]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/mpage.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * Contains functions related to preparing and submitting BIOs which contain | |
7 | * multiple pagecache pages. | |
8 | * | |
9 | * 15May2002 [email protected] | |
10 | * Initial version | |
11 | * 27Jun2002 [email protected] | |
12 | * use bio_add_page() to build bio's just the right size | |
13 | */ | |
14 | ||
15 | #include <linux/kernel.h> | |
16 | #include <linux/module.h> | |
17 | #include <linux/mm.h> | |
18 | #include <linux/kdev_t.h> | |
19 | #include <linux/bio.h> | |
20 | #include <linux/fs.h> | |
21 | #include <linux/buffer_head.h> | |
22 | #include <linux/blkdev.h> | |
23 | #include <linux/highmem.h> | |
24 | #include <linux/prefetch.h> | |
25 | #include <linux/mpage.h> | |
26 | #include <linux/writeback.h> | |
27 | #include <linux/backing-dev.h> | |
28 | #include <linux/pagevec.h> | |
29 | ||
30 | /* | |
31 | * I/O completion handler for multipage BIOs. | |
32 | * | |
33 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | |
34 | * If a page does not map to a contiguous run of blocks then it simply falls | |
35 | * back to block_read_full_page(). | |
36 | * | |
37 | * Why is this? If a page's completion depends on a number of different BIOs | |
38 | * which can complete in any order (or at the same time) then determining the | |
39 | * status of that page is hard. See end_buffer_async_read() for the details. | |
40 | * There is no point in duplicating all that complexity. | |
41 | */ | |
42 | static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err) | |
43 | { | |
44 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
45 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | |
46 | ||
47 | if (bio->bi_size) | |
48 | return 1; | |
49 | ||
50 | do { | |
51 | struct page *page = bvec->bv_page; | |
52 | ||
53 | if (--bvec >= bio->bi_io_vec) | |
54 | prefetchw(&bvec->bv_page->flags); | |
55 | ||
56 | if (uptodate) { | |
57 | SetPageUptodate(page); | |
58 | } else { | |
59 | ClearPageUptodate(page); | |
60 | SetPageError(page); | |
61 | } | |
62 | unlock_page(page); | |
63 | } while (bvec >= bio->bi_io_vec); | |
64 | bio_put(bio); | |
65 | return 0; | |
66 | } | |
67 | ||
68 | static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err) | |
69 | { | |
70 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
71 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | |
72 | ||
73 | if (bio->bi_size) | |
74 | return 1; | |
75 | ||
76 | do { | |
77 | struct page *page = bvec->bv_page; | |
78 | ||
79 | if (--bvec >= bio->bi_io_vec) | |
80 | prefetchw(&bvec->bv_page->flags); | |
81 | ||
854715be | 82 | if (!uptodate){ |
1da177e4 | 83 | SetPageError(page); |
854715be QF |
84 | if (page->mapping) |
85 | set_bit(AS_EIO, &page->mapping->flags); | |
86 | } | |
1da177e4 LT |
87 | end_page_writeback(page); |
88 | } while (bvec >= bio->bi_io_vec); | |
89 | bio_put(bio); | |
90 | return 0; | |
91 | } | |
92 | ||
75c96f85 | 93 | static struct bio *mpage_bio_submit(int rw, struct bio *bio) |
1da177e4 LT |
94 | { |
95 | bio->bi_end_io = mpage_end_io_read; | |
96 | if (rw == WRITE) | |
97 | bio->bi_end_io = mpage_end_io_write; | |
98 | submit_bio(rw, bio); | |
99 | return NULL; | |
100 | } | |
101 | ||
102 | static struct bio * | |
103 | mpage_alloc(struct block_device *bdev, | |
104 | sector_t first_sector, int nr_vecs, | |
dd0fc66f | 105 | gfp_t gfp_flags) |
1da177e4 LT |
106 | { |
107 | struct bio *bio; | |
108 | ||
109 | bio = bio_alloc(gfp_flags, nr_vecs); | |
110 | ||
111 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | |
112 | while (!bio && (nr_vecs /= 2)) | |
113 | bio = bio_alloc(gfp_flags, nr_vecs); | |
114 | } | |
115 | ||
116 | if (bio) { | |
117 | bio->bi_bdev = bdev; | |
