]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 71 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
381760ea MG |
120 | #include <net/sock.h> |
121 | ||
1da177e4 LT |
122 | #include <asm/cacheflush.h> |
123 | #include <asm/tlbflush.h> | |
124 | #include <asm/page.h> | |
125 | ||
4dee6b64 SR |
126 | #include <trace/events/kmem.h> |
127 | ||
072bb0aa MG |
128 | #include "internal.h" |
129 | ||
b9ce5ef4 GC |
130 | #include "slab.h" |
131 | ||
1da177e4 | 132 | /* |
50953fe9 | 133 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
134 | * 0 for faster, smaller code (especially in the critical paths). |
135 | * | |
136 | * STATS - 1 to collect stats for /proc/slabinfo. | |
137 | * 0 for faster, smaller code (especially in the critical paths). | |
138 | * | |
139 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
140 | */ | |
141 | ||
142 | #ifdef CONFIG_DEBUG_SLAB | |
143 | #define DEBUG 1 | |
144 | #define STATS 1 | |
145 | #define FORCED_DEBUG 1 | |
146 | #else | |
147 | #define DEBUG 0 | |
148 | #define STATS 0 | |
149 | #define FORCED_DEBUG 0 | |
150 | #endif | |
151 | ||
1da177e4 LT |
152 | /* Shouldn't this be in a header file somewhere? */ |
153 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 154 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 155 | |
1da177e4 LT |
156 | #ifndef ARCH_KMALLOC_FLAGS |
157 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
158 | #endif | |
159 | ||
f315e3fa JK |
160 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
161 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
162 | ||
163 | #if FREELIST_BYTE_INDEX | |
164 | typedef unsigned char freelist_idx_t; | |
165 | #else | |
166 | typedef unsigned short freelist_idx_t; | |
167 | #endif | |
168 | ||
169 | #define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) | |
170 | ||
072bb0aa MG |
171 | /* |
172 | * true if a page was allocated from pfmemalloc reserves for network-based | |
173 | * swap | |
174 | */ | |
175 | static bool pfmemalloc_active __read_mostly; | |
176 | ||
1da177e4 LT |
177 | /* |
178 | * struct array_cache | |
179 | * | |
1da177e4 LT |
180 | * Purpose: |
181 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
182 | * - reduce the number of linked list operations | |
183 | * - reduce spinlock operations | |
184 | * | |
185 | * The limit is stored in the per-cpu structure to reduce the data cache | |
186 | * footprint. | |
187 | * | |
188 | */ | |
189 | struct array_cache { | |
190 | unsigned int avail; | |
191 | unsigned int limit; | |
192 | unsigned int batchcount; | |
193 | unsigned int touched; | |
e498be7d | 194 | spinlock_t lock; |
bda5b655 | 195 | void *entry[]; /* |
a737b3e2 AM |
196 | * Must have this definition in here for the proper |
197 | * alignment of array_cache. Also simplifies accessing | |
198 | * the entries. | |
072bb0aa MG |
199 | * |
200 | * Entries should not be directly dereferenced as | |
201 | * entries belonging to slabs marked pfmemalloc will | |
202 | * have the lower bits set SLAB_OBJ_PFMEMALLOC | |
a737b3e2 | 203 | */ |
1da177e4 LT |
204 | }; |
205 | ||
072bb0aa MG |
206 | #define SLAB_OBJ_PFMEMALLOC 1 |
207 | static inline bool is_obj_pfmemalloc(void *objp) | |
208 | { | |
209 | return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; | |
210 | } | |
211 | ||
212 | static inline void set_obj_pfmemalloc(void **objp) | |
213 | { | |
214 | *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); | |
215 | return; | |
216 | } | |
217 | ||
218 | static inline void clear_obj_pfmemalloc(void **objp) | |
219 | { | |
220 | *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); | |
221 | } | |
222 | ||
a737b3e2 AM |
223 | /* |
224 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
225 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
226 | */ |
227 | #define BOOT_CPUCACHE_ENTRIES 1 | |
228 | struct arraycache_init { | |
229 | struct array_cache cache; | |
b28a02de | 230 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
231 | }; |
232 | ||
e498be7d CL |
233 | /* |
234 | * Need this for bootstrapping a per node allocator. | |
235 | */ | |
556a169d | 236 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
ce8eb6c4 | 237 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 238 | #define CACHE_CACHE 0 |
556a169d | 239 | #define SIZE_AC MAX_NUMNODES |
ce8eb6c4 | 240 | #define SIZE_NODE (2 * MAX_NUMNODES) |
e498be7d | 241 | |
ed11d9eb | 242 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 243 | struct kmem_cache_node *n, int tofree); |
ed11d9eb CL |
244 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
245 | int node); | |
83b519e8 | 246 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 247 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 248 | |
e0a42726 IM |
249 | static int slab_early_init = 1; |
250 | ||
e3366016 | 251 | #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) |
ce8eb6c4 | 252 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 253 | |
ce8eb6c4 | 254 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
255 | { |
256 | INIT_LIST_HEAD(&parent->slabs_full); | |
257 | INIT_LIST_HEAD(&parent->slabs_partial); | |
258 | INIT_LIST_HEAD(&parent->slabs_free); | |
259 | parent->shared = NULL; | |
260 | parent->alien = NULL; | |
2e1217cf | 261 | parent->colour_next = 0; |
e498be7d CL |
262 | spin_lock_init(&parent->list_lock); |
263 | parent->free_objects = 0; | |
264 | parent->free_touched = 0; | |
265 | } | |
266 | ||
a737b3e2 AM |
267 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
268 | do { \ | |
269 | INIT_LIST_HEAD(listp); \ | |
6a67368c | 270 | list_splice(&(cachep->node[nodeid]->slab), listp); \ |
e498be7d CL |
271 | } while (0) |
272 | ||
a737b3e2 AM |
273 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
274 | do { \ | |
e498be7d CL |
275 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
276 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
277 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
278 | } while (0) | |
1da177e4 | 279 | |
1da177e4 LT |
280 | #define CFLGS_OFF_SLAB (0x80000000UL) |
281 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
282 | ||
283 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
284 | /* |
285 | * Optimization question: fewer reaps means less probability for unnessary | |
286 | * cpucache drain/refill cycles. | |
1da177e4 | 287 | * |
dc6f3f27 | 288 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
289 | * which could lock up otherwise freeable slabs. |
290 | */ | |
5f0985bb JZ |
291 | #define REAPTIMEOUT_AC (2*HZ) |
292 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
293 | |
294 | #if STATS | |
295 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
296 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
297 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
298 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 299 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
300 | #define STATS_SET_HIGH(x) \ |
301 | do { \ | |
302 | if ((x)->num_active > (x)->high_mark) \ | |
303 | (x)->high_mark = (x)->num_active; \ | |
304 | } while (0) | |
1da177e4 LT |
305 | #define STATS_INC_ERR(x) ((x)->errors++) |
306 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 307 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 308 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
309 | #define STATS_SET_FREEABLE(x, i) \ |
310 | do { \ | |
311 | if ((x)->max_freeable < i) \ | |
312 | (x)->max_freeable = i; \ | |
313 | } while (0) | |
1da177e4 LT |
314 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
315 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
316 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
317 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
318 | #else | |
319 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
320 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
321 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
322 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 323 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
324 | #define STATS_SET_HIGH(x) do { } while (0) |
325 | #define STATS_INC_ERR(x) do { } while (0) | |
326 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 327 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 328 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 329 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
330 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
331 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
332 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
333 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
334 | #endif | |
335 | ||
336 | #if DEBUG | |
1da177e4 | 337 | |
a737b3e2 AM |
338 | /* |
339 | * memory layout of objects: | |
1da177e4 | 340 | * 0 : objp |
3dafccf2 | 341 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
342 | * the end of an object is aligned with the end of the real |
343 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 344 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 345 | * redzone word. |
3dafccf2 | 346 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
347 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
348 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 349 | * [BYTES_PER_WORD long] |
1da177e4 | 350 | */ |
343e0d7a | 351 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 352 | { |
3dafccf2 | 353 | return cachep->obj_offset; |
1da177e4 LT |
354 | } |
355 | ||
b46b8f19 | 356 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
357 | { |
358 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
359 | return (unsigned long long*) (objp + obj_offset(cachep) - |
360 | sizeof(unsigned long long)); | |
1da177e4 LT |
361 | } |
362 | ||
b46b8f19 | 363 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
364 | { |
365 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
366 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 367 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 368 | sizeof(unsigned long long) - |
87a927c7 | 369 | REDZONE_ALIGN); |
3b0efdfa | 370 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 371 | sizeof(unsigned long long)); |
1da177e4 LT |
372 | } |
373 | ||
343e0d7a | 374 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
375 | { |
376 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 377 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
378 | } |
379 | ||
380 | #else | |
381 | ||
3dafccf2 | 382 | #define obj_offset(x) 0 |
b46b8f19 DW |
383 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
384 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
385 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
386 | ||
387 | #endif | |
388 | ||
1da177e4 | 389 | /* |
3df1cccd DR |
390 | * Do not go above this order unless 0 objects fit into the slab or |
391 | * overridden on the command line. | |
1da177e4 | 392 | */ |
543585cc DR |
393 | #define SLAB_MAX_ORDER_HI 1 |
394 | #define SLAB_MAX_ORDER_LO 0 | |
395 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 396 | static bool slab_max_order_set __initdata; |
1da177e4 | 397 | |
6ed5eb22 PE |
398 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
399 | { | |
b49af68f | 400 | struct page *page = virt_to_head_page(obj); |
35026088 | 401 | return page->slab_cache; |
6ed5eb22 PE |
402 | } |
403 | ||
8456a648 | 404 | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, |
8fea4e96 PE |
405 | unsigned int idx) |
406 | { | |
8456a648 | 407 | return page->s_mem + cache->size * idx; |
8fea4e96 PE |
408 | } |
409 | ||
6a2d7a95 | 410 | /* |
3b0efdfa CL |
411 | * We want to avoid an expensive divide : (offset / cache->size) |
412 | * Using the fact that size is a constant for a particular cache, | |
413 | * we can replace (offset / cache->size) by | |
6a2d7a95 ED |
414 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) |
415 | */ | |
416 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
8456a648 | 417 | const struct page *page, void *obj) |
8fea4e96 | 418 | { |
8456a648 | 419 | u32 offset = (obj - page->s_mem); |
6a2d7a95 | 420 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); |
8fea4e96 PE |
421 | } |
422 | ||
1da177e4 | 423 | static struct arraycache_init initarray_generic = |
b28a02de | 424 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
425 | |
426 | /* internal cache of cache description objs */ | |
9b030cb8 | 427 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
428 | .batchcount = 1, |
429 | .limit = BOOT_CPUCACHE_ENTRIES, | |
430 | .shared = 1, | |
3b0efdfa | 431 | .size = sizeof(struct kmem_cache), |
b28a02de | 432 | .name = "kmem_cache", |
1da177e4 LT |
433 | }; |
434 | ||
056c6241 RT |
435 | #define BAD_ALIEN_MAGIC 0x01020304ul |
436 | ||
f1aaee53 AV |
437 | #ifdef CONFIG_LOCKDEP |
438 | ||
439 | /* | |
440 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
441 | * for other slabs "off slab". | |
442 | * The locking for this is tricky in that it nests within the locks | |
443 | * of all other slabs in a few places; to deal with this special | |
444 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
445 | * |
446 | * We set lock class for alien array caches which are up during init. | |
447 | * The lock annotation will be lost if all cpus of a node goes down and | |
448 | * then comes back up during hotplug | |
f1aaee53 | 449 | */ |
056c6241 RT |
450 | static struct lock_class_key on_slab_l3_key; |
451 | static struct lock_class_key on_slab_alc_key; | |
452 | ||
83835b3d PZ |
453 | static struct lock_class_key debugobj_l3_key; |
454 | static struct lock_class_key debugobj_alc_key; | |
455 | ||
456 | static void slab_set_lock_classes(struct kmem_cache *cachep, | |
457 | struct lock_class_key *l3_key, struct lock_class_key *alc_key, | |
458 | int q) | |
459 | { | |
460 | struct array_cache **alc; | |
ce8eb6c4 | 461 | struct kmem_cache_node *n; |
83835b3d PZ |
462 | int r; |
463 | ||
ce8eb6c4 CL |
464 | n = cachep->node[q]; |
465 | if (!n) | |
83835b3d PZ |
466 | return; |
467 | ||
ce8eb6c4 CL |
468 | lockdep_set_class(&n->list_lock, l3_key); |
469 | alc = n->alien; | |
83835b3d PZ |
470 | /* |
471 | * FIXME: This check for BAD_ALIEN_MAGIC | |
472 | * should go away when common slab code is taught to | |
473 | * work even without alien caches. | |
474 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
475 | * for alloc_alien_cache, | |
476 | */ | |
477 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
478 | return; | |
479 | for_each_node(r) { | |
480 | if (alc[r]) | |
481 | lockdep_set_class(&alc[r]->lock, alc_key); | |
482 | } | |
483 | } | |
484 | ||
485 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
486 | { | |
487 | slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); | |
488 | } | |
489 | ||
490 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
491 | { | |
492 | int node; | |
493 | ||
494 | for_each_online_node(node) | |
495 | slab_set_debugobj_lock_classes_node(cachep, node); | |
496 | } | |
497 | ||
ce79ddc8 | 498 | static void init_node_lock_keys(int q) |
f1aaee53 | 499 | { |
e3366016 | 500 | int i; |
056c6241 | 501 | |
97d06609 | 502 | if (slab_state < UP) |
ce79ddc8 PE |
503 | return; |
504 | ||
0f8f8094 | 505 | for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) { |
ce8eb6c4 | 506 | struct kmem_cache_node *n; |
e3366016 CL |
507 | struct kmem_cache *cache = kmalloc_caches[i]; |
508 | ||
509 | if (!cache) | |
510 | continue; | |
ce79ddc8 | 511 | |
ce8eb6c4 CL |
512 | n = cache->node[q]; |
513 | if (!n || OFF_SLAB(cache)) | |
00afa758 | 514 | continue; |
83835b3d | 515 | |
e3366016 | 516 | slab_set_lock_classes(cache, &on_slab_l3_key, |
83835b3d | 517 | &on_slab_alc_key, q); |
f1aaee53 AV |
518 | } |
519 | } | |
ce79ddc8 | 520 | |
6ccfb5bc GC |
521 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) |
522 | { | |
6a67368c | 523 | if (!cachep->node[q]) |
6ccfb5bc GC |
524 | return; |
525 | ||
526 | slab_set_lock_classes(cachep, &on_slab_l3_key, | |
527 | &on_slab_alc_key, q); | |
528 | } | |
529 | ||
530 | static inline void on_slab_lock_classes(struct kmem_cache *cachep) | |
531 | { | |
532 | int node; | |
533 | ||
534 | VM_BUG_ON(OFF_SLAB(cachep)); | |
535 | for_each_node(node) | |
536 | on_slab_lock_classes_node(cachep, node); | |
537 | } | |
538 | ||
ce79ddc8 PE |
539 | static inline void init_lock_keys(void) |
540 | { | |
541 | int node; | |
542 | ||
543 | for_each_node(node) | |
544 | init_node_lock_keys(node); | |
545 | } | |
f1aaee53 | 546 | #else |
ce79ddc8 PE |
547 | static void init_node_lock_keys(int q) |
548 | { | |
549 | } | |
550 | ||
056c6241 | 551 | static inline void init_lock_keys(void) |
f1aaee53 AV |
552 | { |
553 | } | |
83835b3d | 554 | |
6ccfb5bc GC |
555 | static inline void on_slab_lock_classes(struct kmem_cache *cachep) |
556 | { | |
557 | } | |
558 | ||
559 | static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node) | |
560 | { | |
561 | } | |
562 | ||
83835b3d PZ |
563 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) |
564 | { | |
565 | } | |
566 | ||
567 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
568 | { | |
569 | } | |
f1aaee53 AV |
570 | #endif |
571 | ||
1871e52c | 572 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 573 | |
343e0d7a | 574 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
575 | { |
576 | return cachep->array[smp_processor_id()]; | |
577 | } | |
578 | ||
9cef2e2b JK |
579 | static int calculate_nr_objs(size_t slab_size, size_t buffer_size, |
580 | size_t idx_size, size_t align) | |
1da177e4 | 581 | { |
9cef2e2b JK |
582 | int nr_objs; |
583 | size_t freelist_size; | |
584 | ||
585 | /* | |
586 | * Ignore padding for the initial guess. The padding | |
587 | * is at most @align-1 bytes, and @buffer_size is at | |
588 | * least @align. In the worst case, this result will | |
589 | * be one greater than the number of objects that fit | |
590 | * into the memory allocation when taking the padding | |
591 | * into account. | |
592 | */ | |
593 | nr_objs = slab_size / (buffer_size + idx_size); | |
594 | ||
595 | /* | |
596 | * This calculated number will be either the right | |
597 | * amount, or one greater than what we want. | |
598 | */ | |
599 | freelist_size = slab_size - nr_objs * buffer_size; | |
600 | if (freelist_size < ALIGN(nr_objs * idx_size, align)) | |
601 | nr_objs--; | |
602 | ||
603 | return nr_objs; | |
fbaccacf | 604 | } |
1da177e4 | 605 | |
a737b3e2 AM |
606 | /* |
607 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
608 | */ | |
fbaccacf SR |
609 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
610 | size_t align, int flags, size_t *left_over, | |
611 | unsigned int *num) | |
612 | { | |
613 | int nr_objs; | |
614 | size_t mgmt_size; | |
615 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 616 | |
fbaccacf SR |
617 | /* |
618 | * The slab management structure can be either off the slab or | |
619 | * on it. For the latter case, the memory allocated for a | |
620 | * slab is used for: | |
621 | * | |
16025177 | 622 | * - One unsigned int for each object |
fbaccacf SR |
623 | * - Padding to respect alignment of @align |
624 | * - @buffer_size bytes for each object | |
625 | * | |
626 | * If the slab management structure is off the slab, then the | |
627 | * alignment will already be calculated into the size. Because | |
628 | * the slabs are all pages aligned, the objects will be at the | |
629 | * correct alignment when allocated. | |
630 | */ | |
631 | if (flags & CFLGS_OFF_SLAB) { | |
632 | mgmt_size = 0; | |
633 | nr_objs = slab_size / buffer_size; | |
634 | ||
fbaccacf | 635 | } else { |
9cef2e2b | 636 | nr_objs = calculate_nr_objs(slab_size, buffer_size, |
a41adfaa JK |
637 | sizeof(freelist_idx_t), align); |
638 | mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align); | |
fbaccacf SR |
639 | } |
640 | *num = nr_objs; | |
641 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
642 | } |
643 | ||
f28510d3 | 644 | #if DEBUG |
d40cee24 | 645 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 646 | |
a737b3e2 AM |
647 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
648 | char *msg) | |
1da177e4 LT |
649 | { |
650 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 651 | function, cachep->name, msg); |
1da177e4 | 652 | dump_stack(); |
373d4d09 | 653 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 654 | } |
