]>
Commit | Line | Data |
---|---|---|
175859bf DD |
1 | /* |
2 | * Driver for SiS7019 Audio Accelerator | |
3 | * | |
4 | * Copyright (C) 2004-2007, David Dillow | |
5 | * Written by David Dillow <[email protected]> | |
6 | * Inspired by the Trident 4D-WaveDX/NX driver. | |
7 | * | |
8 | * All rights reserved. | |
9 | * | |
10 | * This program is free software; you can redistribute it and/or modify | |
11 | * it under the terms of the GNU General Public License as published by | |
12 | * the Free Software Foundation, version 2. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | * GNU General Public License for more details. | |
18 | * | |
19 | * You should have received a copy of the GNU General Public License | |
20 | * along with this program; if not, write to the Free Software | |
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
22 | */ | |
23 | ||
175859bf DD |
24 | #include <linux/init.h> |
25 | #include <linux/pci.h> | |
26 | #include <linux/time.h> | |
5a0e3ad6 | 27 | #include <linux/slab.h> |
65a77217 | 28 | #include <linux/module.h> |
175859bf DD |
29 | #include <linux/interrupt.h> |
30 | #include <linux/delay.h> | |
31 | #include <sound/core.h> | |
32 | #include <sound/ac97_codec.h> | |
33 | #include <sound/initval.h> | |
34 | #include "sis7019.h" | |
35 | ||
36 | MODULE_AUTHOR("David Dillow <[email protected]>"); | |
37 | MODULE_DESCRIPTION("SiS7019"); | |
38 | MODULE_LICENSE("GPL"); | |
39 | MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); | |
40 | ||
41 | static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ | |
42 | static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ | |
a67ff6a5 | 43 | static bool enable = 1; |
fc084e0b | 44 | static int codecs = 1; |
175859bf DD |
45 | |
46 | module_param(index, int, 0444); | |
47 | MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); | |
48 | module_param(id, charp, 0444); | |
49 | MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); | |
50 | module_param(enable, bool, 0444); | |
51 | MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); | |
fc084e0b DD |
52 | module_param(codecs, int, 0444); |
53 | MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); | |
175859bf | 54 | |
cebe41d4 | 55 | static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = { |
175859bf DD |
56 | { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, |
57 | { 0, } | |
58 | }; | |
59 | ||
60 | MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); | |
61 | ||
62 | /* There are three timing modes for the voices. | |
63 | * | |
64 | * For both playback and capture, when the buffer is one or two periods long, | |
65 | * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt | |
66 | * to let us know when the periods have ended. | |
67 | * | |
68 | * When performing playback with more than two periods per buffer, we set | |
69 | * the "Stop Sample Offset" and tell the hardware to interrupt us when we | |
70 | * reach it. We then update the offset and continue on until we are | |
71 | * interrupted for the next period. | |
72 | * | |
73 | * Capture channels do not have a SSO, so we allocate a playback channel to | |
74 | * use as a timer for the capture periods. We use the SSO on the playback | |
75 | * channel to clock out virtual periods, and adjust the virtual period length | |
76 | * to maintain synchronization. This algorithm came from the Trident driver. | |
77 | * | |
78 | * FIXME: It'd be nice to make use of some of the synth features in the | |
79 | * hardware, but a woeful lack of documentation is a significant roadblock. | |
80 | */ | |
81 | struct voice { | |
82 | u16 flags; | |
83 | #define VOICE_IN_USE 1 | |
84 | #define VOICE_CAPTURE 2 | |
85 | #define VOICE_SSO_TIMING 4 | |
86 | #define VOICE_SYNC_TIMING 8 | |
87 | u16 sync_cso; | |
88 | u16 period_size; | |
89 | u16 buffer_size; | |
90 | u16 sync_period_size; | |
91 | u16 sync_buffer_size; | |
92 | u32 sso; | |
93 | u32 vperiod; | |
94 | struct snd_pcm_substream *substream; | |
95 | struct voice *timing; | |
96 | void __iomem *ctrl_base; | |
97 | void __iomem *wave_base; | |
98 | void __iomem *sync_base; | |
99 | int num; | |
100 | }; | |
101 | ||
102 | /* We need four pages to store our wave parameters during a suspend. If | |
103 | * we're not doing power management, we still need to allocate a page | |
104 | * for the silence buffer. | |
105 | */ | |
106 | #ifdef CONFIG_PM | |
107 | #define SIS_SUSPEND_PAGES 4 | |
108 | #else | |
109 | #define SIS_SUSPEND_PAGES 1 | |
110 | #endif | |
111 | ||
112 | struct sis7019 { | |
113 | unsigned long ioport; | |
114 | void __iomem *ioaddr; | |
115 | int irq; | |
116 | int codecs_present; | |
117 | ||
118 | struct pci_dev *pci; | |
119 | struct snd_pcm *pcm; | |
120 | struct snd_card *card; | |
121 | struct snd_ac97 *ac97[3]; | |
122 | ||
123 | /* Protect against more than one thread hitting the AC97 | |
124 | * registers (in a more polite manner than pounding the hardware | |
125 | * semaphore) | |
126 | */ | |
127 | struct mutex ac97_mutex; | |
128 | ||
129 | /* voice_lock protects allocation/freeing of the voice descriptions | |
130 | */ | |
131 | spinlock_t voice_lock; | |
132 | ||
133 | struct voice voices[64]; | |
134 | struct voice capture_voice; | |
135 | ||
136 | /* Allocate pages to store the internal wave state during | |
137 | * suspends. When we're operating, this can be used as a silence | |
138 | * buffer for a timing channel. | |
139 | */ | |
140 | void *suspend_state[SIS_SUSPEND_PAGES]; | |
141 | ||
142 | int silence_users; | |
143 | dma_addr_t silence_dma_addr; | |
144 | }; | |
145 | ||
fc084e0b DD |
146 | /* These values are also used by the module param 'codecs' to indicate |
147 | * which codecs should be present. | |
148 | */ | |
175859bf DD |
149 | #define SIS_PRIMARY_CODEC_PRESENT 0x0001 |
150 | #define SIS_SECONDARY_CODEC_PRESENT 0x0002 | |
151 | #define SIS_TERTIARY_CODEC_PRESENT 0x0004 | |
152 | ||
153 | /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a | |
154 | * documented range of 8-0xfff8 samples. Given that they are 0-based, | |
155 | * that places our period/buffer range at 9-0xfff9 samples. That makes the | |
156 | * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and | |
157 | * max samples / min samples gives us the max periods in a buffer. | |
158 | * | |
159 | * We'll add a constraint upon open that limits the period and buffer sample | |
160 | * size to values that are legal for the hardware. | |
161 | */ | |
162 | static struct snd_pcm_hardware sis_playback_hw_info = { | |
163 | .info = (SNDRV_PCM_INFO_MMAP | | |
164 | SNDRV_PCM_INFO_MMAP_VALID | | |
165 | SNDRV_PCM_INFO_INTERLEAVED | | |
166 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | |
167 | SNDRV_PCM_INFO_SYNC_START | | |
168 | SNDRV_PCM_INFO_RESUME), | |
169 | .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | |
170 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | |
