]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/direct-io.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * O_DIRECT | |
7 | * | |
e1f8e874 | 8 | * 04Jul2002 Andrew Morton |
1da177e4 LT |
9 | * Initial version |
10 | * 11Sep2002 [email protected] | |
11 | * added readv/writev support. | |
e1f8e874 | 12 | * 29Oct2002 Andrew Morton |
1da177e4 LT |
13 | * rewrote bio_add_page() support. |
14 | * 30Oct2002 [email protected] | |
15 | * added support for non-aligned IO. | |
16 | * 06Nov2002 [email protected] | |
17 | * added asynchronous IO support. | |
18 | * 21Jul2003 [email protected] | |
19 | * added IO completion notifier. | |
20 | */ | |
21 | ||
22 | #include <linux/kernel.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/types.h> | |
25 | #include <linux/fs.h> | |
26 | #include <linux/mm.h> | |
27 | #include <linux/slab.h> | |
28 | #include <linux/highmem.h> | |
29 | #include <linux/pagemap.h> | |
98c4d57d | 30 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
31 | #include <linux/bio.h> |
32 | #include <linux/wait.h> | |
33 | #include <linux/err.h> | |
34 | #include <linux/blkdev.h> | |
35 | #include <linux/buffer_head.h> | |
36 | #include <linux/rwsem.h> | |
37 | #include <linux/uio.h> | |
38 | #include <asm/atomic.h> | |
39 | ||
40 | /* | |
41 | * How many user pages to map in one call to get_user_pages(). This determines | |
42 | * the size of a structure on the stack. | |
43 | */ | |
44 | #define DIO_PAGES 64 | |
45 | ||
46 | /* | |
47 | * This code generally works in units of "dio_blocks". A dio_block is | |
48 | * somewhere between the hard sector size and the filesystem block size. it | |
49 | * is determined on a per-invocation basis. When talking to the filesystem | |
50 | * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity | |
51 | * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted | |
52 | * to bio_block quantities by shifting left by blkfactor. | |
53 | * | |
54 | * If blkfactor is zero then the user's request was aligned to the filesystem's | |
55 | * blocksize. | |
56 | * | |
57 | * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. | |
58 | * This determines whether we need to do the fancy locking which prevents | |
59 | * direct-IO from being able to read uninitialised disk blocks. If its zero | |
1b1dcc1b | 60 | * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is |
1da177e4 LT |
61 | * not held for the entire direct write (taken briefly, initially, during a |
62 | * direct read though, but its never held for the duration of a direct-IO). | |
63 | */ | |
64 | ||
65 | struct dio { | |
66 | /* BIO submission state */ | |
67 | struct bio *bio; /* bio under assembly */ | |
68 | struct inode *inode; | |
69 | int rw; | |
29504ff3 | 70 | loff_t i_size; /* i_size when submitted */ |
1da177e4 LT |
71 | int lock_type; /* doesn't change */ |
72 | unsigned blkbits; /* doesn't change */ | |
73 | unsigned blkfactor; /* When we're using an alignment which | |
74 | is finer than the filesystem's soft | |
75 | blocksize, this specifies how much | |
76 | finer. blkfactor=2 means 1/4-block | |
77 | alignment. Does not change */ | |
78 | unsigned start_zero_done; /* flag: sub-blocksize zeroing has | |
79 | been performed at the start of a | |
80 | write */ | |
81 | int pages_in_io; /* approximate total IO pages */ | |
82 | size_t size; /* total request size (doesn't change)*/ | |
83 | sector_t block_in_file; /* Current offset into the underlying | |
84 | file in dio_block units. */ | |
85 | unsigned blocks_available; /* At block_in_file. changes */ | |
86 | sector_t final_block_in_request;/* doesn't change */ | |
87 | unsigned first_block_in_page; /* doesn't change, Used only once */ | |
88 | int boundary; /* prev block is at a boundary */ | |
89 | int reap_counter; /* rate limit reaping */ | |
1d8fa7a2 | 90 | get_block_t *get_block; /* block mapping function */ |
1da177e4 LT |
91 | dio_iodone_t *end_io; /* IO completion function */ |
92 | sector_t final_block_in_bio; /* current final block in bio + 1 */ | |
93 | sector_t next_block_for_io; /* next block to be put under IO, | |
94 | in dio_blocks units */ | |
1d8fa7a2 | 95 | struct buffer_head map_bh; /* last get_block() result */ |
1da177e4 LT |
96 | |
97 | /* | |
98 | * Deferred addition of a page to the dio. These variables are | |
99 | * private to dio_send_cur_page(), submit_page_section() and | |
100 | * dio_bio_add_page(). | |
101 | */ | |
102 | struct page *cur_page; /* The page */ | |
103 | unsigned cur_page_offset; /* Offset into it, in bytes */ | |
104 | unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ | |
105 | sector_t cur_page_block; /* Where it starts */ | |
106 | ||
107 | /* | |
108 | * Page fetching state. These variables belong to dio_refill_pages(). | |
109 | */ | |
110 | int curr_page; /* changes */ | |
111 | int total_pages; /* doesn't change */ | |
112 | unsigned long curr_user_address;/* changes */ | |
113 | ||
114 | /* | |
115 | * Page queue. These variables belong to dio_refill_pages() and | |
116 | * dio_get_page(). | |
117 | */ | |
118 | struct page *pages[DIO_PAGES]; /* page buffer */ | |
119 | unsigned head; /* next page to process */ | |
120 | unsigned tail; /* last valid page + 1 */ | |
121 | int page_errors; /* errno from get_user_pages() */ | |
122 | ||
123 | /* BIO completion state */ | |
124 | spinlock_t bio_lock; /* protects BIO fields below */ | |
5eb6c7a2 | 125 | unsigned long refcount; /* direct_io_worker() and bios */ |
1da177e4 LT |
126 | struct bio *bio_list; /* singly linked via bi_private */ |
127 | struct task_struct *waiter; /* waiting task (NULL if none) */ | |
128 | ||
129 | /* AIO related stuff */ | |
130 | struct kiocb *iocb; /* kiocb */ | |
131 | int is_async; /* is IO async ? */ | |
174e27c6 | 132 | int io_error; /* IO error in completion path */ |
1da177e4 LT |
133 | ssize_t result; /* IO result */ |
134 | }; | |
135 | ||
136 | /* | |
137 | * How many pages are in the queue? | |
