | |
1342 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1343 | NULL) < 1) | |
1344 | return NULL; | |
1345 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1346 | return page; | |
1347 | } | |
1348 | #endif /* CONFIG_ELF_CORE */ | |
2667f50e SC |
1349 | |
1350 | /* | |
e585513b | 1351 | * Generic Fast GUP |
2667f50e SC |
1352 | * |
1353 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1354 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1355 | * protected from page table pages being freed from under it, and should | |
1356 | * block any THP splits. | |
1357 | * | |
1358 | * One way to achieve this is to have the walker disable interrupts, and | |
1359 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1360 | * pages are freed. This is unsuitable for architectures that do not need | |
1361 | * to broadcast an IPI when invalidating TLBs. | |
1362 | * | |
1363 | * Another way to achieve this is to batch up page table containing pages | |
1364 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1365 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1366 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1367 | * (which is a relatively rare event). The code below adopts this strategy. | |
1368 | * | |
1369 | * Before activating this code, please be aware that the following assumptions | |
1370 | * are currently made: | |
1371 | * | |
e585513b KS |
1372 | * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
1373 | * free pages containing page tables or TLB flushing requires IPI broadcast. | |
2667f50e | 1374 | * |
2667f50e SC |
1375 | * *) ptes can be read atomically by the architecture. |
1376 | * | |
1377 | * *) access_ok is sufficient to validate userspace address ranges. | |
1378 | * | |
1379 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1380 | * | |
1381 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1382 | */ | |
e585513b | 1383 | #ifdef CONFIG_HAVE_GENERIC_GUP |
2667f50e | 1384 | |
0005d20b KS |
1385 | #ifndef gup_get_pte |
1386 | /* | |
1387 | * We assume that the PTE can be read atomically. If this is not the case for | |
1388 | * your architecture, please provide the helper. | |
1389 | */ | |
1390 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1391 | { | |
1392 | return READ_ONCE(*ptep); | |
1393 | } | |
1394 | #endif | |
1395 | ||
b59f65fa KS |
1396 | static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) |
1397 | { | |
1398 | while ((*nr) - nr_start) { | |
1399 | struct page *page = pages[--(*nr)]; | |
1400 | ||
1401 | ClearPageReferenced(page); | |
1402 | put_page(page); | |
1403 | } | |
1404 | } | |
1405 | ||
8fde12ca LT |
1406 | /* |
1407 | * Return the compund head page with ref appropriately incremented, | |
1408 | * or NULL if that failed. | |
1409 | */ | |
1410 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
1411 | { | |
1412 | struct page *head = compound_head(page); | |
1413 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
1414 | return NULL; | |
1415 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
1416 | return NULL; | |
1417 | return head; | |
1418 | } | |
1419 | ||
3010a5ea | 1420 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e SC |
1421 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
1422 | int write, struct page **pages, int *nr) | |
1423 | { | |
b59f65fa KS |
1424 | struct dev_pagemap *pgmap = NULL; |
1425 | int nr_start = *nr, ret = 0; | |
2667f50e | 1426 | pte_t *ptep, *ptem; |
2667f50e SC |
1427 | |
1428 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1429 | do { | |
0005d20b | 1430 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1431 | struct page *head, *page; |
2667f50e SC |
1432 | |
1433 | /* | |
1434 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1435 | * path using the pte_protnone check. |
2667f50e | 1436 | */ |
e7884f8e KS |
1437 | if (pte_protnone(pte)) |
1438 | goto pte_unmap; | |
1439 | ||
1440 | if (!pte_access_permitted(pte, write)) | |
1441 | goto pte_unmap; | |
1442 | ||
b59f65fa KS |
1443 | if (pte_devmap(pte)) { |
1444 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); | |
1445 | if (unlikely(!pgmap)) { | |