171 | .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, | |
172 | .rate_min = 4000, | |
173 | .rate_max = 48000, | |
174 | .channels_min = 1, | |
175 | .channels_max = 2, | |
176 | .buffer_bytes_max = (0xfff9 * 4), | |
177 | .period_bytes_min = 9, | |
178 | .period_bytes_max = (0xfff9 * 4), | |
179 | .periods_min = 1, | |
180 | .periods_max = (0xfff9 / 9), | |
181 | }; | |
182 | ||
183 | static struct snd_pcm_hardware sis_capture_hw_info = { | |
184 | .info = (SNDRV_PCM_INFO_MMAP | | |
185 | SNDRV_PCM_INFO_MMAP_VALID | | |
186 | SNDRV_PCM_INFO_INTERLEAVED | | |
187 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | |
188 | SNDRV_PCM_INFO_SYNC_START | | |
189 | SNDRV_PCM_INFO_RESUME), | |
190 | .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | |
191 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | |
192 | .rates = SNDRV_PCM_RATE_48000, | |
193 | .rate_min = 4000, | |
194 | .rate_max = 48000, | |
195 | .channels_min = 1, | |
196 | .channels_max = 2, | |
197 | .buffer_bytes_max = (0xfff9 * 4), | |
198 | .period_bytes_min = 9, | |
199 | .period_bytes_max = (0xfff9 * 4), | |
200 | .periods_min = 1, | |
201 | .periods_max = (0xfff9 / 9), | |
202 | }; | |
203 | ||
204 | static void sis_update_sso(struct voice *voice, u16 period) | |
205 | { | |
206 | void __iomem *base = voice->ctrl_base; | |
207 | ||
208 | voice->sso += period; | |
209 | if (voice->sso >= voice->buffer_size) | |
210 | voice->sso -= voice->buffer_size; | |
211 | ||
212 | /* Enforce the documented hardware minimum offset */ | |
213 | if (voice->sso < 8) | |
214 | voice->sso = 8; | |
215 | ||
216 | /* The SSO is in the upper 16 bits of the register. */ | |
217 | writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); | |
218 | } | |
219 | ||
220 | static void sis_update_voice(struct voice *voice) | |
221 | { | |
222 | if (voice->flags & VOICE_SSO_TIMING) { | |
223 | sis_update_sso(voice, voice->period_size); | |
224 | } else if (voice->flags & VOICE_SYNC_TIMING) { | |
225 | int sync; | |
226 | ||
227 | /* If we've not hit the end of the virtual period, update | |
228 | * our records and keep going. | |
229 | */ | |
230 | if (voice->vperiod > voice->period_size) { | |
231 | voice->vperiod -= voice->period_size; | |
232 | if (voice->vperiod < voice->period_size) | |
233 | sis_update_sso(voice, voice->vperiod); | |
234 | else | |
235 | sis_update_sso(voice, voice->period_size); | |
236 | return; | |
237 | } | |
238 | ||
239 | /* Calculate our relative offset between the target and | |
240 | * the actual CSO value. Since we're operating in a loop, | |
241 | * if the value is more than half way around, we can | |
242 | * consider ourselves wrapped. | |
243 | */ | |
244 | sync = voice->sync_cso; | |
245 | sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); | |
246 | if (sync > (voice->sync_buffer_size / 2)) | |
247 | sync -= voice->sync_buffer_size; | |
248 | ||
249 | /* If sync is positive, then we interrupted too early, and | |
250 | * we'll need to come back in a few samples and try again. | |
251 | * There's a minimum wait, as it takes some time for the DMA | |
252 | * engine to startup, etc... | |
253 | */ | |
254 | if (sync > 0) { | |
255 | if (sync < 16) | |
256 | sync = 16; | |
257 | sis_update_sso(voice, sync); | |
258 | return; | |
259 | } | |
260 | ||
261 | /* Ok, we interrupted right on time, or (hopefully) just | |
262 | * a bit late. We'll adjst our next waiting period based | |
263 | * on how close we got. | |
264 | * | |
265 | * We need to stay just behind the actual channel to ensure | |
266 | * it really is past a period when we get our interrupt -- | |
267 | * otherwise we'll fall into the early code above and have | |
268 | * a minimum wait time, which makes us quite late here, | |
269 | * eating into the user's time to refresh the buffer, esp. | |
270 | * if using small periods. | |
271 | * | |
272 | * If we're less than 9 samples behind, we're on target. | |
3a3d5fd1 DD |
273 | * Otherwise, shorten the next vperiod by the amount we've |
274 | * been delayed. | |
175859bf DD |
275 | */ |
276 | if (sync > -9) | |
277 | voice->vperiod = voice->sync_period_size + 1; | |
278 | else | |
3a3d5fd1 | 279 | voice->vperiod = voice->sync_period_size + sync + 10; |
175859bf DD |
280 | |
281 | if (voice->vperiod < voice->buffer_size) { | |
282 | sis_update_sso(voice, voice->vperiod); | |
283 | voice->vperiod = 0; | |
284 | } else | |
285 | sis_update_sso(voice, voice->period_size); | |
286 | ||
287 | sync = voice->sync_cso + voice->sync_period_size; | |
288 | if (sync >= voice->sync_buffer_size) | |
289 | sync -= voice->sync_buffer_size; | |
290 | voice->sync_cso = sync; | |
291 | } | |
292 | ||
293 | snd_pcm_period_elapsed(voice->substream); | |
294 | } | |
295 | ||
296 | static void sis_voice_irq(u32 status, struct voice *voice) | |
297 | { | |
298 | int bit; | |
299 | ||
300 | while (status) { | |
301 | bit = __ffs(status); | |
302 | status >>= bit + 1; | |
303 | voice += bit; | |
304 | sis_update_voice(voice); | |
305 | voice++; | |
306 | } | |
307 | } | |
308 | ||
309 | static irqreturn_t sis_interrupt(int irq, void *dev) | |
310 | { | |
311 | struct sis7019 *sis = dev; | |
312 | unsigned long io = sis->ioport; | |
313 | struct voice *voice; | |
314 | u32 intr, status; | |
315 | ||
316 | /* We only use the DMA interrupts, and we don't enable any other | |
25985edc | 317 | * source of interrupts. But, it is possible to see an interrupt |
175859bf DD |
318 | * status that didn't actually interrupt us, so eliminate anything |
319 | * we're not expecting to avoid falsely claiming an IRQ, and an | |
320 | * ensuing endless loop. | |
321 | */ | |
322 | intr = inl(io + SIS_GISR); | |
323 | intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | |
324 | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | |
325 | if (!intr) | |
326 | return IRQ_NONE; | |
327 | ||
328 | do { | |
329 | status = inl(io + SIS_PISR_A); | |
330 | if (status) { | |
331 | sis_voice_irq(status, sis->voices); | |
332 | outl(status, io + SIS_PISR_A); | |
333 | } | |
334 | ||
335 | status = inl(io + SIS_PISR_B); | |
336 | if (status) { | |
337 | sis_voice_irq(status, &sis->voices[32]); | |
338 | outl(status, io + SIS_PISR_B); | |
339 | } | |
340 | ||
341 | status = inl(io + SIS_RISR); | |
342 | if (status) { | |
343 | voice = &sis->capture_voice; | |
344 | if (!voice->timing) | |
345 | snd_pcm_period_elapsed(voice->substream); | |
346 | ||
347 | outl(status, io + SIS_RISR); | |
348 | } | |
349 | ||
350 | outl(intr, io + SIS_GISR); | |
351 | intr = inl(io + SIS_GISR); | |
352 | intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | |
353 | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | |
354 | } while (intr); | |
355 | ||
356 | return IRQ_HANDLED; | |
357 | } | |
358 | ||
359 | static u32 sis_rate_to_delta(unsigned int rate) | |
360 | { | |