f28510d3 | 655 | #endif |
1da177e4 | 656 | |
3395ee05 PM |
657 | /* |
658 | * By default on NUMA we use alien caches to stage the freeing of | |
659 | * objects allocated from other nodes. This causes massive memory | |
660 | * inefficiencies when using fake NUMA setup to split memory into a | |
661 | * large number of small nodes, so it can be disabled on the command | |
662 | * line | |
663 | */ | |
664 | ||
665 | static int use_alien_caches __read_mostly = 1; | |
666 | static int __init noaliencache_setup(char *s) | |
667 | { | |
668 | use_alien_caches = 0; | |
669 | return 1; | |
670 | } | |
671 | __setup("noaliencache", noaliencache_setup); | |
672 | ||
3df1cccd DR |
673 | static int __init slab_max_order_setup(char *str) |
674 | { | |
675 | get_option(&str, &slab_max_order); | |
676 | slab_max_order = slab_max_order < 0 ? 0 : | |
677 | min(slab_max_order, MAX_ORDER - 1); | |
678 | slab_max_order_set = true; | |
679 | ||
680 | return 1; | |
681 | } | |
682 | __setup("slab_max_order=", slab_max_order_setup); | |
683 | ||
8fce4d8e CL |
684 | #ifdef CONFIG_NUMA |
685 | /* | |
686 | * Special reaping functions for NUMA systems called from cache_reap(). | |
687 | * These take care of doing round robin flushing of alien caches (containing | |
688 | * objects freed on different nodes from which they were allocated) and the | |
689 | * flushing of remote pcps by calling drain_node_pages. | |
690 | */ | |
1871e52c | 691 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
692 | |
693 | static void init_reap_node(int cpu) | |
694 | { | |
695 | int node; | |
696 | ||
7d6e6d09 | 697 | node = next_node(cpu_to_mem(cpu), node_online_map); |
8fce4d8e | 698 | if (node == MAX_NUMNODES) |
442295c9 | 699 | node = first_node(node_online_map); |
8fce4d8e | 700 | |
1871e52c | 701 | per_cpu(slab_reap_node, cpu) = node; |
8fce4d8e CL |
702 | } |
703 | ||
704 | static void next_reap_node(void) | |
705 | { | |
909ea964 | 706 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 707 | |
8fce4d8e CL |
708 | node = next_node(node, node_online_map); |
709 | if (unlikely(node >= MAX_NUMNODES)) | |
710 | node = first_node(node_online_map); | |
909ea964 | 711 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
712 | } |
713 | ||
714 | #else | |
715 | #define init_reap_node(cpu) do { } while (0) | |
716 | #define next_reap_node(void) do { } while (0) | |
717 | #endif | |
718 | ||
1da177e4 LT |
719 | /* |
720 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
721 | * via the workqueue/eventd. | |
722 | * Add the CPU number into the expiration time to minimize the possibility of | |
723 | * the CPUs getting into lockstep and contending for the global cache chain | |
724 | * lock. | |
725 | */ | |
0db0628d | 726 | static void start_cpu_timer(int cpu) |
1da177e4 | 727 | { |
1871e52c | 728 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
729 | |
730 | /* | |
731 | * When this gets called from do_initcalls via cpucache_init(), | |
732 | * init_workqueues() has already run, so keventd will be setup | |
733 | * at that time. | |
734 | */ | |
52bad64d | 735 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 736 | init_reap_node(cpu); |
203b42f7 | 737 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
738 | schedule_delayed_work_on(cpu, reap_work, |
739 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
740 | } |
741 | } | |
742 | ||
e498be7d | 743 | static struct array_cache *alloc_arraycache(int node, int entries, |
83b519e8 | 744 | int batchcount, gfp_t gfp) |
1da177e4 | 745 | { |
b28a02de | 746 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
747 | struct array_cache *nc = NULL; |
748 | ||
83b519e8 | 749 | nc = kmalloc_node(memsize, gfp, node); |
d5cff635 CM |
750 | /* |
751 | * The array_cache structures contain pointers to free object. | |
25985edc | 752 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
753 | * cache the pointers are not cleared and they could be counted as |
754 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
755 | * not scan such objects. | |
756 | */ | |
757 | kmemleak_no_scan(nc); | |
1da177e4 LT |
758 | if (nc) { |
759 | nc->avail = 0; | |
760 | nc->limit = entries; | |
761 | nc->batchcount = batchcount; | |
762 | nc->touched = 0; | |
e498be7d | 763 | spin_lock_init(&nc->lock); |
1da177e4 LT |
764 | } |
765 | return nc; | |
766 | } | |
767 | ||
8456a648 | 768 | static inline bool is_slab_pfmemalloc(struct page *page) |
072bb0aa | 769 | { |
072bb0aa MG |
770 | return PageSlabPfmemalloc(page); |
771 | } | |
772 | ||
773 | /* Clears pfmemalloc_active if no slabs have pfmalloc set */ | |
774 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | |
775 | struct array_cache *ac) | |
776 | { | |
ce8eb6c4 | 777 | struct kmem_cache_node *n = cachep->node[numa_mem_id()]; |
8456a648 | 778 | struct page *page; |
072bb0aa MG |
779 | unsigned long flags; |
780 | ||
781 | if (!pfmemalloc_active) | |
782 | return; | |
783 | ||
ce8eb6c4 | 784 | spin_lock_irqsave(&n->list_lock, flags); |
8456a648 JK |
785 | list_for_each_entry(page, &n->slabs_full, lru) |
786 | if (is_slab_pfmemalloc(page)) | |
072bb0aa MG |
787 | goto out; |
788 | ||
8456a648 JK |
789 | list_for_each_entry(page, &n->slabs_partial, lru) |
790 | if (is_slab_pfmemalloc(page)) | |
072bb0aa MG |
791 | goto out; |
792 | ||
8456a648 JK |
793 | list_for_each_entry(page, &n->slabs_free, lru) |
794 | if (is_slab_pfmemalloc(page)) | |
072bb0aa MG |
795 | goto out; |
796 | ||
797 | pfmemalloc_active = false; | |
798 | out: | |
ce8eb6c4 | 799 | spin_unlock_irqrestore(&n->list_lock, flags); |
072bb0aa MG |
800 | } |
801 | ||
381760ea | 802 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, |
072bb0aa MG |
803 | gfp_t flags, bool force_refill) |
804 | { | |
805 | int i; | |
806 | void *objp = ac->entry[--ac->avail]; | |
807 | ||
808 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | |
809 | if (unlikely(is_obj_pfmemalloc(objp))) { | |
ce8eb6c4 | 810 | struct kmem_cache_node *n; |
072bb0aa MG |
811 | |
812 | if (gfp_pfmemalloc_allowed(flags)) { | |
813 | clear_obj_pfmemalloc(&objp); | |
814 | return objp; | |
815 | } | |
816 | ||
817 | /* The caller cannot use PFMEMALLOC objects, find another one */ | |
d014dc2e | 818 | for (i = 0; i < ac->avail; i++) { |
072bb0aa MG |
819 | /* If a !PFMEMALLOC object is found, swap them */ |
820 | if (!is_obj_pfmemalloc(ac->entry[i])) { | |
821 | objp = ac->entry[i]; | |
822 | ac->entry[i] = ac->entry[ac->avail]; | |
823 | ac->entry[ac->avail] = objp; | |
824 | return objp; | |
825 | } | |
826 | } | |
827 | ||
828 | /* | |
829 | * If there are empty slabs on the slabs_free list and we are | |
830 | * being forced to refill the cache, mark this one !pfmemalloc. | |
831 | */ | |
ce8eb6c4 CL |
832 | n = cachep->node[numa_mem_id()]; |
833 | if (!list_empty(&n->slabs_free) && force_refill) { | |
8456a648 | 834 | struct page *page = virt_to_head_page(objp); |
7ecccf9d | 835 | ClearPageSlabPfmemalloc(page); |
072bb0aa MG |
836 | clear_obj_pfmemalloc(&objp); |
837 | recheck_pfmemalloc_active(cachep, ac); | |
838 | return objp; | |
839 | } | |
840 | ||
841 | /* No !PFMEMALLOC objects available */ | |
842 | ac->avail++; | |
843 | objp = NULL; | |
844 | } | |
845 | ||
846 | return objp; | |
847 | } | |
848 | ||
381760ea MG |
849 | static inline void *ac_get_obj(struct kmem_cache *cachep, |
850 | struct array_cache *ac, gfp_t flags, bool force_refill) | |
851 | { | |
852 | void *objp; | |
853 | ||
854 | if (unlikely(sk_memalloc_socks())) | |
855 | objp = __ac_get_obj(cachep, ac, flags, force_refill); | |
856 | else | |
857 | objp = ac->entry[--ac->avail]; | |
858 | ||
859 | return objp; | |
860 | } | |
861 | ||
862 | static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | |
072bb0aa MG |
863 | void *objp) |
864 | { | |
865 | if (unlikely(pfmemalloc_active)) { | |
866 | /* Some pfmemalloc slabs exist, check if this is one */ | |
30c29bea | 867 | struct page *page = virt_to_head_page(objp); |
072bb0aa MG |
868 | if (PageSlabPfmemalloc(page)) |
869 | set_obj_pfmemalloc(&objp); | |
870 | } | |
871 | ||
381760ea MG |
872 | return objp; |
873 | } | |
874 | ||
875 | static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | |
876 | void *objp) | |
877 | { | |
878 | if (unlikely(sk_memalloc_socks())) | |
879 | objp = __ac_put_obj(cachep, ac, objp); | |
880 | ||
072bb0aa MG |
881 | ac->entry[ac->avail++] = objp; |
882 | } | |
883 | ||
3ded175a CL |
884 | /* |
885 | * Transfer objects in one arraycache to another. | |
886 | * Locking must be handled by the caller. | |
887 | * | |
888 | * Return the number of entries transferred. | |
889 | */ | |
890 | static int transfer_objects(struct array_cache *to, | |
891 | struct array_cache *from, unsigned int max) | |
892 | { | |
893 | /* Figure out how many entries to transfer */ | |
732eacc0 | 894 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
895 | |
896 | if (!nr) | |
897 | return 0; | |
898 | ||
899 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
900 | sizeof(void *) *nr); | |
901 | ||
902 | from->avail -= nr; | |
903 | to->avail += nr; | |
3ded175a CL |
904 | return nr; |
905 | } | |
906 | ||
765c4507 CL |
907 | #ifndef CONFIG_NUMA |
908 | ||
909 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 910 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 911 | |
83b519e8 | 912 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
765c4507 CL |
913 | { |
914 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
915 | } | |
916 | ||
917 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
918 | { | |
919 | } | |
920 | ||
921 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
922 | { | |
923 | return 0; | |
924 | } | |
925 | ||
926 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
927 | gfp_t flags) | |
928 | { | |
929 | return NULL; | |
930 | } | |
931 | ||
8b98c169 | 932 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
933 | gfp_t flags, int nodeid) |
934 | { | |
935 | return NULL; | |
936 | } | |
937 | ||
938 | #else /* CONFIG_NUMA */ | |
939 | ||
8b98c169 | 940 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 941 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 942 | |
83b519e8 | 943 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
e498be7d CL |
944 | { |
945 | struct array_cache **ac_ptr; | |
8ef82866 | 946 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
947 | int i; |
948 | ||
949 | if (limit > 1) | |
950 | limit = 12; | |
f3186a9c | 951 | ac_ptr = kzalloc_node(memsize, gfp, node); |
e498be7d CL |
952 | if (ac_ptr) { |
953 | for_each_node(i) { | |
f3186a9c | 954 | if (i == node || !node_online(i)) |
e498be7d | 955 | continue; |
83b519e8 | 956 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); |
e498be7d | 957 | if (!ac_ptr[i]) { |
cc550def | 958 | for (i--; i >= 0; i--) |
e498be7d CL |
959 | kfree(ac_ptr[i]); |
960 | kfree(ac_ptr); | |
961 | return NULL; | |
962 | } | |
963 | } | |
964 | } | |
965 | return ac_ptr; | |
966 | } | |
967 | ||
5295a74c | 968 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
969 | { |
970 | int i; | |
971 | ||
972 | if (!ac_ptr) | |
973 | return; | |
e498be7d | 974 | for_each_node(i) |
b28a02de | 975 | kfree(ac_ptr[i]); |
e498be7d CL |
976 | kfree(ac_ptr); |
977 | } | |
978 | ||
343e0d7a | 979 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 980 | struct array_cache *ac, int node) |
e498be7d | 981 | { |
ce8eb6c4 | 982 | struct kmem_cache_node *n = cachep->node[node]; |
e498be7d CL |
983 | |
984 | if (ac->avail) { | |
ce8eb6c4 | 985 | spin_lock(&n->list_lock); |
e00946fe CL |
986 | /* |
987 | * Stuff objects into the remote nodes shared array first. | |
988 | * That way we could avoid the overhead of putting the objects | |
989 | * into the free lists and getting them back later. | |
990 | */ | |
ce8eb6c4 CL |
991 | if (n->shared) |
992 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 993 | |
ff69416e | 994 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d | 995 | ac->avail = 0; |
ce8eb6c4 | 996 | spin_unlock(&n->list_lock); |
e498be7d CL |
997 | } |
998 | } | |
999 | ||
8fce4d8e CL |
1000 | /* |
1001 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1002 | */ | |
ce8eb6c4 | 1003 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 1004 | { |
909ea964 | 1005 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 1006 | |
ce8eb6c4 CL |
1007 | if (n->alien) { |
1008 | struct array_cache *ac = n->alien[node]; | |
e00946fe CL |
1009 | |
1010 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1011 | __drain_alien_cache(cachep, ac, node); |
1012 | spin_unlock_irq(&ac->lock); | |
1013 | } | |
1014 | } | |
1015 | } | |
1016 | ||
a737b3e2 AM |
1017 | static void drain_alien_cache(struct kmem_cache *cachep, |
1018 | struct array_cache **alien) | |
e498be7d | 1019 | { |
b28a02de | 1020 | int i = 0; |
e498be7d CL |
1021 | struct array_cache *ac; |
1022 | unsigned long flags; | |
1023 | ||
1024 | for_each_online_node(i) { | |
4484ebf1 | 1025 | ac = alien[i]; |
e498be7d CL |
1026 | if (ac) { |
1027 | spin_lock_irqsave(&ac->lock, flags); | |
1028 | __drain_alien_cache(cachep, ac, i); | |
1029 | spin_unlock_irqrestore(&ac->lock, flags); | |
1030 | } | |
1031 | } | |
1032 | } | |
729bd0b7 | 1033 | |
873623df | 1034 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 | 1035 | { |
1ea991b0 | 1036 | int nodeid = page_to_nid(virt_to_page(objp)); |
ce8eb6c4 | 1037 | struct kmem_cache_node *n; |
729bd0b7 | 1038 | struct array_cache *alien = NULL; |
1ca4cb24 PE |
1039 | int node; |
1040 | ||
7d6e6d09 | 1041 | node = numa_mem_id(); |
729bd0b7 PE |
1042 | |
1043 | /* | |
1044 | * Make sure we are not freeing a object from another node to the array | |
1045 | * cache on this cpu. | |
1046 | */ | |
1ea991b0 | 1047 | if (likely(nodeid == node)) |
729bd0b7 PE |
1048 | return 0; |
1049 | ||
ce8eb6c4 | 1050 | n = cachep->node[node]; |
729bd0b7 | 1051 | STATS_INC_NODEFREES(cachep); |
ce8eb6c4 CL |
1052 | if (n->alien && n->alien[nodeid]) { |
1053 | alien = n->alien[nodeid]; | |
873623df | 1054 | spin_lock(&alien->lock); |
729bd0b7 PE |
1055 | if (unlikely(alien->avail == alien->limit)) { |
1056 | STATS_INC_ACOVERFLOW(cachep); | |
1057 | __drain_alien_cache(cachep, alien, nodeid); | |
1058 | } | |
072bb0aa | 1059 | ac_put_obj(cachep, alien, objp); |
729bd0b7 PE |
1060 | spin_unlock(&alien->lock); |
1061 | } else { | |
6a67368c | 1062 | spin_lock(&(cachep->node[nodeid])->list_lock); |
729bd0b7 | 1063 | free_block(cachep, &objp, 1, nodeid); |
6a67368c | 1064 | spin_unlock(&(cachep->node[nodeid])->list_lock); |
729bd0b7 PE |
1065 | } |
1066 | return 1; | |
1067 | } | |
e498be7d CL |
1068 | #endif |
1069 | ||
8f9f8d9e | 1070 | /* |
6a67368c | 1071 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 1072 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 1073 | * will be allocated off-node since memory is not yet online for the new node. |
6a67368c | 1074 | * When hotplugging memory or a cpu, existing node are not replaced if |
8f9f8d9e DR |
1075 | * already in use. |
1076 | * | |
18004c5d | 1077 | * Must hold slab_mutex. |
8f9f8d9e | 1078 | */ |
6a67368c | 1079 | static int init_cache_node_node(int node) |
8f9f8d9e DR |
1080 | { |
1081 | struct kmem_cache *cachep; | |
ce8eb6c4 | 1082 | struct kmem_cache_node *n; |
6744f087 | 1083 | const int memsize = sizeof(struct kmem_cache_node); |
8f9f8d9e | 1084 | |
18004c5d | 1085 | list_for_each_entry(cachep, &slab_caches, list) { |
8f9f8d9e | 1086 | /* |
5f0985bb | 1087 | * Set up the kmem_cache_node for cpu before we can |
8f9f8d9e DR |
1088 | * begin anything. Make sure some other cpu on this |
1089 | * node has not already allocated this | |
1090 | */ | |
6a67368c | 1091 | if (!cachep->node[node]) { |
ce8eb6c4 CL |
1092 | n = kmalloc_node(memsize, GFP_KERNEL, node); |
1093 | if (!n) | |
8f9f8d9e | 1094 | return -ENOMEM; |
ce8eb6c4 | 1095 | kmem_cache_node_init(n); |
5f0985bb JZ |
1096 | n->next_reap = jiffies + REAPTIMEOUT_NODE + |
1097 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
8f9f8d9e DR |
1098 | |
1099 | /* | |
5f0985bb JZ |
1100 | * The kmem_cache_nodes don't come and go as CPUs |
1101 | * come and go. slab_mutex is sufficient | |
8f9f8d9e DR |
1102 | * protection here. |
1103 | */ | |
ce8eb6c4 | 1104 | cachep->node[node] = n; |
8f9f8d9e DR |
1105 | } |
1106 | ||
6a67368c CL |
1107 | spin_lock_irq(&cachep->node[node]->list_lock); |
1108 | cachep->node[node]->free_limit = | |
8f9f8d9e DR |
1109 | (1 + nr_cpus_node(node)) * |
1110 | cachep->batchcount + cachep->num; | |
6a67368c | 1111 | spin_unlock_irq(&cachep->node[node]->list_lock); |
8f9f8d9e DR |
1112 | } |
1113 | return 0; | |
1114 | } | |
1115 | ||
0fa8103b WL |
1116 | static inline int slabs_tofree(struct kmem_cache *cachep, |
1117 | struct kmem_cache_node *n) | |
1118 | { | |
1119 | return (n->free_objects + cachep->num - 1) / cachep->num; | |
1120 | } | |
1121 | ||
0db0628d | 1122 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
1123 | { |
1124 | struct kmem_cache *cachep; | |
ce8eb6c4 | 1125 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 1126 | int node = cpu_to_mem(cpu); |
a70f7302 | 1127 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 1128 | |
18004c5d | 1129 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1130 | struct array_cache *nc; |
1131 | struct array_cache *shared; | |
1132 | struct array_cache **alien; | |
fbf1e473 | 1133 | |
fbf1e473 AM |
1134 | /* cpu is dead; no one can alloc from it. */ |
1135 | nc = cachep->array[cpu]; | |
1136 | cachep->array[cpu] = NULL; | |
ce8eb6c4 | 1137 | n = cachep->node[node]; |
fbf1e473 | 1138 | |
ce8eb6c4 | 1139 | if (!n) |
fbf1e473 AM |
1140 | goto free_array_cache; |
1141 | ||
ce8eb6c4 | 1142 | spin_lock_irq(&n->list_lock); |
fbf1e473 | 1143 | |
ce8eb6c4 CL |
1144 | /* Free limit for this kmem_cache_node */ |
1145 | n->free_limit -= cachep->batchcount; | |
fbf1e473 AM |
1146 | if (nc) |
1147 | free_block(cachep, nc->entry, nc->avail, node); | |
1148 | ||
58463c1f | 1149 | if (!cpumask_empty(mask)) { |
ce8eb6c4 | 1150 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1151 | goto free_array_cache; |
1152 | } | |
1153 | ||
ce8eb6c4 | 1154 | shared = n->shared; |
fbf1e473 AM |
1155 | if (shared) { |
1156 | free_block(cachep, shared->entry, | |
1157 | shared->avail, node); | |
ce8eb6c4 | 1158 | n->shared = NULL; |
fbf1e473 AM |
1159 | } |
1160 | ||
ce8eb6c4 CL |
1161 | alien = n->alien; |
1162 | n->alien = NULL; | |
fbf1e473 | 1163 | |
ce8eb6c4 | 1164 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1165 | |
1166 | kfree(shared); | |
1167 | if (alien) { | |
1168 | drain_alien_cache(cachep, alien); | |
1169 | free_alien_cache(alien); | |
1170 | } | |
1171 | free_array_cache: | |
1172 | kfree(nc); | |
1173 | } | |
1174 | /* | |
1175 | * In the previous loop, all the objects were freed to | |
1176 | * the respective cache's slabs, now we can go ahead and | |
1177 | * shrink each nodelist to its limit. | |
1178 | */ | |
18004c5d | 1179 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 CL |
1180 | n = cachep->node[node]; |
1181 | if (!n) | |
fbf1e473 | 1182 | continue; |
0fa8103b | 1183 | drain_freelist(cachep, n, slabs_tofree(cachep, n)); |
fbf1e473 AM |
1184 | } |
1185 | } | |
1186 | ||
0db0628d | 1187 | static int cpuup_prepare(long cpu) |
1da177e4 | 1188 | { |
343e0d7a | 1189 | struct kmem_cache *cachep; |
ce8eb6c4 | 1190 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 1191 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1192 | int err; |
1da177e4 | 1193 | |
fbf1e473 AM |
1194 | /* |
1195 | * We need to do this right in the beginning since | |
1196 | * alloc_arraycache's are going to use this list. | |
1197 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1198 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1199 | */ |
6a67368c | 1200 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1201 | if (err < 0) |
1202 | goto bad; | |
fbf1e473 AM |
1203 | |
1204 | /* | |
1205 | * Now we can go ahead with allocating the shared arrays and | |
1206 | * array caches | |
1207 | */ | |
18004c5d | 1208 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1209 | struct array_cache *nc; |
1210 | struct array_cache *shared = NULL; | |
1211 | struct array_cache **alien = NULL; | |
1212 | ||
1213 | nc = alloc_arraycache(node, cachep->limit, | |
83b519e8 | 1214 | cachep->batchcount, GFP_KERNEL); |