138 | */ | |
139 | static inline unsigned dio_pages_present(struct dio *dio) | |
140 | { | |
141 | return dio->tail - dio->head; | |
142 | } | |
143 | ||
144 | /* | |
145 | * Go grab and pin some userspace pages. Typically we'll get 64 at a time. | |
146 | */ | |
147 | static int dio_refill_pages(struct dio *dio) | |
148 | { | |
149 | int ret; | |
150 | int nr_pages; | |
151 | ||
152 | nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); | |
f5dd33c4 | 153 | ret = get_user_pages_fast( |
1da177e4 LT |
154 | dio->curr_user_address, /* Where from? */ |
155 | nr_pages, /* How many pages? */ | |
156 | dio->rw == READ, /* Write to memory? */ | |
f5dd33c4 | 157 | &dio->pages[0]); /* Put results here */ |
1da177e4 | 158 | |
b31dc66a | 159 | if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { |
557ed1fa | 160 | struct page *page = ZERO_PAGE(0); |
1da177e4 LT |
161 | /* |
162 | * A memory fault, but the filesystem has some outstanding | |
163 | * mapped blocks. We need to use those blocks up to avoid | |
164 | * leaking stale data in the file. | |
165 | */ | |
166 | if (dio->page_errors == 0) | |
167 | dio->page_errors = ret; | |
b5810039 NP |
168 | page_cache_get(page); |
169 | dio->pages[0] = page; | |
1da177e4 LT |
170 | dio->head = 0; |
171 | dio->tail = 1; | |
172 | ret = 0; | |
173 | goto out; | |
174 | } | |
175 | ||
176 | if (ret >= 0) { | |
177 | dio->curr_user_address += ret * PAGE_SIZE; | |
178 | dio->curr_page += ret; | |
179 | dio->head = 0; | |
180 | dio->tail = ret; | |
181 | ret = 0; | |
182 | } | |
183 | out: | |
184 | return ret; | |
185 | } | |
186 | ||
187 | /* | |
188 | * Get another userspace page. Returns an ERR_PTR on error. Pages are | |
189 | * buffered inside the dio so that we can call get_user_pages() against a | |
190 | * decent number of pages, less frequently. To provide nicer use of the | |
191 | * L1 cache. | |
192 | */ | |
193 | static struct page *dio_get_page(struct dio *dio) | |
194 | { | |
195 | if (dio_pages_present(dio) == 0) { | |
196 | int ret; | |
197 | ||
198 | ret = dio_refill_pages(dio); | |
199 | if (ret) | |
200 | return ERR_PTR(ret); | |
201 | BUG_ON(dio_pages_present(dio) == 0); | |
202 | } | |
203 | return dio->pages[dio->head++]; | |
204 | } | |
205 | ||
6d544bb4 ZB |
206 | /** |
207 | * dio_complete() - called when all DIO BIO I/O has been completed | |
208 | * @offset: the byte offset in the file of the completed operation | |
209 | * | |
210 | * This releases locks as dictated by the locking type, lets interested parties | |
211 | * know that a DIO operation has completed, and calculates the resulting return | |
212 | * code for the operation. | |
213 | * | |
214 | * It lets the filesystem know if it registered an interest earlier via | |
215 | * get_block. Pass the private field of the map buffer_head so that | |
216 | * filesystems can use it to hold additional state between get_block calls and | |
217 | * dio_complete. | |
1da177e4 | 218 | */ |
6d544bb4 | 219 | static int dio_complete(struct dio *dio, loff_t offset, int ret) |
1da177e4 | 220 | { |
6d544bb4 ZB |
221 | ssize_t transferred = 0; |
222 | ||
8459d86a ZB |
223 | /* |
224 | * AIO submission can race with bio completion to get here while | |
225 | * expecting to have the last io completed by bio completion. | |
226 | * In that case -EIOCBQUEUED is in fact not an error we want | |
227 | * to preserve through this call. | |
228 | */ | |
229 | if (ret == -EIOCBQUEUED) | |
230 | ret = 0; | |
231 | ||
6d544bb4 ZB |
232 | if (dio->result) { |
233 | transferred = dio->result; | |
234 | ||
235 | /* Check for short read case */ | |
236 | if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) | |
237 | transferred = dio->i_size - offset; | |
238 | } | |
239 | ||
1da177e4 | 240 | if (dio->end_io && dio->result) |
6d544bb4 ZB |
241 | dio->end_io(dio->iocb, offset, transferred, |
242 | dio->map_bh.b_private); | |
1da177e4 | 243 | if (dio->lock_type == DIO_LOCKING) |
d8aa905b IM |
244 | /* lockdep: non-owner release */ |
245 | up_read_non_owner(&dio->inode->i_alloc_sem); | |
6d544bb4 ZB |
246 | |
247 | if (ret == 0) | |
248 | ret = dio->page_errors; | |
249 | if (ret == 0) | |
250 | ret = dio->io_error; | |
251 | if (ret == 0) | |
252 | ret = transferred; | |
253 | ||
254 | return ret; | |
1da177e4 LT |
255 | } |
256 | ||
1da177e4 LT |
257 | static int dio_bio_complete(struct dio *dio, struct bio *bio); |
258 | /* | |
259 | * Asynchronous IO callback. | |
260 | */ | |
6712ecf8 | 261 | static void dio_bio_end_aio(struct bio *bio, int error) |
1da177e4 LT |
262 | { |
263 | struct dio *dio = bio->bi_private; | |
5eb6c7a2 ZB |
264 | unsigned long remaining; |
265 | unsigned long flags; | |
1da177e4 | 266 | |
1da177e4 LT |
267 | /* cleanup the bio */ |
268 | dio_bio_complete(dio, bio); | |
0273201e | 269 | |
5eb6c7a2 ZB |
270 | spin_lock_irqsave(&dio->bio_lock, flags); |
271 | remaining = --dio->refcount; | |
272 | if (remaining == 1 && dio->waiter) | |
20258b2b | 273 | wake_up_process(dio->waiter); |
5eb6c7a2 | 274 | spin_unlock_irqrestore(&dio->bio_lock, flags); |
20258b2b | 275 | |
8459d86a ZB |
276 | if (remaining == 0) { |
277 | int ret = dio_complete(dio, dio->iocb->ki_pos, 0); | |
278 | aio_complete(dio->iocb, ret, 0); | |
279 | kfree(dio); | |
280 | } | |
1da177e4 LT |
281 | } |
282 | ||
283 | /* | |
284 | * The BIO completion handler simply queues the BIO up for the process-context | |
285 | * handler. | |
286 | * | |
287 | * During I/O bi_private points at the dio. After I/O, bi_private is used to | |
288 | * implement a singly-linked list of completed BIOs, at dio->bio_list. | |
289 | */ | |
6712ecf8 | 290 | static void dio_bio_end_io(struct bio *bio, int error) |
1da177e4 LT |
291 | { |
292 | struct dio *dio = bio->bi_private; | |
293 | unsigned long flags; | |
294 | ||
1da177e4 LT |
295 | spin_lock_irqsave(&dio->bio_lock, flags); |
296 | bio->bi_private = dio->bio_list; | |