361 | u32 delta; | |
362 | ||
363 | /* This was copied from the trident driver, but it seems its gotten | |
364 | * around a bit... nevertheless, it works well. | |
365 | * | |
366 | * We special case 44100 and 8000 since rounding with the equation | |
367 | * does not give us an accurate enough value. For 11025 and 22050 | |
368 | * the equation gives us the best answer. All other frequencies will | |
369 | * also use the equation. JDW | |
370 | */ | |
371 | if (rate == 44100) | |
372 | delta = 0xeb3; | |
373 | else if (rate == 8000) | |
374 | delta = 0x2ab; | |
375 | else if (rate == 48000) | |
376 | delta = 0x1000; | |
377 | else | |
378 | delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; | |
379 | return delta; | |
380 | } | |
381 | ||
382 | static void __sis_map_silence(struct sis7019 *sis) | |
383 | { | |
384 | /* Helper function: must hold sis->voice_lock on entry */ | |
385 | if (!sis->silence_users) | |
386 | sis->silence_dma_addr = pci_map_single(sis->pci, | |
387 | sis->suspend_state[0], | |
388 | 4096, PCI_DMA_TODEVICE); | |
389 | sis->silence_users++; | |
390 | } | |
391 | ||
392 | static void __sis_unmap_silence(struct sis7019 *sis) | |
393 | { | |
394 | /* Helper function: must hold sis->voice_lock on entry */ | |
395 | sis->silence_users--; | |
396 | if (!sis->silence_users) | |
397 | pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, | |
398 | PCI_DMA_TODEVICE); | |
399 | } | |
400 | ||
401 | static void sis_free_voice(struct sis7019 *sis, struct voice *voice) | |
402 | { | |
403 | unsigned long flags; | |
404 | ||
405 | spin_lock_irqsave(&sis->voice_lock, flags); | |
406 | if (voice->timing) { | |
407 | __sis_unmap_silence(sis); | |
408 | voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | | |
409 | VOICE_SYNC_TIMING); | |
410 | voice->timing = NULL; | |
411 | } | |
412 | voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); | |
413 | spin_unlock_irqrestore(&sis->voice_lock, flags); | |
414 | } | |
415 | ||
416 | static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) | |
417 | { | |
418 | /* Must hold the voice_lock on entry */ | |
419 | struct voice *voice; | |
420 | int i; | |
421 | ||
422 | for (i = 0; i < 64; i++) { | |
423 | voice = &sis->voices[i]; | |
424 | if (voice->flags & VOICE_IN_USE) | |
425 | continue; | |
426 | voice->flags |= VOICE_IN_USE; | |
427 | goto found_one; | |
428 | } | |
429 | voice = NULL; | |
430 | ||
431 | found_one: | |
432 | return voice; | |
433 | } | |
434 | ||
435 | static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) | |
436 | { | |
437 | struct voice *voice; | |
438 | unsigned long flags; | |
439 | ||
440 | spin_lock_irqsave(&sis->voice_lock, flags); | |
441 | voice = __sis_alloc_playback_voice(sis); | |
442 | spin_unlock_irqrestore(&sis->voice_lock, flags); | |
443 | ||
444 | return voice; | |
445 | } | |
446 | ||
447 | static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, | |
448 | struct snd_pcm_hw_params *hw_params) | |
449 | { | |
450 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
451 | struct snd_pcm_runtime *runtime = substream->runtime; | |
452 | struct voice *voice = runtime->private_data; | |
453 | unsigned int period_size, buffer_size; | |
454 | unsigned long flags; | |
455 | int needed; | |
456 | ||
457 | /* If there are one or two periods per buffer, we don't need a | |
458 | * timing voice, as we can use the capture channel's interrupts | |
459 | * to clock out the periods. | |
460 | */ | |
461 | period_size = params_period_size(hw_params); | |
462 | buffer_size = params_buffer_size(hw_params); | |
463 | needed = (period_size != buffer_size && | |
464 | period_size != (buffer_size / 2)); | |
465 | ||
466 | if (needed && !voice->timing) { | |
467 | spin_lock_irqsave(&sis->voice_lock, flags); | |
468 | voice->timing = __sis_alloc_playback_voice(sis); | |
469 | if (voice->timing) | |
470 | __sis_map_silence(sis); | |
471 | spin_unlock_irqrestore(&sis->voice_lock, flags); | |
472 | if (!voice->timing) | |
473 | return -ENOMEM; | |
474 | voice->timing->substream = substream; | |
475 | } else if (!needed && voice->timing) { | |
476 | sis_free_voice(sis, voice); | |
477 | voice->timing = NULL; | |
478 | } | |
479 | ||
480 | return 0; | |
481 | } | |
482 | ||
483 | static int sis_playback_open(struct snd_pcm_substream *substream) | |
484 | { | |
485 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
486 | struct snd_pcm_runtime *runtime = substream->runtime; | |
487 | struct voice *voice; | |
488 | ||
489 | voice = sis_alloc_playback_voice(sis); | |
490 | if (!voice) | |
491 | return -EAGAIN; | |
492 | ||
493 | voice->substream = substream; | |
494 | runtime->private_data = voice; | |
495 | runtime->hw = sis_playback_hw_info; | |
496 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | |
497 | 9, 0xfff9); | |
498 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | |
499 | 9, 0xfff9); | |
500 | snd_pcm_set_sync(substream); | |
501 | return 0; | |
502 | } | |
503 | ||
504 | static int sis_substream_close(struct snd_pcm_substream *substream) | |
505 | { | |
506 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
507 | struct snd_pcm_runtime *runtime = substream->runtime; | |
508 | struct voice *voice = runtime->private_data; | |
509 | ||
510 | sis_free_voice(sis, voice); | |
511 | return 0; | |
512 | } | |
513 | ||
514 | static int sis_playback_hw_params(struct snd_pcm_substream *substream, | |
515 | struct snd_pcm_hw_params *hw_params) | |
516 | { | |
517 | return snd_pcm_lib_malloc_pages(substream, | |
518 | params_buffer_bytes(hw_params)); | |
519 | } | |
520 | ||
521 | static int sis_hw_free(struct snd_pcm_substream *substream) | |
522 | { | |
523 | return snd_pcm_lib_free_pages(substream); | |
524 | } | |
525 | ||
526 | static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) | |
527 | { | |
528 | struct snd_pcm_runtime *runtime = substream->runtime; | |
529 | struct voice *voice = runtime->private_data; | |
530 | void __iomem *ctrl_base = voice->ctrl_base; | |
531 | void __iomem *wave_base = voice->wave_base; | |
532 | u32 format, dma_addr, control, sso_eso, delta, reg; | |
533 | u16 leo; | |
534 | ||
535 | /* We rely on the PCM core to ensure that the parameters for this | |
536 | * substream do not change on us while we're programming the HW. | |
537 | */ | |
538 | format = 0; | |
539 | if (snd_pcm_format_width(runtime->format) == 8) | |
540 | format |= SIS_PLAY_DMA_FORMAT_8BIT; | |
541 | if (!snd_pcm_format_signed(runtime->format)) | |
542 | format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; | |
543 | if (runtime->channels == 1) | |
544 | format |= SIS_PLAY_DMA_FORMAT_MONO; | |
545 | ||
546 | /* The baseline setup is for a single period per buffer, and | |
547 | * we add bells and whistles as needed from there. | |
548 | */ | |
549 | dma_addr = runtime->dma_addr; | |
550 | leo = runtime->buffer_size - 1; | |