1446 | undo_dev_pagemap(nr, nr_start, pages); | |
1447 | goto pte_unmap; | |
1448 | } | |
1449 | } else if (pte_special(pte)) | |
2667f50e SC |
1450 | goto pte_unmap; |
1451 | ||
1452 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1453 | page = pte_page(pte); | |
1454 | ||
8fde12ca LT |
1455 | head = try_get_compound_head(page, 1); |
1456 | if (!head) | |
2667f50e SC |
1457 | goto pte_unmap; |
1458 | ||
1459 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1460 | put_page(head); |
2667f50e SC |
1461 | goto pte_unmap; |
1462 | } | |
1463 | ||
7aef4172 | 1464 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1465 | |
1466 | SetPageReferenced(page); | |
2667f50e SC |
1467 | pages[*nr] = page; |
1468 | (*nr)++; | |
1469 | ||
1470 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1471 | ||
1472 | ret = 1; | |
1473 | ||
1474 | pte_unmap: | |
832d7aa0 CH |
1475 | if (pgmap) |
1476 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1477 | pte_unmap(ptem); |
1478 | return ret; | |
1479 | } | |
1480 | #else | |
1481 | ||
1482 | /* | |
1483 | * If we can't determine whether or not a pte is special, then fail immediately | |
1484 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1485 | * to be special. | |
1486 | * | |
1487 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1488 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1489 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1490 | */ | |
1491 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
1492 | int write, struct page **pages, int *nr) | |
1493 | { | |
1494 | return 0; | |
1495 | } | |
3010a5ea | 1496 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1497 | |
09180ca4 | 1498 | #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1499 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1500 | unsigned long end, struct page **pages, int *nr) | |
1501 | { | |
1502 | int nr_start = *nr; | |
1503 | struct dev_pagemap *pgmap = NULL; | |
1504 | ||
1505 | do { | |
1506 | struct page *page = pfn_to_page(pfn); | |
1507 | ||
1508 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1509 | if (unlikely(!pgmap)) { | |
1510 | undo_dev_pagemap(nr, nr_start, pages); | |
1511 | return 0; | |
1512 | } | |
1513 | SetPageReferenced(page); | |
1514 | pages[*nr] = page; | |
1515 | get_page(page); | |
b59f65fa KS |
1516 | (*nr)++; |
1517 | pfn++; | |
1518 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1519 | |
1520 | if (pgmap) | |
1521 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1522 | return 1; |
1523 | } | |
1524 | ||
a9b6de77 | 1525 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1526 | unsigned long end, struct page **pages, int *nr) |
1527 | { | |
1528 | unsigned long fault_pfn; | |
a9b6de77 DW |
1529 | int nr_start = *nr; |
1530 | ||
1531 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1532 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1533 | return 0; | |
b59f65fa | 1534 | |
a9b6de77 DW |
1535 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1536 | undo_dev_pagemap(nr, nr_start, pages); | |
1537 | return 0; | |
1538 | } | |
1539 | return 1; | |
b59f65fa KS |
1540 | } |
1541 | ||
a9b6de77 | 1542 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1543 | unsigned long end, struct page **pages, int *nr) |
1544 | { | |
1545 | unsigned long fault_pfn; | |
a9b6de77 DW |
1546 | int nr_start = *nr; |
1547 | ||
1548 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
1549 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1550 | return 0; | |
b59f65fa | 1551 | |
a9b6de77 DW |
1552 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
1553 | undo_dev_pagemap(nr, nr_start, pages); | |
1554 | return 0; | |
1555 | } | |
1556 | return 1; | |
b59f65fa KS |
1557 | } |
1558 | #else | |
a9b6de77 | 1559 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1560 | unsigned long end, struct page **pages, int *nr) |
1561 | { | |
1562 | BUILD_BUG(); | |
1563 | return 0; | |
1564 | } | |
1565 | ||
a9b6de77 | 1566 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1567 | unsigned long end, struct page **pages, int *nr) |
1568 | { | |