118 | bio->bi_sector = first_sector; | |
119 | } | |
120 | return bio; | |
121 | } | |
122 | ||
123 | /* | |
124 | * support function for mpage_readpages. The fs supplied get_block might | |
125 | * return an up to date buffer. This is used to map that buffer into | |
126 | * the page, which allows readpage to avoid triggering a duplicate call | |
127 | * to get_block. | |
128 | * | |
129 | * The idea is to avoid adding buffers to pages that don't already have | |
130 | * them. So when the buffer is up to date and the page size == block size, | |
131 | * this marks the page up to date instead of adding new buffers. | |
132 | */ | |
133 | static void | |
134 | map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) | |
135 | { | |
136 | struct inode *inode = page->mapping->host; | |
137 | struct buffer_head *page_bh, *head; | |
138 | int block = 0; | |
139 | ||
140 | if (!page_has_buffers(page)) { | |
141 | /* | |
142 | * don't make any buffers if there is only one buffer on | |
143 | * the page and the page just needs to be set up to date | |
144 | */ | |
145 | if (inode->i_blkbits == PAGE_CACHE_SHIFT && | |
146 | buffer_uptodate(bh)) { | |
147 | SetPageUptodate(page); | |
148 | return; | |
149 | } | |
150 | create_empty_buffers(page, 1 << inode->i_blkbits, 0); | |
151 | } | |
152 | head = page_buffers(page); | |
153 | page_bh = head; | |
154 | do { | |
155 | if (block == page_block) { | |
156 | page_bh->b_state = bh->b_state; | |
157 | page_bh->b_bdev = bh->b_bdev; | |
158 | page_bh->b_blocknr = bh->b_blocknr; | |
159 | break; | |
160 | } | |
161 | page_bh = page_bh->b_this_page; | |
162 | block++; | |
163 | } while (page_bh != head); | |
164 | } | |
165 | ||
fa30bd05 BP |
166 | /* |
167 | * This is the worker routine which does all the work of mapping the disk | |
168 | * blocks and constructs largest possible bios, submits them for IO if the | |
169 | * blocks are not contiguous on the disk. | |
170 | * | |
171 | * We pass a buffer_head back and forth and use its buffer_mapped() flag to | |
172 | * represent the validity of its disk mapping and to decide when to do the next | |
173 | * get_block() call. | |
174 | */ | |
1da177e4 LT |
175 | static struct bio * |
176 | do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, | |
fa30bd05 BP |
177 | sector_t *last_block_in_bio, struct buffer_head *map_bh, |
178 | unsigned long *first_logical_block, get_block_t get_block) | |
1da177e4 LT |
179 | { |
180 | struct inode *inode = page->mapping->host; | |
181 | const unsigned blkbits = inode->i_blkbits; | |
182 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | |
183 | const unsigned blocksize = 1 << blkbits; | |
184 | sector_t block_in_file; | |
185 | sector_t last_block; | |
fa30bd05 | 186 | sector_t last_block_in_file; |
1da177e4 LT |
187 | sector_t blocks[MAX_BUF_PER_PAGE]; |
188 | unsigned page_block; | |
189 | unsigned first_hole = blocks_per_page; | |
190 | struct block_device *bdev = NULL; | |
1da177e4 LT |
191 | int length; |
192 | int fully_mapped = 1; | |
fa30bd05 BP |
193 | unsigned nblocks; |
194 | unsigned relative_block; | |
1da177e4 LT |
195 | |
196 | if (page_has_buffers(page)) | |
197 | goto confused; | |
198 | ||
54b21a79 | 199 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
fa30bd05 BP |
200 | last_block = block_in_file + nr_pages * blocks_per_page; |
201 | last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; | |
202 | if (last_block > last_block_in_file) | |
203 | last_block = last_block_in_file; | |
204 | page_block = 0; | |
205 | ||
206 | /* | |
207 | * Map blocks using the result from the previous get_blocks call first. | |
208 | */ | |
209 | nblocks = map_bh->b_size >> blkbits; | |
210 | if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && | |
211 | block_in_file < (*first_logical_block + nblocks)) { | |