297 | dio->bio_list = bio; | |
5eb6c7a2 | 298 | if (--dio->refcount == 1 && dio->waiter) |
1da177e4 LT |
299 | wake_up_process(dio->waiter); |
300 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
1da177e4 LT |
301 | } |
302 | ||
303 | static int | |
304 | dio_bio_alloc(struct dio *dio, struct block_device *bdev, | |
305 | sector_t first_sector, int nr_vecs) | |
306 | { | |
307 | struct bio *bio; | |
308 | ||
309 | bio = bio_alloc(GFP_KERNEL, nr_vecs); | |
1da177e4 LT |
310 | |
311 | bio->bi_bdev = bdev; | |
312 | bio->bi_sector = first_sector; | |
313 | if (dio->is_async) | |
314 | bio->bi_end_io = dio_bio_end_aio; | |
315 | else | |
316 | bio->bi_end_io = dio_bio_end_io; | |
317 | ||
318 | dio->bio = bio; | |
319 | return 0; | |
320 | } | |
321 | ||
322 | /* | |
323 | * In the AIO read case we speculatively dirty the pages before starting IO. | |
324 | * During IO completion, any of these pages which happen to have been written | |
325 | * back will be redirtied by bio_check_pages_dirty(). | |
0273201e ZB |
326 | * |
327 | * bios hold a dio reference between submit_bio and ->end_io. | |
1da177e4 LT |
328 | */ |
329 | static void dio_bio_submit(struct dio *dio) | |
330 | { | |
331 | struct bio *bio = dio->bio; | |
5eb6c7a2 | 332 | unsigned long flags; |
1da177e4 LT |
333 | |
334 | bio->bi_private = dio; | |
5eb6c7a2 ZB |
335 | |
336 | spin_lock_irqsave(&dio->bio_lock, flags); | |
337 | dio->refcount++; | |
338 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
339 | ||
1da177e4 LT |
340 | if (dio->is_async && dio->rw == READ) |
341 | bio_set_pages_dirty(bio); | |
5eb6c7a2 | 342 | |
1da177e4 LT |
343 | submit_bio(dio->rw, bio); |
344 | ||
345 | dio->bio = NULL; | |
346 | dio->boundary = 0; | |
347 | } | |
348 | ||
349 | /* | |
350 | * Release any resources in case of a failure | |
351 | */ | |
352 | static void dio_cleanup(struct dio *dio) | |
353 | { | |
354 | while (dio_pages_present(dio)) | |
355 | page_cache_release(dio_get_page(dio)); | |
356 | } | |
357 | ||
358 | /* | |
0273201e ZB |
359 | * Wait for the next BIO to complete. Remove it and return it. NULL is |
360 | * returned once all BIOs have been completed. This must only be called once | |
361 | * all bios have been issued so that dio->refcount can only decrease. This | |
362 | * requires that that the caller hold a reference on the dio. | |
1da177e4 LT |
363 | */ |
364 | static struct bio *dio_await_one(struct dio *dio) | |
365 | { | |
366 | unsigned long flags; | |
0273201e | 367 | struct bio *bio = NULL; |
1da177e4 LT |
368 | |
369 | spin_lock_irqsave(&dio->bio_lock, flags); | |
5eb6c7a2 ZB |
370 | |
371 | /* | |
372 | * Wait as long as the list is empty and there are bios in flight. bio | |
373 | * completion drops the count, maybe adds to the list, and wakes while | |
374 | * holding the bio_lock so we don't need set_current_state()'s barrier | |
375 | * and can call it after testing our condition. | |
376 | */ | |
377 | while (dio->refcount > 1 && dio->bio_list == NULL) { | |
378 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
379 | dio->waiter = current; | |
380 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
381 | io_schedule(); | |
382 | /* wake up sets us TASK_RUNNING */ | |
383 | spin_lock_irqsave(&dio->bio_lock, flags); | |
384 | dio->waiter = NULL; | |
1da177e4 | 385 | } |
0273201e ZB |
386 | if (dio->bio_list) { |
387 | bio = dio->bio_list; | |
388 | dio->bio_list = bio->bi_private; | |
389 | } | |
1da177e4 LT |
390 | spin_unlock_irqrestore(&dio->bio_lock, flags); |
391 | return bio; | |
392 | } | |
393 | ||
394 | /* | |
395 | * Process one completed BIO. No locks are held. | |
396 | */ | |
397 | static int dio_bio_complete(struct dio *dio, struct bio *bio) | |
398 | { | |
399 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
400 | struct bio_vec *bvec = bio->bi_io_vec; | |
401 | int page_no; | |
402 | ||
403 | if (!uptodate) | |
174e27c6 | 404 | dio->io_error = -EIO; |
1da177e4 LT |
405 | |
406 | if (dio->is_async && dio->rw == READ) { | |
407 | bio_check_pages_dirty(bio); /* transfers ownership */ | |
408 | } else { | |
409 | for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { | |
410 | struct page *page = bvec[page_no].bv_page; | |
411 | ||
412 | if (dio->rw == READ && !PageCompound(page)) | |
413 | set_page_dirty_lock(page); | |
414 | page_cache_release(page); | |
415 | } | |
416 | bio_put(bio); | |
417 | } | |
1da177e4 LT |
418 | return uptodate ? 0 : -EIO; |
419 | } | |
420 | ||
421 | /* | |
0273201e ZB |
422 | * Wait on and process all in-flight BIOs. This must only be called once |
423 | * all bios have been issued so that the refcount can only decrease. | |
424 | * This just waits for all bios to make it through dio_bio_complete. IO | |
beb7dd86 | 425 | * errors are propagated through dio->io_error and should be propagated via |
0273201e | 426 | * dio_complete(). |
1da177e4 | 427 | */ |
6d544bb4 | 428 | static void dio_await_completion(struct dio *dio) |
1da177e4 | 429 | { |
0273201e ZB |
430 | struct bio *bio; |
431 | do { | |
432 | bio = dio_await_one(dio); | |
433 | if (bio) | |
434 | dio_bio_complete(dio, bio); | |
435 | } while (bio); | |
1da177e4 LT |
436 | } |
437 | ||
438 | /* | |
439 | * A really large O_DIRECT read or write can generate a lot of BIOs. So | |
440 | * to keep the memory consumption sane we periodically reap any completed BIOs | |
441 | * during the BIO generation phase. | |
442 | * | |
443 | * This also helps to limit the peak amount of pinned userspace memory. | |
444 | */ | |
445 | static int dio_bio_reap(struct dio *dio) | |
446 | { | |
447 | int ret = 0; | |
448 | ||
449 | if (dio->reap_counter++ >= 64) { | |
450 | while (dio->bio_list) { | |
451 | unsigned long flags; | |
452 | struct bio *bio; | |
453 | int ret2; | |
454 | ||
455 | spin_lock_irqsave(&dio->bio_lock, flags); | |
456 | bio = dio->bio_list; | |
457 | dio->bio_list = bio->bi_private; | |