551 | control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; | |
552 | sso_eso = leo; | |
553 | ||
554 | if (runtime->period_size == (runtime->buffer_size / 2)) { | |
555 | control |= SIS_PLAY_DMA_INTR_AT_MLP; | |
556 | } else if (runtime->period_size != runtime->buffer_size) { | |
557 | voice->flags |= VOICE_SSO_TIMING; | |
558 | voice->sso = runtime->period_size - 1; | |
559 | voice->period_size = runtime->period_size; | |
560 | voice->buffer_size = runtime->buffer_size; | |
561 | ||
562 | control &= ~SIS_PLAY_DMA_INTR_AT_LEO; | |
563 | control |= SIS_PLAY_DMA_INTR_AT_SSO; | |
564 | sso_eso |= (runtime->period_size - 1) << 16; | |
565 | } | |
566 | ||
567 | delta = sis_rate_to_delta(runtime->rate); | |
568 | ||
569 | /* Ok, we're ready to go, set up the channel. | |
570 | */ | |
571 | writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | |
572 | writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); | |
573 | writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); | |
574 | writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); | |
575 | ||
576 | for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | |
577 | writel(0, wave_base + reg); | |
578 | ||
579 | writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | |
580 | writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | |
581 | writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | |
582 | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | |
583 | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | |
584 | wave_base + SIS_WAVE_CHANNEL_CONTROL); | |
585 | ||
586 | /* Force PCI writes to post. */ | |
587 | readl(ctrl_base); | |
588 | ||
589 | return 0; | |
590 | } | |
591 | ||
592 | static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) | |
593 | { | |
594 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
595 | unsigned long io = sis->ioport; | |
596 | struct snd_pcm_substream *s; | |
597 | struct voice *voice; | |
598 | void *chip; | |
599 | int starting; | |
600 | u32 record = 0; | |
601 | u32 play[2] = { 0, 0 }; | |
602 | ||
603 | /* No locks needed, as the PCM core will hold the locks on the | |
604 | * substreams, and the HW will only start/stop the indicated voices | |
605 | * without changing the state of the others. | |
606 | */ | |
607 | switch (cmd) { | |
608 | case SNDRV_PCM_TRIGGER_START: | |
609 | case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: | |
610 | case SNDRV_PCM_TRIGGER_RESUME: | |
611 | starting = 1; | |
612 | break; | |
613 | case SNDRV_PCM_TRIGGER_STOP: | |
614 | case SNDRV_PCM_TRIGGER_PAUSE_PUSH: | |
615 | case SNDRV_PCM_TRIGGER_SUSPEND: | |
616 | starting = 0; | |
617 | break; | |
618 | default: | |
619 | return -EINVAL; | |
620 | } | |
621 | ||
622 | snd_pcm_group_for_each_entry(s, substream) { | |
623 | /* Make sure it is for us... */ | |
624 | chip = snd_pcm_substream_chip(s); | |
625 | if (chip != sis) | |
626 | continue; | |
627 | ||
628 | voice = s->runtime->private_data; | |
629 | if (voice->flags & VOICE_CAPTURE) { | |
630 | record |= 1 << voice->num; | |
631 | voice = voice->timing; | |
632 | } | |
633 | ||
634 | /* voice could be NULL if this a recording stream, and it | |
635 | * doesn't have an external timing channel. | |
636 | */ | |
637 | if (voice) | |
638 | play[voice->num / 32] |= 1 << (voice->num & 0x1f); | |
639 | ||
640 | snd_pcm_trigger_done(s, substream); | |
641 | } | |
642 | ||
643 | if (starting) { | |
644 | if (record) | |
645 | outl(record, io + SIS_RECORD_START_REG); | |
646 | if (play[0]) | |
647 | outl(play[0], io + SIS_PLAY_START_A_REG); | |
648 | if (play[1]) | |
649 | outl(play[1], io + SIS_PLAY_START_B_REG); | |
650 | } else { | |
651 | if (record) | |
652 | outl(record, io + SIS_RECORD_STOP_REG); | |
653 | if (play[0]) | |
654 | outl(play[0], io + SIS_PLAY_STOP_A_REG); | |
655 | if (play[1]) | |
656 | outl(play[1], io + SIS_PLAY_STOP_B_REG); | |
657 | } | |
658 | return 0; | |
659 | } | |
660 | ||
661 | static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) | |
662 | { | |
663 | struct snd_pcm_runtime *runtime = substream->runtime; | |
664 | struct voice *voice = runtime->private_data; | |
665 | u32 cso; | |
666 | ||
667 | cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | |
668 | cso &= 0xffff; | |
669 | return cso; | |
670 | } | |
671 | ||
672 | static int sis_capture_open(struct snd_pcm_substream *substream) | |
673 | { | |
674 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
675 | struct snd_pcm_runtime *runtime = substream->runtime; | |
676 | struct voice *voice = &sis->capture_voice; | |
677 | unsigned long flags; | |
678 | ||
679 | /* FIXME: The driver only supports recording from one channel | |
680 | * at the moment, but it could support more. | |
681 | */ | |
682 | spin_lock_irqsave(&sis->voice_lock, flags); | |
683 | if (voice->flags & VOICE_IN_USE) | |
684 | voice = NULL; | |
685 | else | |
686 | voice->flags |= VOICE_IN_USE; | |
687 | spin_unlock_irqrestore(&sis->voice_lock, flags); | |
688 | ||
689 | if (!voice) | |
690 | return -EAGAIN; | |
691 | ||
692 | voice->substream = substream; | |
693 | runtime->private_data = voice; | |
694 | runtime->hw = sis_capture_hw_info; | |
695 | runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; | |
696 | snd_pcm_limit_hw_rates(runtime); | |
697 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | |
698 | 9, 0xfff9); | |
699 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | |
700 | 9, 0xfff9); | |
701 | snd_pcm_set_sync(substream); | |
702 | return 0; | |
703 | } | |
704 | ||
705 | static int sis_capture_hw_params(struct snd_pcm_substream *substream, | |
706 | struct snd_pcm_hw_params *hw_params) | |
707 | { | |
708 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
709 | int rc; | |
710 | ||
711 | rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, | |
712 | params_rate(hw_params)); | |
713 | if (rc) | |
714 | goto out; | |
715 | ||
716 | rc = snd_pcm_lib_malloc_pages(substream, | |
717 | params_buffer_bytes(hw_params)); | |
718 | if (rc < 0) | |
719 | goto out; | |
720 | ||
721 | rc = sis_alloc_timing_voice(substream, hw_params); | |
722 | ||
723 | out: | |
724 | return rc; | |
725 | } | |
726 | ||
727 | static void sis_prepare_timing_voice(struct voice *voice, | |
728 | struct snd_pcm_substream *substream) | |
729 | { | |
730 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | |
731 | struct snd_pcm_runtime *runtime = substream->runtime; | |
732 | struct voice *timing = voice->timing; | |
733 | void __iomem *play_base = timing->ctrl_base; | |
734 | void __iomem *wave_base = timing->wave_base; | |
735 | u16 buffer_size, period_size; | |
736 | u32 format, control, sso_eso, delta; | |
737 | u32 vperiod, sso, reg; | |
738 | ||
739 | /* Set our initial buffer and period as large as we can given a | |
740 | * single page of silence. | |
741 | */ | |