fbf1e473 AM |
1215 | if (!nc) |
1216 | goto bad; | |
1217 | if (cachep->shared) { | |
1218 | shared = alloc_arraycache(node, | |
1219 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1220 | 0xbaadf00d, GFP_KERNEL); |
12d00f6a AM |
1221 | if (!shared) { |
1222 | kfree(nc); | |
1da177e4 | 1223 | goto bad; |
12d00f6a | 1224 | } |
fbf1e473 AM |
1225 | } |
1226 | if (use_alien_caches) { | |
83b519e8 | 1227 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1228 | if (!alien) { |
1229 | kfree(shared); | |
1230 | kfree(nc); | |
fbf1e473 | 1231 | goto bad; |
12d00f6a | 1232 | } |
fbf1e473 AM |
1233 | } |
1234 | cachep->array[cpu] = nc; | |
ce8eb6c4 CL |
1235 | n = cachep->node[node]; |
1236 | BUG_ON(!n); | |
fbf1e473 | 1237 | |
ce8eb6c4 CL |
1238 | spin_lock_irq(&n->list_lock); |
1239 | if (!n->shared) { | |
fbf1e473 AM |
1240 | /* |
1241 | * We are serialised from CPU_DEAD or | |
1242 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1243 | */ | |
ce8eb6c4 | 1244 | n->shared = shared; |
fbf1e473 AM |
1245 | shared = NULL; |
1246 | } | |
4484ebf1 | 1247 | #ifdef CONFIG_NUMA |
ce8eb6c4 CL |
1248 | if (!n->alien) { |
1249 | n->alien = alien; | |
fbf1e473 | 1250 | alien = NULL; |
1da177e4 | 1251 | } |
fbf1e473 | 1252 | #endif |
ce8eb6c4 | 1253 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1254 | kfree(shared); |
1255 | free_alien_cache(alien); | |
83835b3d PZ |
1256 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
1257 | slab_set_debugobj_lock_classes_node(cachep, node); | |
6ccfb5bc GC |
1258 | else if (!OFF_SLAB(cachep) && |
1259 | !(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
1260 | on_slab_lock_classes_node(cachep, node); | |
fbf1e473 | 1261 | } |
ce79ddc8 PE |
1262 | init_node_lock_keys(node); |
1263 | ||
fbf1e473 AM |
1264 | return 0; |
1265 | bad: | |
12d00f6a | 1266 | cpuup_canceled(cpu); |
fbf1e473 AM |
1267 | return -ENOMEM; |
1268 | } | |
1269 | ||
0db0628d | 1270 | static int cpuup_callback(struct notifier_block *nfb, |
fbf1e473 AM |
1271 | unsigned long action, void *hcpu) |
1272 | { | |
1273 | long cpu = (long)hcpu; | |
1274 | int err = 0; | |
1275 | ||
1276 | switch (action) { | |
fbf1e473 AM |
1277 | case CPU_UP_PREPARE: |
1278 | case CPU_UP_PREPARE_FROZEN: | |
18004c5d | 1279 | mutex_lock(&slab_mutex); |
fbf1e473 | 1280 | err = cpuup_prepare(cpu); |
18004c5d | 1281 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
1282 | break; |
1283 | case CPU_ONLINE: | |
8bb78442 | 1284 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1285 | start_cpu_timer(cpu); |
1286 | break; | |
1287 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1288 | case CPU_DOWN_PREPARE: |
8bb78442 | 1289 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 | 1290 | /* |
18004c5d | 1291 | * Shutdown cache reaper. Note that the slab_mutex is |
5830c590 CL |
1292 | * held so that if cache_reap() is invoked it cannot do |
1293 | * anything expensive but will only modify reap_work | |
1294 | * and reschedule the timer. | |
1295 | */ | |
afe2c511 | 1296 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1297 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1298 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1299 | break; |
1300 | case CPU_DOWN_FAILED: | |
8bb78442 | 1301 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1302 | start_cpu_timer(cpu); |
1303 | break; | |
1da177e4 | 1304 | case CPU_DEAD: |
8bb78442 | 1305 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1306 | /* |
1307 | * Even if all the cpus of a node are down, we don't free the | |
ce8eb6c4 | 1308 | * kmem_cache_node of any cache. This to avoid a race between |
4484ebf1 | 1309 | * cpu_down, and a kmalloc allocation from another cpu for |
ce8eb6c4 | 1310 | * memory from the node of the cpu going down. The node |
4484ebf1 RT |
1311 | * structure is usually allocated from kmem_cache_create() and |
1312 | * gets destroyed at kmem_cache_destroy(). | |
1313 | */ | |
183ff22b | 1314 | /* fall through */ |
8f5be20b | 1315 | #endif |
1da177e4 | 1316 | case CPU_UP_CANCELED: |
8bb78442 | 1317 | case CPU_UP_CANCELED_FROZEN: |
18004c5d | 1318 | mutex_lock(&slab_mutex); |
fbf1e473 | 1319 | cpuup_canceled(cpu); |
18004c5d | 1320 | mutex_unlock(&slab_mutex); |
1da177e4 | 1321 | break; |
1da177e4 | 1322 | } |
eac40680 | 1323 | return notifier_from_errno(err); |
1da177e4 LT |
1324 | } |
1325 | ||
0db0628d | 1326 | static struct notifier_block cpucache_notifier = { |
74b85f37 CS |
1327 | &cpuup_callback, NULL, 0 |
1328 | }; | |
1da177e4 | 1329 | |
8f9f8d9e DR |
1330 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1331 | /* | |
1332 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1333 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1334 | * removed. | |
1335 | * | |
18004c5d | 1336 | * Must hold slab_mutex. |
8f9f8d9e | 1337 | */ |
6a67368c | 1338 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1339 | { |
1340 | struct kmem_cache *cachep; | |
1341 | int ret = 0; | |
1342 | ||
18004c5d | 1343 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1344 | struct kmem_cache_node *n; |
8f9f8d9e | 1345 | |
ce8eb6c4 CL |
1346 | n = cachep->node[node]; |
1347 | if (!n) | |
8f9f8d9e DR |
1348 | continue; |
1349 | ||
0fa8103b | 1350 | drain_freelist(cachep, n, slabs_tofree(cachep, n)); |
8f9f8d9e | 1351 | |
ce8eb6c4 CL |
1352 | if (!list_empty(&n->slabs_full) || |
1353 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1354 | ret = -EBUSY; |
1355 | break; | |
1356 | } | |
1357 | } | |
1358 | return ret; | |
1359 | } | |
1360 | ||
1361 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1362 | unsigned long action, void *arg) | |
1363 | { | |
1364 | struct memory_notify *mnb = arg; | |
1365 | int ret = 0; | |
1366 | int nid; | |
1367 | ||
1368 | nid = mnb->status_change_nid; | |
1369 | if (nid < 0) | |
1370 | goto out; | |
1371 | ||
1372 | switch (action) { | |
1373 | case MEM_GOING_ONLINE: | |
18004c5d | 1374 | mutex_lock(&slab_mutex); |
6a67368c | 1375 | ret = init_cache_node_node(nid); |
18004c5d | 1376 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1377 | break; |
1378 | case MEM_GOING_OFFLINE: | |
18004c5d | 1379 | mutex_lock(&slab_mutex); |
6a67368c | 1380 | ret = drain_cache_node_node(nid); |
18004c5d | 1381 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1382 | break; |
1383 | case MEM_ONLINE: | |
1384 | case MEM_OFFLINE: | |
1385 | case MEM_CANCEL_ONLINE: | |
1386 | case MEM_CANCEL_OFFLINE: | |
1387 | break; | |
1388 | } | |
1389 | out: | |
5fda1bd5 | 1390 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1391 | } |
1392 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1393 | ||
e498be7d | 1394 | /* |
ce8eb6c4 | 1395 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1396 | */ |
6744f087 | 1397 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1398 | int nodeid) |
e498be7d | 1399 | { |
6744f087 | 1400 | struct kmem_cache_node *ptr; |
e498be7d | 1401 | |
6744f087 | 1402 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1403 | BUG_ON(!ptr); |
1404 | ||
6744f087 | 1405 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1406 | /* |
1407 | * Do not assume that spinlocks can be initialized via memcpy: | |
1408 | */ | |
1409 | spin_lock_init(&ptr->list_lock); | |
1410 | ||
e498be7d | 1411 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1412 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1413 | } |
1414 | ||
556a169d | 1415 | /* |
ce8eb6c4 CL |
1416 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1417 | * size of kmem_cache_node. | |
556a169d | 1418 | */ |
ce8eb6c4 | 1419 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1420 | { |
1421 | int node; | |
1422 | ||
1423 | for_each_online_node(node) { | |
ce8eb6c4 | 1424 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1425 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1426 | REAPTIMEOUT_NODE + |
1427 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1428 | } |
1429 | } | |
1430 | ||
3c583465 CL |
1431 | /* |
1432 | * The memory after the last cpu cache pointer is used for the | |
6a67368c | 1433 | * the node pointer. |
3c583465 | 1434 | */ |
6a67368c | 1435 | static void setup_node_pointer(struct kmem_cache *cachep) |
3c583465 | 1436 | { |
6a67368c | 1437 | cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; |
3c583465 CL |
1438 | } |
1439 | ||
a737b3e2 AM |
1440 | /* |
1441 | * Initialisation. Called after the page allocator have been initialised and | |
1442 | * before smp_init(). | |
1da177e4 LT |
1443 | */ |
1444 | void __init kmem_cache_init(void) | |
1445 | { | |
e498be7d CL |
1446 | int i; |
1447 | ||
68126702 JK |
1448 | BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < |
1449 | sizeof(struct rcu_head)); | |
9b030cb8 | 1450 | kmem_cache = &kmem_cache_boot; |
6a67368c | 1451 | setup_node_pointer(kmem_cache); |
9b030cb8 | 1452 | |
b6e68bc1 | 1453 | if (num_possible_nodes() == 1) |
62918a03 SS |
1454 | use_alien_caches = 0; |
1455 | ||
3c583465 | 1456 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1457 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1458 | |
ce8eb6c4 | 1459 | set_up_node(kmem_cache, CACHE_CACHE); |
1da177e4 LT |
1460 | |
1461 | /* | |
1462 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1463 | * page orders on machines with more than 32MB of memory if |
1464 | * not overridden on the command line. | |
1da177e4 | 1465 | */ |
3df1cccd | 1466 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1467 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1468 | |
1da177e4 LT |
1469 | /* Bootstrap is tricky, because several objects are allocated |
1470 | * from caches that do not exist yet: | |
9b030cb8 CL |
1471 | * 1) initialize the kmem_cache cache: it contains the struct |
1472 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1473 | * kmem_cache is statically allocated. | |
e498be7d | 1474 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1475 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1476 | * array at the end of the bootstrap. |
1da177e4 | 1477 | * 2) Create the first kmalloc cache. |
343e0d7a | 1478 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1479 | * An __init data area is used for the head array. |
1480 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1481 | * head arrays. | |
9b030cb8 | 1482 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1483 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1484 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1485 | * the other cache's with kmalloc allocated memory. |
1486 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1487 | */ |
1488 | ||
9b030cb8 | 1489 | /* 1) create the kmem_cache */ |
1da177e4 | 1490 | |
8da3430d | 1491 | /* |
b56efcf0 | 1492 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1493 | */ |
2f9baa9f CL |
1494 | create_boot_cache(kmem_cache, "kmem_cache", |
1495 | offsetof(struct kmem_cache, array[nr_cpu_ids]) + | |
6744f087 | 1496 | nr_node_ids * sizeof(struct kmem_cache_node *), |
2f9baa9f CL |
1497 | SLAB_HWCACHE_ALIGN); |
1498 | list_add(&kmem_cache->list, &slab_caches); | |
1da177e4 LT |
1499 | |
1500 | /* 2+3) create the kmalloc caches */ | |
1da177e4 | 1501 | |
a737b3e2 AM |
1502 | /* |
1503 | * Initialize the caches that provide memory for the array cache and the | |
ce8eb6c4 | 1504 | * kmem_cache_node structures first. Without this, further allocations will |
a737b3e2 | 1505 | * bug. |
e498be7d CL |
1506 | */ |
1507 | ||
e3366016 CL |
1508 | kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", |
1509 | kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); | |
45530c44 | 1510 | |
ce8eb6c4 CL |
1511 | if (INDEX_AC != INDEX_NODE) |
1512 | kmalloc_caches[INDEX_NODE] = | |
1513 | create_kmalloc_cache("kmalloc-node", | |
1514 | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); | |
e498be7d | 1515 | |
e0a42726 IM |
1516 | slab_early_init = 0; |
1517 | ||
1da177e4 LT |
1518 | /* 4) Replace the bootstrap head arrays */ |
1519 | { | |
2b2d5493 | 1520 | struct array_cache *ptr; |
e498be7d | 1521 | |
83b519e8 | 1522 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1523 | |
9b030cb8 | 1524 | memcpy(ptr, cpu_cache_get(kmem_cache), |
b28a02de | 1525 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1526 | /* |
1527 | * Do not assume that spinlocks can be initialized via memcpy: | |
1528 | */ | |
1529 | spin_lock_init(&ptr->lock); | |
1530 | ||
9b030cb8 | 1531 | kmem_cache->array[smp_processor_id()] = ptr; |
e498be7d | 1532 | |
83b519e8 | 1533 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1534 | |
e3366016 | 1535 | BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) |
b28a02de | 1536 | != &initarray_generic.cache); |
e3366016 | 1537 | memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), |
b28a02de | 1538 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1539 | /* |
1540 | * Do not assume that spinlocks can be initialized via memcpy: | |
1541 | */ | |
1542 | spin_lock_init(&ptr->lock); | |
1543 | ||
e3366016 | 1544 | kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; |
1da177e4 | 1545 | } |
ce8eb6c4 | 1546 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1547 | { |
1ca4cb24 PE |
1548 | int nid; |
1549 | ||
9c09a95c | 1550 | for_each_online_node(nid) { |
ce8eb6c4 | 1551 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1552 | |
e3366016 | 1553 | init_list(kmalloc_caches[INDEX_AC], |
ce8eb6c4 | 1554 | &init_kmem_cache_node[SIZE_AC + nid], nid); |
e498be7d | 1555 | |
ce8eb6c4 CL |
1556 | if (INDEX_AC != INDEX_NODE) { |
1557 | init_list(kmalloc_caches[INDEX_NODE], | |
1558 | &init_kmem_cache_node[SIZE_NODE + nid], nid); | |
e498be7d CL |
1559 | } |
1560 | } | |
1561 | } | |
1da177e4 | 1562 | |
f97d5f63 | 1563 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1564 | } |
1565 | ||
1566 | void __init kmem_cache_init_late(void) | |
1567 | { | |
1568 | struct kmem_cache *cachep; | |
1569 | ||
97d06609 | 1570 | slab_state = UP; |
52cef189 | 1571 | |
8429db5c | 1572 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1573 | mutex_lock(&slab_mutex); |
1574 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1575 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1576 | BUG(); | |
18004c5d | 1577 | mutex_unlock(&slab_mutex); |
056c6241 | 1578 | |
947ca185 MW |
1579 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1580 | init_lock_keys(); | |
1581 | ||
97d06609 CL |
1582 | /* Done! */ |
1583 | slab_state = FULL; | |
1584 | ||
a737b3e2 AM |
1585 | /* |
1586 | * Register a cpu startup notifier callback that initializes | |
1587 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1588 | */ |
1589 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1590 | |
8f9f8d9e DR |
1591 | #ifdef CONFIG_NUMA |
1592 | /* | |
1593 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1594 | * node. |
8f9f8d9e DR |
1595 | */ |
1596 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1597 | #endif | |
1598 | ||
a737b3e2 AM |
1599 | /* |
1600 | * The reap timers are started later, with a module init call: That part | |
1601 | * of the kernel is not yet operational. | |
1da177e4 LT |
1602 | */ |
1603 | } | |
1604 | ||
1605 | static int __init cpucache_init(void) | |
1606 | { | |
1607 | int cpu; | |
1608 | ||
a737b3e2 AM |
1609 | /* |
1610 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1611 | */ |
e498be7d | 1612 | for_each_online_cpu(cpu) |
a737b3e2 | 1613 | start_cpu_timer(cpu); |
a164f896 GC |
1614 | |
1615 | /* Done! */ | |
97d06609 | 1616 | slab_state = FULL; |
1da177e4 LT |
1617 | return 0; |
1618 | } | |
1da177e4 LT |
1619 | __initcall(cpucache_init); |
1620 | ||
8bdec192 RA |
1621 | static noinline void |
1622 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1623 | { | |
ce8eb6c4 | 1624 | struct kmem_cache_node *n; |
8456a648 | 1625 | struct page *page; |
8bdec192 RA |
1626 | unsigned long flags; |
1627 | int node; | |
1628 | ||
1629 | printk(KERN_WARNING | |
1630 | "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1631 | nodeid, gfpflags); | |
1632 | printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1633 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 RA |
1634 | |
1635 | for_each_online_node(node) { | |
1636 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | |
1637 | unsigned long active_slabs = 0, num_slabs = 0; | |
1638 | ||
ce8eb6c4 CL |
1639 | n = cachep->node[node]; |
1640 | if (!n) | |
8bdec192 RA |
1641 | continue; |
1642 | ||
ce8eb6c4 | 1643 | spin_lock_irqsave(&n->list_lock, flags); |
8456a648 | 1644 | list_for_each_entry(page, &n->slabs_full, lru) { |
8bdec192 RA |
1645 | active_objs += cachep->num; |
1646 | active_slabs++; | |
1647 | } | |
8456a648 JK |
1648 | list_for_each_entry(page, &n->slabs_partial, lru) { |
1649 | active_objs += page->active; | |
8bdec192 RA |
1650 | active_slabs++; |
1651 | } | |
8456a648 | 1652 | list_for_each_entry(page, &n->slabs_free, lru) |
8bdec192 RA |
1653 | num_slabs++; |
1654 | ||
ce8eb6c4 CL |
1655 | free_objects += n->free_objects; |
1656 | spin_unlock_irqrestore(&n->list_lock, flags); | |
8bdec192 RA |
1657 | |
1658 | num_slabs += active_slabs; | |
1659 | num_objs = num_slabs * cachep->num; | |
1660 | printk(KERN_WARNING | |
1661 | " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | |
1662 | node, active_slabs, num_slabs, active_objs, num_objs, | |
1663 | free_objects); | |
1664 | } | |
1665 | } | |
1666 | ||
1da177e4 LT |
1667 | /* |
1668 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1669 | * | |
1670 | * If we requested dmaable memory, we will get it. Even if we | |
1671 | * did not request dmaable memory, we might get it, but that | |
1672 | * would be relatively rare and ignorable. | |
1673 | */ | |
0c3aa83e JK |
1674 | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
1675 | int nodeid) | |
1da177e4 LT |
1676 | { |
1677 | struct page *page; | |
e1b6aa6f | 1678 | int nr_pages; |
765c4507 | 1679 | |
a618e89f | 1680 | flags |= cachep->allocflags; |
e12ba74d MG |
1681 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1682 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1683 | |
517d0869 | 1684 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 RA |
1685 | if (!page) { |
1686 | if (!(flags & __GFP_NOWARN) && printk_ratelimit()) | |
1687 | slab_out_of_memory(cachep, flags, nodeid); | |
1da177e4 | 1688 | return NULL; |
8bdec192 | 1689 | } |
1da177e4 | 1690 | |
b37f1dd0 | 1691 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
072bb0aa MG |
1692 | if (unlikely(page->pfmemalloc)) |
1693 | pfmemalloc_active = true; | |
1694 | ||
e1b6aa6f | 1695 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1696 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1697 | add_zone_page_state(page_zone(page), |
1698 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1699 | else | |
1700 | add_zone_page_state(page_zone(page), | |
1701 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
a57a4988 JK |
1702 | __SetPageSlab(page); |
1703 | if (page->pfmemalloc) | |
1704 | SetPageSlabPfmemalloc(page); | |
1f458cbf | 1705 | memcg_bind_pages(cachep, cachep->gfporder); |
072bb0aa | 1706 | |
b1eeab67 VN |
1707 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1708 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1709 | ||
1710 | if (cachep->ctor) | |
1711 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1712 | else | |
1713 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1714 | } | |
c175eea4 | 1715 | |
0c3aa83e | 1716 | return page; |
1da177e4 LT |
1717 | } |
1718 | ||
1719 | /* | |
1720 | * Interface to system's page release. | |
1721 | */ | |
0c3aa83e | 1722 | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 1723 | { |
a57a4988 | 1724 | const unsigned long nr_freed = (1 << cachep->gfporder); |
1da177e4 | 1725 | |
b1eeab67 | 1726 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1727 | |
972d1a7b CL |
1728 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1729 | sub_zone_page_state(page_zone(page), | |
1730 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1731 | else | |
1732 | sub_zone_page_state(page_zone(page), | |
1733 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
73293c2f | 1734 | |
a57a4988 | 1735 | BUG_ON(!PageSlab(page)); |
73293c2f | 1736 | __ClearPageSlabPfmemalloc(page); |
a57a4988 | 1737 | __ClearPageSlab(page); |
8456a648 JK |
1738 | page_mapcount_reset(page); |