458 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
459 | ret2 = dio_bio_complete(dio, bio); | |
460 | if (ret == 0) | |
461 | ret = ret2; | |
462 | } | |
463 | dio->reap_counter = 0; | |
464 | } | |
465 | return ret; | |
466 | } | |
467 | ||
468 | /* | |
469 | * Call into the fs to map some more disk blocks. We record the current number | |
470 | * of available blocks at dio->blocks_available. These are in units of the | |
471 | * fs blocksize, (1 << inode->i_blkbits). | |
472 | * | |
473 | * The fs is allowed to map lots of blocks at once. If it wants to do that, | |
474 | * it uses the passed inode-relative block number as the file offset, as usual. | |
475 | * | |
1d8fa7a2 | 476 | * get_block() is passed the number of i_blkbits-sized blocks which direct_io |
1da177e4 LT |
477 | * has remaining to do. The fs should not map more than this number of blocks. |
478 | * | |
479 | * If the fs has mapped a lot of blocks, it should populate bh->b_size to | |
480 | * indicate how much contiguous disk space has been made available at | |
481 | * bh->b_blocknr. | |
482 | * | |
483 | * If *any* of the mapped blocks are new, then the fs must set buffer_new(). | |
484 | * This isn't very efficient... | |
485 | * | |
486 | * In the case of filesystem holes: the fs may return an arbitrarily-large | |
487 | * hole by returning an appropriate value in b_size and by clearing | |
488 | * buffer_mapped(). However the direct-io code will only process holes one | |
1d8fa7a2 | 489 | * block at a time - it will repeatedly call get_block() as it walks the hole. |
1da177e4 LT |
490 | */ |
491 | static int get_more_blocks(struct dio *dio) | |
492 | { | |
493 | int ret; | |
494 | struct buffer_head *map_bh = &dio->map_bh; | |
495 | sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ | |
496 | unsigned long fs_count; /* Number of filesystem-sized blocks */ | |
497 | unsigned long dio_count;/* Number of dio_block-sized blocks */ | |
498 | unsigned long blkmask; | |
499 | int create; | |
500 | ||
501 | /* | |
502 | * If there was a memory error and we've overwritten all the | |
503 | * mapped blocks then we can now return that memory error | |
504 | */ | |
505 | ret = dio->page_errors; | |
506 | if (ret == 0) { | |
1da177e4 LT |
507 | BUG_ON(dio->block_in_file >= dio->final_block_in_request); |
508 | fs_startblk = dio->block_in_file >> dio->blkfactor; | |
509 | dio_count = dio->final_block_in_request - dio->block_in_file; | |
510 | fs_count = dio_count >> dio->blkfactor; | |
511 | blkmask = (1 << dio->blkfactor) - 1; | |
512 | if (dio_count & blkmask) | |
513 | fs_count++; | |
514 | ||
3c674e74 NS |
515 | map_bh->b_state = 0; |
516 | map_bh->b_size = fs_count << dio->inode->i_blkbits; | |
517 | ||
b31dc66a | 518 | create = dio->rw & WRITE; |
1da177e4 LT |
519 | if (dio->lock_type == DIO_LOCKING) { |
520 | if (dio->block_in_file < (i_size_read(dio->inode) >> | |
521 | dio->blkbits)) | |
522 | create = 0; | |
523 | } else if (dio->lock_type == DIO_NO_LOCKING) { | |
524 | create = 0; | |
525 | } | |
3c674e74 | 526 | |
1da177e4 LT |
527 | /* |
528 | * For writes inside i_size we forbid block creations: only | |
529 | * overwrites are permitted. We fall back to buffered writes | |
530 | * at a higher level for inside-i_size block-instantiating | |
531 | * writes. | |
532 | */ | |
1d8fa7a2 | 533 | ret = (*dio->get_block)(dio->inode, fs_startblk, |
1da177e4 LT |
534 | map_bh, create); |
535 | } | |
536 | return ret; | |
537 | } | |
538 | ||
539 | /* | |
540 | * There is no bio. Make one now. | |
541 | */ | |
542 | static int dio_new_bio(struct dio *dio, sector_t start_sector) | |
543 | { | |
544 | sector_t sector; | |
545 | int ret, nr_pages; | |
546 | ||
547 | ret = dio_bio_reap(dio); | |
548 | if (ret) | |
549 | goto out; | |
550 | sector = start_sector << (dio->blkbits - 9); | |
551 | nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); | |
552 | BUG_ON(nr_pages <= 0); | |
553 | ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); | |
554 | dio->boundary = 0; | |
555 | out: | |
556 | return ret; | |
557 | } | |
558 | ||
559 | /* | |
560 | * Attempt to put the current chunk of 'cur_page' into the current BIO. If | |
561 | * that was successful then update final_block_in_bio and take a ref against | |
562 | * the just-added page. | |
563 | * | |
564 | * Return zero on success. Non-zero means the caller needs to start a new BIO. | |
565 | */ | |
566 | static int dio_bio_add_page(struct dio *dio) | |
567 | { | |
568 | int ret; | |
569 | ||
570 | ret = bio_add_page(dio->bio, dio->cur_page, | |
571 | dio->cur_page_len, dio->cur_page_offset); | |
572 | if (ret == dio->cur_page_len) { | |
573 | /* | |
574 | * Decrement count only, if we are done with this page | |
575 | */ | |
576 | if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) | |
577 | dio->pages_in_io--; | |
578 | page_cache_get(dio->cur_page); | |
579 | dio->final_block_in_bio = dio->cur_page_block + | |
580 | (dio->cur_page_len >> dio->blkbits); | |
581 | ret = 0; | |
582 | } else { | |
583 | ret = 1; | |
584 | } | |
585 | return ret; | |
586 | } | |
587 | ||
588 | /* | |
589 | * Put cur_page under IO. The section of cur_page which is described by | |
590 | * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page | |
591 | * starts on-disk at cur_page_block. | |
592 | * | |
593 | * We take a ref against the page here (on behalf of its presence in the bio). | |
594 | * | |
595 | * The caller of this function is responsible for removing cur_page from the | |
596 | * dio, and for dropping the refcount which came from that presence. | |
597 | */ | |
598 | static int dio_send_cur_page(struct dio *dio) | |
599 | { | |
600 | int ret = 0; | |
601 | ||
602 | if (dio->bio) { | |
603 | /* | |
604 | * See whether this new request is contiguous with the old | |
605 | */ | |
606 | if (dio->final_block_in_bio != dio->cur_page_block) | |
607 | dio_bio_submit(dio); | |
608 | /* | |