742 | buffer_size = 4096 / runtime->channels; | |
743 | buffer_size /= snd_pcm_format_size(runtime->format, 1); | |
744 | period_size = buffer_size; | |
745 | ||
746 | /* Initially, we want to interrupt just a bit behind the end of | |
3a3d5fd1 | 747 | * the period we're clocking out. 12 samples seems to give a good |
175859bf DD |
748 | * delay. |
749 | * | |
750 | * We want to spread our interrupts throughout the virtual period, | |
751 | * so that we don't end up with two interrupts back to back at the | |
752 | * end -- this helps minimize the effects of any jitter. Adjust our | |
753 | * clocking period size so that the last period is at least a fourth | |
754 | * of a full period. | |
755 | * | |
756 | * This is all moot if we don't need to use virtual periods. | |
757 | */ | |
3a3d5fd1 | 758 | vperiod = runtime->period_size + 12; |
175859bf DD |
759 | if (vperiod > period_size) { |
760 | u16 tail = vperiod % period_size; | |
761 | u16 quarter_period = period_size / 4; | |
762 | ||
763 | if (tail && tail < quarter_period) { | |
764 | u16 loops = vperiod / period_size; | |
765 | ||
766 | tail = quarter_period - tail; | |
767 | tail += loops - 1; | |
768 | tail /= loops; | |
769 | period_size -= tail; | |
770 | } | |
771 | ||
772 | sso = period_size - 1; | |
773 | } else { | |
774 | /* The initial period will fit inside the buffer, so we | |
775 | * don't need to use virtual periods -- disable them. | |
776 | */ | |
777 | period_size = runtime->period_size; | |
778 | sso = vperiod - 1; | |
779 | vperiod = 0; | |
780 | } | |
781 | ||
25985edc | 782 | /* The interrupt handler implements the timing synchronization, so |
175859bf DD |
783 | * setup its state. |
784 | */ | |
785 | timing->flags |= VOICE_SYNC_TIMING; | |
786 | timing->sync_base = voice->ctrl_base; | |
3a3d5fd1 | 787 | timing->sync_cso = runtime->period_size; |
175859bf DD |
788 | timing->sync_period_size = runtime->period_size; |
789 | timing->sync_buffer_size = runtime->buffer_size; | |
790 | timing->period_size = period_size; | |
791 | timing->buffer_size = buffer_size; | |
792 | timing->sso = sso; | |
793 | timing->vperiod = vperiod; | |
794 | ||
795 | /* Using unsigned samples with the all-zero silence buffer | |
796 | * forces the output to the lower rail, killing playback. | |
797 | * So ignore unsigned vs signed -- it doesn't change the timing. | |
798 | */ | |
799 | format = 0; | |
800 | if (snd_pcm_format_width(runtime->format) == 8) | |
801 | format = SIS_CAPTURE_DMA_FORMAT_8BIT; | |
802 | if (runtime->channels == 1) | |
803 | format |= SIS_CAPTURE_DMA_FORMAT_MONO; | |
804 | ||
805 | control = timing->buffer_size - 1; | |
806 | control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; | |
807 | sso_eso = timing->buffer_size - 1; | |
808 | sso_eso |= timing->sso << 16; | |
809 | ||
810 | delta = sis_rate_to_delta(runtime->rate); | |
811 | ||
812 | /* We've done the math, now configure the channel. | |
813 | */ | |
814 | writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); | |
815 | writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); | |
816 | writel(control, play_base + SIS_PLAY_DMA_CONTROL); | |
817 | writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); | |
818 | ||
819 | for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | |
820 | writel(0, wave_base + reg); | |
821 | ||
822 | writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | |
823 | writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | |
824 | writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | |
825 | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | |
826 | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | |
827 | wave_base + SIS_WAVE_CHANNEL_CONTROL); | |
828 | } | |
829 | ||
830 | static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) | |
831 | { | |
832 | struct snd_pcm_runtime *runtime = substream->runtime; | |
833 | struct voice *voice = runtime->private_data; | |
834 | void __iomem *rec_base = voice->ctrl_base; | |
835 | u32 format, dma_addr, control; | |
836 | u16 leo; | |
837 | ||
838 | /* We rely on the PCM core to ensure that the parameters for this | |
839 | * substream do not change on us while we're programming the HW. | |
840 | */ | |
841 | format = 0; | |
842 | if (snd_pcm_format_width(runtime->format) == 8) | |
843 | format = SIS_CAPTURE_DMA_FORMAT_8BIT; | |
844 | if (!snd_pcm_format_signed(runtime->format)) | |
845 | format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; | |
846 | if (runtime->channels == 1) | |
847 | format |= SIS_CAPTURE_DMA_FORMAT_MONO; | |
848 | ||
849 | dma_addr = runtime->dma_addr; | |
850 | leo = runtime->buffer_size - 1; | |
851 | control = leo | SIS_CAPTURE_DMA_LOOP; | |
852 | ||
853 | /* If we've got more than two periods per buffer, then we have | |
854 | * use a timing voice to clock out the periods. Otherwise, we can | |
855 | * use the capture channel's interrupts. | |
856 | */ | |
857 | if (voice->timing) { | |
858 | sis_prepare_timing_voice(voice, substream); | |
859 | } else { | |
860 | control |= SIS_CAPTURE_DMA_INTR_AT_LEO; | |
861 | if (runtime->period_size != runtime->buffer_size) | |
862 | control |= SIS_CAPTURE_DMA_INTR_AT_MLP; | |
863 | } | |
864 | ||
865 | writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); | |
866 | writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); | |
867 | writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); | |
868 | ||
869 | /* Force the writes to post. */ | |
870 | readl(rec_base); | |
871 | ||
872 | return 0; | |
873 | } | |
874 | ||
875 | static struct snd_pcm_ops sis_playback_ops = { | |
876 | .open = sis_playback_open, | |
877 | .close = sis_substream_close, | |
878 | .ioctl = snd_pcm_lib_ioctl, | |
879 | .hw_params = sis_playback_hw_params, | |
880 | .hw_free = sis_hw_free, | |
881 | .prepare = sis_pcm_playback_prepare, | |
882 | .trigger = sis_pcm_trigger, | |
883 | .pointer = sis_pcm_pointer, | |
884 | }; | |
885 | ||
886 | static struct snd_pcm_ops sis_capture_ops = { | |
887 | .open = sis_capture_open, | |
888 | .close = sis_substream_close, | |
889 | .ioctl = snd_pcm_lib_ioctl, | |
890 | .hw_params = sis_capture_hw_params, | |
891 | .hw_free = sis_hw_free, | |
892 | .prepare = sis_pcm_capture_prepare, | |
893 | .trigger = sis_pcm_trigger, | |
894 | .pointer = sis_pcm_pointer, | |
895 | }; | |
896 | ||
897 | static int __devinit sis_pcm_create(struct sis7019 *sis) | |
898 | { | |
899 | struct snd_pcm *pcm; | |
900 | int rc; | |
901 | ||
902 | /* We have 64 voices, and the driver currently records from | |
903 | * only one channel, though that could change in the future. | |
904 | */ | |
905 | rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); | |
906 | if (rc) | |
907 | return rc; | |
908 | ||
909 | pcm->private_data = sis; | |
910 | strcpy(pcm->name, "SiS7019"); | |
911 | sis->pcm = pcm; | |
912 | ||
913 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); | |