212 | unsigned map_offset = block_in_file - *first_logical_block; | |
213 | unsigned last = nblocks - map_offset; | |
214 | ||
215 | for (relative_block = 0; ; relative_block++) { | |
216 | if (relative_block == last) { | |
217 | clear_buffer_mapped(map_bh); | |
218 | break; | |
219 | } | |
220 | if (page_block == blocks_per_page) | |
221 | break; | |
222 | blocks[page_block] = map_bh->b_blocknr + map_offset + | |
223 | relative_block; | |
224 | page_block++; | |
225 | block_in_file++; | |
226 | } | |
227 | bdev = map_bh->b_bdev; | |
228 | } | |
229 | ||
230 | /* | |
231 | * Then do more get_blocks calls until we are done with this page. | |
232 | */ | |
233 | map_bh->b_page = page; | |
234 | while (page_block < blocks_per_page) { | |
235 | map_bh->b_state = 0; | |
236 | map_bh->b_size = 0; | |
1da177e4 | 237 | |
1da177e4 | 238 | if (block_in_file < last_block) { |
fa30bd05 BP |
239 | map_bh->b_size = (last_block-block_in_file) << blkbits; |
240 | if (get_block(inode, block_in_file, map_bh, 0)) | |
1da177e4 | 241 | goto confused; |
fa30bd05 | 242 | *first_logical_block = block_in_file; |
1da177e4 LT |
243 | } |
244 | ||
fa30bd05 | 245 | if (!buffer_mapped(map_bh)) { |
1da177e4 LT |
246 | fully_mapped = 0; |
247 | if (first_hole == blocks_per_page) | |
248 | first_hole = page_block; | |
fa30bd05 BP |
249 | page_block++; |
250 | block_in_file++; | |
251 | clear_buffer_mapped(map_bh); | |
1da177e4 LT |
252 | continue; |
253 | } | |
254 | ||
255 | /* some filesystems will copy data into the page during | |
256 | * the get_block call, in which case we don't want to | |
257 | * read it again. map_buffer_to_page copies the data | |
258 | * we just collected from get_block into the page's buffers | |
259 | * so readpage doesn't have to repeat the get_block call | |
260 | */ | |
fa30bd05 BP |
261 | if (buffer_uptodate(map_bh)) { |
262 | map_buffer_to_page(page, map_bh, page_block); | |
1da177e4 LT |
263 | goto confused; |
264 | } | |
265 | ||
266 | if (first_hole != blocks_per_page) | |
267 | goto confused; /* hole -> non-hole */ | |
268 | ||
269 | /* Contiguous blocks? */ | |
fa30bd05 | 270 | if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) |
1da177e4 | 271 | goto confused; |
fa30bd05 BP |
272 | nblocks = map_bh->b_size >> blkbits; |
273 | for (relative_block = 0; ; relative_block++) { | |
274 | if (relative_block == nblocks) { | |
275 | clear_buffer_mapped(map_bh); | |
276 | break; | |
277 | } else if (page_block == blocks_per_page) | |
278 | break; | |
279 | blocks[page_block] = map_bh->b_blocknr+relative_block; | |
280 | page_block++; | |
281 | block_in_file++; | |
282 | } | |
283 | bdev = map_bh->b_bdev; | |
1da177e4 LT |
284 | } |
285 | ||
286 | if (first_hole != blocks_per_page) { | |
287 | char *kaddr = kmap_atomic(page, KM_USER0); | |
288 | memset(kaddr + (first_hole << blkbits), 0, | |
289 | PAGE_CACHE_SIZE - (first_hole << blkbits)); | |
290 | flush_dcache_page(page); | |
291 | kunmap_atomic(kaddr, KM_USER0); | |
292 | if (first_hole == 0) { | |
293 | SetPageUptodate(page); | |
294 | unlock_page(page); | |
295 | goto out; | |
296 | } | |
297 | } else if (fully_mapped) { | |
298 | SetPageMappedToDisk(page); | |
299 | } | |
300 | ||
301 | /* | |
302 | * This page will go to BIO. Do we need to send this BIO off first? | |
303 | */ | |
304 | if (bio && (*last_block_in_bio != blocks[0] - 1)) | |
305 | bio = mpage_bio_submit(READ, bio); | |
306 | ||
307 | alloc_new: | |
308 | if (bio == NULL) { | |
309 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | |
310 | min_t(int, nr_pages, bio_get_nr_vecs(bdev)), | |
311 | GFP_KERNEL); | |
312 | if (bio == NULL) | |
313 | goto confused; | |
314 | } | |
315 | ||
316 | length = first_hole << blkbits; | |
317 | if (bio_add_page(bio, page, length, 0) < length) { | |