609 | * Submit now if the underlying fs is about to perform a | |
610 | * metadata read | |
611 | */ | |
612 | if (dio->boundary) | |
613 | dio_bio_submit(dio); | |
614 | } | |
615 | ||
616 | if (dio->bio == NULL) { | |
617 | ret = dio_new_bio(dio, dio->cur_page_block); | |
618 | if (ret) | |
619 | goto out; | |
620 | } | |
621 | ||
622 | if (dio_bio_add_page(dio) != 0) { | |
623 | dio_bio_submit(dio); | |
624 | ret = dio_new_bio(dio, dio->cur_page_block); | |
625 | if (ret == 0) { | |
626 | ret = dio_bio_add_page(dio); | |
627 | BUG_ON(ret != 0); | |
628 | } | |
629 | } | |
630 | out: | |
631 | return ret; | |
632 | } | |
633 | ||
634 | /* | |
635 | * An autonomous function to put a chunk of a page under deferred IO. | |
636 | * | |
637 | * The caller doesn't actually know (or care) whether this piece of page is in | |
638 | * a BIO, or is under IO or whatever. We just take care of all possible | |
639 | * situations here. The separation between the logic of do_direct_IO() and | |
640 | * that of submit_page_section() is important for clarity. Please don't break. | |
641 | * | |
642 | * The chunk of page starts on-disk at blocknr. | |
643 | * | |
644 | * We perform deferred IO, by recording the last-submitted page inside our | |
645 | * private part of the dio structure. If possible, we just expand the IO | |
646 | * across that page here. | |
647 | * | |
648 | * If that doesn't work out then we put the old page into the bio and add this | |
649 | * page to the dio instead. | |
650 | */ | |
651 | static int | |
652 | submit_page_section(struct dio *dio, struct page *page, | |
653 | unsigned offset, unsigned len, sector_t blocknr) | |
654 | { | |
655 | int ret = 0; | |
656 | ||
98c4d57d AM |
657 | if (dio->rw & WRITE) { |
658 | /* | |
659 | * Read accounting is performed in submit_bio() | |
660 | */ | |
661 | task_io_account_write(len); | |
662 | } | |
663 | ||
1da177e4 LT |
664 | /* |
665 | * Can we just grow the current page's presence in the dio? | |
666 | */ | |
667 | if ( (dio->cur_page == page) && | |
668 | (dio->cur_page_offset + dio->cur_page_len == offset) && | |
669 | (dio->cur_page_block + | |
670 | (dio->cur_page_len >> dio->blkbits) == blocknr)) { | |
671 | dio->cur_page_len += len; | |
672 | ||
673 | /* | |
674 | * If dio->boundary then we want to schedule the IO now to | |
675 | * avoid metadata seeks. | |
676 | */ | |
677 | if (dio->boundary) { | |
678 | ret = dio_send_cur_page(dio); | |
679 | page_cache_release(dio->cur_page); | |
680 | dio->cur_page = NULL; | |
681 | } | |
682 | goto out; | |
683 | } | |
684 | ||
685 | /* | |
686 | * If there's a deferred page already there then send it. | |
687 | */ | |
688 | if (dio->cur_page) { | |
689 | ret = dio_send_cur_page(dio); | |
690 | page_cache_release(dio->cur_page); | |
691 | dio->cur_page = NULL; | |
692 | if (ret) | |
693 | goto out; | |
694 | } | |
695 | ||
696 | page_cache_get(page); /* It is in dio */ | |
697 | dio->cur_page = page; | |
698 | dio->cur_page_offset = offset; | |
699 | dio->cur_page_len = len; | |
700 | dio->cur_page_block = blocknr; | |
701 | out: | |
702 | return ret; | |
703 | } | |
704 | ||
705 | /* | |
706 | * Clean any dirty buffers in the blockdev mapping which alias newly-created | |
707 | * file blocks. Only called for S_ISREG files - blockdevs do not set | |
708 | * buffer_new | |
709 | */ | |
710 | static void clean_blockdev_aliases(struct dio *dio) | |
711 | { | |
712 | unsigned i; | |
713 | unsigned nblocks; | |
714 | ||
715 | nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; | |
716 | ||
717 | for (i = 0; i < nblocks; i++) { | |
718 | unmap_underlying_metadata(dio->map_bh.b_bdev, | |
719 | dio->map_bh.b_blocknr + i); | |
720 | } | |
721 | } | |
722 | ||
723 | /* | |
724 | * If we are not writing the entire block and get_block() allocated | |
725 | * the block for us, we need to fill-in the unused portion of the | |
726 | * block with zeros. This happens only if user-buffer, fileoffset or | |
727 | * io length is not filesystem block-size multiple. | |
728 | * | |
729 | * `end' is zero if we're doing the start of the IO, 1 at the end of the | |
730 | * IO. | |
731 | */ | |
732 | static void dio_zero_block(struct dio *dio, int end) | |
733 | { | |
734 | unsigned dio_blocks_per_fs_block; | |
735 | unsigned this_chunk_blocks; /* In dio_blocks */ | |
736 | unsigned this_chunk_bytes; | |
737 | struct page *page; | |
738 | ||
739 | dio->start_zero_done = 1; | |
740 | if (!dio->blkfactor || !buffer_new(&dio->map_bh)) | |
741 | return; | |
742 | ||
743 | dio_blocks_per_fs_block = 1 << dio->blkfactor; | |
744 | this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); | |
745 | ||
746 | if (!this_chunk_blocks) | |
747 | return; | |
748 | ||
749 | /* | |
750 | * We need to zero out part of an fs block. It is either at the | |
751 | * beginning or the end of the fs block. | |
752 | */ | |
753 | if (end) | |
754 | this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; | |
755 | ||
756 | this_chunk_bytes = this_chunk_blocks << dio->blkbits; | |
757 | ||
557ed1fa | 758 | page = ZERO_PAGE(0); |
1da177e4 LT |
759 | if (submit_page_section(dio, page, 0, this_chunk_bytes, |
760 | dio->next_block_for_io)) | |
761 | return; | |
762 | ||
763 | dio->next_block_for_io += this_chunk_blocks; | |
764 | } | |
765 | ||
766 | /* | |
767 | * Walk the user pages, and the file, mapping blocks to disk and generating | |
768 | * a sequence of (page,offset,len,block) mappings. These mappings are injected | |
769 | * into submit_page_section(), which takes care of the next stage of submission | |
770 | * | |
771 | * Direct IO against a blockdev is different from a file. Because we can | |
772 | * happily perform page-sized but 512-byte aligned IOs. It is important that | |
773 | * blockdev IO be able to have fine alignment and large sizes. | |
774 | * | |
1d8fa7a2 | 775 | * So what we do is to permit the ->get_block function to populate bh.b_size |
1da177e4 LT |