914 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); | |
915 | ||
916 | /* Try to preallocate some memory, but it's not the end of the | |
917 | * world if this fails. | |
918 | */ | |
919 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | |
920 | snd_dma_pci_data(sis->pci), 64*1024, 128*1024); | |
921 | ||
922 | return 0; | |
923 | } | |
924 | ||
925 | static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) | |
926 | { | |
927 | unsigned long io = sis->ioport; | |
928 | unsigned short val = 0xffff; | |
929 | u16 status; | |
930 | u16 rdy; | |
931 | int count; | |
3f76d984 | 932 | static const u16 codec_ready[3] = { |
175859bf DD |
933 | SIS_AC97_STATUS_CODEC_READY, |
934 | SIS_AC97_STATUS_CODEC2_READY, | |
935 | SIS_AC97_STATUS_CODEC3_READY, | |
936 | }; | |
937 | ||
938 | rdy = codec_ready[codec]; | |
939 | ||
940 | ||
941 | /* Get the AC97 semaphore -- software first, so we don't spin | |
942 | * pounding out IO reads on the hardware semaphore... | |
943 | */ | |
944 | mutex_lock(&sis->ac97_mutex); | |
945 | ||
946 | count = 0xffff; | |
947 | while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | |
948 | udelay(1); | |
949 | ||
950 | if (!count) | |
951 | goto timeout; | |
952 | ||
953 | /* ... and wait for any outstanding commands to complete ... | |
954 | */ | |
955 | count = 0xffff; | |
956 | do { | |
957 | status = inw(io + SIS_AC97_STATUS); | |
958 | if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) | |
959 | break; | |
960 | ||
961 | udelay(1); | |
962 | } while (--count); | |
963 | ||
964 | if (!count) | |
965 | goto timeout_sema; | |
966 | ||
967 | /* ... before sending our command and waiting for it to finish ... | |
968 | */ | |
969 | outl(cmd, io + SIS_AC97_CMD); | |
970 | udelay(10); | |
971 | ||
972 | count = 0xffff; | |
973 | while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | |
974 | udelay(1); | |
975 | ||
976 | /* ... and reading the results (if any). | |
977 | */ | |
978 | val = inl(io + SIS_AC97_CMD) >> 16; | |
979 | ||
980 | timeout_sema: | |
981 | outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | |
982 | timeout: | |
983 | mutex_unlock(&sis->ac97_mutex); | |
984 | ||
985 | if (!count) { | |
70597851 | 986 | dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", |
175859bf DD |
987 | codec, cmd); |
988 | } | |
989 | ||
990 | return val; | |
991 | } | |
992 | ||
993 | static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, | |
994 | unsigned short val) | |
995 | { | |
3f76d984 | 996 | static const u32 cmd[3] = { |
175859bf DD |
997 | SIS_AC97_CMD_CODEC_WRITE, |
998 | SIS_AC97_CMD_CODEC2_WRITE, | |
999 | SIS_AC97_CMD_CODEC3_WRITE, | |
1000 | }; | |
1001 | sis_ac97_rw(ac97->private_data, ac97->num, | |
1002 | (val << 16) | (reg << 8) | cmd[ac97->num]); | |
1003 | } | |
1004 | ||
1005 | static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) | |
1006 | { | |
3f76d984 | 1007 | static const u32 cmd[3] = { |
175859bf DD |
1008 | SIS_AC97_CMD_CODEC_READ, |
1009 | SIS_AC97_CMD_CODEC2_READ, | |
1010 | SIS_AC97_CMD_CODEC3_READ, | |
1011 | }; | |
1012 | return sis_ac97_rw(ac97->private_data, ac97->num, | |
1013 | (reg << 8) | cmd[ac97->num]); | |
1014 | } | |
1015 | ||
1016 | static int __devinit sis_mixer_create(struct sis7019 *sis) | |
1017 | { | |
1018 | struct snd_ac97_bus *bus; | |
1019 | struct snd_ac97_template ac97; | |
1020 | static struct snd_ac97_bus_ops ops = { | |
1021 | .write = sis_ac97_write, | |
1022 | .read = sis_ac97_read, | |
1023 | }; | |
1024 | int rc; | |
1025 | ||
1026 | memset(&ac97, 0, sizeof(ac97)); | |
1027 | ac97.private_data = sis; | |
1028 | ||
1029 | rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); | |
1030 | if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | |
1031 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); | |
1032 | ac97.num = 1; | |
1033 | if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) | |
1034 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); | |
1035 | ac97.num = 2; | |
1036 | if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) | |
1037 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); | |
1038 | ||
1039 | /* If we return an error here, then snd_card_free() should | |
1040 | * free up any ac97 codecs that got created, as well as the bus. | |
1041 | */ | |
1042 | return rc; | |
1043 | } | |
1044 | ||
1045 | static void sis_free_suspend(struct sis7019 *sis) | |
1046 | { | |
1047 | int i; | |
1048 | ||
1049 | for (i = 0; i < SIS_SUSPEND_PAGES; i++) | |
1050 | kfree(sis->suspend_state[i]); | |
1051 | } | |
1052 | ||
1053 | static int sis_chip_free(struct sis7019 *sis) | |
1054 | { | |
1055 | /* Reset the chip, and disable all interrputs. | |
1056 | */ | |
1057 | outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); | |
08b45098 | 1058 | udelay(25); |
175859bf DD |
1059 | outl(0, sis->ioport + SIS_GCR); |
1060 | outl(0, sis->ioport + SIS_GIER); | |
1061 | ||
1062 | /* Now, free everything we allocated. | |
1063 | */ | |
1064 | if (sis->irq >= 0) | |
1065 | free_irq(sis->irq, sis); | |
1066 | ||
1067 | if (sis->ioaddr) | |
1068 | iounmap(sis->ioaddr); | |
1069 | ||
1070 | pci_release_regions(sis->pci); | |
1071 | pci_disable_device(sis->pci); | |
1072 | ||
1073 | sis_free_suspend(sis); | |
1074 | return 0; | |
1075 | } | |
1076 | ||
1077 | static int sis_dev_free(struct snd_device *dev) | |
1078 | { | |
1079 | struct sis7019 *sis = dev->device_data; | |
1080 | return sis_chip_free(sis); | |
1081 | } | |
1082 | ||
1083 | static int sis_chip_init(struct sis7019 *sis) | |
1084 | { | |
1085 | unsigned long io = sis->ioport; | |
1086 | void __iomem *ioaddr = sis->ioaddr; | |
fc084e0b | 1087 | unsigned long timeout; |
175859bf DD |
1088 | u16 status; |
1089 | int count; | |
1090 | int i; | |
1091 | ||
1092 | /* Reset the audio controller | |
1093 | */ | |
1094 | outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); | |
08b45098 | 1095 | udelay(25); |
175859bf DD |
1096 | outl(0, io + SIS_GCR); |
1097 | ||
1098 | /* Get the AC-link semaphore, and reset the codecs | |
1099 | */ | |
1100 | count = 0xffff; | |
1101 | while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | |
1102 | udelay(1); | |
1103 | ||
1104 | if (!count) | |
1105 | return -EIO; | |
1106 | ||
1107 | outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); | |
08b45098 | 1108 | udelay(250); |
175859bf DD |
1109 | |
1110 | count = 0xffff; | |
1111 | while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | |
1112 | udelay(1); | |
1113 | ||
fc084e0b DD |
1114 | /* Command complete, we can let go of the semaphore now. |
1115 | */ | |
1116 | outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | |
1117 | if (!count) | |
1118 | return -EIO; | |
1119 | ||
175859bf | 1120 | /* Now that we've finished the reset, find out what's attached. |
fc084e0b DD |