1739 | page->mapping = NULL; | |
1f458cbf GC |
1740 | |
1741 | memcg_release_pages(cachep, cachep->gfporder); | |
1da177e4 LT |
1742 | if (current->reclaim_state) |
1743 | current->reclaim_state->reclaimed_slab += nr_freed; | |
0c3aa83e | 1744 | __free_memcg_kmem_pages(page, cachep->gfporder); |
1da177e4 LT |
1745 | } |
1746 | ||
1747 | static void kmem_rcu_free(struct rcu_head *head) | |
1748 | { | |
68126702 JK |
1749 | struct kmem_cache *cachep; |
1750 | struct page *page; | |
1da177e4 | 1751 | |
68126702 JK |
1752 | page = container_of(head, struct page, rcu_head); |
1753 | cachep = page->slab_cache; | |
1754 | ||
1755 | kmem_freepages(cachep, page); | |
1da177e4 LT |
1756 | } |
1757 | ||
1758 | #if DEBUG | |
1759 | ||
1760 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1761 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1762 | unsigned long caller) |
1da177e4 | 1763 | { |
8c138bc0 | 1764 | int size = cachep->object_size; |
1da177e4 | 1765 | |
3dafccf2 | 1766 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1767 | |
b28a02de | 1768 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1769 | return; |
1770 | ||
b28a02de PE |
1771 | *addr++ = 0x12345678; |
1772 | *addr++ = caller; | |
1773 | *addr++ = smp_processor_id(); | |
1774 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1775 | { |
1776 | unsigned long *sptr = &caller; | |
1777 | unsigned long svalue; | |
1778 | ||
1779 | while (!kstack_end(sptr)) { | |
1780 | svalue = *sptr++; | |
1781 | if (kernel_text_address(svalue)) { | |
b28a02de | 1782 | *addr++ = svalue; |
1da177e4 LT |
1783 | size -= sizeof(unsigned long); |
1784 | if (size <= sizeof(unsigned long)) | |
1785 | break; | |
1786 | } | |
1787 | } | |
1788 | ||
1789 | } | |
b28a02de | 1790 | *addr++ = 0x87654321; |
1da177e4 LT |
1791 | } |
1792 | #endif | |
1793 | ||
343e0d7a | 1794 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1795 | { |
8c138bc0 | 1796 | int size = cachep->object_size; |
3dafccf2 | 1797 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1798 | |
1799 | memset(addr, val, size); | |
b28a02de | 1800 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1801 | } |
1802 | ||
1803 | static void dump_line(char *data, int offset, int limit) | |
1804 | { | |
1805 | int i; | |
aa83aa40 DJ |
1806 | unsigned char error = 0; |
1807 | int bad_count = 0; | |
1808 | ||
fdde6abb | 1809 | printk(KERN_ERR "%03x: ", offset); |
aa83aa40 DJ |
1810 | for (i = 0; i < limit; i++) { |
1811 | if (data[offset + i] != POISON_FREE) { | |
1812 | error = data[offset + i]; | |
1813 | bad_count++; | |
1814 | } | |
aa83aa40 | 1815 | } |
fdde6abb SAS |
1816 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1817 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1818 | |
1819 | if (bad_count == 1) { | |
1820 | error ^= POISON_FREE; | |
1821 | if (!(error & (error - 1))) { | |
1822 | printk(KERN_ERR "Single bit error detected. Probably " | |
1823 | "bad RAM.\n"); | |
1824 | #ifdef CONFIG_X86 | |
1825 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1826 | "test tool.\n"); | |
1827 | #else | |
1828 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1829 | #endif | |
1830 | } | |
1831 | } | |
1da177e4 LT |
1832 | } |
1833 | #endif | |
1834 | ||
1835 | #if DEBUG | |
1836 | ||
343e0d7a | 1837 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1838 | { |
1839 | int i, size; | |
1840 | char *realobj; | |
1841 | ||
1842 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 1843 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
1844 | *dbg_redzone1(cachep, objp), |
1845 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1846 | } |
1847 | ||
1848 | if (cachep->flags & SLAB_STORE_USER) { | |
071361d3 JP |
1849 | printk(KERN_ERR "Last user: [<%p>](%pSR)\n", |
1850 | *dbg_userword(cachep, objp), | |
1851 | *dbg_userword(cachep, objp)); | |
1da177e4 | 1852 | } |
3dafccf2 | 1853 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1854 | size = cachep->object_size; |
b28a02de | 1855 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1856 | int limit; |
1857 | limit = 16; | |
b28a02de PE |
1858 | if (i + limit > size) |
1859 | limit = size - i; | |
1da177e4 LT |
1860 | dump_line(realobj, i, limit); |
1861 | } | |
1862 | } | |
1863 | ||
343e0d7a | 1864 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1865 | { |
1866 | char *realobj; | |
1867 | int size, i; | |
1868 | int lines = 0; | |
1869 | ||
3dafccf2 | 1870 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1871 | size = cachep->object_size; |
1da177e4 | 1872 | |
b28a02de | 1873 | for (i = 0; i < size; i++) { |
1da177e4 | 1874 | char exp = POISON_FREE; |
b28a02de | 1875 | if (i == size - 1) |
1da177e4 LT |
1876 | exp = POISON_END; |
1877 | if (realobj[i] != exp) { | |
1878 | int limit; | |
1879 | /* Mismatch ! */ | |
1880 | /* Print header */ | |
1881 | if (lines == 0) { | |
b28a02de | 1882 | printk(KERN_ERR |
face37f5 DJ |
1883 | "Slab corruption (%s): %s start=%p, len=%d\n", |
1884 | print_tainted(), cachep->name, realobj, size); | |
1da177e4 LT |
1885 | print_objinfo(cachep, objp, 0); |
1886 | } | |
1887 | /* Hexdump the affected line */ | |
b28a02de | 1888 | i = (i / 16) * 16; |
1da177e4 | 1889 | limit = 16; |
b28a02de PE |
1890 | if (i + limit > size) |
1891 | limit = size - i; | |
1da177e4 LT |
1892 | dump_line(realobj, i, limit); |
1893 | i += 16; | |
1894 | lines++; | |
1895 | /* Limit to 5 lines */ | |
1896 | if (lines > 5) | |
1897 | break; | |
1898 | } | |
1899 | } | |
1900 | if (lines != 0) { | |
1901 | /* Print some data about the neighboring objects, if they | |
1902 | * exist: | |
1903 | */ | |
8456a648 | 1904 | struct page *page = virt_to_head_page(objp); |
8fea4e96 | 1905 | unsigned int objnr; |
1da177e4 | 1906 | |
8456a648 | 1907 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 | 1908 | if (objnr) { |
8456a648 | 1909 | objp = index_to_obj(cachep, page, objnr - 1); |
3dafccf2 | 1910 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1911 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 1912 | realobj, size); |
1da177e4 LT |
1913 | print_objinfo(cachep, objp, 2); |
1914 | } | |
b28a02de | 1915 | if (objnr + 1 < cachep->num) { |
8456a648 | 1916 | objp = index_to_obj(cachep, page, objnr + 1); |
3dafccf2 | 1917 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1918 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 1919 | realobj, size); |
1da177e4 LT |
1920 | print_objinfo(cachep, objp, 2); |
1921 | } | |
1922 | } | |
1923 | } | |
1924 | #endif | |
1925 | ||
12dd36fa | 1926 | #if DEBUG |
8456a648 JK |
1927 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1928 | struct page *page) | |
1da177e4 | 1929 | { |
1da177e4 LT |
1930 | int i; |
1931 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 1932 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
1933 | |
1934 | if (cachep->flags & SLAB_POISON) { | |
1935 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 1936 | if (cachep->size % PAGE_SIZE == 0 && |
a737b3e2 | 1937 | OFF_SLAB(cachep)) |
b28a02de | 1938 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 1939 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
1940 | else |
1941 | check_poison_obj(cachep, objp); | |
1942 | #else | |
1943 | check_poison_obj(cachep, objp); | |
1944 | #endif | |
1945 | } | |
1946 | if (cachep->flags & SLAB_RED_ZONE) { | |
1947 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1948 | slab_error(cachep, "start of a freed object " | |
b28a02de | 1949 | "was overwritten"); |
1da177e4 LT |
1950 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
1951 | slab_error(cachep, "end of a freed object " | |
b28a02de | 1952 | "was overwritten"); |
1da177e4 | 1953 | } |
1da177e4 | 1954 | } |
12dd36fa | 1955 | } |
1da177e4 | 1956 | #else |
8456a648 JK |
1957 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1958 | struct page *page) | |
12dd36fa | 1959 | { |
12dd36fa | 1960 | } |
1da177e4 LT |
1961 | #endif |
1962 | ||
911851e6 RD |
1963 | /** |
1964 | * slab_destroy - destroy and release all objects in a slab | |
1965 | * @cachep: cache pointer being destroyed | |
cb8ee1a3 | 1966 | * @page: page pointer being destroyed |
911851e6 | 1967 | * |
12dd36fa | 1968 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
1969 | * Before calling the slab must have been unlinked from the cache. The |
1970 | * cache-lock is not held/needed. | |
12dd36fa | 1971 | */ |
8456a648 | 1972 | static void slab_destroy(struct kmem_cache *cachep, struct page *page) |
12dd36fa | 1973 | { |
7e007355 | 1974 | void *freelist; |
12dd36fa | 1975 | |
8456a648 JK |
1976 | freelist = page->freelist; |
1977 | slab_destroy_debugcheck(cachep, page); | |
1da177e4 | 1978 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
68126702 JK |
1979 | struct rcu_head *head; |
1980 | ||
1981 | /* | |
1982 | * RCU free overloads the RCU head over the LRU. | |
1983 | * slab_page has been overloeaded over the LRU, | |
1984 | * however it is not used from now on so that | |
1985 | * we can use it safely. | |
1986 | */ | |
1987 | head = (void *)&page->rcu_head; | |
1988 | call_rcu(head, kmem_rcu_free); | |
1da177e4 | 1989 | |
1da177e4 | 1990 | } else { |
0c3aa83e | 1991 | kmem_freepages(cachep, page); |
1da177e4 | 1992 | } |
68126702 JK |
1993 | |
1994 | /* | |
8456a648 | 1995 | * From now on, we don't use freelist |
68126702 JK |
1996 | * although actual page can be freed in rcu context |
1997 | */ | |
1998 | if (OFF_SLAB(cachep)) | |
8456a648 | 1999 | kmem_cache_free(cachep->freelist_cache, freelist); |
1da177e4 LT |
2000 | } |
2001 | ||
4d268eba | 2002 | /** |
a70773dd RD |
2003 | * calculate_slab_order - calculate size (page order) of slabs |
2004 | * @cachep: pointer to the cache that is being created | |
2005 | * @size: size of objects to be created in this cache. | |
2006 | * @align: required alignment for the objects. | |
2007 | * @flags: slab allocation flags | |
2008 | * | |
2009 | * Also calculates the number of objects per slab. | |
4d268eba PE |
2010 | * |
2011 | * This could be made much more intelligent. For now, try to avoid using | |
2012 | * high order pages for slabs. When the gfp() functions are more friendly | |
2013 | * towards high-order requests, this should be changed. | |
2014 | */ | |
a737b3e2 | 2015 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 2016 | size_t size, size_t align, unsigned long flags) |
4d268eba | 2017 | { |
b1ab41c4 | 2018 | unsigned long offslab_limit; |
4d268eba | 2019 | size_t left_over = 0; |
9888e6fa | 2020 | int gfporder; |
4d268eba | 2021 | |
0aa817f0 | 2022 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
2023 | unsigned int num; |
2024 | size_t remainder; | |
2025 | ||
9888e6fa | 2026 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
2027 | if (!num) |
2028 | continue; | |
9888e6fa | 2029 | |
f315e3fa JK |
2030 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
2031 | if (num > SLAB_OBJ_MAX_NUM) | |
2032 | break; | |
2033 | ||
b1ab41c4 IM |
2034 | if (flags & CFLGS_OFF_SLAB) { |
2035 | /* | |
2036 | * Max number of objs-per-slab for caches which | |
2037 | * use off-slab slabs. Needed to avoid a possible | |
2038 | * looping condition in cache_grow(). | |
2039 | */ | |
8456a648 | 2040 | offslab_limit = size; |
a41adfaa | 2041 | offslab_limit /= sizeof(freelist_idx_t); |
b1ab41c4 IM |
2042 | |
2043 | if (num > offslab_limit) | |
2044 | break; | |
2045 | } | |
4d268eba | 2046 | |
9888e6fa | 2047 | /* Found something acceptable - save it away */ |
4d268eba | 2048 | cachep->num = num; |
9888e6fa | 2049 | cachep->gfporder = gfporder; |
4d268eba PE |
2050 | left_over = remainder; |
2051 | ||
f78bb8ad LT |
2052 | /* |
2053 | * A VFS-reclaimable slab tends to have most allocations | |
2054 | * as GFP_NOFS and we really don't want to have to be allocating | |
2055 | * higher-order pages when we are unable to shrink dcache. | |
2056 | */ | |
2057 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
2058 | break; | |
2059 | ||
4d268eba PE |
2060 | /* |
2061 | * Large number of objects is good, but very large slabs are | |
2062 | * currently bad for the gfp()s. | |
2063 | */ | |
543585cc | 2064 | if (gfporder >= slab_max_order) |
4d268eba PE |
2065 | break; |
2066 | ||
9888e6fa LT |
2067 | /* |
2068 | * Acceptable internal fragmentation? | |
2069 | */ | |
a737b3e2 | 2070 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2071 | break; |
2072 | } | |
2073 | return left_over; | |
2074 | } | |
2075 | ||
83b519e8 | 2076 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2077 | { |
97d06609 | 2078 | if (slab_state >= FULL) |
83b519e8 | 2079 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2080 | |
97d06609 | 2081 | if (slab_state == DOWN) { |
f30cf7d1 | 2082 | /* |
2f9baa9f | 2083 | * Note: Creation of first cache (kmem_cache). |
ce8eb6c4 | 2084 | * The setup_node is taken care |
2f9baa9f CL |
2085 | * of by the caller of __kmem_cache_create |
2086 | */ | |
2087 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2088 | slab_state = PARTIAL; | |
2089 | } else if (slab_state == PARTIAL) { | |
2090 | /* | |
2091 | * Note: the second kmem_cache_create must create the cache | |
f30cf7d1 PE |
2092 | * that's used by kmalloc(24), otherwise the creation of |
2093 | * further caches will BUG(). | |
2094 | */ | |
2095 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2096 | ||
2097 | /* | |
ce8eb6c4 CL |
2098 | * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is |
2099 | * the second cache, then we need to set up all its node/, | |
f30cf7d1 PE |
2100 | * otherwise the creation of further caches will BUG(). |
2101 | */ | |
ce8eb6c4 CL |
2102 | set_up_node(cachep, SIZE_AC); |
2103 | if (INDEX_AC == INDEX_NODE) | |
2104 | slab_state = PARTIAL_NODE; | |
f30cf7d1 | 2105 | else |
97d06609 | 2106 | slab_state = PARTIAL_ARRAYCACHE; |
f30cf7d1 | 2107 | } else { |
2f9baa9f | 2108 | /* Remaining boot caches */ |
f30cf7d1 | 2109 | cachep->array[smp_processor_id()] = |
83b519e8 | 2110 | kmalloc(sizeof(struct arraycache_init), gfp); |
f30cf7d1 | 2111 | |
97d06609 | 2112 | if (slab_state == PARTIAL_ARRAYCACHE) { |
ce8eb6c4 CL |
2113 | set_up_node(cachep, SIZE_NODE); |
2114 | slab_state = PARTIAL_NODE; | |
f30cf7d1 PE |
2115 | } else { |
2116 | int node; | |
556a169d | 2117 | for_each_online_node(node) { |
6a67368c | 2118 | cachep->node[node] = |
6744f087 | 2119 | kmalloc_node(sizeof(struct kmem_cache_node), |
eb91f1d0 | 2120 | gfp, node); |
6a67368c | 2121 | BUG_ON(!cachep->node[node]); |
ce8eb6c4 | 2122 | kmem_cache_node_init(cachep->node[node]); |
f30cf7d1 PE |
2123 | } |
2124 | } | |
2125 | } | |
6a67368c | 2126 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
2127 | jiffies + REAPTIMEOUT_NODE + |
2128 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
2129 | |
2130 | cpu_cache_get(cachep)->avail = 0; | |
2131 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2132 | cpu_cache_get(cachep)->batchcount = 1; | |
2133 | cpu_cache_get(cachep)->touched = 0; | |
2134 | cachep->batchcount = 1; | |
2135 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2136 | return 0; |
f30cf7d1 PE |
2137 | } |
2138 | ||
1da177e4 | 2139 | /** |
039363f3 | 2140 | * __kmem_cache_create - Create a cache. |
a755b76a | 2141 | * @cachep: cache management descriptor |
1da177e4 | 2142 | * @flags: SLAB flags |
1da177e4 LT |
2143 | * |
2144 | * Returns a ptr to the cache on success, NULL on failure. | |
2145 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2146 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 2147 | * |
1da177e4 LT |
2148 | * The flags are |
2149 | * | |
2150 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2151 | * to catch references to uninitialised memory. | |
2152 | * | |
2153 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2154 | * for buffer overruns. | |
2155 | * | |
1da177e4 LT |
2156 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2157 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2158 | * as davem. | |
2159 | */ | |
278b1bb1 | 2160 | int |
8a13a4cc | 2161 | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) |
1da177e4 | 2162 | { |
8456a648 | 2163 | size_t left_over, freelist_size, ralign; |
83b519e8 | 2164 | gfp_t gfp; |
278b1bb1 | 2165 | int err; |
8a13a4cc | 2166 | size_t size = cachep->size; |
1da177e4 | 2167 | |
1da177e4 | 2168 | #if DEBUG |
1da177e4 LT |
2169 | #if FORCED_DEBUG |
2170 | /* | |
2171 | * Enable redzoning and last user accounting, except for caches with | |
2172 | * large objects, if the increased size would increase the object size | |
2173 | * above the next power of two: caches with object sizes just above a | |
2174 | * power of two have a significant amount of internal fragmentation. | |
2175 | */ | |
87a927c7 DW |
2176 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2177 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2178 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2179 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2180 | flags |= SLAB_POISON; | |
2181 | #endif | |
2182 | if (flags & SLAB_DESTROY_BY_RCU) | |
2183 | BUG_ON(flags & SLAB_POISON); | |
2184 | #endif | |
1da177e4 | 2185 | |
a737b3e2 AM |
2186 | /* |
2187 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2188 | * unaligned accesses for some archs when redzoning is used, and makes |
2189 | * sure any on-slab bufctl's are also correctly aligned. | |
2190 | */ | |
b28a02de PE |
2191 | if (size & (BYTES_PER_WORD - 1)) { |
2192 | size += (BYTES_PER_WORD - 1); | |
2193 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2194 | } |
2195 | ||
ca5f9703 | 2196 | /* |
87a927c7 DW |
2197 | * Redzoning and user store require word alignment or possibly larger. |
2198 | * Note this will be overridden by architecture or caller mandated | |
2199 | * alignment if either is greater than BYTES_PER_WORD. | |
ca5f9703 | 2200 | */ |
87a927c7 DW |
2201 | if (flags & SLAB_STORE_USER) |
2202 | ralign = BYTES_PER_WORD; | |
2203 | ||
2204 | if (flags & SLAB_RED_ZONE) { | |
2205 | ralign = REDZONE_ALIGN; | |
2206 | /* If redzoning, ensure that the second redzone is suitably | |
2207 | * aligned, by adjusting the object size accordingly. */ | |
2208 | size += REDZONE_ALIGN - 1; | |
2209 | size &= ~(REDZONE_ALIGN - 1); | |
2210 | } | |
ca5f9703 | 2211 | |
a44b56d3 | 2212 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
2213 | if (ralign < cachep->align) { |
2214 | ralign = cachep->align; | |
1da177e4 | 2215 | } |
3ff84a7f PE |
2216 | /* disable debug if necessary */ |
2217 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2218 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2219 | /* |
ca5f9703 | 2220 | * 4) Store it. |
1da177e4 | 2221 | */ |
8a13a4cc | 2222 | cachep->align = ralign; |
1da177e4 | 2223 | |
83b519e8 PE |
2224 | if (slab_is_available()) |
2225 | gfp = GFP_KERNEL; | |
2226 | else | |
2227 | gfp = GFP_NOWAIT; | |
2228 | ||
6a67368c | 2229 | setup_node_pointer(cachep); |
1da177e4 | 2230 | #if DEBUG |
1da177e4 | 2231 | |
ca5f9703 PE |
2232 | /* |
2233 | * Both debugging options require word-alignment which is calculated | |
2234 | * into align above. | |
2235 | */ | |
1da177e4 | 2236 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2237 | /* add space for red zone words */ |
3ff84a7f PE |
2238 | cachep->obj_offset += sizeof(unsigned long long); |
2239 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2240 | } |
2241 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2242 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2243 | * the real object. But if the second red zone needs to be |
2244 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2245 | */ |
87a927c7 DW |
2246 | if (flags & SLAB_RED_ZONE) |
2247 | size += REDZONE_ALIGN; | |
2248 | else | |
2249 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2250 | } |
2251 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
ce8eb6c4 | 2252 | if (size >= kmalloc_size(INDEX_NODE + 1) |
608da7e3 TH |
2253 | && cachep->object_size > cache_line_size() |
2254 | && ALIGN(size, cachep->align) < PAGE_SIZE) { | |
2255 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | |
1da177e4 LT |
2256 | size = PAGE_SIZE; |
2257 | } | |
2258 | #endif | |
2259 | #endif | |
2260 | ||
e0a42726 IM |
2261 | /* |
2262 | * Determine if the slab management is 'on' or 'off' slab. | |