776 | * with the size of IO which is permitted at this offset and this i_blkbits. |
777 | * | |
778 | * For best results, the blockdev should be set up with 512-byte i_blkbits and | |
1d8fa7a2 | 779 | * it should set b_size to PAGE_SIZE or more inside get_block(). This gives |
1da177e4 LT |
780 | * fine alignment but still allows this function to work in PAGE_SIZE units. |
781 | */ | |
782 | static int do_direct_IO(struct dio *dio) | |
783 | { | |
784 | const unsigned blkbits = dio->blkbits; | |
785 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | |
786 | struct page *page; | |
787 | unsigned block_in_page; | |
788 | struct buffer_head *map_bh = &dio->map_bh; | |
789 | int ret = 0; | |
790 | ||
791 | /* The I/O can start at any block offset within the first page */ | |
792 | block_in_page = dio->first_block_in_page; | |
793 | ||
794 | while (dio->block_in_file < dio->final_block_in_request) { | |
795 | page = dio_get_page(dio); | |
796 | if (IS_ERR(page)) { | |
797 | ret = PTR_ERR(page); | |
798 | goto out; | |
799 | } | |
800 | ||
801 | while (block_in_page < blocks_per_page) { | |
802 | unsigned offset_in_page = block_in_page << blkbits; | |
803 | unsigned this_chunk_bytes; /* # of bytes mapped */ | |
804 | unsigned this_chunk_blocks; /* # of blocks */ | |
805 | unsigned u; | |
806 | ||
807 | if (dio->blocks_available == 0) { | |
808 | /* | |
809 | * Need to go and map some more disk | |
810 | */ | |
811 | unsigned long blkmask; | |
812 | unsigned long dio_remainder; | |
813 | ||
814 | ret = get_more_blocks(dio); | |
815 | if (ret) { | |
816 | page_cache_release(page); | |
817 | goto out; | |
818 | } | |
819 | if (!buffer_mapped(map_bh)) | |
820 | goto do_holes; | |
821 | ||
822 | dio->blocks_available = | |
823 | map_bh->b_size >> dio->blkbits; | |
824 | dio->next_block_for_io = | |
825 | map_bh->b_blocknr << dio->blkfactor; | |
826 | if (buffer_new(map_bh)) | |
827 | clean_blockdev_aliases(dio); | |
828 | ||
829 | if (!dio->blkfactor) | |
830 | goto do_holes; | |
831 | ||
832 | blkmask = (1 << dio->blkfactor) - 1; | |
833 | dio_remainder = (dio->block_in_file & blkmask); | |
834 | ||
835 | /* | |
836 | * If we are at the start of IO and that IO | |
837 | * starts partway into a fs-block, | |
838 | * dio_remainder will be non-zero. If the IO | |
839 | * is a read then we can simply advance the IO | |
840 | * cursor to the first block which is to be | |
841 | * read. But if the IO is a write and the | |
842 | * block was newly allocated we cannot do that; | |
843 | * the start of the fs block must be zeroed out | |
844 | * on-disk | |
845 | */ | |
846 | if (!buffer_new(map_bh)) | |
847 | dio->next_block_for_io += dio_remainder; | |
848 | dio->blocks_available -= dio_remainder; | |
849 | } | |
850 | do_holes: | |
851 | /* Handle holes */ | |
852 | if (!buffer_mapped(map_bh)) { | |
35dc8161 | 853 | loff_t i_size_aligned; |
1da177e4 LT |
854 | |
855 | /* AKPM: eargh, -ENOTBLK is a hack */ | |
b31dc66a | 856 | if (dio->rw & WRITE) { |
1da177e4 LT |
857 | page_cache_release(page); |
858 | return -ENOTBLK; | |
859 | } | |
860 | ||
35dc8161 JM |
861 | /* |
862 | * Be sure to account for a partial block as the | |
863 | * last block in the file | |
864 | */ | |
865 | i_size_aligned = ALIGN(i_size_read(dio->inode), | |
866 | 1 << blkbits); | |
1da177e4 | 867 | if (dio->block_in_file >= |
35dc8161 | 868 | i_size_aligned >> blkbits) { |
1da177e4 LT |
869 | /* We hit eof */ |
870 | page_cache_release(page); | |
871 | goto out; | |
872 | } | |
eebd2aa3 CL |
873 | zero_user(page, block_in_page << blkbits, |
874 | 1 << blkbits); | |
1da177e4 LT |
875 | dio->block_in_file++; |
876 | block_in_page++; | |
877 | goto next_block; | |
878 | } | |
879 | ||
880 | /* | |
881 | * If we're performing IO which has an alignment which | |
882 | * is finer than the underlying fs, go check to see if | |
883 | * we must zero out the start of this block. | |
884 | */ | |
885 | if (unlikely(dio->blkfactor && !dio->start_zero_done)) | |
886 | dio_zero_block(dio, 0); | |
887 | ||
888 | /* | |
889 | * Work out, in this_chunk_blocks, how much disk we | |
890 | * can add to this page | |
891 | */ | |
892 | this_chunk_blocks = dio->blocks_available; | |
893 | u = (PAGE_SIZE - offset_in_page) >> blkbits; | |
894 | if (this_chunk_blocks > u) | |
895 | this_chunk_blocks = u; | |
896 | u = dio->final_block_in_request - dio->block_in_file; | |
897 | if (this_chunk_blocks > u) | |
898 | this_chunk_blocks = u; | |
899 | this_chunk_bytes = this_chunk_blocks << blkbits; | |
900 | BUG_ON(this_chunk_bytes == 0); | |
901 | ||
902 | dio->boundary = buffer_boundary(map_bh); | |
903 | ret = submit_page_section(dio, page, offset_in_page, | |
904 | this_chunk_bytes, dio->next_block_for_io); | |
905 | if (ret) { | |
906 | page_cache_release(page); | |
907 | goto out; | |
908 | } | |
909 | dio->next_block_for_io += this_chunk_blocks; | |
910 | ||
911 | dio->block_in_file += this_chunk_blocks; | |
912 | block_in_page += this_chunk_blocks; | |
913 | dio->blocks_available -= this_chunk_blocks; | |
914 | next_block: | |
d4569d2e | 915 | BUG_ON(dio->block_in_file > dio->final_block_in_request); |
1da177e4 LT |
916 | if (dio->block_in_file == dio->final_block_in_request) |
917 | break; | |
918 | } | |
919 | ||
920 | /* Drop the ref which was taken in get_user_pages() */ | |
921 | page_cache_release(page); | |
922 | block_in_page = 0; | |
923 | } | |
924 | out: | |
925 | return ret; | |
926 | } | |
927 | ||
928 | /* | |
1b1dcc1b | 929 | * Releases both i_mutex and i_alloc_sem |
1da177e4 LT |
930 | */ |
931 | static ssize_t | |
932 | direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, | |
933 | const struct iovec *iov, loff_t offset, unsigned long nr_segs, | |
1d8fa7a2 | 934 | unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, |
1da177e4 LT |
935 | struct dio *dio) |
936 | { | |
937 | unsigned long user_addr; | |
5eb6c7a2 | 938 | unsigned long flags; |