1121 | * There are some codec/board combinations that take an extremely |
1122 | * long time to come up. 350+ ms has been observed in the field, | |
1123 | * so we'll give them up to 500ms. | |
175859bf | 1124 | */ |
fc084e0b DD |
1125 | sis->codecs_present = 0; |
1126 | timeout = msecs_to_jiffies(500) + jiffies; | |
1127 | while (time_before_eq(jiffies, timeout)) { | |
1128 | status = inl(io + SIS_AC97_STATUS); | |
1129 | if (status & SIS_AC97_STATUS_CODEC_READY) | |
1130 | sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; | |
1131 | if (status & SIS_AC97_STATUS_CODEC2_READY) | |
1132 | sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; | |
1133 | if (status & SIS_AC97_STATUS_CODEC3_READY) | |
1134 | sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; | |
1135 | ||
1136 | if (sis->codecs_present == codecs) | |
1137 | break; | |
1138 | ||
1139 | msleep(1); | |
1140 | } | |
1141 | ||
1142 | /* All done, check for errors. | |
175859bf | 1143 | */ |
fc084e0b | 1144 | if (!sis->codecs_present) { |
70597851 | 1145 | dev_err(&sis->pci->dev, "could not find any codecs\n"); |
175859bf | 1146 | return -EIO; |
fc084e0b DD |
1147 | } |
1148 | ||
1149 | if (sis->codecs_present != codecs) { | |
70597851 DD |
1150 | dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", |
1151 | sis->codecs_present, codecs); | |
fc084e0b | 1152 | } |
175859bf DD |
1153 | |
1154 | /* Let the hardware know that the audio driver is alive, | |
1155 | * and enable PCM slots on the AC-link for L/R playback (3 & 4) and | |
1156 | * record channels. We're going to want to use Variable Rate Audio | |
1157 | * for recording, to avoid needlessly resampling from 48kHZ. | |
1158 | */ | |
1159 | outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); | |
1160 | outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | | |
1161 | SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | | |
1162 | SIS_AC97_CONF_PCM_CAP_LR_ENABLE | | |
1163 | SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); | |
1164 | ||
1165 | /* All AC97 PCM slots should be sourced from sub-mixer 0. | |
1166 | */ | |
1167 | outl(0, io + SIS_AC97_PSR); | |
1168 | ||
1169 | /* There is only one valid DMA setup for a PCI environment. | |
1170 | */ | |
1171 | outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); | |
1172 | ||
25985edc | 1173 | /* Reset the synchronization groups for all of the channels |
175859bf DD |
1174 | * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. |
1175 | * we'll need to change how we handle these. Until then, we just | |
1176 | * assign sub-mixer 0 to all playback channels, and avoid any | |
1177 | * attenuation on the audio. | |
1178 | */ | |
1179 | outl(0, io + SIS_PLAY_SYNC_GROUP_A); | |
1180 | outl(0, io + SIS_PLAY_SYNC_GROUP_B); | |
1181 | outl(0, io + SIS_PLAY_SYNC_GROUP_C); | |
1182 | outl(0, io + SIS_PLAY_SYNC_GROUP_D); | |
1183 | outl(0, io + SIS_MIXER_SYNC_GROUP); | |
1184 | ||
1185 | for (i = 0; i < 64; i++) { | |
1186 | writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); | |
1187 | writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | | |
1188 | SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); | |
1189 | } | |
1190 | ||
1191 | /* Don't attenuate any audio set for the wave amplifier. | |
1192 | * | |
1193 | * FIXME: Maximum attenuation is set for the music amp, which will | |
1194 | * need to change if we start using the synth engine. | |
1195 | */ | |
1196 | outl(0xffff0000, io + SIS_WEVCR); | |
1197 | ||
1198 | /* Ensure that the wave engine is in normal operating mode. | |
1199 | */ | |
1200 | outl(0, io + SIS_WECCR); | |
1201 | ||
1202 | /* Go ahead and enable the DMA interrupts. They won't go live | |
1203 | * until we start a channel. | |
1204 | */ | |
1205 | outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | | |
1206 | SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); | |
1207 | ||
1208 | return 0; | |
1209 | } | |
1210 | ||
1211 | #ifdef CONFIG_PM | |
68cb2b55 | 1212 | static int sis_suspend(struct device *dev) |
175859bf | 1213 | { |
68cb2b55 TI |
1214 | struct pci_dev *pci = to_pci_dev(dev); |
1215 | struct snd_card *card = dev_get_drvdata(dev); | |
175859bf DD |
1216 | struct sis7019 *sis = card->private_data; |
1217 | void __iomem *ioaddr = sis->ioaddr; | |
1218 | int i; | |
1219 | ||
1220 | snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); | |
1221 | snd_pcm_suspend_all(sis->pcm); | |
1222 | if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | |
1223 | snd_ac97_suspend(sis->ac97[0]); | |
1224 | if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | |
1225 | snd_ac97_suspend(sis->ac97[1]); | |
1226 | if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | |
1227 | snd_ac97_suspend(sis->ac97[2]); | |
1228 | ||
1229 | /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. | |
1230 | */ | |
1231 | if (sis->irq >= 0) { | |
175859bf DD |
1232 | free_irq(sis->irq, sis); |
1233 | sis->irq = -1; | |
1234 | } | |
1235 | ||
1236 | /* Save the internal state away | |
1237 | */ | |
1238 | for (i = 0; i < 4; i++) { | |
1239 | memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); | |
1240 | ioaddr += 4096; | |
1241 | } | |
1242 | ||
1243 | pci_disable_device(pci); | |
1244 | pci_save_state(pci); | |
68cb2b55 | 1245 | pci_set_power_state(pci, PCI_D3hot); |
175859bf DD |
1246 | return 0; |
1247 | } | |
1248 | ||
68cb2b55 | 1249 | static int sis_resume(struct device *dev) |
175859bf | 1250 | { |
68cb2b55 TI |
1251 | struct pci_dev *pci = to_pci_dev(dev); |
1252 | struct snd_card *card = dev_get_drvdata(dev); | |
175859bf DD |
1253 | struct sis7019 *sis = card->private_data; |
1254 | void __iomem *ioaddr = sis->ioaddr; | |
1255 | int i; | |
1256 | ||
1257 | pci_set_power_state(pci, PCI_D0); | |
1258 | pci_restore_state(pci); | |
1259 | ||
1260 | if (pci_enable_device(pci) < 0) { | |
70597851 | 1261 | dev_err(&pci->dev, "unable to re-enable device\n"); |
175859bf DD |
1262 | goto error; |
1263 | } | |
1264 | ||
1265 | if (sis_chip_init(sis)) { | |
70597851 | 1266 | dev_err(&pci->dev, "unable to re-init controller\n"); |
175859bf DD |
1267 | goto error; |
1268 | } | |
1269 | ||
88e24c3a | 1270 | if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, |
934c2b6d | 1271 | KBUILD_MODNAME, sis)) { |
70597851 | 1272 | dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); |
175859bf DD |
1273 | goto error; |
1274 | } | |
1275 | ||
1276 | /* Restore saved state, then clear out the page we use for the | |
1277 | * silence buffer. | |
1278 | */ | |
1279 | for (i = 0; i < 4; i++) { | |
1280 | memcpy_toio(ioaddr, sis->suspend_state[i], 4096); | |
1281 | ioaddr += 4096; | |
1282 | } | |
1283 | ||
1284 | memset(sis->suspend_state[0], 0, 4096); | |
1285 | ||
1286 | sis->irq = pci->irq; | |
1287 | pci_set_master(pci); | |
1288 | ||
1289 | if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | |
1290 | snd_ac97_resume(sis->ac97[0]); | |