1569 | BUILD_BUG(); | |
1570 | return 0; | |
1571 | } | |
1572 | #endif | |
1573 | ||
2667f50e SC |
1574 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
1575 | unsigned long end, int write, struct page **pages, int *nr) | |
1576 | { | |
ddc58f27 | 1577 | struct page *head, *page; |
2667f50e SC |
1578 | int refs; |
1579 | ||
e7884f8e | 1580 | if (!pmd_access_permitted(orig, write)) |
2667f50e SC |
1581 | return 0; |
1582 | ||
b59f65fa | 1583 | if (pmd_devmap(orig)) |
a9b6de77 | 1584 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
b59f65fa | 1585 | |
2667f50e | 1586 | refs = 0; |
d63206ee | 1587 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2667f50e | 1588 | do { |
2667f50e SC |
1589 | pages[*nr] = page; |
1590 | (*nr)++; | |
1591 | page++; | |
1592 | refs++; | |
1593 | } while (addr += PAGE_SIZE, addr != end); | |
1594 | ||
8fde12ca LT |
1595 | head = try_get_compound_head(pmd_page(orig), refs); |
1596 | if (!head) { | |
2667f50e SC |
1597 | *nr -= refs; |
1598 | return 0; | |
1599 | } | |
1600 | ||
1601 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
1602 | *nr -= refs; | |
1603 | while (refs--) | |
1604 | put_page(head); | |
1605 | return 0; | |
1606 | } | |
1607 | ||
e9348053 | 1608 | SetPageReferenced(head); |
2667f50e SC |
1609 | return 1; |
1610 | } | |
1611 | ||
1612 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
1613 | unsigned long end, int write, struct page **pages, int *nr) | |
1614 | { | |
ddc58f27 | 1615 | struct page *head, *page; |
2667f50e SC |
1616 | int refs; |
1617 | ||
e7884f8e | 1618 | if (!pud_access_permitted(orig, write)) |
2667f50e SC |
1619 | return 0; |
1620 | ||
b59f65fa | 1621 | if (pud_devmap(orig)) |
a9b6de77 | 1622 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
b59f65fa | 1623 | |
2667f50e | 1624 | refs = 0; |
d63206ee | 1625 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2667f50e | 1626 | do { |
2667f50e SC |
1627 | pages[*nr] = page; |
1628 | (*nr)++; | |
1629 | page++; | |
1630 | refs++; | |
1631 | } while (addr += PAGE_SIZE, addr != end); | |
1632 | ||
8fde12ca LT |
1633 | head = try_get_compound_head(pud_page(orig), refs); |
1634 | if (!head) { | |
2667f50e SC |
1635 | *nr -= refs; |
1636 | return 0; | |
1637 | } | |
1638 | ||
1639 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
1640 | *nr -= refs; | |
1641 | while (refs--) | |
1642 | put_page(head); | |
1643 | return 0; | |
1644 | } | |
1645 | ||
e9348053 | 1646 | SetPageReferenced(head); |
2667f50e SC |
1647 | return 1; |
1648 | } | |
1649 | ||
f30c59e9 AK |
1650 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
1651 | unsigned long end, int write, | |
1652 | struct page **pages, int *nr) | |
1653 | { | |
1654 | int refs; | |
ddc58f27 | 1655 | struct page *head, *page; |
f30c59e9 | 1656 | |
e7884f8e | 1657 | if (!pgd_access_permitted(orig, write)) |
f30c59e9 AK |
1658 | return 0; |
1659 | ||
b59f65fa | 1660 | BUILD_BUG_ON(pgd_devmap(orig)); |
f30c59e9 | 1661 | refs = 0; |
d63206ee | 1662 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
f30c59e9 | 1663 | do { |
f30c59e9 AK |
1664 | pages[*nr] = page; |
1665 | (*nr)++; | |
1666 | page++; | |
1667 | refs++; | |
1668 | } while (addr += PAGE_SIZE, addr != end); | |
1669 | ||
8fde12ca LT |
1670 | head = try_get_compound_head(pgd_page(orig), refs); |
1671 | if (!head) { | |
f30c59e9 AK |
1672 | *nr -= refs; |
1673 | return 0; | |
1674 | } | |
1675 | ||
1676 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
1677 | *nr -= refs; | |
1678 | while (refs--) | |
1679 | put_page(head); | |
1680 | return 0; | |
1681 | } | |
1682 | ||
e9348053 | 1683 | SetPageReferenced(head); |
f30c59e9 AK |
1684 | return 1; |
1685 | } | |
1686 | ||
2667f50e SC |
1687 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
1688 | int write, struct page **pages, int *nr) | |
1689 | { | |
1690 | unsigned long next; | |
1691 | pmd_t *pmdp; | |
1692 | ||
1693 | pmdp = pmd_offset(&pud, addr); | |
1694 | do { | |
38c5ce93 | 1695 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
1696 | |
1697 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1698 | if (!pmd_present(pmd)) |