1da177e4 LT |
939 | int seg; |
940 | ssize_t ret = 0; | |
941 | ssize_t ret2; | |
942 | size_t bytes; | |
943 | ||
1da177e4 LT |
944 | dio->inode = inode; |
945 | dio->rw = rw; | |
946 | dio->blkbits = blkbits; | |
947 | dio->blkfactor = inode->i_blkbits - blkbits; | |
1da177e4 | 948 | dio->block_in_file = offset >> blkbits; |
1da177e4 | 949 | |
1d8fa7a2 | 950 | dio->get_block = get_block; |
1da177e4 | 951 | dio->end_io = end_io; |
1da177e4 LT |
952 | dio->final_block_in_bio = -1; |
953 | dio->next_block_for_io = -1; | |
954 | ||
1da177e4 | 955 | dio->iocb = iocb; |
29504ff3 | 956 | dio->i_size = i_size_read(inode); |
1da177e4 | 957 | |
1da177e4 | 958 | spin_lock_init(&dio->bio_lock); |
5eb6c7a2 | 959 | dio->refcount = 1; |
1da177e4 LT |
960 | |
961 | /* | |
962 | * In case of non-aligned buffers, we may need 2 more | |
963 | * pages since we need to zero out first and last block. | |
964 | */ | |
965 | if (unlikely(dio->blkfactor)) | |
966 | dio->pages_in_io = 2; | |
1da177e4 LT |
967 | |
968 | for (seg = 0; seg < nr_segs; seg++) { | |
969 | user_addr = (unsigned long)iov[seg].iov_base; | |
970 | dio->pages_in_io += | |
971 | ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE | |
972 | - user_addr/PAGE_SIZE); | |
973 | } | |
974 | ||
975 | for (seg = 0; seg < nr_segs; seg++) { | |
976 | user_addr = (unsigned long)iov[seg].iov_base; | |
977 | dio->size += bytes = iov[seg].iov_len; | |
978 | ||
979 | /* Index into the first page of the first block */ | |
980 | dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; | |
981 | dio->final_block_in_request = dio->block_in_file + | |
982 | (bytes >> blkbits); | |
983 | /* Page fetching state */ | |
984 | dio->head = 0; | |
985 | dio->tail = 0; | |
986 | dio->curr_page = 0; | |
987 | ||
988 | dio->total_pages = 0; | |
989 | if (user_addr & (PAGE_SIZE-1)) { | |
990 | dio->total_pages++; | |
991 | bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); | |
992 | } | |
993 | dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; | |
994 | dio->curr_user_address = user_addr; | |
995 | ||
996 | ret = do_direct_IO(dio); | |
997 | ||
998 | dio->result += iov[seg].iov_len - | |
999 | ((dio->final_block_in_request - dio->block_in_file) << | |
1000 | blkbits); | |
1001 | ||
1002 | if (ret) { | |
1003 | dio_cleanup(dio); | |
1004 | break; | |
1005 | } | |
1006 | } /* end iovec loop */ | |
1007 | ||
b31dc66a | 1008 | if (ret == -ENOTBLK && (rw & WRITE)) { |
1da177e4 LT |
1009 | /* |
1010 | * The remaining part of the request will be | |
1011 | * be handled by buffered I/O when we return | |
1012 | */ | |
1013 | ret = 0; | |
1014 | } | |
1015 | /* | |
1016 | * There may be some unwritten disk at the end of a part-written | |
1017 | * fs-block-sized block. Go zero that now. | |
1018 | */ | |
1019 | dio_zero_block(dio, 1); | |
1020 | ||
1021 | if (dio->cur_page) { | |
1022 | ret2 = dio_send_cur_page(dio); | |
1023 | if (ret == 0) | |
1024 | ret = ret2; | |
1025 | page_cache_release(dio->cur_page); | |
1026 | dio->cur_page = NULL; | |
1027 | } | |
1028 | if (dio->bio) | |
1029 | dio_bio_submit(dio); | |
1030 | ||
17a7b1d7 ZB |
1031 | /* All IO is now issued, send it on its way */ |
1032 | blk_run_address_space(inode->i_mapping); | |
1033 | ||
1da177e4 LT |
1034 | /* |
1035 | * It is possible that, we return short IO due to end of file. | |
1036 | * In that case, we need to release all the pages we got hold on. | |
1037 | */ | |
1038 | dio_cleanup(dio); | |
1039 | ||
1040 | /* | |
1041 | * All block lookups have been performed. For READ requests | |
1b1dcc1b | 1042 | * we can let i_mutex go now that its achieved its purpose |
1da177e4 LT |
1043 | * of protecting us from looking up uninitialized blocks. |
1044 | */ | |
1045 | if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) | |
1b1dcc1b | 1046 | mutex_unlock(&dio->inode->i_mutex); |
1da177e4 LT |
1047 | |
1048 | /* | |
8459d86a ZB |
1049 | * The only time we want to leave bios in flight is when a successful |
1050 | * partial aio read or full aio write have been setup. In that case | |
1051 | * bio completion will call aio_complete. The only time it's safe to | |
1052 | * call aio_complete is when we return -EIOCBQUEUED, so we key on that. | |
1053 | * This had *better* be the only place that raises -EIOCBQUEUED. | |
1da177e4 | 1054 | */ |
8459d86a ZB |
1055 | BUG_ON(ret == -EIOCBQUEUED); |
1056 | if (dio->is_async && ret == 0 && dio->result && | |
1057 | ((rw & READ) || (dio->result == dio->size))) | |
1058 | ret = -EIOCBQUEUED; | |
0273201e | 1059 | |
8459d86a | 1060 | if (ret != -EIOCBQUEUED) |
6d544bb4 | 1061 | dio_await_completion(dio); |
1da177e4 | 1062 | |
8459d86a ZB |
1063 | /* |
1064 | * Sync will always be dropping the final ref and completing the | |
5eb6c7a2 ZB |
1065 | * operation. AIO can if it was a broken operation described above or |
1066 | * in fact if all the bios race to complete before we get here. In | |
1067 | * that case dio_complete() translates the EIOCBQUEUED into the proper | |
1068 | * return code that the caller will hand to aio_complete(). | |
1069 | * | |
1070 | * This is managed by the bio_lock instead of being an atomic_t so that | |
1071 | * completion paths can drop their ref and use the remaining count to | |
1072 | * decide to wake the submission path atomically. | |
8459d86a | 1073 | */ |
5eb6c7a2 ZB |
1074 | spin_lock_irqsave(&dio->bio_lock, flags); |
1075 | ret2 = --dio->refcount; | |
1076 | spin_unlock_irqrestore(&dio->bio_lock, flags); | |
fcb82f88 | 1077 | |
5eb6c7a2 | 1078 | if (ret2 == 0) { |
6d544bb4 | 1079 | ret = dio_complete(dio, offset, ret); |
8459d86a ZB |
1080 | kfree(dio); |
1081 | } else | |
1082 | BUG_ON(ret != -EIOCBQUEUED); | |
1da177e4 | 1083 | |
1da177e4 LT |
1084 | return ret; |
1085 | } | |
1086 | ||
1087 | /* | |
1088 | * This is a library function for use by filesystem drivers. | |
1089 | * The locking rules are governed by the dio_lock_type parameter. | |