1291 | if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | |
1292 | snd_ac97_resume(sis->ac97[1]); | |
1293 | if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | |
1294 | snd_ac97_resume(sis->ac97[2]); | |
1295 | ||
1296 | snd_power_change_state(card, SNDRV_CTL_POWER_D0); | |
1297 | return 0; | |
1298 | ||
1299 | error: | |
1300 | snd_card_disconnect(card); | |
1301 | return -EIO; | |
1302 | } | |
68cb2b55 TI |
1303 | |
1304 | static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); | |
1305 | #define SIS_PM_OPS &sis_pm | |
1306 | #else | |
1307 | #define SIS_PM_OPS NULL | |
175859bf DD |
1308 | #endif /* CONFIG_PM */ |
1309 | ||
1310 | static int sis_alloc_suspend(struct sis7019 *sis) | |
1311 | { | |
1312 | int i; | |
1313 | ||
1314 | /* We need 16K to store the internal wave engine state during a | |
1315 | * suspend, but we don't need it to be contiguous, so play nice | |
1316 | * with the memory system. We'll also use this area for a silence | |
1317 | * buffer. | |
1318 | */ | |
1319 | for (i = 0; i < SIS_SUSPEND_PAGES; i++) { | |
1320 | sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); | |
1321 | if (!sis->suspend_state[i]) | |
1322 | return -ENOMEM; | |
1323 | } | |
1324 | memset(sis->suspend_state[0], 0, 4096); | |
1325 | ||
1326 | return 0; | |
1327 | } | |
1328 | ||
1329 | static int __devinit sis_chip_create(struct snd_card *card, | |
1330 | struct pci_dev *pci) | |
1331 | { | |
1332 | struct sis7019 *sis = card->private_data; | |
1333 | struct voice *voice; | |
1334 | static struct snd_device_ops ops = { | |
1335 | .dev_free = sis_dev_free, | |
1336 | }; | |
1337 | int rc; | |
1338 | int i; | |
1339 | ||
1340 | rc = pci_enable_device(pci); | |
1341 | if (rc) | |
1342 | goto error_out; | |
1343 | ||
28b76796 | 1344 | if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) { |
70597851 | 1345 | dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); |
175859bf DD |
1346 | goto error_out_enabled; |
1347 | } | |
1348 | ||
1349 | memset(sis, 0, sizeof(*sis)); | |
1350 | mutex_init(&sis->ac97_mutex); | |
1351 | spin_lock_init(&sis->voice_lock); | |
1352 | sis->card = card; | |
1353 | sis->pci = pci; | |
1354 | sis->irq = -1; | |
1355 | sis->ioport = pci_resource_start(pci, 0); | |
1356 | ||
1357 | rc = pci_request_regions(pci, "SiS7019"); | |
1358 | if (rc) { | |
70597851 | 1359 | dev_err(&pci->dev, "unable request regions\n"); |
175859bf DD |
1360 | goto error_out_enabled; |
1361 | } | |
1362 | ||
1363 | rc = -EIO; | |
1364 | sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); | |
1365 | if (!sis->ioaddr) { | |
70597851 | 1366 | dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); |
175859bf DD |
1367 | goto error_out_cleanup; |
1368 | } | |
1369 | ||
1370 | rc = sis_alloc_suspend(sis); | |
1371 | if (rc < 0) { | |
70597851 | 1372 | dev_err(&pci->dev, "unable to allocate state storage\n"); |
175859bf DD |
1373 | goto error_out_cleanup; |
1374 | } | |
1375 | ||
1376 | rc = sis_chip_init(sis); | |
1377 | if (rc) | |
1378 | goto error_out_cleanup; | |
1379 | ||
70597851 DD |
1380 | if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, |
1381 | sis)) { | |
1382 | dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); | |
175859bf DD |
1383 | goto error_out_cleanup; |
1384 | } | |
1385 | ||
1386 | sis->irq = pci->irq; | |
1387 | pci_set_master(pci); | |
1388 | ||
1389 | for (i = 0; i < 64; i++) { | |
1390 | voice = &sis->voices[i]; | |
1391 | voice->num = i; | |
1392 | voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); | |
1393 | voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); | |
1394 | } | |
1395 | ||
1396 | voice = &sis->capture_voice; | |
1397 | voice->flags = VOICE_CAPTURE; | |
1398 | voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; | |
1399 | voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); | |
1400 | ||
1401 | rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); | |
1402 | if (rc) | |
1403 | goto error_out_cleanup; | |
1404 | ||
1405 | snd_card_set_dev(card, &pci->dev); | |
1406 | ||
1407 | return 0; | |
1408 | ||
1409 | error_out_cleanup: | |
1410 | sis_chip_free(sis); | |
1411 | ||
1412 | error_out_enabled: | |
1413 | pci_disable_device(pci); | |
1414 | ||
1415 | error_out: | |
1416 | return rc; | |
1417 | } | |
1418 | ||
1419 | static int __devinit snd_sis7019_probe(struct pci_dev *pci, | |
1420 | const struct pci_device_id *pci_id) | |
1421 | { | |
1422 | struct snd_card *card; | |
1423 | struct sis7019 *sis; | |
1424 | int rc; | |
1425 | ||
1426 | rc = -ENOENT; | |
1427 | if (!enable) | |
1428 | goto error_out; | |
1429 | ||
fc084e0b DD |
1430 | /* The user can specify which codecs should be present so that we |
1431 | * can wait for them to show up if they are slow to recover from | |
1432 | * the AC97 cold reset. We default to a single codec, the primary. | |
1433 | * | |
1434 | * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. | |
1435 | */ | |
1436 | codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | | |
1437 | SIS_TERTIARY_CODEC_PRESENT; | |
1438 | if (!codecs) | |
1439 | codecs = SIS_PRIMARY_CODEC_PRESENT; | |
1440 | ||
e58de7ba TI |
1441 | rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card); |
1442 | if (rc < 0) | |
175859bf DD |
1443 | goto error_out; |
1444 | ||
1445 | strcpy(card->driver, "SiS7019"); | |
1446 | strcpy(card->shortname, "SiS7019"); | |
1447 | rc = sis_chip_create(card, pci); | |
1448 | if (rc) | |
1449 | goto card_error_out; | |
1450 | ||
1451 | sis = card->private_data; | |
1452 | ||
1453 | rc = sis_mixer_create(sis); | |
1454 | if (rc) | |
1455 | goto card_error_out; | |
1456 | ||
1457 | rc = sis_pcm_create(sis); | |
1458 | if (rc) | |
1459 | goto card_error_out; | |
1460 | ||
1461 | snprintf(card->longname, sizeof(card->longname), | |
1462 | "%s Audio Accelerator with %s at 0x%lx, irq %d", | |
1463 | card->shortname, snd_ac97_get_short_name(sis->ac97[0]), | |
1464 | sis->ioport, sis->irq); | |
1465 | ||
1466 | rc = snd_card_register(card); | |
1467 | if (rc) | |
1468 | goto card_error_out; | |
1469 | ||
1470 | pci_set_drvdata(pci, card); | |
1471 | return 0; | |
1472 | ||
1473 | card_error_out: | |
1474 | snd_card_free(card); | |
1475 | ||
1476 | error_out: | |
1477 | return rc; | |
1478 | } | |
1479 | ||
1480 | static void __devexit snd_sis7019_remove(struct pci_dev *pci) | |
1481 | { | |
1482 | snd_card_free(pci_get_drvdata(pci)); | |
1483 | pci_set_drvdata(pci, NULL); | |
1484 | } | |
1485 | ||
1486 | static struct pci_driver sis7019_driver = { | |
3733e424 | 1487 | .name = KBUILD_MODNAME, |
175859bf DD |
1488 | .id_table = snd_sis7019_ids, |
1489 | .probe = snd_sis7019_probe, | |
1490 | .remove = __devexit_p(snd_sis7019_remove), | |
68cb2b55 TI |
1491 | .driver = { |
1492 | .pm = SIS_PM_OPS, | |
1493 | }, | |
175859bf DD |
1494 | }; |
1495 | ||
e9f66d9b | 1496 | module_pci_driver(sis7019_driver); |