2263 | * (bootstrapping cannot cope with offslab caches so don't do | |
e7cb55b9 CM |
2264 | * it too early on. Always use on-slab management when |
2265 | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | |
e0a42726 | 2266 | */ |
8fc9cf42 | 2267 | if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && |
e7cb55b9 | 2268 | !(flags & SLAB_NOLEAKTRACE)) |
1da177e4 LT |
2269 | /* |
2270 | * Size is large, assume best to place the slab management obj | |
2271 | * off-slab (should allow better packing of objs). | |
2272 | */ | |
2273 | flags |= CFLGS_OFF_SLAB; | |
2274 | ||
8a13a4cc | 2275 | size = ALIGN(size, cachep->align); |
f315e3fa JK |
2276 | /* |
2277 | * We should restrict the number of objects in a slab to implement | |
2278 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
2279 | */ | |
2280 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
2281 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
1da177e4 | 2282 | |
8a13a4cc | 2283 | left_over = calculate_slab_order(cachep, size, cachep->align, flags); |
1da177e4 | 2284 | |
8a13a4cc | 2285 | if (!cachep->num) |
278b1bb1 | 2286 | return -E2BIG; |
1da177e4 | 2287 | |
8456a648 | 2288 | freelist_size = |
a41adfaa | 2289 | ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align); |
1da177e4 LT |
2290 | |
2291 | /* | |
2292 | * If the slab has been placed off-slab, and we have enough space then | |
2293 | * move it on-slab. This is at the expense of any extra colouring. | |
2294 | */ | |
8456a648 | 2295 | if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { |
1da177e4 | 2296 | flags &= ~CFLGS_OFF_SLAB; |
8456a648 | 2297 | left_over -= freelist_size; |
1da177e4 LT |
2298 | } |
2299 | ||
2300 | if (flags & CFLGS_OFF_SLAB) { | |
2301 | /* really off slab. No need for manual alignment */ | |
a41adfaa | 2302 | freelist_size = cachep->num * sizeof(freelist_idx_t); |
67461365 RL |
2303 | |
2304 | #ifdef CONFIG_PAGE_POISONING | |
2305 | /* If we're going to use the generic kernel_map_pages() | |
2306 | * poisoning, then it's going to smash the contents of | |
2307 | * the redzone and userword anyhow, so switch them off. | |
2308 | */ | |
2309 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2310 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2311 | #endif | |
1da177e4 LT |
2312 | } |
2313 | ||
2314 | cachep->colour_off = cache_line_size(); | |
2315 | /* Offset must be a multiple of the alignment. */ | |
8a13a4cc CL |
2316 | if (cachep->colour_off < cachep->align) |
2317 | cachep->colour_off = cachep->align; | |
b28a02de | 2318 | cachep->colour = left_over / cachep->colour_off; |
8456a648 | 2319 | cachep->freelist_size = freelist_size; |
1da177e4 | 2320 | cachep->flags = flags; |
a57a4988 | 2321 | cachep->allocflags = __GFP_COMP; |
4b51d669 | 2322 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
a618e89f | 2323 | cachep->allocflags |= GFP_DMA; |
3b0efdfa | 2324 | cachep->size = size; |
6a2d7a95 | 2325 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2326 | |
e5ac9c5a | 2327 | if (flags & CFLGS_OFF_SLAB) { |
8456a648 | 2328 | cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); |
e5ac9c5a | 2329 | /* |
5f0985bb | 2330 | * This is a possibility for one of the kmalloc_{dma,}_caches. |
e5ac9c5a | 2331 | * But since we go off slab only for object size greater than |
5f0985bb JZ |
2332 | * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created |
2333 | * in ascending order,this should not happen at all. | |
e5ac9c5a RT |
2334 | * But leave a BUG_ON for some lucky dude. |
2335 | */ | |
8456a648 | 2336 | BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); |
e5ac9c5a | 2337 | } |
1da177e4 | 2338 | |
278b1bb1 CL |
2339 | err = setup_cpu_cache(cachep, gfp); |
2340 | if (err) { | |
12c3667f | 2341 | __kmem_cache_shutdown(cachep); |
278b1bb1 | 2342 | return err; |
2ed3a4ef | 2343 | } |
1da177e4 | 2344 | |
83835b3d PZ |
2345 | if (flags & SLAB_DEBUG_OBJECTS) { |
2346 | /* | |
2347 | * Would deadlock through slab_destroy()->call_rcu()-> | |
2348 | * debug_object_activate()->kmem_cache_alloc(). | |
2349 | */ | |
2350 | WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); | |
2351 | ||
2352 | slab_set_debugobj_lock_classes(cachep); | |
6ccfb5bc GC |
2353 | } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU)) |
2354 | on_slab_lock_classes(cachep); | |
83835b3d | 2355 | |
278b1bb1 | 2356 | return 0; |
1da177e4 | 2357 | } |
1da177e4 LT |
2358 | |
2359 | #if DEBUG | |
2360 | static void check_irq_off(void) | |
2361 | { | |
2362 | BUG_ON(!irqs_disabled()); | |
2363 | } | |
2364 | ||
2365 | static void check_irq_on(void) | |
2366 | { | |
2367 | BUG_ON(irqs_disabled()); | |
2368 | } | |
2369 | ||
343e0d7a | 2370 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2371 | { |
2372 | #ifdef CONFIG_SMP | |
2373 | check_irq_off(); | |
6a67368c | 2374 | assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); |
1da177e4 LT |
2375 | #endif |
2376 | } | |
e498be7d | 2377 | |
343e0d7a | 2378 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2379 | { |
2380 | #ifdef CONFIG_SMP | |
2381 | check_irq_off(); | |
6a67368c | 2382 | assert_spin_locked(&cachep->node[node]->list_lock); |
e498be7d CL |
2383 | #endif |
2384 | } | |
2385 | ||
1da177e4 LT |
2386 | #else |
2387 | #define check_irq_off() do { } while(0) | |
2388 | #define check_irq_on() do { } while(0) | |
2389 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2390 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2391 | #endif |
2392 | ||
ce8eb6c4 | 2393 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
aab2207c CL |
2394 | struct array_cache *ac, |
2395 | int force, int node); | |
2396 | ||
1da177e4 LT |
2397 | static void do_drain(void *arg) |
2398 | { | |
a737b3e2 | 2399 | struct kmem_cache *cachep = arg; |
1da177e4 | 2400 | struct array_cache *ac; |
7d6e6d09 | 2401 | int node = numa_mem_id(); |
1da177e4 LT |
2402 | |
2403 | check_irq_off(); | |
9a2dba4b | 2404 | ac = cpu_cache_get(cachep); |
6a67368c | 2405 | spin_lock(&cachep->node[node]->list_lock); |
ff69416e | 2406 | free_block(cachep, ac->entry, ac->avail, node); |
6a67368c | 2407 | spin_unlock(&cachep->node[node]->list_lock); |
1da177e4 LT |
2408 | ac->avail = 0; |
2409 | } | |
2410 | ||
343e0d7a | 2411 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2412 | { |
ce8eb6c4 | 2413 | struct kmem_cache_node *n; |
e498be7d CL |
2414 | int node; |
2415 | ||
15c8b6c1 | 2416 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2417 | check_irq_on(); |
b28a02de | 2418 | for_each_online_node(node) { |
ce8eb6c4 CL |
2419 | n = cachep->node[node]; |
2420 | if (n && n->alien) | |
2421 | drain_alien_cache(cachep, n->alien); | |
a4523a8b RD |
2422 | } |
2423 | ||
2424 | for_each_online_node(node) { | |
ce8eb6c4 CL |
2425 | n = cachep->node[node]; |
2426 | if (n) | |
2427 | drain_array(cachep, n, n->shared, 1, node); | |
e498be7d | 2428 | } |
1da177e4 LT |
2429 | } |
2430 | ||
ed11d9eb CL |
2431 | /* |
2432 | * Remove slabs from the list of free slabs. | |
2433 | * Specify the number of slabs to drain in tofree. | |
2434 | * | |
2435 | * Returns the actual number of slabs released. | |
2436 | */ | |
2437 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2438 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2439 | { |
ed11d9eb CL |
2440 | struct list_head *p; |
2441 | int nr_freed; | |
8456a648 | 2442 | struct page *page; |
1da177e4 | 2443 | |
ed11d9eb | 2444 | nr_freed = 0; |
ce8eb6c4 | 2445 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2446 | |
ce8eb6c4 CL |
2447 | spin_lock_irq(&n->list_lock); |
2448 | p = n->slabs_free.prev; | |
2449 | if (p == &n->slabs_free) { | |
2450 | spin_unlock_irq(&n->list_lock); | |
ed11d9eb CL |
2451 | goto out; |
2452 | } | |
1da177e4 | 2453 | |
8456a648 | 2454 | page = list_entry(p, struct page, lru); |
1da177e4 | 2455 | #if DEBUG |
8456a648 | 2456 | BUG_ON(page->active); |
1da177e4 | 2457 | #endif |
8456a648 | 2458 | list_del(&page->lru); |
ed11d9eb CL |
2459 | /* |
2460 | * Safe to drop the lock. The slab is no longer linked | |
2461 | * to the cache. | |
2462 | */ | |
ce8eb6c4 CL |
2463 | n->free_objects -= cache->num; |
2464 | spin_unlock_irq(&n->list_lock); | |
8456a648 | 2465 | slab_destroy(cache, page); |
ed11d9eb | 2466 | nr_freed++; |
1da177e4 | 2467 | } |
ed11d9eb CL |
2468 | out: |
2469 | return nr_freed; | |
1da177e4 LT |
2470 | } |
2471 | ||
18004c5d | 2472 | /* Called with slab_mutex held to protect against cpu hotplug */ |
343e0d7a | 2473 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2474 | { |
2475 | int ret = 0, i = 0; | |
ce8eb6c4 | 2476 | struct kmem_cache_node *n; |
e498be7d CL |
2477 | |
2478 | drain_cpu_caches(cachep); | |
2479 | ||
2480 | check_irq_on(); | |
2481 | for_each_online_node(i) { | |
ce8eb6c4 CL |
2482 | n = cachep->node[i]; |
2483 | if (!n) | |
ed11d9eb CL |
2484 | continue; |
2485 | ||
0fa8103b | 2486 | drain_freelist(cachep, n, slabs_tofree(cachep, n)); |
ed11d9eb | 2487 | |
ce8eb6c4 CL |
2488 | ret += !list_empty(&n->slabs_full) || |
2489 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2490 | } |
2491 | return (ret ? 1 : 0); | |
2492 | } | |
2493 | ||
1da177e4 LT |
2494 | /** |
2495 | * kmem_cache_shrink - Shrink a cache. | |
2496 | * @cachep: The cache to shrink. | |
2497 | * | |
2498 | * Releases as many slabs as possible for a cache. | |
2499 | * To help debugging, a zero exit status indicates all slabs were released. | |
2500 | */ | |
343e0d7a | 2501 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2502 | { |
8f5be20b | 2503 | int ret; |
40094fa6 | 2504 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2505 | |
95402b38 | 2506 | get_online_cpus(); |
18004c5d | 2507 | mutex_lock(&slab_mutex); |
8f5be20b | 2508 | ret = __cache_shrink(cachep); |
18004c5d | 2509 | mutex_unlock(&slab_mutex); |
95402b38 | 2510 | put_online_cpus(); |
8f5be20b | 2511 | return ret; |
1da177e4 LT |
2512 | } |
2513 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2514 | ||
945cf2b6 | 2515 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
1da177e4 | 2516 | { |
12c3667f | 2517 | int i; |
ce8eb6c4 | 2518 | struct kmem_cache_node *n; |
12c3667f | 2519 | int rc = __cache_shrink(cachep); |
1da177e4 | 2520 | |
12c3667f CL |
2521 | if (rc) |
2522 | return rc; | |
1da177e4 | 2523 | |
12c3667f CL |
2524 | for_each_online_cpu(i) |
2525 | kfree(cachep->array[i]); | |
1da177e4 | 2526 | |
ce8eb6c4 | 2527 | /* NUMA: free the node structures */ |
12c3667f | 2528 | for_each_online_node(i) { |
ce8eb6c4 CL |
2529 | n = cachep->node[i]; |
2530 | if (n) { | |
2531 | kfree(n->shared); | |
2532 | free_alien_cache(n->alien); | |
2533 | kfree(n); | |
12c3667f CL |
2534 | } |
2535 | } | |
2536 | return 0; | |
1da177e4 | 2537 | } |
1da177e4 | 2538 | |
e5ac9c5a RT |
2539 | /* |
2540 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2541 | * |
2542 | * For a slab cache when the slab descriptor is off-slab, the | |
2543 | * slab descriptor can't come from the same cache which is being created, | |
2544 | * Because if it is the case, that means we defer the creation of | |
2545 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2546 | * And we eventually call down to __kmem_cache_create(), which | |
2547 | * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. | |
2548 | * This is a "chicken-and-egg" problem. | |
2549 | * | |
2550 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2551 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2552 | */ |
7e007355 | 2553 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
0c3aa83e JK |
2554 | struct page *page, int colour_off, |
2555 | gfp_t local_flags, int nodeid) | |
1da177e4 | 2556 | { |
7e007355 | 2557 | void *freelist; |
0c3aa83e | 2558 | void *addr = page_address(page); |
b28a02de | 2559 | |
1da177e4 LT |
2560 | if (OFF_SLAB(cachep)) { |
2561 | /* Slab management obj is off-slab. */ | |
8456a648 | 2562 | freelist = kmem_cache_alloc_node(cachep->freelist_cache, |
8759ec50 | 2563 | local_flags, nodeid); |
8456a648 | 2564 | if (!freelist) |
1da177e4 LT |
2565 | return NULL; |
2566 | } else { | |
8456a648 JK |
2567 | freelist = addr + colour_off; |
2568 | colour_off += cachep->freelist_size; | |
1da177e4 | 2569 | } |
8456a648 JK |
2570 | page->active = 0; |
2571 | page->s_mem = addr + colour_off; | |
2572 | return freelist; | |
1da177e4 LT |
2573 | } |
2574 | ||
a41adfaa | 2575 | static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx) |
1da177e4 | 2576 | { |
a41adfaa | 2577 | return ((freelist_idx_t *)page->freelist)[idx]; |
e5c58dfd JK |
2578 | } |
2579 | ||
2580 | static inline void set_free_obj(struct page *page, | |
a41adfaa | 2581 | unsigned char idx, freelist_idx_t val) |
e5c58dfd | 2582 | { |
a41adfaa | 2583 | ((freelist_idx_t *)(page->freelist))[idx] = val; |
1da177e4 LT |
2584 | } |
2585 | ||
343e0d7a | 2586 | static void cache_init_objs(struct kmem_cache *cachep, |
8456a648 | 2587 | struct page *page) |
1da177e4 LT |
2588 | { |
2589 | int i; | |
2590 | ||
2591 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 2592 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
2593 | #if DEBUG |
2594 | /* need to poison the objs? */ | |
2595 | if (cachep->flags & SLAB_POISON) | |
2596 | poison_obj(cachep, objp, POISON_FREE); | |
2597 | if (cachep->flags & SLAB_STORE_USER) | |
2598 | *dbg_userword(cachep, objp) = NULL; | |
2599 | ||
2600 | if (cachep->flags & SLAB_RED_ZONE) { | |
2601 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2602 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2603 | } | |
2604 | /* | |
a737b3e2 AM |
2605 | * Constructors are not allowed to allocate memory from the same |
2606 | * cache which they are a constructor for. Otherwise, deadlock. | |
2607 | * They must also be threaded. | |
1da177e4 LT |
2608 | */ |
2609 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2610 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2611 | |
2612 | if (cachep->flags & SLAB_RED_ZONE) { | |
2613 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2614 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2615 | " end of an object"); |
1da177e4 LT |
2616 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2617 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2618 | " start of an object"); |
1da177e4 | 2619 | } |
3b0efdfa | 2620 | if ((cachep->size % PAGE_SIZE) == 0 && |
a737b3e2 | 2621 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) |
b28a02de | 2622 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2623 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2624 | #else |
2625 | if (cachep->ctor) | |
51cc5068 | 2626 | cachep->ctor(objp); |
1da177e4 | 2627 | #endif |
e5c58dfd | 2628 | set_free_obj(page, i, i); |
1da177e4 | 2629 | } |
1da177e4 LT |
2630 | } |
2631 | ||
343e0d7a | 2632 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2633 | { |
4b51d669 CL |
2634 | if (CONFIG_ZONE_DMA_FLAG) { |
2635 | if (flags & GFP_DMA) | |
a618e89f | 2636 | BUG_ON(!(cachep->allocflags & GFP_DMA)); |
4b51d669 | 2637 | else |
a618e89f | 2638 | BUG_ON(cachep->allocflags & GFP_DMA); |
4b51d669 | 2639 | } |
1da177e4 LT |
2640 | } |
2641 | ||
8456a648 | 2642 | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, |
a737b3e2 | 2643 | int nodeid) |
78d382d7 | 2644 | { |
b1cb0982 | 2645 | void *objp; |
78d382d7 | 2646 | |
e5c58dfd | 2647 | objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); |
8456a648 | 2648 | page->active++; |
78d382d7 | 2649 | #if DEBUG |
1ea991b0 | 2650 | WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); |
78d382d7 | 2651 | #endif |
78d382d7 MD |
2652 | |
2653 | return objp; | |
2654 | } | |
2655 | ||
8456a648 | 2656 | static void slab_put_obj(struct kmem_cache *cachep, struct page *page, |
a737b3e2 | 2657 | void *objp, int nodeid) |
78d382d7 | 2658 | { |
8456a648 | 2659 | unsigned int objnr = obj_to_index(cachep, page, objp); |
78d382d7 | 2660 | #if DEBUG |
16025177 | 2661 | unsigned int i; |
b1cb0982 | 2662 | |
78d382d7 | 2663 | /* Verify that the slab belongs to the intended node */ |
1ea991b0 | 2664 | WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); |
78d382d7 | 2665 | |
b1cb0982 | 2666 | /* Verify double free bug */ |
8456a648 | 2667 | for (i = page->active; i < cachep->num; i++) { |
e5c58dfd | 2668 | if (get_free_obj(page, i) == objnr) { |
b1cb0982 JK |
2669 | printk(KERN_ERR "slab: double free detected in cache " |
2670 | "'%s', objp %p\n", cachep->name, objp); | |
2671 | BUG(); | |
2672 | } | |
78d382d7 MD |
2673 | } |
2674 | #endif | |
8456a648 | 2675 | page->active--; |
e5c58dfd | 2676 | set_free_obj(page, page->active, objnr); |
78d382d7 MD |
2677 | } |
2678 | ||
4776874f PE |
2679 | /* |
2680 | * Map pages beginning at addr to the given cache and slab. This is required | |
2681 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2682 | * virtual address for kfree, ksize, and slab debugging. |
4776874f | 2683 | */ |
8456a648 | 2684 | static void slab_map_pages(struct kmem_cache *cache, struct page *page, |
7e007355 | 2685 | void *freelist) |
1da177e4 | 2686 | { |
a57a4988 | 2687 | page->slab_cache = cache; |
8456a648 | 2688 | page->freelist = freelist; |
1da177e4 LT |
2689 | } |
2690 | ||
2691 | /* | |
2692 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2693 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2694 | */ | |
3c517a61 | 2695 | static int cache_grow(struct kmem_cache *cachep, |
0c3aa83e | 2696 | gfp_t flags, int nodeid, struct page *page) |
1da177e4 | 2697 | { |
7e007355 | 2698 | void *freelist; |
b28a02de PE |
2699 | size_t offset; |
2700 | gfp_t local_flags; | |
ce8eb6c4 | 2701 | struct kmem_cache_node *n; |
1da177e4 | 2702 | |
a737b3e2 AM |
2703 | /* |
2704 | * Be lazy and only check for valid flags here, keeping it out of the | |
2705 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2706 | */ |
6cb06229 CL |
2707 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2708 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | |
1da177e4 | 2709 | |
ce8eb6c4 | 2710 | /* Take the node list lock to change the colour_next on this node */ |
1da177e4 | 2711 | check_irq_off(); |
ce8eb6c4 CL |
2712 | n = cachep->node[nodeid]; |
2713 | spin_lock(&n->list_lock); | |
1da177e4 LT |
2714 | |
2715 | /* Get colour for the slab, and cal the next value. */ | |
ce8eb6c4 CL |
2716 | offset = n->colour_next; |
2717 | n->colour_next++; | |
2718 | if (n->colour_next >= cachep->colour) | |
2719 | n->colour_next = 0; | |
2720 | spin_unlock(&n->list_lock); | |
1da177e4 | 2721 | |
2e1217cf | 2722 | offset *= cachep->colour_off; |
1da177e4 LT |
2723 | |
2724 | if (local_flags & __GFP_WAIT) | |
2725 | local_irq_enable(); | |
2726 | ||
2727 | /* | |
2728 | * The test for missing atomic flag is performed here, rather than | |
2729 | * the more obvious place, simply to reduce the critical path length | |
2730 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2731 | * will eventually be caught here (where it matters). | |
2732 | */ | |
2733 | kmem_flagcheck(cachep, flags); | |
2734 | ||
a737b3e2 AM |
2735 | /* |
2736 | * Get mem for the objs. Attempt to allocate a physical page from | |
2737 | * 'nodeid'. | |
e498be7d | 2738 | */ |
0c3aa83e JK |
2739 | if (!page) |
2740 | page = kmem_getpages(cachep, local_flags, nodeid); | |
2741 | if (!page) | |
1da177e4 LT |
2742 | goto failed; |
2743 | ||
2744 | /* Get slab management. */ | |
8456a648 | 2745 | freelist = alloc_slabmgmt(cachep, page, offset, |
6cb06229 | 2746 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
8456a648 | 2747 | if (!freelist) |
1da177e4 LT |
2748 | goto opps1; |
2749 | ||
8456a648 | 2750 | slab_map_pages(cachep, page, freelist); |
1da177e4 | 2751 | |
8456a648 | 2752 | cache_init_objs(cachep, page); |
1da177e4 LT |
2753 | |
2754 | if (local_flags & __GFP_WAIT) | |
2755 | local_irq_disable(); | |
2756 | check_irq_off(); | |
ce8eb6c4 | 2757 | spin_lock(&n->list_lock); |
1da177e4 LT |
2758 | |
2759 | /* Make slab active. */ | |
8456a648 | 2760 | list_add_tail(&page->lru, &(n->slabs_free)); |
1da177e4 | 2761 | STATS_INC_GROWN(cachep); |
ce8eb6c4 CL |
2762 | n->free_objects += cachep->num; |
2763 | spin_unlock(&n->list_lock); | |
1da177e4 | 2764 | return 1; |
a737b3e2 | 2765 | opps1: |
0c3aa83e | 2766 | kmem_freepages(cachep, page); |
a737b3e2 | 2767 | failed: |
1da177e4 LT |
2768 | if (local_flags & __GFP_WAIT) |
2769 | local_irq_disable(); | |
2770 | return 0; | |