318 | bio = mpage_bio_submit(READ, bio); | |
319 | goto alloc_new; | |
320 | } | |
321 | ||
fa30bd05 | 322 | if (buffer_boundary(map_bh) || (first_hole != blocks_per_page)) |
1da177e4 LT |
323 | bio = mpage_bio_submit(READ, bio); |
324 | else | |
325 | *last_block_in_bio = blocks[blocks_per_page - 1]; | |
326 | out: | |
327 | return bio; | |
328 | ||
329 | confused: | |
330 | if (bio) | |
331 | bio = mpage_bio_submit(READ, bio); | |
332 | if (!PageUptodate(page)) | |
333 | block_read_full_page(page, get_block); | |
334 | else | |
335 | unlock_page(page); | |
336 | goto out; | |
337 | } | |
338 | ||
67be2dd1 MW |
339 | /** |
340 | * mpage_readpages - populate an address space with some pages, and | |
341 | * start reads against them. | |
342 | * | |
343 | * @mapping: the address_space | |
344 | * @pages: The address of a list_head which contains the target pages. These | |
345 | * pages have their ->index populated and are otherwise uninitialised. | |
346 | * | |
347 | * The page at @pages->prev has the lowest file offset, and reads should be | |
348 | * issued in @pages->prev to @pages->next order. | |
349 | * | |
350 | * @nr_pages: The number of pages at *@pages | |
351 | * @get_block: The filesystem's block mapper function. | |
352 | * | |
353 | * This function walks the pages and the blocks within each page, building and | |
354 | * emitting large BIOs. | |
355 | * | |
356 | * If anything unusual happens, such as: | |
357 | * | |
358 | * - encountering a page which has buffers | |
359 | * - encountering a page which has a non-hole after a hole | |
360 | * - encountering a page with non-contiguous blocks | |
361 | * | |
362 | * then this code just gives up and calls the buffer_head-based read function. | |
363 | * It does handle a page which has holes at the end - that is a common case: | |
364 | * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. | |
365 | * | |
366 | * BH_Boundary explanation: | |
367 | * | |
368 | * There is a problem. The mpage read code assembles several pages, gets all | |
369 | * their disk mappings, and then submits them all. That's fine, but obtaining | |
370 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | |
371 | * | |
372 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | |
373 | * submitted in the following order: | |
374 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 | |
375 | * because the indirect block has to be read to get the mappings of blocks | |
376 | * 13,14,15,16. Obviously, this impacts performance. | |
377 | * | |
378 | * So what we do it to allow the filesystem's get_block() function to set | |
379 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | |
380 | * after this one will require I/O against a block which is probably close to | |
381 | * this one. So you should push what I/O you have currently accumulated. | |
382 | * | |
383 | * This all causes the disk requests to be issued in the correct order. | |
384 | */ | |
1da177e4 LT |
385 | int |
386 | mpage_readpages(struct address_space *mapping, struct list_head *pages, | |
387 | unsigned nr_pages, get_block_t get_block) | |
388 | { | |
389 | struct bio *bio = NULL; | |
390 | unsigned page_idx; | |
391 | sector_t last_block_in_bio = 0; | |
392 | struct pagevec lru_pvec; | |
fa30bd05 BP |
393 | struct buffer_head map_bh; |
394 | unsigned long first_logical_block = 0; | |
1da177e4 | 395 | |
fa30bd05 | 396 | clear_buffer_mapped(&map_bh); |
1da177e4 LT |
397 | pagevec_init(&lru_pvec, 0); |
398 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { | |
399 | struct page *page = list_entry(pages->prev, struct page, lru); | |
400 | ||
401 | prefetchw(&page->flags); | |
402 | list_del(&page->lru); | |
403 | if (!add_to_page_cache(page, mapping, | |
404 | page->index, GFP_KERNEL)) { | |