2667f50e SC |
1699 | return 0; |
1700 | ||
414fd080 YZ |
1701 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
1702 | pmd_devmap(pmd))) { | |
2667f50e SC |
1703 | /* |
1704 | * NUMA hinting faults need to be handled in the GUP | |
1705 | * slowpath for accounting purposes and so that they | |
1706 | * can be serialised against THP migration. | |
1707 | */ | |
8a0516ed | 1708 | if (pmd_protnone(pmd)) |
2667f50e SC |
1709 | return 0; |
1710 | ||
1711 | if (!gup_huge_pmd(pmd, pmdp, addr, next, write, | |
1712 | pages, nr)) | |
1713 | return 0; | |
1714 | ||
f30c59e9 AK |
1715 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
1716 | /* | |
1717 | * architecture have different format for hugetlbfs | |
1718 | * pmd format and THP pmd format | |
1719 | */ | |
1720 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
1721 | PMD_SHIFT, next, write, pages, nr)) | |
1722 | return 0; | |
2667f50e | 1723 | } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) |
2923117b | 1724 | return 0; |
2667f50e SC |
1725 | } while (pmdp++, addr = next, addr != end); |
1726 | ||
1727 | return 1; | |
1728 | } | |
1729 | ||
c2febafc | 1730 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
f30c59e9 | 1731 | int write, struct page **pages, int *nr) |
2667f50e SC |
1732 | { |
1733 | unsigned long next; | |
1734 | pud_t *pudp; | |
1735 | ||
c2febafc | 1736 | pudp = pud_offset(&p4d, addr); |
2667f50e | 1737 | do { |
e37c6982 | 1738 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
1739 | |
1740 | next = pud_addr_end(addr, end); | |
1741 | if (pud_none(pud)) | |
1742 | return 0; | |
f30c59e9 | 1743 | if (unlikely(pud_huge(pud))) { |
2667f50e | 1744 | if (!gup_huge_pud(pud, pudp, addr, next, write, |
f30c59e9 AK |
1745 | pages, nr)) |
1746 | return 0; | |
1747 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
1748 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
1749 | PUD_SHIFT, next, write, pages, nr)) | |
2667f50e SC |
1750 | return 0; |
1751 | } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) | |
1752 | return 0; | |
1753 | } while (pudp++, addr = next, addr != end); | |
1754 | ||
1755 | return 1; | |
1756 | } | |
1757 | ||
c2febafc KS |
1758 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
1759 | int write, struct page **pages, int *nr) | |
1760 | { | |
1761 | unsigned long next; | |
1762 | p4d_t *p4dp; | |
1763 | ||
1764 | p4dp = p4d_offset(&pgd, addr); | |
1765 | do { | |
1766 | p4d_t p4d = READ_ONCE(*p4dp); | |
1767 | ||
1768 | next = p4d_addr_end(addr, end); | |
1769 | if (p4d_none(p4d)) | |
1770 | return 0; | |
1771 | BUILD_BUG_ON(p4d_huge(p4d)); | |
1772 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
1773 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
1774 | P4D_SHIFT, next, write, pages, nr)) | |
1775 | return 0; | |
ce70df08 | 1776 | } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) |
c2febafc KS |
1777 | return 0; |
1778 | } while (p4dp++, addr = next, addr != end); | |
1779 | ||
1780 | return 1; | |
1781 | } | |
1782 | ||
5b65c467 KS |
1783 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
1784 | int write, struct page **pages, int *nr) | |
1785 | { | |
1786 | unsigned long next; | |
1787 | pgd_t *pgdp; | |
1788 | ||
1789 | pgdp = pgd_offset(current->mm, addr); | |
1790 | do { | |
1791 | pgd_t pgd = READ_ONCE(*pgdp); | |
1792 | ||
1793 | next = pgd_addr_end(addr, end); | |
1794 | if (pgd_none(pgd)) | |
1795 | return; | |
1796 | if (unlikely(pgd_huge(pgd))) { | |
1797 | if (!gup_huge_pgd(pgd, pgdp, addr, next, write, | |
1798 | pages, nr)) | |
1799 | return; | |
1800 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
1801 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
1802 | PGDIR_SHIFT, next, write, pages, nr)) | |
1803 | return; | |
1804 | } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) | |
1805 | return; | |
1806 | } while (pgdp++, addr = next, addr != end); | |
1807 | } | |
1808 | ||
1809 | #ifndef gup_fast_permitted | |
1810 | /* | |
1811 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
1812 | * we need to fall back to the slow version: | |
1813 | */ | |