1090 | * | |
1091 | * DIO_NO_LOCKING (no locking, for raw block device access) | |
1b1dcc1b | 1092 | * For writes, i_mutex is not held on entry; it is never taken. |
1da177e4 LT |
1093 | * |
1094 | * DIO_LOCKING (simple locking for regular files) | |
3fb962bd NS |
1095 | * For writes we are called under i_mutex and return with i_mutex held, even |
1096 | * though it is internally dropped. | |
1b1dcc1b | 1097 | * For reads, i_mutex is not held on entry, but it is taken and dropped before |
1da177e4 LT |
1098 | * returning. |
1099 | * | |
1100 | * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of | |
1101 | * uninitialised data, allowing parallel direct readers and writers) | |
1b1dcc1b | 1102 | * For writes we are called without i_mutex, return without it, never touch it. |
3fb962bd NS |
1103 | * For reads we are called under i_mutex and return with i_mutex held, even |
1104 | * though it may be internally dropped. | |
1da177e4 LT |
1105 | * |
1106 | * Additional i_alloc_sem locking requirements described inline below. | |
1107 | */ | |
1108 | ssize_t | |
1109 | __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, | |
1110 | struct block_device *bdev, const struct iovec *iov, loff_t offset, | |
1d8fa7a2 | 1111 | unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, |
1da177e4 LT |
1112 | int dio_lock_type) |
1113 | { | |
1114 | int seg; | |
1115 | size_t size; | |
1116 | unsigned long addr; | |
1117 | unsigned blkbits = inode->i_blkbits; | |
1118 | unsigned bdev_blkbits = 0; | |
1119 | unsigned blocksize_mask = (1 << blkbits) - 1; | |
1120 | ssize_t retval = -EINVAL; | |
1121 | loff_t end = offset; | |
1122 | struct dio *dio; | |
3fb962bd NS |
1123 | int release_i_mutex = 0; |
1124 | int acquire_i_mutex = 0; | |
1da177e4 LT |
1125 | |
1126 | if (rw & WRITE) | |
aeb6fafb | 1127 | rw = WRITE_ODIRECT; |
1da177e4 LT |
1128 | |
1129 | if (bdev) | |
1130 | bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); | |
1131 | ||
1132 | if (offset & blocksize_mask) { | |
1133 | if (bdev) | |
1134 | blkbits = bdev_blkbits; | |
1135 | blocksize_mask = (1 << blkbits) - 1; | |
1136 | if (offset & blocksize_mask) | |
1137 | goto out; | |
1138 | } | |
1139 | ||
1140 | /* Check the memory alignment. Blocks cannot straddle pages */ | |
1141 | for (seg = 0; seg < nr_segs; seg++) { | |
1142 | addr = (unsigned long)iov[seg].iov_base; | |
1143 | size = iov[seg].iov_len; | |
1144 | end += size; | |
1145 | if ((addr & blocksize_mask) || (size & blocksize_mask)) { | |
1146 | if (bdev) | |
1147 | blkbits = bdev_blkbits; | |
1148 | blocksize_mask = (1 << blkbits) - 1; | |
1149 | if ((addr & blocksize_mask) || (size & blocksize_mask)) | |
1150 | goto out; | |
1151 | } | |
1152 | } | |
1153 | ||
848c4dd5 | 1154 | dio = kzalloc(sizeof(*dio), GFP_KERNEL); |
1da177e4 LT |
1155 | retval = -ENOMEM; |
1156 | if (!dio) | |
1157 | goto out; | |
1158 | ||
1159 | /* | |
1160 | * For block device access DIO_NO_LOCKING is used, | |
1161 | * neither readers nor writers do any locking at all | |
1162 | * For regular files using DIO_LOCKING, | |
1b1dcc1b JS |
1163 | * readers need to grab i_mutex and i_alloc_sem |
1164 | * writers need to grab i_alloc_sem only (i_mutex is already held) | |
1da177e4 LT |
1165 | * For regular files using DIO_OWN_LOCKING, |
1166 | * neither readers nor writers take any locks here | |
1da177e4 LT |
1167 | */ |
1168 | dio->lock_type = dio_lock_type; | |
1169 | if (dio_lock_type != DIO_NO_LOCKING) { | |
1170 | /* watch out for a 0 len io from a tricksy fs */ | |
1171 | if (rw == READ && end > offset) { | |
1172 | struct address_space *mapping; | |
1173 | ||
1174 | mapping = iocb->ki_filp->f_mapping; | |
1175 | if (dio_lock_type != DIO_OWN_LOCKING) { | |
1b1dcc1b | 1176 | mutex_lock(&inode->i_mutex); |
3fb962bd | 1177 | release_i_mutex = 1; |
1da177e4 LT |
1178 | } |
1179 | ||
1180 | retval = filemap_write_and_wait_range(mapping, offset, | |
1181 | end - 1); | |
1182 | if (retval) { | |
1183 | kfree(dio); | |
1184 | goto out; | |
1185 | } | |
1186 | ||
1187 | if (dio_lock_type == DIO_OWN_LOCKING) { | |
1b1dcc1b | 1188 | mutex_unlock(&inode->i_mutex); |
3fb962bd | 1189 | acquire_i_mutex = 1; |
1da177e4 LT |
1190 | } |
1191 | } | |
1192 | ||
1193 | if (dio_lock_type == DIO_LOCKING) | |
d8aa905b IM |
1194 | /* lockdep: not the owner will release it */ |
1195 | down_read_non_owner(&inode->i_alloc_sem); | |
1da177e4 LT |
1196 | } |
1197 | ||
1198 | /* | |
1199 | * For file extending writes updating i_size before data | |
1200 | * writeouts complete can expose uninitialized blocks. So | |
1201 | * even for AIO, we need to wait for i/o to complete before | |
1202 | * returning in this case. | |
1203 | */ | |
b31dc66a | 1204 | dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && |
1da177e4 LT |
1205 | (end > i_size_read(inode))); |
1206 | ||
1207 | retval = direct_io_worker(rw, iocb, inode, iov, offset, | |
1d8fa7a2 | 1208 | nr_segs, blkbits, get_block, end_io, dio); |
1da177e4 | 1209 | |
0f64415d DM |
1210 | /* |
1211 | * In case of error extending write may have instantiated a few | |
1212 | * blocks outside i_size. Trim these off again for DIO_LOCKING. | |
1213 | * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by | |
1214 | * it's own meaner. | |
1215 | */ | |
1216 | if (unlikely(retval < 0 && (rw & WRITE))) { | |
1217 | loff_t isize = i_size_read(inode); | |
1218 | ||
1219 | if (end > isize && dio_lock_type == DIO_LOCKING) | |
1220 | vmtruncate(inode, isize); | |
1221 | } | |
1222 | ||
1da177e4 | 1223 | if (rw == READ && dio_lock_type == DIO_LOCKING) |
3fb962bd | 1224 | release_i_mutex = 0; |
1da177e4 LT |
1225 | |
1226 | out: | |
3fb962bd | 1227 | if (release_i_mutex) |
1b1dcc1b | 1228 | mutex_unlock(&inode->i_mutex); |
3fb962bd NS |
1229 | else if (acquire_i_mutex) |
1230 | mutex_lock(&inode->i_mutex); | |
1da177e4 LT |
1231 | return retval; |
1232 | } | |
1233 | EXPORT_SYMBOL(__blockdev_direct_IO); |