405 | bio = do_mpage_readpage(bio, page, | |
406 | nr_pages - page_idx, | |
fa30bd05 BP |
407 | &last_block_in_bio, &map_bh, |
408 | &first_logical_block, | |
409 | get_block); | |
1da177e4 LT |
410 | if (!pagevec_add(&lru_pvec, page)) |
411 | __pagevec_lru_add(&lru_pvec); | |
412 | } else { | |
413 | page_cache_release(page); | |
414 | } | |
415 | } | |
416 | pagevec_lru_add(&lru_pvec); | |
417 | BUG_ON(!list_empty(pages)); | |
418 | if (bio) | |
419 | mpage_bio_submit(READ, bio); | |
420 | return 0; | |
421 | } | |
422 | EXPORT_SYMBOL(mpage_readpages); | |
423 | ||
424 | /* | |
425 | * This isn't called much at all | |
426 | */ | |
427 | int mpage_readpage(struct page *page, get_block_t get_block) | |
428 | { | |
429 | struct bio *bio = NULL; | |
430 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
431 | struct buffer_head map_bh; |
432 | unsigned long first_logical_block = 0; | |
1da177e4 | 433 | |
fa30bd05 BP |
434 | clear_buffer_mapped(&map_bh); |
435 | bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, | |
436 | &map_bh, &first_logical_block, get_block); | |
1da177e4 LT |
437 | if (bio) |
438 | mpage_bio_submit(READ, bio); | |
439 | return 0; | |
440 | } | |
441 | EXPORT_SYMBOL(mpage_readpage); | |
442 | ||
443 | /* | |
444 | * Writing is not so simple. | |
445 | * | |
446 | * If the page has buffers then they will be used for obtaining the disk | |
447 | * mapping. We only support pages which are fully mapped-and-dirty, with a | |
448 | * special case for pages which are unmapped at the end: end-of-file. | |
449 | * | |
450 | * If the page has no buffers (preferred) then the page is mapped here. | |
451 | * | |
452 | * If all blocks are found to be contiguous then the page can go into the | |
453 | * BIO. Otherwise fall back to the mapping's writepage(). | |
454 | * | |
455 | * FIXME: This code wants an estimate of how many pages are still to be | |
456 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | |
457 | * just allocate full-size (16-page) BIOs. | |
458 | */ | |
459 | static struct bio * | |
460 | __mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block, | |
461 | sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc, | |
462 | writepage_t writepage_fn) | |
463 | { | |
464 | struct address_space *mapping = page->mapping; | |
465 | struct inode *inode = page->mapping->host; | |
466 | const unsigned blkbits = inode->i_blkbits; | |
467 | unsigned long end_index; | |
468 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | |
469 | sector_t last_block; | |
470 | sector_t block_in_file; | |
471 | sector_t blocks[MAX_BUF_PER_PAGE]; | |
472 | unsigned page_block; | |
473 | unsigned first_unmapped = blocks_per_page; | |
474 | struct block_device *bdev = NULL; | |
475 | int boundary = 0; | |
476 | sector_t boundary_block = 0; | |
477 | struct block_device *boundary_bdev = NULL; | |
478 | int length; | |
479 | struct buffer_head map_bh; | |
480 | loff_t i_size = i_size_read(inode); | |
481 | ||
482 | if (page_has_buffers(page)) { | |
483 | struct buffer_head *head = page_buffers(page); | |
484 | struct buffer_head *bh = head; | |
485 | ||
486 | /* If they're all mapped and dirty, do it */ | |
487 | page_block = 0; | |
488 | do { | |
489 | BUG_ON(buffer_locked(bh)); | |
490 | if (!buffer_mapped(bh)) { | |
491 | /* | |
492 | * unmapped dirty buffers are created by | |
493 | * __set_page_dirty_buffers -> mmapped data | |
494 | */ | |
495 | if (buffer_dirty(bh)) | |
496 | goto confused; | |
497 | if (first_unmapped == blocks_per_page) | |
498 | first_unmapped = page_block; | |
499 | continue; | |
500 | } | |
501 | ||
502 | if (first_unmapped != blocks_per_page) | |
503 | goto confused; /* hole -> non-hole */ | |
504 | ||
505 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | |
506 | goto confused; | |