1814 | bool gup_fast_permitted(unsigned long start, int nr_pages, int write) | |
1815 | { | |
1816 | unsigned long len, end; | |
1817 | ||
1818 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
1819 | end = start + len; | |
1820 | return end >= start; | |
1821 | } | |
1822 | #endif | |
1823 | ||
2667f50e SC |
1824 | /* |
1825 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
1826 | * the regular GUP. |
1827 | * Note a difference with get_user_pages_fast: this always returns the | |
1828 | * number of pages pinned, 0 if no pages were pinned. | |
2667f50e SC |
1829 | */ |
1830 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
1831 | struct page **pages) | |
1832 | { | |
d4faa402 | 1833 | unsigned long len, end; |
5b65c467 | 1834 | unsigned long flags; |
2667f50e SC |
1835 | int nr = 0; |
1836 | ||
1837 | start &= PAGE_MASK; | |
2667f50e SC |
1838 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
1839 | end = start + len; | |
1840 | ||
96d4f267 | 1841 | if (unlikely(!access_ok((void __user *)start, len))) |
2667f50e SC |
1842 | return 0; |
1843 | ||
1844 | /* | |
1845 | * Disable interrupts. We use the nested form as we can already have | |
1846 | * interrupts disabled by get_futex_key. | |
1847 | * | |
1848 | * With interrupts disabled, we block page table pages from being | |
2ebe8228 FW |
1849 | * freed from under us. See struct mmu_table_batch comments in |
1850 | * include/asm-generic/tlb.h for more details. | |
2667f50e SC |
1851 | * |
1852 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
1853 | * block IPIs that come from THPs splitting. | |
1854 | */ | |
1855 | ||
5b65c467 KS |
1856 | if (gup_fast_permitted(start, nr_pages, write)) { |
1857 | local_irq_save(flags); | |
d4faa402 | 1858 | gup_pgd_range(start, end, write, pages, &nr); |
5b65c467 KS |
1859 | local_irq_restore(flags); |
1860 | } | |
2667f50e SC |
1861 | |
1862 | return nr; | |
1863 | } | |
1864 | ||
1865 | /** | |
1866 | * get_user_pages_fast() - pin user pages in memory | |
1867 | * @start: starting user address | |
1868 | * @nr_pages: number of pages from start to pin | |
1869 | * @write: whether pages will be written to | |
1870 | * @pages: array that receives pointers to the pages pinned. | |
1871 | * Should be at least nr_pages long. | |
1872 | * | |
1873 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
1874 | * If not successful, it will fall back to taking the lock and | |
1875 | * calling get_user_pages(). | |
1876 | * | |
1877 | * Returns number of pages pinned. This may be fewer than the number | |
1878 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1879 | * were pinned, returns -errno. | |
1880 | */ | |
1881 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
1882 | struct page **pages) | |
1883 | { | |
5b65c467 | 1884 | unsigned long addr, len, end; |
73e10a61 | 1885 | int nr = 0, ret = 0; |
2667f50e SC |
1886 | |
1887 | start &= PAGE_MASK; | |
5b65c467 KS |
1888 | addr = start; |
1889 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
1890 | end = start + len; | |
1891 | ||
c61611f7 MT |
1892 | if (nr_pages <= 0) |
1893 | return 0; | |
1894 | ||
96d4f267 | 1895 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 1896 | return -EFAULT; |
73e10a61 KS |
1897 | |
1898 | if (gup_fast_permitted(start, nr_pages, write)) { | |
5b65c467 KS |
1899 | local_irq_disable(); |
1900 | gup_pgd_range(addr, end, write, pages, &nr); | |
1901 | local_irq_enable(); | |
73e10a61 KS |
1902 | ret = nr; |
1903 | } | |
2667f50e SC |
1904 | |
1905 | if (nr < nr_pages) { | |
1906 | /* Try to get the remaining pages with get_user_pages */ | |
1907 | start += nr << PAGE_SHIFT; | |
1908 | pages += nr; | |
1909 | ||
c164154f LS |
1910 | ret = get_user_pages_unlocked(start, nr_pages - nr, pages, |
1911 | write ? FOLL_WRITE : 0); | |
2667f50e SC |
1912 | |
1913 | /* Have to be a bit careful with return values */ | |
1914 | if (nr > 0) { | |
1915 | if (ret < 0) | |
1916 | ret = nr; | |
1917 | else | |
1918 | ret += nr; | |
1919 | } | |
1920 | } | |
1921 | ||
1922 | return ret; | |
1923 | } | |
1924 | ||
e585513b | 1925 | #endif /* CONFIG_HAVE_GENERIC_GUP */ |