2771 | } | |
2772 | ||
2773 | #if DEBUG | |
2774 | ||
2775 | /* | |
2776 | * Perform extra freeing checks: | |
2777 | * - detect bad pointers. | |
2778 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2779 | */ |
2780 | static void kfree_debugcheck(const void *objp) | |
2781 | { | |
1da177e4 LT |
2782 | if (!virt_addr_valid(objp)) { |
2783 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2784 | (unsigned long)objp); |
2785 | BUG(); | |
1da177e4 | 2786 | } |
1da177e4 LT |
2787 | } |
2788 | ||
58ce1fd5 PE |
2789 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2790 | { | |
b46b8f19 | 2791 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2792 | |
2793 | redzone1 = *dbg_redzone1(cache, obj); | |
2794 | redzone2 = *dbg_redzone2(cache, obj); | |
2795 | ||
2796 | /* | |
2797 | * Redzone is ok. | |
2798 | */ | |
2799 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2800 | return; | |
2801 | ||
2802 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2803 | slab_error(cache, "double free detected"); | |
2804 | else | |
2805 | slab_error(cache, "memory outside object was overwritten"); | |
2806 | ||
b46b8f19 | 2807 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
2808 | obj, redzone1, redzone2); |
2809 | } | |
2810 | ||
343e0d7a | 2811 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2812 | unsigned long caller) |
1da177e4 | 2813 | { |
1da177e4 | 2814 | unsigned int objnr; |
8456a648 | 2815 | struct page *page; |
1da177e4 | 2816 | |
80cbd911 MW |
2817 | BUG_ON(virt_to_cache(objp) != cachep); |
2818 | ||
3dafccf2 | 2819 | objp -= obj_offset(cachep); |
1da177e4 | 2820 | kfree_debugcheck(objp); |
b49af68f | 2821 | page = virt_to_head_page(objp); |
1da177e4 | 2822 | |
1da177e4 | 2823 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2824 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2825 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2826 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2827 | } | |
2828 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 2829 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 | 2830 | |
8456a648 | 2831 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 LT |
2832 | |
2833 | BUG_ON(objnr >= cachep->num); | |
8456a648 | 2834 | BUG_ON(objp != index_to_obj(cachep, page, objnr)); |
1da177e4 | 2835 | |
1da177e4 LT |
2836 | if (cachep->flags & SLAB_POISON) { |
2837 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 2838 | if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
7c0cb9c6 | 2839 | store_stackinfo(cachep, objp, caller); |
b28a02de | 2840 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2841 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2842 | } else { |
2843 | poison_obj(cachep, objp, POISON_FREE); | |
2844 | } | |
2845 | #else | |
2846 | poison_obj(cachep, objp, POISON_FREE); | |
2847 | #endif | |
2848 | } | |
2849 | return objp; | |
2850 | } | |
2851 | ||
1da177e4 LT |
2852 | #else |
2853 | #define kfree_debugcheck(x) do { } while(0) | |
2854 | #define cache_free_debugcheck(x,objp,z) (objp) | |
1da177e4 LT |
2855 | #endif |
2856 | ||
072bb0aa MG |
2857 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, |
2858 | bool force_refill) | |
1da177e4 LT |
2859 | { |
2860 | int batchcount; | |
ce8eb6c4 | 2861 | struct kmem_cache_node *n; |
1da177e4 | 2862 | struct array_cache *ac; |
1ca4cb24 PE |
2863 | int node; |
2864 | ||
1da177e4 | 2865 | check_irq_off(); |
7d6e6d09 | 2866 | node = numa_mem_id(); |
072bb0aa MG |
2867 | if (unlikely(force_refill)) |
2868 | goto force_grow; | |
2869 | retry: | |
9a2dba4b | 2870 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2871 | batchcount = ac->batchcount; |
2872 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2873 | /* |
2874 | * If there was little recent activity on this cache, then | |
2875 | * perform only a partial refill. Otherwise we could generate | |
2876 | * refill bouncing. | |
1da177e4 LT |
2877 | */ |
2878 | batchcount = BATCHREFILL_LIMIT; | |
2879 | } | |
ce8eb6c4 | 2880 | n = cachep->node[node]; |
e498be7d | 2881 | |
ce8eb6c4 CL |
2882 | BUG_ON(ac->avail > 0 || !n); |
2883 | spin_lock(&n->list_lock); | |
1da177e4 | 2884 | |
3ded175a | 2885 | /* See if we can refill from the shared array */ |
ce8eb6c4 CL |
2886 | if (n->shared && transfer_objects(ac, n->shared, batchcount)) { |
2887 | n->shared->touched = 1; | |
3ded175a | 2888 | goto alloc_done; |
44b57f1c | 2889 | } |
3ded175a | 2890 | |
1da177e4 LT |
2891 | while (batchcount > 0) { |
2892 | struct list_head *entry; | |
8456a648 | 2893 | struct page *page; |
1da177e4 | 2894 | /* Get slab alloc is to come from. */ |
ce8eb6c4 CL |
2895 | entry = n->slabs_partial.next; |
2896 | if (entry == &n->slabs_partial) { | |
2897 | n->free_touched = 1; | |
2898 | entry = n->slabs_free.next; | |
2899 | if (entry == &n->slabs_free) | |
1da177e4 LT |
2900 | goto must_grow; |
2901 | } | |
2902 | ||
8456a648 | 2903 | page = list_entry(entry, struct page, lru); |
1da177e4 | 2904 | check_spinlock_acquired(cachep); |
714b8171 PE |
2905 | |
2906 | /* | |
2907 | * The slab was either on partial or free list so | |
2908 | * there must be at least one object available for | |
2909 | * allocation. | |
2910 | */ | |
8456a648 | 2911 | BUG_ON(page->active >= cachep->num); |
714b8171 | 2912 | |
8456a648 | 2913 | while (page->active < cachep->num && batchcount--) { |
1da177e4 LT |
2914 | STATS_INC_ALLOCED(cachep); |
2915 | STATS_INC_ACTIVE(cachep); | |
2916 | STATS_SET_HIGH(cachep); | |
2917 | ||
8456a648 | 2918 | ac_put_obj(cachep, ac, slab_get_obj(cachep, page, |
072bb0aa | 2919 | node)); |
1da177e4 | 2920 | } |
1da177e4 LT |
2921 | |
2922 | /* move slabp to correct slabp list: */ | |
8456a648 JK |
2923 | list_del(&page->lru); |
2924 | if (page->active == cachep->num) | |
34bf6ef9 | 2925 | list_add(&page->lru, &n->slabs_full); |
1da177e4 | 2926 | else |
34bf6ef9 | 2927 | list_add(&page->lru, &n->slabs_partial); |
1da177e4 LT |
2928 | } |
2929 | ||
a737b3e2 | 2930 | must_grow: |
ce8eb6c4 | 2931 | n->free_objects -= ac->avail; |
a737b3e2 | 2932 | alloc_done: |
ce8eb6c4 | 2933 | spin_unlock(&n->list_lock); |
1da177e4 LT |
2934 | |
2935 | if (unlikely(!ac->avail)) { | |
2936 | int x; | |
072bb0aa | 2937 | force_grow: |
3c517a61 | 2938 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 2939 | |
a737b3e2 | 2940 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 2941 | ac = cpu_cache_get(cachep); |
51cd8e6f | 2942 | node = numa_mem_id(); |
072bb0aa MG |
2943 | |
2944 | /* no objects in sight? abort */ | |
2945 | if (!x && (ac->avail == 0 || force_refill)) | |
1da177e4 LT |
2946 | return NULL; |
2947 | ||
a737b3e2 | 2948 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
2949 | goto retry; |
2950 | } | |
2951 | ac->touched = 1; | |
072bb0aa MG |
2952 | |
2953 | return ac_get_obj(cachep, ac, flags, force_refill); | |
1da177e4 LT |
2954 | } |
2955 | ||
a737b3e2 AM |
2956 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
2957 | gfp_t flags) | |
1da177e4 LT |
2958 | { |
2959 | might_sleep_if(flags & __GFP_WAIT); | |
2960 | #if DEBUG | |
2961 | kmem_flagcheck(cachep, flags); | |
2962 | #endif | |
2963 | } | |
2964 | ||
2965 | #if DEBUG | |
a737b3e2 | 2966 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 2967 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 2968 | { |
b28a02de | 2969 | if (!objp) |
1da177e4 | 2970 | return objp; |
b28a02de | 2971 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2972 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3b0efdfa | 2973 | if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 2974 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2975 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
2976 | else |
2977 | check_poison_obj(cachep, objp); | |
2978 | #else | |
2979 | check_poison_obj(cachep, objp); | |
2980 | #endif | |
2981 | poison_obj(cachep, objp, POISON_INUSE); | |
2982 | } | |
2983 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 2984 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
2985 | |
2986 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
2987 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
2988 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
2989 | slab_error(cachep, "double free, or memory outside" | |
2990 | " object was overwritten"); | |
b28a02de | 2991 | printk(KERN_ERR |
b46b8f19 | 2992 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
2993 | objp, *dbg_redzone1(cachep, objp), |
2994 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
2995 | } |
2996 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
2997 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
2998 | } | |
3dafccf2 | 2999 | objp += obj_offset(cachep); |
4f104934 | 3000 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3001 | cachep->ctor(objp); |
7ea466f2 TH |
3002 | if (ARCH_SLAB_MINALIGN && |
3003 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
a44b56d3 | 3004 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3005 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3006 | } |
1da177e4 LT |
3007 | return objp; |
3008 | } | |
3009 | #else | |
3010 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3011 | #endif | |
3012 | ||
773ff60e | 3013 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 | 3014 | { |
9b030cb8 | 3015 | if (cachep == kmem_cache) |
773ff60e | 3016 | return false; |
8a8b6502 | 3017 | |
8c138bc0 | 3018 | return should_failslab(cachep->object_size, flags, cachep->flags); |
8a8b6502 AM |
3019 | } |
3020 | ||
343e0d7a | 3021 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3022 | { |
b28a02de | 3023 | void *objp; |
1da177e4 | 3024 | struct array_cache *ac; |
072bb0aa | 3025 | bool force_refill = false; |
1da177e4 | 3026 | |
5c382300 | 3027 | check_irq_off(); |
8a8b6502 | 3028 | |
9a2dba4b | 3029 | ac = cpu_cache_get(cachep); |
1da177e4 | 3030 | if (likely(ac->avail)) { |
1da177e4 | 3031 | ac->touched = 1; |
072bb0aa MG |
3032 | objp = ac_get_obj(cachep, ac, flags, false); |
3033 | ||
ddbf2e83 | 3034 | /* |
072bb0aa MG |
3035 | * Allow for the possibility all avail objects are not allowed |
3036 | * by the current flags | |
ddbf2e83 | 3037 | */ |
072bb0aa MG |
3038 | if (objp) { |
3039 | STATS_INC_ALLOCHIT(cachep); | |
3040 | goto out; | |
3041 | } | |
3042 | force_refill = true; | |
1da177e4 | 3043 | } |
072bb0aa MG |
3044 | |
3045 | STATS_INC_ALLOCMISS(cachep); | |
3046 | objp = cache_alloc_refill(cachep, flags, force_refill); | |
3047 | /* | |
3048 | * the 'ac' may be updated by cache_alloc_refill(), | |
3049 | * and kmemleak_erase() requires its correct value. | |
3050 | */ | |
3051 | ac = cpu_cache_get(cachep); | |
3052 | ||
3053 | out: | |
d5cff635 CM |
3054 | /* |
3055 | * To avoid a false negative, if an object that is in one of the | |
3056 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3057 | * treat the array pointers as a reference to the object. | |
3058 | */ | |
f3d8b53a O |
3059 | if (objp) |
3060 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3061 | return objp; |
3062 | } | |
3063 | ||
e498be7d | 3064 | #ifdef CONFIG_NUMA |
c61afb18 | 3065 | /* |
f0432d15 | 3066 | * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
3067 | * |
3068 | * If we are in_interrupt, then process context, including cpusets and | |
3069 | * mempolicy, may not apply and should not be used for allocation policy. | |
3070 | */ | |
3071 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3072 | { | |
3073 | int nid_alloc, nid_here; | |
3074 | ||
765c4507 | 3075 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3076 | return NULL; |
7d6e6d09 | 3077 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3078 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3079 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3080 | else if (current->mempolicy) |
2a389610 | 3081 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 3082 | if (nid_alloc != nid_here) |
8b98c169 | 3083 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3084 | return NULL; |
3085 | } | |
3086 | ||
765c4507 CL |
3087 | /* |
3088 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 3089 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 3090 | * available node for available objects. If that fails then we |
3c517a61 CL |
3091 | * perform an allocation without specifying a node. This allows the page |
3092 | * allocator to do its reclaim / fallback magic. We then insert the | |
3093 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3094 | */ |
8c8cc2c1 | 3095 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3096 | { |
8c8cc2c1 PE |
3097 | struct zonelist *zonelist; |
3098 | gfp_t local_flags; | |
dd1a239f | 3099 | struct zoneref *z; |
54a6eb5c MG |
3100 | struct zone *zone; |
3101 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3102 | void *obj = NULL; |
3c517a61 | 3103 | int nid; |
cc9a6c87 | 3104 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3105 | |
3106 | if (flags & __GFP_THISNODE) | |
3107 | return NULL; | |
3108 | ||
6cb06229 | 3109 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3110 | |
cc9a6c87 | 3111 | retry_cpuset: |
d26914d1 | 3112 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3113 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3114 | |
3c517a61 CL |
3115 | retry: |
3116 | /* | |
3117 | * Look through allowed nodes for objects available | |
3118 | * from existing per node queues. | |
3119 | */ | |
54a6eb5c MG |
3120 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3121 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3122 | |
54a6eb5c | 3123 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
6a67368c CL |
3124 | cache->node[nid] && |
3125 | cache->node[nid]->free_objects) { | |
3c517a61 CL |
3126 | obj = ____cache_alloc_node(cache, |
3127 | flags | GFP_THISNODE, nid); | |
481c5346 CL |
3128 | if (obj) |
3129 | break; | |
3130 | } | |
3c517a61 CL |
3131 | } |
3132 | ||
cfce6604 | 3133 | if (!obj) { |
3c517a61 CL |
3134 | /* |
3135 | * This allocation will be performed within the constraints | |
3136 | * of the current cpuset / memory policy requirements. | |
3137 | * We may trigger various forms of reclaim on the allowed | |
3138 | * set and go into memory reserves if necessary. | |
3139 | */ | |
0c3aa83e JK |
3140 | struct page *page; |
3141 | ||
dd47ea75 CL |
3142 | if (local_flags & __GFP_WAIT) |
3143 | local_irq_enable(); | |
3144 | kmem_flagcheck(cache, flags); | |
0c3aa83e | 3145 | page = kmem_getpages(cache, local_flags, numa_mem_id()); |
dd47ea75 CL |
3146 | if (local_flags & __GFP_WAIT) |
3147 | local_irq_disable(); | |
0c3aa83e | 3148 | if (page) { |
3c517a61 CL |
3149 | /* |
3150 | * Insert into the appropriate per node queues | |
3151 | */ | |
0c3aa83e JK |
3152 | nid = page_to_nid(page); |
3153 | if (cache_grow(cache, flags, nid, page)) { | |
3c517a61 CL |
3154 | obj = ____cache_alloc_node(cache, |
3155 | flags | GFP_THISNODE, nid); | |
3156 | if (!obj) | |
3157 | /* | |
3158 | * Another processor may allocate the | |
3159 | * objects in the slab since we are | |
3160 | * not holding any locks. | |
3161 | */ | |
3162 | goto retry; | |
3163 | } else { | |
b6a60451 | 3164 | /* cache_grow already freed obj */ |
3c517a61 CL |
3165 | obj = NULL; |
3166 | } | |
3167 | } | |
aedb0eb1 | 3168 | } |
cc9a6c87 | 3169 | |
d26914d1 | 3170 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3171 | goto retry_cpuset; |
765c4507 CL |
3172 | return obj; |
3173 | } | |
3174 | ||
e498be7d CL |
3175 | /* |
3176 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3177 | */ |
8b98c169 | 3178 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3179 | int nodeid) |
e498be7d CL |
3180 | { |
3181 | struct list_head *entry; | |
8456a648 | 3182 | struct page *page; |
ce8eb6c4 | 3183 | struct kmem_cache_node *n; |
b28a02de | 3184 | void *obj; |
b28a02de PE |
3185 | int x; |
3186 | ||
14e50c6a | 3187 | VM_BUG_ON(nodeid > num_online_nodes()); |
ce8eb6c4 CL |
3188 | n = cachep->node[nodeid]; |
3189 | BUG_ON(!n); | |
b28a02de | 3190 | |
a737b3e2 | 3191 | retry: |
ca3b9b91 | 3192 | check_irq_off(); |
ce8eb6c4 CL |
3193 | spin_lock(&n->list_lock); |
3194 | entry = n->slabs_partial.next; | |
3195 | if (entry == &n->slabs_partial) { | |
3196 | n->free_touched = 1; | |
3197 | entry = n->slabs_free.next; | |
3198 | if (entry == &n->slabs_free) | |
b28a02de PE |
3199 | goto must_grow; |
3200 | } | |
3201 | ||
8456a648 | 3202 | page = list_entry(entry, struct page, lru); |
b28a02de | 3203 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3204 | |
3205 | STATS_INC_NODEALLOCS(cachep); | |
3206 | STATS_INC_ACTIVE(cachep); | |
3207 | STATS_SET_HIGH(cachep); | |
3208 | ||
8456a648 | 3209 | BUG_ON(page->active == cachep->num); |
b28a02de | 3210 | |
8456a648 | 3211 | obj = slab_get_obj(cachep, page, nodeid); |
ce8eb6c4 | 3212 | n->free_objects--; |
b28a02de | 3213 | /* move slabp to correct slabp list: */ |
8456a648 | 3214 | list_del(&page->lru); |
b28a02de | 3215 | |
8456a648 JK |
3216 | if (page->active == cachep->num) |
3217 | list_add(&page->lru, &n->slabs_full); | |
a737b3e2 | 3218 | else |
8456a648 | 3219 | list_add(&page->lru, &n->slabs_partial); |
e498be7d | 3220 | |
ce8eb6c4 | 3221 | spin_unlock(&n->list_lock); |
b28a02de | 3222 | goto done; |
e498be7d | 3223 | |
a737b3e2 | 3224 | must_grow: |
ce8eb6c4 | 3225 | spin_unlock(&n->list_lock); |
3c517a61 | 3226 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3227 | if (x) |
3228 | goto retry; | |
1da177e4 | 3229 | |
8c8cc2c1 | 3230 | return fallback_alloc(cachep, flags); |
e498be7d | 3231 | |
a737b3e2 | 3232 | done: |
b28a02de | 3233 | return obj; |
e498be7d | 3234 | } |
8c8cc2c1 | 3235 | |
8c8cc2c1 | 3236 | static __always_inline void * |
48356303 | 3237 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, |
7c0cb9c6 | 3238 | unsigned long caller) |
8c8cc2c1 PE |
3239 | { |
3240 | unsigned long save_flags; | |
3241 | void *ptr; | |
7d6e6d09 | 3242 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3243 | |
dcce284a | 3244 | flags &= gfp_allowed_mask; |
7e85ee0c | 3245 | |
cf40bd16 NP |
3246 | lockdep_trace_alloc(flags); |
3247 | ||
773ff60e | 3248 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3249 | return NULL; |
3250 | ||
d79923fa GC |
3251 | cachep = memcg_kmem_get_cache(cachep, flags); |
3252 | ||
8c8cc2c1 PE |
3253 | cache_alloc_debugcheck_before(cachep, flags); |
3254 | local_irq_save(save_flags); | |
3255 | ||
eacbbae3 | 3256 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3257 | nodeid = slab_node; |
8c8cc2c1 | 3258 | |
6a67368c | 3259 | if (unlikely(!cachep->node[nodeid])) { |
8c8cc2c1 PE |
3260 | /* Node not bootstrapped yet */ |
3261 | ptr = fallback_alloc(cachep, flags); | |
3262 | goto out; | |
3263 | } | |
3264 | ||
7d6e6d09 | 3265 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3266 | /* |
3267 | * Use the locally cached objects if possible. | |
3268 | * However ____cache_alloc does not allow fallback | |
3269 | * to other nodes. It may fail while we still have | |
3270 | * objects on other nodes available. | |
3271 | */ | |
3272 | ptr = ____cache_alloc(cachep, flags); | |
3273 | if (ptr) | |
3274 | goto out; | |
3275 | } | |
3276 | /* ___cache_alloc_node can fall back to other nodes */ | |
3277 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3278 | out: | |
3279 | local_irq_restore(save_flags); | |
3280 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
8c138bc0 | 3281 | kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3282 | flags); |
8c8cc2c1 | 3283 | |
5087c822 | 3284 | if (likely(ptr)) { |
8c138bc0 | 3285 | kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); |
5087c822 JP |
3286 | if (unlikely(flags & __GFP_ZERO)) |
3287 | memset(ptr, 0, cachep->object_size); | |
3288 | } | |
d07dbea4 | 3289 | |
8c8cc2c1 PE |
3290 | return ptr; |
3291 | } | |
3292 | ||
3293 | static __always_inline void * | |
3294 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3295 | { | |
3296 | void *objp; | |
3297 | ||
f0432d15 | 3298 | if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) { |
8c8cc2c1 PE |
3299 | objp = alternate_node_alloc(cache, flags); |
3300 | if (objp) | |
3301 | goto out; | |
3302 | } | |
3303 | objp = ____cache_alloc(cache, flags); | |
3304 | ||
3305 | /* | |
3306 | * We may just have run out of memory on the local node. | |