507 | if (page_block) { | |
508 | if (bh->b_blocknr != blocks[page_block-1] + 1) | |
509 | goto confused; | |
510 | } | |
511 | blocks[page_block++] = bh->b_blocknr; | |
512 | boundary = buffer_boundary(bh); | |
513 | if (boundary) { | |
514 | boundary_block = bh->b_blocknr; | |
515 | boundary_bdev = bh->b_bdev; | |
516 | } | |
517 | bdev = bh->b_bdev; | |
518 | } while ((bh = bh->b_this_page) != head); | |
519 | ||
520 | if (first_unmapped) | |
521 | goto page_is_mapped; | |
522 | ||
523 | /* | |
524 | * Page has buffers, but they are all unmapped. The page was | |
525 | * created by pagein or read over a hole which was handled by | |
526 | * block_read_full_page(). If this address_space is also | |
527 | * using mpage_readpages then this can rarely happen. | |
528 | */ | |
529 | goto confused; | |
530 | } | |
531 | ||
532 | /* | |
533 | * The page has no buffers: map it to disk | |
534 | */ | |
535 | BUG_ON(!PageUptodate(page)); | |
54b21a79 | 536 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
537 | last_block = (i_size - 1) >> blkbits; |
538 | map_bh.b_page = page; | |
539 | for (page_block = 0; page_block < blocks_per_page; ) { | |
540 | ||
541 | map_bh.b_state = 0; | |
b0cf2321 | 542 | map_bh.b_size = 1 << blkbits; |
1da177e4 LT |
543 | if (get_block(inode, block_in_file, &map_bh, 1)) |
544 | goto confused; | |
545 | if (buffer_new(&map_bh)) | |
546 | unmap_underlying_metadata(map_bh.b_bdev, | |
547 | map_bh.b_blocknr); | |
548 | if (buffer_boundary(&map_bh)) { | |
549 | boundary_block = map_bh.b_blocknr; | |
550 | boundary_bdev = map_bh.b_bdev; | |
551 | } | |
552 | if (page_block) { | |
553 | if (map_bh.b_blocknr != blocks[page_block-1] + 1) | |
554 | goto confused; | |
555 | } | |
556 | blocks[page_block++] = map_bh.b_blocknr; | |
557 | boundary = buffer_boundary(&map_bh); | |
558 | bdev = map_bh.b_bdev; | |
559 | if (block_in_file == last_block) | |
560 | break; | |
561 | block_in_file++; | |
562 | } | |
563 | BUG_ON(page_block == 0); | |
564 | ||
565 | first_unmapped = page_block; | |
566 | ||
567 | page_is_mapped: | |
568 | end_index = i_size >> PAGE_CACHE_SHIFT; | |
569 | if (page->index >= end_index) { | |
570 | /* | |
571 | * The page straddles i_size. It must be zeroed out on each | |
572 | * and every writepage invokation because it may be mmapped. | |
573 | * "A file is mapped in multiples of the page size. For a file | |
574 | * that is not a multiple of the page size, the remaining memory | |
575 | * is zeroed when mapped, and writes to that region are not | |
576 | * written out to the file." | |
577 | */ | |
578 | unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); | |
579 | char *kaddr; | |
580 | ||
581 | if (page->index > end_index || !offset) | |
582 | goto confused; | |
583 | kaddr = kmap_atomic(page, KM_USER0); | |
584 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | |
585 | flush_dcache_page(page); | |
586 | kunmap_atomic(kaddr, KM_USER0); | |
587 | } | |
588 | ||
589 | /* | |
590 | * This page will go to BIO. Do we need to send this BIO off first? | |
591 | */ | |
592 | if (bio && *last_block_in_bio != blocks[0] - 1) | |
593 | bio = mpage_bio_submit(WRITE, bio); | |
594 | ||
595 | alloc_new: | |
596 | if (bio == NULL) { | |
597 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | |
598 | bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); | |
599 | if (bio == NULL) | |
600 | goto confused; | |
601 | } | |
602 | ||
603 | /* | |
604 | * Must try to add the page before marking the buffer clean or | |
605 | * the confused fail path above (OOM) will be very confused when | |
606 | * it finds all bh marked clean (i.e. it will not write anything) | |
607 | */ | |
608 | length = first_unmapped << blkbits; | |
609 | if (bio_add_page(bio, page, length, 0) < length) { | |