3307 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3308 | */ | |
7d6e6d09 LS |
3309 | if (!objp) |
3310 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3311 | |
3312 | out: | |
3313 | return objp; | |
3314 | } | |
3315 | #else | |
3316 | ||
3317 | static __always_inline void * | |
3318 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3319 | { | |
3320 | return ____cache_alloc(cachep, flags); | |
3321 | } | |
3322 | ||
3323 | #endif /* CONFIG_NUMA */ | |
3324 | ||
3325 | static __always_inline void * | |
48356303 | 3326 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) |
8c8cc2c1 PE |
3327 | { |
3328 | unsigned long save_flags; | |
3329 | void *objp; | |
3330 | ||
dcce284a | 3331 | flags &= gfp_allowed_mask; |
7e85ee0c | 3332 | |
cf40bd16 NP |
3333 | lockdep_trace_alloc(flags); |
3334 | ||
773ff60e | 3335 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3336 | return NULL; |
3337 | ||
d79923fa GC |
3338 | cachep = memcg_kmem_get_cache(cachep, flags); |
3339 | ||
8c8cc2c1 PE |
3340 | cache_alloc_debugcheck_before(cachep, flags); |
3341 | local_irq_save(save_flags); | |
3342 | objp = __do_cache_alloc(cachep, flags); | |
3343 | local_irq_restore(save_flags); | |
3344 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
8c138bc0 | 3345 | kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3346 | flags); |
8c8cc2c1 PE |
3347 | prefetchw(objp); |
3348 | ||
5087c822 | 3349 | if (likely(objp)) { |
8c138bc0 | 3350 | kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); |
5087c822 JP |
3351 | if (unlikely(flags & __GFP_ZERO)) |
3352 | memset(objp, 0, cachep->object_size); | |
3353 | } | |
d07dbea4 | 3354 | |
8c8cc2c1 PE |
3355 | return objp; |
3356 | } | |
e498be7d CL |
3357 | |
3358 | /* | |
5f0985bb | 3359 | * Caller needs to acquire correct kmem_cache_node's list_lock |
e498be7d | 3360 | */ |
343e0d7a | 3361 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3362 | int node) |
1da177e4 LT |
3363 | { |
3364 | int i; | |
ce8eb6c4 | 3365 | struct kmem_cache_node *n; |
1da177e4 LT |
3366 | |
3367 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3368 | void *objp; |
8456a648 | 3369 | struct page *page; |
1da177e4 | 3370 | |
072bb0aa MG |
3371 | clear_obj_pfmemalloc(&objpp[i]); |
3372 | objp = objpp[i]; | |
3373 | ||
8456a648 | 3374 | page = virt_to_head_page(objp); |
ce8eb6c4 | 3375 | n = cachep->node[node]; |
8456a648 | 3376 | list_del(&page->lru); |
ff69416e | 3377 | check_spinlock_acquired_node(cachep, node); |
8456a648 | 3378 | slab_put_obj(cachep, page, objp, node); |
1da177e4 | 3379 | STATS_DEC_ACTIVE(cachep); |
ce8eb6c4 | 3380 | n->free_objects++; |
1da177e4 LT |
3381 | |
3382 | /* fixup slab chains */ | |
8456a648 | 3383 | if (page->active == 0) { |
ce8eb6c4 CL |
3384 | if (n->free_objects > n->free_limit) { |
3385 | n->free_objects -= cachep->num; | |
e5ac9c5a RT |
3386 | /* No need to drop any previously held |
3387 | * lock here, even if we have a off-slab slab | |
3388 | * descriptor it is guaranteed to come from | |
3389 | * a different cache, refer to comments before | |
3390 | * alloc_slabmgmt. | |
3391 | */ | |
8456a648 | 3392 | slab_destroy(cachep, page); |
1da177e4 | 3393 | } else { |
8456a648 | 3394 | list_add(&page->lru, &n->slabs_free); |
1da177e4 LT |
3395 | } |
3396 | } else { | |
3397 | /* Unconditionally move a slab to the end of the | |
3398 | * partial list on free - maximum time for the | |
3399 | * other objects to be freed, too. | |
3400 | */ | |
8456a648 | 3401 | list_add_tail(&page->lru, &n->slabs_partial); |
1da177e4 LT |
3402 | } |
3403 | } | |
3404 | } | |
3405 | ||
343e0d7a | 3406 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3407 | { |
3408 | int batchcount; | |
ce8eb6c4 | 3409 | struct kmem_cache_node *n; |
7d6e6d09 | 3410 | int node = numa_mem_id(); |
1da177e4 LT |
3411 | |
3412 | batchcount = ac->batchcount; | |
3413 | #if DEBUG | |
3414 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3415 | #endif | |
3416 | check_irq_off(); | |
ce8eb6c4 CL |
3417 | n = cachep->node[node]; |
3418 | spin_lock(&n->list_lock); | |
3419 | if (n->shared) { | |
3420 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3421 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3422 | if (max) { |
3423 | if (batchcount > max) | |
3424 | batchcount = max; | |
e498be7d | 3425 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3426 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3427 | shared_array->avail += batchcount; |
3428 | goto free_done; | |
3429 | } | |
3430 | } | |
3431 | ||
ff69416e | 3432 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3433 | free_done: |
1da177e4 LT |
3434 | #if STATS |
3435 | { | |
3436 | int i = 0; | |
3437 | struct list_head *p; | |
3438 | ||
ce8eb6c4 CL |
3439 | p = n->slabs_free.next; |
3440 | while (p != &(n->slabs_free)) { | |
8456a648 | 3441 | struct page *page; |
1da177e4 | 3442 | |
8456a648 JK |
3443 | page = list_entry(p, struct page, lru); |
3444 | BUG_ON(page->active); | |
1da177e4 LT |
3445 | |
3446 | i++; | |
3447 | p = p->next; | |
3448 | } | |
3449 | STATS_SET_FREEABLE(cachep, i); | |
3450 | } | |
3451 | #endif | |
ce8eb6c4 | 3452 | spin_unlock(&n->list_lock); |
1da177e4 | 3453 | ac->avail -= batchcount; |
a737b3e2 | 3454 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3455 | } |
3456 | ||
3457 | /* | |
a737b3e2 AM |
3458 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3459 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3460 | */ |
a947eb95 | 3461 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 3462 | unsigned long caller) |
1da177e4 | 3463 | { |
9a2dba4b | 3464 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3465 | |
3466 | check_irq_off(); | |
d5cff635 | 3467 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3468 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3469 | |
8c138bc0 | 3470 | kmemcheck_slab_free(cachep, objp, cachep->object_size); |
c175eea4 | 3471 | |
1807a1aa SS |
3472 | /* |
3473 | * Skip calling cache_free_alien() when the platform is not numa. | |
3474 | * This will avoid cache misses that happen while accessing slabp (which | |
3475 | * is per page memory reference) to get nodeid. Instead use a global | |
3476 | * variable to skip the call, which is mostly likely to be present in | |
3477 | * the cache. | |
3478 | */ | |
b6e68bc1 | 3479 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3480 | return; |
3481 | ||
1da177e4 LT |
3482 | if (likely(ac->avail < ac->limit)) { |
3483 | STATS_INC_FREEHIT(cachep); | |
1da177e4 LT |
3484 | } else { |
3485 | STATS_INC_FREEMISS(cachep); | |
3486 | cache_flusharray(cachep, ac); | |
1da177e4 | 3487 | } |
42c8c99c | 3488 | |
072bb0aa | 3489 | ac_put_obj(cachep, ac, objp); |
1da177e4 LT |
3490 | } |
3491 | ||
3492 | /** | |
3493 | * kmem_cache_alloc - Allocate an object | |
3494 | * @cachep: The cache to allocate from. | |
3495 | * @flags: See kmalloc(). | |
3496 | * | |
3497 | * Allocate an object from this cache. The flags are only relevant | |
3498 | * if the cache has no available objects. | |
3499 | */ | |
343e0d7a | 3500 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3501 | { |
48356303 | 3502 | void *ret = slab_alloc(cachep, flags, _RET_IP_); |
36555751 | 3503 | |
ca2b84cb | 3504 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3505 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3506 | |
3507 | return ret; | |
1da177e4 LT |
3508 | } |
3509 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3510 | ||
0f24f128 | 3511 | #ifdef CONFIG_TRACING |
85beb586 | 3512 | void * |
4052147c | 3513 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3514 | { |
85beb586 SR |
3515 | void *ret; |
3516 | ||
48356303 | 3517 | ret = slab_alloc(cachep, flags, _RET_IP_); |
85beb586 SR |
3518 | |
3519 | trace_kmalloc(_RET_IP_, ret, | |
ff4fcd01 | 3520 | size, cachep->size, flags); |
85beb586 | 3521 | return ret; |
36555751 | 3522 | } |
85beb586 | 3523 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3524 | #endif |
3525 | ||
1da177e4 | 3526 | #ifdef CONFIG_NUMA |
d0d04b78 ZL |
3527 | /** |
3528 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3529 | * @cachep: The cache to allocate from. | |
3530 | * @flags: See kmalloc(). | |
3531 | * @nodeid: node number of the target node. | |
3532 | * | |
3533 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3534 | * node, which can improve the performance for cpu bound structures. | |
3535 | * | |
3536 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3537 | */ | |
8b98c169 CH |
3538 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3539 | { | |
48356303 | 3540 | void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
36555751 | 3541 | |
ca2b84cb | 3542 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3543 | cachep->object_size, cachep->size, |
ca2b84cb | 3544 | flags, nodeid); |
36555751 EGM |
3545 | |
3546 | return ret; | |
8b98c169 | 3547 | } |
1da177e4 LT |
3548 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3549 | ||
0f24f128 | 3550 | #ifdef CONFIG_TRACING |
4052147c | 3551 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3552 | gfp_t flags, |
4052147c EG |
3553 | int nodeid, |
3554 | size_t size) | |
36555751 | 3555 | { |
85beb586 SR |
3556 | void *ret; |
3557 | ||
592f4145 | 3558 | ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
7c0cb9c6 | 3559 | |
85beb586 | 3560 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3561 | size, cachep->size, |
85beb586 SR |
3562 | flags, nodeid); |
3563 | return ret; | |
36555751 | 3564 | } |
85beb586 | 3565 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3566 | #endif |
3567 | ||
8b98c169 | 3568 | static __always_inline void * |
7c0cb9c6 | 3569 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3570 | { |
343e0d7a | 3571 | struct kmem_cache *cachep; |
97e2bde4 | 3572 | |
2c59dd65 | 3573 | cachep = kmalloc_slab(size, flags); |
6cb8f913 CL |
3574 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3575 | return cachep; | |
4052147c | 3576 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); |
97e2bde4 | 3577 | } |
8b98c169 | 3578 | |
0bb38a5c | 3579 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
8b98c169 CH |
3580 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3581 | { | |
7c0cb9c6 | 3582 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3583 | } |
dbe5e69d | 3584 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3585 | |
3586 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3587 | int node, unsigned long caller) |
8b98c169 | 3588 | { |
7c0cb9c6 | 3589 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3590 | } |
3591 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3592 | #else | |
3593 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3594 | { | |
7c0cb9c6 | 3595 | return __do_kmalloc_node(size, flags, node, 0); |
8b98c169 CH |
3596 | } |
3597 | EXPORT_SYMBOL(__kmalloc_node); | |
0bb38a5c | 3598 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ |
8b98c169 | 3599 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3600 | |
3601 | /** | |
800590f5 | 3602 | * __do_kmalloc - allocate memory |
1da177e4 | 3603 | * @size: how many bytes of memory are required. |
800590f5 | 3604 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3605 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3606 | */ |
7fd6b141 | 3607 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3608 | unsigned long caller) |
1da177e4 | 3609 | { |
343e0d7a | 3610 | struct kmem_cache *cachep; |
36555751 | 3611 | void *ret; |
1da177e4 | 3612 | |
2c59dd65 | 3613 | cachep = kmalloc_slab(size, flags); |
a5c96d8a LT |
3614 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3615 | return cachep; | |
48356303 | 3616 | ret = slab_alloc(cachep, flags, caller); |
36555751 | 3617 | |
7c0cb9c6 | 3618 | trace_kmalloc(caller, ret, |
3b0efdfa | 3619 | size, cachep->size, flags); |
36555751 EGM |
3620 | |
3621 | return ret; | |
7fd6b141 PE |
3622 | } |
3623 | ||
7fd6b141 | 3624 | |
0bb38a5c | 3625 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
7fd6b141 PE |
3626 | void *__kmalloc(size_t size, gfp_t flags) |
3627 | { | |
7c0cb9c6 | 3628 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3629 | } |
3630 | EXPORT_SYMBOL(__kmalloc); | |
3631 | ||
ce71e27c | 3632 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3633 | { |
7c0cb9c6 | 3634 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3635 | } |
3636 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3637 | |
3638 | #else | |
3639 | void *__kmalloc(size_t size, gfp_t flags) | |
3640 | { | |
7c0cb9c6 | 3641 | return __do_kmalloc(size, flags, 0); |
1d2c8eea CH |
3642 | } |
3643 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3644 | #endif |
3645 | ||
1da177e4 LT |
3646 | /** |
3647 | * kmem_cache_free - Deallocate an object | |
3648 | * @cachep: The cache the allocation was from. | |
3649 | * @objp: The previously allocated object. | |
3650 | * | |
3651 | * Free an object which was previously allocated from this | |
3652 | * cache. | |
3653 | */ | |
343e0d7a | 3654 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3655 | { |
3656 | unsigned long flags; | |
b9ce5ef4 GC |
3657 | cachep = cache_from_obj(cachep, objp); |
3658 | if (!cachep) | |
3659 | return; | |
1da177e4 LT |
3660 | |
3661 | local_irq_save(flags); | |
d97d476b | 3662 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3663 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3664 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3665 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 | 3666 | local_irq_restore(flags); |
36555751 | 3667 | |
ca2b84cb | 3668 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3669 | } |
3670 | EXPORT_SYMBOL(kmem_cache_free); | |
3671 | ||
1da177e4 LT |
3672 | /** |
3673 | * kfree - free previously allocated memory | |
3674 | * @objp: pointer returned by kmalloc. | |
3675 | * | |
80e93eff PE |
3676 | * If @objp is NULL, no operation is performed. |
3677 | * | |
1da177e4 LT |
3678 | * Don't free memory not originally allocated by kmalloc() |
3679 | * or you will run into trouble. | |
3680 | */ | |
3681 | void kfree(const void *objp) | |
3682 | { | |
343e0d7a | 3683 | struct kmem_cache *c; |
1da177e4 LT |
3684 | unsigned long flags; |
3685 | ||
2121db74 PE |
3686 | trace_kfree(_RET_IP_, objp); |
3687 | ||
6cb8f913 | 3688 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3689 | return; |
3690 | local_irq_save(flags); | |
3691 | kfree_debugcheck(objp); | |
6ed5eb22 | 3692 | c = virt_to_cache(objp); |
8c138bc0 CL |
3693 | debug_check_no_locks_freed(objp, c->object_size); |
3694 | ||
3695 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3696 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3697 | local_irq_restore(flags); |
3698 | } | |
3699 | EXPORT_SYMBOL(kfree); | |
3700 | ||
e498be7d | 3701 | /* |
ce8eb6c4 | 3702 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3703 | */ |
5f0985bb | 3704 | static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3705 | { |
3706 | int node; | |
ce8eb6c4 | 3707 | struct kmem_cache_node *n; |
cafeb02e | 3708 | struct array_cache *new_shared; |
3395ee05 | 3709 | struct array_cache **new_alien = NULL; |
e498be7d | 3710 | |
9c09a95c | 3711 | for_each_online_node(node) { |
cafeb02e | 3712 | |
3395ee05 | 3713 | if (use_alien_caches) { |
83b519e8 | 3714 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
3395ee05 PM |
3715 | if (!new_alien) |
3716 | goto fail; | |
3717 | } | |
cafeb02e | 3718 | |
63109846 ED |
3719 | new_shared = NULL; |
3720 | if (cachep->shared) { | |
3721 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3722 | cachep->shared*cachep->batchcount, |
83b519e8 | 3723 | 0xbaadf00d, gfp); |
63109846 ED |
3724 | if (!new_shared) { |
3725 | free_alien_cache(new_alien); | |
3726 | goto fail; | |
3727 | } | |
0718dc2a | 3728 | } |
cafeb02e | 3729 | |
ce8eb6c4 CL |
3730 | n = cachep->node[node]; |
3731 | if (n) { | |
3732 | struct array_cache *shared = n->shared; | |
cafeb02e | 3733 | |
ce8eb6c4 | 3734 | spin_lock_irq(&n->list_lock); |
e498be7d | 3735 | |
cafeb02e | 3736 | if (shared) |
0718dc2a CL |
3737 | free_block(cachep, shared->entry, |
3738 | shared->avail, node); | |
e498be7d | 3739 | |
ce8eb6c4 CL |
3740 | n->shared = new_shared; |
3741 | if (!n->alien) { | |
3742 | n->alien = new_alien; | |
e498be7d CL |
3743 | new_alien = NULL; |
3744 | } | |
ce8eb6c4 | 3745 | n->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3746 | cachep->batchcount + cachep->num; |
ce8eb6c4 | 3747 | spin_unlock_irq(&n->list_lock); |
cafeb02e | 3748 | kfree(shared); |
e498be7d CL |
3749 | free_alien_cache(new_alien); |
3750 | continue; | |
3751 | } | |
ce8eb6c4 CL |
3752 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); |
3753 | if (!n) { | |
0718dc2a CL |
3754 | free_alien_cache(new_alien); |
3755 | kfree(new_shared); | |
e498be7d | 3756 | goto fail; |
0718dc2a | 3757 | } |
e498be7d | 3758 | |
ce8eb6c4 | 3759 | kmem_cache_node_init(n); |
5f0985bb JZ |
3760 | n->next_reap = jiffies + REAPTIMEOUT_NODE + |
3761 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
ce8eb6c4 CL |
3762 | n->shared = new_shared; |
3763 | n->alien = new_alien; | |
3764 | n->free_limit = (1 + nr_cpus_node(node)) * | |
a737b3e2 | 3765 | cachep->batchcount + cachep->num; |
ce8eb6c4 | 3766 | cachep->node[node] = n; |
e498be7d | 3767 | } |
cafeb02e | 3768 | return 0; |
0718dc2a | 3769 | |
a737b3e2 | 3770 | fail: |
3b0efdfa | 3771 | if (!cachep->list.next) { |
0718dc2a CL |
3772 | /* Cache is not active yet. Roll back what we did */ |
3773 | node--; | |
3774 | while (node >= 0) { | |
6a67368c | 3775 | if (cachep->node[node]) { |
ce8eb6c4 | 3776 | n = cachep->node[node]; |
0718dc2a | 3777 | |
ce8eb6c4 CL |
3778 | kfree(n->shared); |
3779 | free_alien_cache(n->alien); | |
3780 | kfree(n); | |
6a67368c | 3781 | cachep->node[node] = NULL; |
0718dc2a CL |
3782 | } |
3783 | node--; | |
3784 | } | |
3785 | } | |
cafeb02e | 3786 | return -ENOMEM; |
e498be7d CL |
3787 | } |
3788 | ||
1da177e4 | 3789 | struct ccupdate_struct { |
343e0d7a | 3790 | struct kmem_cache *cachep; |
acfe7d74 | 3791 | struct array_cache *new[0]; |
1da177e4 LT |
3792 | }; |
3793 | ||
3794 | static void do_ccupdate_local(void *info) | |
3795 | { | |
a737b3e2 | 3796 | struct ccupdate_struct *new = info; |
1da177e4 LT |
3797 | struct array_cache *old; |
3798 | ||
3799 | check_irq_off(); | |
9a2dba4b | 3800 | old = cpu_cache_get(new->cachep); |
e498be7d | 3801 | |
1da177e4 LT |
3802 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3803 | new->new[smp_processor_id()] = old; | |
3804 | } | |
3805 | ||
18004c5d | 3806 | /* Always called with the slab_mutex held */ |
943a451a | 3807 | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 3808 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 3809 | { |
d2e7b7d0 | 3810 | struct ccupdate_struct *new; |
2ed3a4ef | 3811 | int i; |
1da177e4 | 3812 | |
acfe7d74 ED |
3813 | new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), |
3814 | gfp); | |
d2e7b7d0 SS |
3815 | if (!new) |
3816 | return -ENOMEM; | |
3817 | ||
e498be7d | 3818 | for_each_online_cpu(i) { |
7d6e6d09 | 3819 | new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, |
83b519e8 | 3820 | batchcount, gfp); |
d2e7b7d0 | 3821 | if (!new->new[i]) { |
b28a02de | 3822 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
3823 | kfree(new->new[i]); |
3824 | kfree(new); | |
e498be7d | 3825 | return -ENOMEM; |
1da177e4 LT |
3826 | } |
3827 | } | |
d2e7b7d0 | 3828 | new->cachep = cachep; |
1da177e4 | 3829 | |
15c8b6c1 | 3830 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
e498be7d | 3831 | |
1da177e4 | 3832 | check_irq_on(); |
1da177e4 LT |
3833 | cachep->batchcount = batchcount; |
3834 | cachep->limit = limit; | |
e498be7d | 3835 | cachep->shared = shared; |
1da177e4 | 3836 | |
e498be7d | 3837 | for_each_online_cpu(i) { |
d2e7b7d0 | 3838 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
3839 | if (!ccold) |
3840 | continue; | |
6a67368c | 3841 | spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); |
7d6e6d09 | 3842 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); |
6a67368c | 3843 | spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); |
1da177e4 LT |
3844 | kfree(ccold); |
3845 | } | |
d2e7b7d0 | 3846 | kfree(new); |
5f0985bb | 3847 | return alloc_kmem_cache_node(cachep, gfp); |
1da177e4 LT |
3848 | } |
3849 | ||
943a451a GC |
3850 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3851 | int batchcount, int shared, gfp_t gfp) | |
3852 | { | |
3853 | int ret; | |
3854 | struct kmem_cache *c = NULL; | |
3855 | int i = 0; | |
3856 | ||
3857 | ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
3858 | ||
3859 | if (slab_state < FULL) | |
3860 | return ret; | |
3861 | ||
3862 | if ((ret < 0) || !is_root_cache(cachep)) | |
3863 | return ret; | |
3864 | ||
ebe945c2 | 3865 | VM_BUG_ON(!mutex_is_locked(&slab_mutex)); |
943a451a | 3866 | for_each_memcg_cache_index(i) { |
2ade4de8 | 3867 | c = cache_from_memcg_idx(cachep, i); |
943a451a GC |
3868 | if (c) |
3869 | /* return value determined by the parent cache only */ | |
3870 | __do_tune_cpucache(c, limit, batchcount, shared, gfp); | |
3871 | } | |
3872 | ||
3873 | return ret; | |
3874 | } | |
3875 | ||
18004c5d | 3876 | /* Called with slab_mutex held always */ |
83b519e8 | 3877 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3878 | { |
3879 | int err; | |
943a451a GC |
3880 | int limit = 0; |
3881 | int shared = 0; | |
3882 | int batchcount = 0; | |
3883 | ||
3884 | if (!is_root_cache(cachep)) { | |
3885 | struct kmem_cache *root = memcg_root_cache(cachep); | |
3886 | limit = root->limit; | |
3887 | shared = root->shared; | |
3888 | batchcount = root->batchcount; | |
3889 | } | |
1da177e4 | 3890 | |
943a451a GC |
3891 | if (limit && shared && batchcount) |
3892 | goto skip_setup; | |
a737b3e2 AM |
3893 | /* |
3894 | * The head array serves three purposes: | |
1da177e4 LT |
3895 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3896 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3897 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3898 | * bufctl chains: array operations are cheaper. |
3899 | * The numbers are guessed, we should auto-tune as described by | |
3900 | * Bonwick. | |
3901 | */ | |
3b0efdfa | 3902 | if (cachep->size > 131072) |
1da177e4 | 3903 | limit = 1; |
3b0efdfa | 3904 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 3905 | limit = 8; |
3b0efdfa | 3906 | else if (cachep->size > 1024) |
1da177e4 | 3907 | limit = 24; |
3b0efdfa | 3908 | else if (cachep->size > 256) |
1da177e4 LT |
3909 | limit = 54; |
3910 | else | |
3911 | limit = 120; | |
3912 | ||
a737b3e2 AM |
3913 | /* |
3914 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3915 | * allocation behaviour: Most allocs on one cpu, most free operations |
3916 | * on another cpu. For these cases, an efficient object passing between | |
3917 | * cpus is necessary. This is provided by a shared array. The array | |
3918 | * replaces Bonwick's magazine layer. | |
3919 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3920 | * to a larger limit. Thus disabled by default. | |
3921 | */ | |
3922 | shared = 0; | |
3b0efdfa | 3923 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3924 | shared = 8; |
1da177e4 LT |
3925 | |
3926 | #if DEBUG | |
a737b3e2 AM |
3927 | /* |
3928 | * With debugging enabled, large batchcount lead to excessively long | |
3929 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3930 | */ |
3931 | if (limit > 32) | |
3932 | limit = 32; | |
3933 | #endif | |
943a451a GC |
3934 | batchcount = (limit + 1) / 2; |
3935 | skip_setup: | |
3936 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
1da177e4 LT |
3937 | if (err) |
3938 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 3939 | cachep->name, -err); |
2ed3a4ef | 3940 | return err; |
1da177e4 LT |
3941 | } |
3942 | ||
1b55253a | 3943 | /* |
ce8eb6c4 CL |
3944 | * Drain an array if it contains any elements taking the node lock only if |
3945 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 3946 | * if drain_array() is used on the shared array. |
1b55253a | 3947 | */ |
ce8eb6c4 | 3948 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
1b55253a | 3949 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
3950 | { |
3951 | int tofree; | |
3952 | ||
1b55253a CL |
3953 | if (!ac || !ac->avail) |
3954 | return; | |
1da177e4 LT |
3955 | if (ac->touched && !force) { |
3956 | ac->touched = 0; | |
b18e7e65 | 3957 | } else { |
ce8eb6c4 | 3958 | spin_lock_irq(&n->list_lock); |
b18e7e65 CL |
3959 | if (ac->avail) { |
3960 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
3961 | if (tofree > ac->avail) | |
3962 | tofree = (ac->avail + 1) / 2; | |
3963 | free_block(cachep, ac->entry, tofree, node); | |
3964 | ac->avail -= tofree; | |
3965 | memmove(ac->entry, &(ac->entry[tofree]), | |
3966 | sizeof(void *) * ac->avail); | |
3967 | } | |
ce8eb6c4 | 3968 | spin_unlock_irq(&n->list_lock); |
1da177e4 LT |
3969 | } |
3970 | } | |
3971 | ||
3972 | /** | |
3973 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 3974 | * @w: work descriptor |
1da177e4 LT |
3975 | * |
3976 | * Called from workqueue/eventd every few seconds. | |
3977 | * Purpose: | |
3978 | * - clear the per-cpu caches for this CPU. | |
3979 | * - return freeable pages to the main free memory pool. | |
3980 | * | |
a737b3e2 AM |
3981 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
3982 | * again on the next iteration. | |
1da177e4 | 3983 | */ |
7c5cae36 | 3984 | static void cache_reap(struct work_struct *w) |
1da177e4 | 3985 | { |
7a7c381d | 3986 | struct kmem_cache *searchp; |
ce8eb6c4 | 3987 | struct kmem_cache_node *n; |
7d6e6d09 | 3988 | int node = numa_mem_id(); |
bf6aede7 | 3989 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 3990 | |
18004c5d | 3991 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 3992 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 3993 | goto out; |
1da177e4 | 3994 | |
18004c5d | 3995 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
3996 | check_irq_on(); |
3997 | ||
35386e3b | 3998 | /* |
ce8eb6c4 | 3999 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
4000 | * have established with reasonable certainty that |
4001 | * we can do some work if the lock was obtained. | |
4002 | */ | |
ce8eb6c4 | 4003 | n = searchp->node[node]; |
35386e3b | 4004 | |
ce8eb6c4 | 4005 | reap_alien(searchp, n); |
1da177e4 | 4006 | |
ce8eb6c4 | 4007 | drain_array(searchp, n, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4008 | |
35386e3b CL |
4009 | /* |
4010 | * These are racy checks but it does not matter | |
4011 | * if we skip one check or scan twice. | |
4012 | */ | |
ce8eb6c4 | 4013 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 4014 | goto next; |
1da177e4 | 4015 | |
5f0985bb | 4016 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 4017 | |
ce8eb6c4 | 4018 | drain_array(searchp, n, n->shared, 0, node); |
1da177e4 | 4019 | |
ce8eb6c4 CL |
4020 | if (n->free_touched) |
4021 | n->free_touched = 0; | |
ed11d9eb CL |
4022 | else { |
4023 | int freed; | |
1da177e4 | 4024 | |
ce8eb6c4 | 4025 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
4026 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4027 | STATS_ADD_REAPED(searchp, freed); | |
4028 | } | |
35386e3b | 4029 | next: |
1da177e4 LT |
4030 | cond_resched(); |
4031 | } | |
4032 | check_irq_on(); | |
18004c5d | 4033 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4034 | next_reap_node(); |
7c5cae36 | 4035 | out: |
a737b3e2 | 4036 | /* Set up the next iteration */ |
5f0985bb | 4037 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); |
1da177e4 LT |
4038 | } |
4039 | ||
158a9624 | 4040 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 4041 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 4042 | { |
8456a648 | 4043 | struct page *page; |
b28a02de PE |
4044 | unsigned long active_objs; |
4045 | unsigned long num_objs; | |
4046 | unsigned long active_slabs = 0; | |
4047 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4048 | const char *name; |
1da177e4 | 4049 | char *error = NULL; |
e498be7d | 4050 | int node; |
ce8eb6c4 | 4051 | struct kmem_cache_node *n; |
1da177e4 | 4052 | |
1da177e4 LT |
4053 | active_objs = 0; |
4054 | num_slabs = 0; | |
e498be7d | 4055 | for_each_online_node(node) { |
ce8eb6c4 CL |
4056 | n = cachep->node[node]; |
4057 | if (!n) | |
e498be7d CL |
4058 | continue; |
4059 | ||
ca3b9b91 | 4060 | check_irq_on(); |
ce8eb6c4 | 4061 | spin_lock_irq(&n->list_lock); |
e498be7d | 4062 | |
8456a648 JK |
4063 | list_for_each_entry(page, &n->slabs_full, lru) { |
4064 | if (page->active != cachep->num && !error) | |
e498be7d CL |
4065 | error = "slabs_full accounting error"; |
4066 | active_objs += cachep->num; | |
4067 | active_slabs++; | |
4068 | } | |
8456a648 JK |
4069 | list_for_each_entry(page, &n->slabs_partial, lru) { |
4070 | if (page->active == cachep->num && !error) | |
106a74e1 | 4071 | error = "slabs_partial accounting error"; |
8456a648 | 4072 | if (!page->active && !error) |
106a74e1 | 4073 | error = "slabs_partial accounting error"; |
8456a648 | 4074 | active_objs += page->active; |
e498be7d CL |
4075 | active_slabs++; |
4076 | } | |
8456a648 JK |
4077 | list_for_each_entry(page, &n->slabs_free, lru) { |
4078 | if (page->active && !error) | |
106a74e1 | 4079 | error = "slabs_free accounting error"; |
e498be7d CL |
4080 | num_slabs++; |
4081 | } | |
ce8eb6c4 CL |
4082 | free_objects += n->free_objects; |
4083 | if (n->shared) | |
4084 | shared_avail += n->shared->avail; | |
e498be7d | 4085 | |
ce8eb6c4 | 4086 | spin_unlock_irq(&n->list_lock); |
1da177e4 | 4087 | } |
b28a02de PE |
4088 | num_slabs += active_slabs; |
4089 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4090 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4091 | error = "free_objects accounting error"; |
4092 | ||
b28a02de | 4093 | name = cachep->name; |
1da177e4 LT |
4094 | if (error) |
4095 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4096 | ||
0d7561c6 GC |
4097 | sinfo->active_objs = active_objs; |
4098 | sinfo->num_objs = num_objs; | |
4099 | sinfo->active_slabs = active_slabs; | |
4100 | sinfo->num_slabs = num_slabs; | |
4101 | sinfo->shared_avail = shared_avail; | |
4102 | sinfo->limit = cachep->limit; | |
4103 | sinfo->batchcount = cachep->batchcount; | |
4104 | sinfo->shared = cachep->shared; | |
4105 | sinfo->objects_per_slab = cachep->num; | |
4106 | sinfo->cache_order = cachep->gfporder; | |
4107 | } | |
4108 | ||
4109 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
4110 | { | |
1da177e4 | 4111 | #if STATS |
ce8eb6c4 | 4112 | { /* node stats */ |
1da177e4 LT |
4113 | unsigned long high = cachep->high_mark; |
4114 | unsigned long allocs = cachep->num_allocations; | |
4115 | unsigned long grown = cachep->grown; | |
4116 | unsigned long reaped = cachep->reaped; | |
4117 | unsigned long errors = cachep->errors; | |
4118 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4119 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4120 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4121 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4122 | |
e92dd4fd JP |
4123 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
4124 | "%4lu %4lu %4lu %4lu %4lu", | |
4125 | allocs, high, grown, | |
4126 | reaped, errors, max_freeable, node_allocs, | |
4127 | node_frees, overflows); | |
1da177e4 LT |
4128 | } |
4129 | /* cpu stats */ | |
4130 | { | |
4131 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4132 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4133 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4134 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4135 | ||
4136 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4137 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4138 | } |
4139 | #endif | |
1da177e4 LT |
4140 | } |
4141 | ||
1da177e4 LT |
4142 | #define MAX_SLABINFO_WRITE 128 |
4143 | /** | |
4144 | * slabinfo_write - Tuning for the slab allocator | |
4145 | * @file: unused | |
4146 | * @buffer: user buffer | |
4147 | * @count: data length | |
4148 | * @ppos: unused | |
4149 | */ | |
b7454ad3 | 4150 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4151 | size_t count, loff_t *ppos) |
1da177e4 | 4152 | { |
b28a02de | 4153 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4154 | int limit, batchcount, shared, res; |
7a7c381d | 4155 | struct kmem_cache *cachep; |
b28a02de | 4156 | |
1da177e4 LT |
4157 | if (count > MAX_SLABINFO_WRITE) |
4158 | return -EINVAL; | |
4159 | if (copy_from_user(&kbuf, buffer, count)) | |
4160 | return -EFAULT; | |
b28a02de | 4161 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4162 | |
4163 | tmp = strchr(kbuf, ' '); | |
4164 | if (!tmp) | |
4165 | return -EINVAL; | |
4166 | *tmp = '\0'; | |
4167 | tmp++; | |
4168 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4169 | return -EINVAL; | |
4170 | ||
4171 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4172 | mutex_lock(&slab_mutex); |
1da177e4 | 4173 | res = -EINVAL; |
18004c5d | 4174 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4175 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4176 | if (limit < 1 || batchcount < 1 || |
4177 | batchcount > limit || shared < 0) { | |
e498be7d | 4178 | res = 0; |
1da177e4 | 4179 | } else { |
e498be7d | 4180 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4181 | batchcount, shared, |
4182 | GFP_KERNEL); | |
1da177e4 LT |
4183 | } |
4184 | break; | |
4185 | } | |
4186 | } | |
18004c5d | 4187 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4188 | if (res >= 0) |
4189 | res = count; | |
4190 | return res; | |
4191 | } | |
871751e2 AV |
4192 | |
4193 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4194 | ||
4195 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4196 | { | |
18004c5d CL |
4197 | mutex_lock(&slab_mutex); |
4198 | return seq_list_start(&slab_caches, *pos); | |
871751e2 AV |
4199 | } |
4200 | ||
4201 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4202 | { | |
4203 | unsigned long *p; | |
4204 | int l; | |
4205 | if (!v) | |
4206 | return 1; | |
4207 | l = n[1]; | |
4208 | p = n + 2; | |
4209 | while (l) { | |
4210 | int i = l/2; | |
4211 | unsigned long *q = p + 2 * i; | |
4212 | if (*q == v) { | |
4213 | q[1]++; | |
4214 | return 1; | |
4215 | } | |
4216 | if (*q > v) { | |
4217 | l = i; | |
4218 | } else { | |
4219 | p = q + 2; | |
4220 | l -= i + 1; | |
4221 | } | |
4222 | } | |
4223 | if (++n[1] == n[0]) | |
4224 | return 0; | |
4225 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4226 | p[0] = v; | |
4227 | p[1] = 1; | |
4228 | return 1; | |
4229 | } | |
4230 | ||
8456a648 JK |
4231 | static void handle_slab(unsigned long *n, struct kmem_cache *c, |
4232 | struct page *page) | |
871751e2 AV |
4233 | { |
4234 | void *p; | |
b1cb0982 JK |
4235 | int i, j; |
4236 | ||
871751e2 AV |
4237 | if (n[0] == n[1]) |
4238 | return; | |
8456a648 | 4239 | for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { |
b1cb0982 JK |
4240 | bool active = true; |
4241 | ||
8456a648 | 4242 | for (j = page->active; j < c->num; j++) { |
b1cb0982 | 4243 | /* Skip freed item */ |
e5c58dfd | 4244 | if (get_free_obj(page, j) == i) { |
b1cb0982 JK |
4245 | active = false; |
4246 | break; | |
4247 | } | |
4248 | } | |
4249 | if (!active) | |
871751e2 | 4250 | continue; |
b1cb0982 | 4251 | |
871751e2 AV |
4252 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) |
4253 | return; | |
4254 | } | |
4255 | } | |
4256 | ||
4257 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4258 | { | |
4259 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4260 | unsigned long offset, size; |
9281acea | 4261 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4262 | |
a5c43dae | 4263 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4264 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4265 | if (modname[0]) |
871751e2 AV |
4266 | seq_printf(m, " [%s]", modname); |
4267 | return; | |
4268 | } | |
4269 | #endif | |
4270 | seq_printf(m, "%p", (void *)address); | |
4271 | } | |
4272 | ||
4273 | static int leaks_show(struct seq_file *m, void *p) | |
4274 | { | |
0672aa7c | 4275 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
8456a648 | 4276 | struct page *page; |
ce8eb6c4 | 4277 | struct kmem_cache_node *n; |
871751e2 | 4278 | const char *name; |
db845067 | 4279 | unsigned long *x = m->private; |
871751e2 AV |
4280 | int node; |
4281 | int i; | |
4282 | ||
4283 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4284 | return 0; | |
4285 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4286 | return 0; | |
4287 | ||
4288 | /* OK, we can do it */ | |
4289 | ||
db845067 | 4290 | x[1] = 0; |
871751e2 AV |
4291 | |
4292 | for_each_online_node(node) { | |
ce8eb6c4 CL |
4293 | n = cachep->node[node]; |
4294 | if (!n) | |
871751e2 AV |
4295 | continue; |
4296 | ||
4297 | check_irq_on(); | |
ce8eb6c4 | 4298 | spin_lock_irq(&n->list_lock); |
871751e2 | 4299 | |
8456a648 JK |
4300 | list_for_each_entry(page, &n->slabs_full, lru) |
4301 | handle_slab(x, cachep, page); | |
4302 | list_for_each_entry(page, &n->slabs_partial, lru) | |
4303 | handle_slab(x, cachep, page); | |
ce8eb6c4 | 4304 | spin_unlock_irq(&n->list_lock); |
871751e2 AV |
4305 | } |
4306 | name = cachep->name; | |
db845067 | 4307 | if (x[0] == x[1]) { |
871751e2 | 4308 | /* Increase the buffer size */ |
18004c5d | 4309 | mutex_unlock(&slab_mutex); |
db845067 | 4310 | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
871751e2 AV |
4311 | if (!m->private) { |
4312 | /* Too bad, we are really out */ | |
db845067 | 4313 | m->private = x; |
18004c5d | 4314 | mutex_lock(&slab_mutex); |
871751e2 AV |
4315 | return -ENOMEM; |
4316 | } | |
db845067 CL |
4317 | *(unsigned long *)m->private = x[0] * 2; |
4318 | kfree(x); | |
18004c5d | 4319 | mutex_lock(&slab_mutex); |
871751e2 AV |
4320 | /* Now make sure this entry will be retried */ |
4321 | m->count = m->size; | |
4322 | return 0; | |
4323 | } | |
db845067 CL |
4324 | for (i = 0; i < x[1]; i++) { |
4325 | seq_printf(m, "%s: %lu ", name, x[2*i+3]); | |
4326 | show_symbol(m, x[2*i+2]); | |
871751e2 AV |
4327 | seq_putc(m, '\n'); |
4328 | } | |
d2e7b7d0 | 4329 | |
871751e2 AV |
4330 | return 0; |
4331 | } | |
4332 | ||
a0ec95a8 | 4333 | static const struct seq_operations slabstats_op = { |
871751e2 | 4334 | .start = leaks_start, |
276a2439 WL |
4335 | .next = slab_next, |
4336 | .stop = slab_stop, | |
871751e2 AV |
4337 | .show = leaks_show, |
4338 | }; | |
a0ec95a8 AD |
4339 | |
4340 | static int slabstats_open(struct inode *inode, struct file *file) | |
4341 | { | |
4342 | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | |
4343 | int ret = -ENOMEM; | |
4344 | if (n) { | |
4345 | ret = seq_open(file, &slabstats_op); | |
4346 | if (!ret) { | |
4347 | struct seq_file *m = file->private_data; | |
4348 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4349 | m->private = n; | |
4350 | n = NULL; | |
4351 | } | |
4352 | kfree(n); | |
4353 | } | |
4354 | return ret; | |
4355 | } | |
4356 | ||
4357 | static const struct file_operations proc_slabstats_operations = { | |
4358 | .open = slabstats_open, | |
4359 | .read = seq_read, | |
4360 | .llseek = seq_lseek, | |
4361 | .release = seq_release_private, | |
4362 | }; | |
4363 | #endif | |
4364 | ||
4365 | static int __init slab_proc_init(void) | |
4366 | { | |
4367 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4368 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4369 | #endif |
a0ec95a8 AD |
4370 | return 0; |
4371 | } | |
4372 | module_init(slab_proc_init); | |
1da177e4 LT |
4373 | #endif |
4374 | ||
00e145b6 MS |
4375 | /** |
4376 | * ksize - get the actual amount of memory allocated for a given object | |
4377 | * @objp: Pointer to the object | |
4378 | * | |
4379 | * kmalloc may internally round up allocations and return more memory | |
4380 | * than requested. ksize() can be used to determine the actual amount of | |
4381 | * memory allocated. The caller may use this additional memory, even though | |
4382 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4383 | * The caller must guarantee that objp points to a valid object previously | |
4384 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4385 | * must not be freed during the duration of the call. | |
4386 | */ | |
fd76bab2 | 4387 | size_t ksize(const void *objp) |
1da177e4 | 4388 | { |
ef8b4520 CL |
4389 | BUG_ON(!objp); |
4390 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4391 | return 0; |
1da177e4 | 4392 | |
8c138bc0 | 4393 | return virt_to_cache(objp)->object_size; |
1da177e4 | 4394 | } |
b1aabecd | 4395 | EXPORT_SYMBOL(ksize); |