610 | bio = mpage_bio_submit(WRITE, bio); | |
611 | goto alloc_new; | |
612 | } | |
613 | ||
614 | /* | |
615 | * OK, we have our BIO, so we can now mark the buffers clean. Make | |
616 | * sure to only clean buffers which we know we'll be writing. | |
617 | */ | |
618 | if (page_has_buffers(page)) { | |
619 | struct buffer_head *head = page_buffers(page); | |
620 | struct buffer_head *bh = head; | |
621 | unsigned buffer_counter = 0; | |
622 | ||
623 | do { | |
624 | if (buffer_counter++ == first_unmapped) | |
625 | break; | |
626 | clear_buffer_dirty(bh); | |
627 | bh = bh->b_this_page; | |
628 | } while (bh != head); | |
629 | ||
630 | /* | |
631 | * we cannot drop the bh if the page is not uptodate | |
632 | * or a concurrent readpage would fail to serialize with the bh | |
633 | * and it would read from disk before we reach the platter. | |
634 | */ | |
635 | if (buffer_heads_over_limit && PageUptodate(page)) | |
636 | try_to_free_buffers(page); | |
637 | } | |
638 | ||
639 | BUG_ON(PageWriteback(page)); | |
640 | set_page_writeback(page); | |
641 | unlock_page(page); | |
642 | if (boundary || (first_unmapped != blocks_per_page)) { | |
643 | bio = mpage_bio_submit(WRITE, bio); | |
644 | if (boundary_block) { | |
645 | write_boundary_block(boundary_bdev, | |
646 | boundary_block, 1 << blkbits); | |
647 | } | |
648 | } else { | |
649 | *last_block_in_bio = blocks[blocks_per_page - 1]; | |
650 | } | |
651 | goto out; | |
652 | ||
653 | confused: | |
654 | if (bio) | |
655 | bio = mpage_bio_submit(WRITE, bio); | |
656 | ||
657 | if (writepage_fn) { | |
658 | *ret = (*writepage_fn)(page, wbc); | |
659 | } else { | |
660 | *ret = -EAGAIN; | |
661 | goto out; | |
662 | } | |
663 | /* | |
664 | * The caller has a ref on the inode, so *mapping is stable | |
665 | */ | |
666 | if (*ret) { | |
667 | if (*ret == -ENOSPC) | |
668 | set_bit(AS_ENOSPC, &mapping->flags); | |
669 | else | |
670 | set_bit(AS_EIO, &mapping->flags); | |
671 | } | |
672 | out: | |
673 | return bio; | |
674 | } | |
675 | ||
676 | /** | |
677 | * mpage_writepages - walk the list of dirty pages of the given | |
678 | * address space and writepage() all of them. | |
679 | * | |
680 | * @mapping: address space structure to write | |
681 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
682 | * @get_block: the filesystem's block mapper function. | |
683 | * If this is NULL then use a_ops->writepage. Otherwise, go | |
684 | * direct-to-BIO. | |
685 | * | |
686 | * This is a library function, which implements the writepages() | |
687 | * address_space_operation. | |
688 | * | |
689 | * If a page is already under I/O, generic_writepages() skips it, even | |
690 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | |
691 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | |
692 | * and msync() need to guarantee that all the data which was dirty at the time | |
693 | * the call was made get new I/O started against them. If wbc->sync_mode is | |
694 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | |
695 | * existing IO to complete. | |
696 | */ | |
697 | int | |
698 | mpage_writepages(struct address_space *mapping, | |
699 | struct writeback_control *wbc, get_block_t get_block) | |
1da177e4 LT |
700 | { |
701 | struct backing_dev_info *bdi = mapping->backing_dev_info; | |
702 | struct bio *bio = NULL; | |
703 | sector_t last_block_in_bio = 0; | |
704 | int ret = 0; | |
705 | int done = 0; | |
706 | int (*writepage)(struct page *page, struct writeback_control *wbc); | |
707 | struct pagevec pvec; | |
708 | int nr_pages; | |
709 | pgoff_t index; | |
111ebb6e | 710 | pgoff_t end; /* Inclusive */ |
1da177e4 | 711 | int scanned = 0; |
111ebb6e | 712 | int range_whole = 0; |
1da177e4 LT |
713 | |
714 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | |
715 | wbc->encountered_congestion = 1; | |
716 | return 0; | |
717 | } | |
718 | ||
719 | writepage = NULL; | |
720 | if (get_block == NULL) | |
721 | writepage = mapping->a_ops->writepage; | |
722 | ||
723 | pagevec_init(&pvec, 0); | |
111ebb6e | 724 | if (wbc->range_cyclic) { |
1da177e4 | 725 | index = mapping->writeback_index; /* Start from prev offset */ |
111ebb6e | 726 | end = -1; |
1da177e4 | 727 | } else { |
111ebb6e OH |
728 | index = wbc->range_start >> PAGE_CACHE_SHIFT; |
729 | end = wbc->range_end >> PAGE_CACHE_SHIFT; | |
730 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | |
731 | range_whole = 1; | |
1da177e4 LT |
732 | scanned = 1; |
733 | } | |
734 | retry: | |
735 | while (!done && (index <= end) && | |
736 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
737 | PAGECACHE_TAG_DIRTY, | |
738 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { | |
739 | unsigned i; | |
740 | ||
741 | scanned = 1; | |
742 | for (i = 0; i < nr_pages; i++) { | |
743 | struct page *page = pvec.pages[i]; | |
744 | ||
745 | /* | |
746 | * At this point we hold neither mapping->tree_lock nor | |
747 | * lock on the page itself: the page may be truncated or | |
748 | * invalidated (changing page->mapping to NULL), or even | |
749 | * swizzled back from swapper_space to tmpfs file | |
750 | * mapping | |
751 | */ | |
752 | ||
753 | lock_page(page); | |
754 | ||
755 | if (unlikely(page->mapping != mapping)) { | |
756 | unlock_page(page); | |
757 | continue; | |
758 | } | |
759 | ||
111ebb6e | 760 | if (!wbc->range_cyclic && page->index > end) { |
1da177e4 LT |
761 | done = 1; |
762 | unlock_page(page); | |
763 | continue; | |
764 | } | |
765 | ||
766 | if (wbc->sync_mode != WB_SYNC_NONE) | |
767 | wait_on_page_writeback(page); | |
768 | ||
769 | if (PageWriteback(page) || | |
770 | !clear_page_dirty_for_io(page)) { | |
771 | unlock_page(page); | |
772 | continue; | |
773 | } | |
774 | ||
775 | if (writepage) { | |
776 | ret = (*writepage)(page, wbc); | |
777 | if (ret) { | |
778 | if (ret == -ENOSPC) | |
779 | set_bit(AS_ENOSPC, | |
780 | &mapping->flags); | |
781 | else | |
782 | set_bit(AS_EIO, | |
783 | &mapping->flags); | |
784 | } | |
785 | } else { | |
786 | bio = __mpage_writepage(bio, page, get_block, | |
787 | &last_block_in_bio, &ret, wbc, | |
d17d7fa4 | 788 | page->mapping->a_ops->writepage); |
1da177e4 | 789 | } |
994fc28c | 790 | if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) |
552fca4c | 791 | unlock_page(page); |
1da177e4 LT |
792 | if (ret || (--(wbc->nr_to_write) <= 0)) |
793 | done = 1; | |
794 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | |
795 | wbc->encountered_congestion = 1; | |
796 | done = 1; | |
797 | } | |
798 | } | |
799 | pagevec_release(&pvec); | |
800 | cond_resched(); | |
801 | } | |
802 | if (!scanned && !done) { | |
803 | /* | |
804 | * We hit the last page and there is more work to be done: wrap | |
805 | * back to the start of the file | |
806 | */ | |
807 | scanned = 1; | |
808 | index = 0; | |
809 | goto retry; | |
810 | } | |
111ebb6e | 811 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
1da177e4 LT |
812 | mapping->writeback_index = index; |
813 | if (bio) | |
814 | mpage_bio_submit(WRITE, bio); | |
815 | return ret; | |
816 | } | |
817 | EXPORT_SYMBOL(mpage_writepages); | |
1da177e4 LT |
818 | |
819 | int mpage_writepage(struct page *page, get_block_t get_block, | |
820 | struct writeback_control *wbc) | |
821 | { | |
822 | int ret = 0; | |
823 | struct bio *bio; | |
824 | sector_t last_block_in_bio = 0; | |
825 | ||
826 | bio = __mpage_writepage(NULL, page, get_block, | |
827 | &last_block_in_bio, &ret, wbc, NULL); | |
828 | if (bio) | |
829 | mpage_bio_submit(WRITE, bio); | |
830 | ||
831 | return ret; | |
832 | } | |
833 | EXPORT_SYMBOL(mpage_writepage); |