]>
Commit | Line | Data |
---|---|---|
e89c0413 DW |
1 | /* |
2 | * Copyright (C) 2017 Oracle. All Rights Reserved. | |
3 | * | |
4 | * Author: Darrick J. Wong <[email protected]> | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public License | |
8 | * as published by the Free Software Foundation; either version 2 | |
9 | * of the License, or (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it would be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, write the Free Software Foundation, | |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. | |
19 | */ | |
20 | #include "xfs.h" | |
21 | #include "xfs_fs.h" | |
22 | #include "xfs_shared.h" | |
23 | #include "xfs_format.h" | |
24 | #include "xfs_log_format.h" | |
25 | #include "xfs_trans_resv.h" | |
26 | #include "xfs_sb.h" | |
27 | #include "xfs_mount.h" | |
28 | #include "xfs_defer.h" | |
29 | #include "xfs_inode.h" | |
30 | #include "xfs_trans.h" | |
31 | #include "xfs_error.h" | |
32 | #include "xfs_btree.h" | |
33 | #include "xfs_rmap_btree.h" | |
34 | #include "xfs_trace.h" | |
35 | #include "xfs_log.h" | |
36 | #include "xfs_rmap.h" | |
37 | #include "xfs_alloc.h" | |
38 | #include "xfs_bit.h" | |
39 | #include <linux/fsmap.h> | |
40 | #include "xfs_fsmap.h" | |
41 | #include "xfs_refcount.h" | |
42 | #include "xfs_refcount_btree.h" | |
a1cae728 | 43 | #include "xfs_alloc_btree.h" |
4c934c7d | 44 | #include "xfs_rtalloc.h" |
e89c0413 DW |
45 | |
46 | /* Convert an xfs_fsmap to an fsmap. */ | |
47 | void | |
48 | xfs_fsmap_from_internal( | |
49 | struct fsmap *dest, | |
50 | struct xfs_fsmap *src) | |
51 | { | |
52 | dest->fmr_device = src->fmr_device; | |
53 | dest->fmr_flags = src->fmr_flags; | |
54 | dest->fmr_physical = BBTOB(src->fmr_physical); | |
55 | dest->fmr_owner = src->fmr_owner; | |
56 | dest->fmr_offset = BBTOB(src->fmr_offset); | |
57 | dest->fmr_length = BBTOB(src->fmr_length); | |
58 | dest->fmr_reserved[0] = 0; | |
59 | dest->fmr_reserved[1] = 0; | |
60 | dest->fmr_reserved[2] = 0; | |
61 | } | |
62 | ||
63 | /* Convert an fsmap to an xfs_fsmap. */ | |
64 | void | |
65 | xfs_fsmap_to_internal( | |
66 | struct xfs_fsmap *dest, | |
67 | struct fsmap *src) | |
68 | { | |
69 | dest->fmr_device = src->fmr_device; | |
70 | dest->fmr_flags = src->fmr_flags; | |
71 | dest->fmr_physical = BTOBBT(src->fmr_physical); | |
72 | dest->fmr_owner = src->fmr_owner; | |
73 | dest->fmr_offset = BTOBBT(src->fmr_offset); | |
74 | dest->fmr_length = BTOBBT(src->fmr_length); | |
75 | } | |
76 | ||
77 | /* Convert an fsmap owner into an rmapbt owner. */ | |
78 | static int | |
79 | xfs_fsmap_owner_to_rmap( | |
80 | struct xfs_rmap_irec *dest, | |
81 | struct xfs_fsmap *src) | |
82 | { | |
83 | if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { | |
84 | dest->rm_owner = src->fmr_owner; | |
85 | return 0; | |
86 | } | |
87 | ||
88 | switch (src->fmr_owner) { | |
89 | case 0: /* "lowest owner id possible" */ | |
90 | case -1ULL: /* "highest owner id possible" */ | |
91 | dest->rm_owner = 0; | |
92 | break; | |
93 | case XFS_FMR_OWN_FREE: | |
94 | dest->rm_owner = XFS_RMAP_OWN_NULL; | |
95 | break; | |
96 | case XFS_FMR_OWN_UNKNOWN: | |
97 | dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; | |
98 | break; | |
99 | case XFS_FMR_OWN_FS: | |
100 | dest->rm_owner = XFS_RMAP_OWN_FS; | |
101 | break; | |
102 | case XFS_FMR_OWN_LOG: | |
103 | dest->rm_owner = XFS_RMAP_OWN_LOG; | |
104 | break; | |
105 | case XFS_FMR_OWN_AG: | |
106 | dest->rm_owner = XFS_RMAP_OWN_AG; | |
107 | break; | |
108 | case XFS_FMR_OWN_INOBT: | |
109 | dest->rm_owner = XFS_RMAP_OWN_INOBT; | |
110 | break; | |
111 | case XFS_FMR_OWN_INODES: | |
112 | dest->rm_owner = XFS_RMAP_OWN_INODES; | |
113 | break; | |
114 | case XFS_FMR_OWN_REFC: | |
115 | dest->rm_owner = XFS_RMAP_OWN_REFC; | |
116 | break; | |
117 | case XFS_FMR_OWN_COW: | |
118 | dest->rm_owner = XFS_RMAP_OWN_COW; | |
119 | break; | |
120 | case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ | |
121 | /* fall through */ | |
122 | default: | |
123 | return -EINVAL; | |
124 | } | |
125 | return 0; | |
126 | } | |
127 | ||
128 | /* Convert an rmapbt owner into an fsmap owner. */ | |
129 | static int | |
130 | xfs_fsmap_owner_from_rmap( | |
131 | struct xfs_fsmap *dest, | |
132 | struct xfs_rmap_irec *src) | |
133 | { | |
134 | dest->fmr_flags = 0; | |
135 | if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { | |
136 | dest->fmr_owner = src->rm_owner; | |
137 | return 0; | |
138 | } | |
139 | dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; | |
140 | ||
141 | switch (src->rm_owner) { | |
142 | case XFS_RMAP_OWN_FS: | |
143 | dest->fmr_owner = XFS_FMR_OWN_FS; | |
144 | break; | |
145 | case XFS_RMAP_OWN_LOG: | |
146 | dest->fmr_owner = XFS_FMR_OWN_LOG; | |
147 | break; | |
148 | case XFS_RMAP_OWN_AG: | |
149 | dest->fmr_owner = XFS_FMR_OWN_AG; | |
150 | break; | |
151 | case XFS_RMAP_OWN_INOBT: | |
152 | dest->fmr_owner = XFS_FMR_OWN_INOBT; | |
153 | break; | |
154 | case XFS_RMAP_OWN_INODES: | |
155 | dest->fmr_owner = XFS_FMR_OWN_INODES; | |
156 | break; | |
157 | case XFS_RMAP_OWN_REFC: | |
158 | dest->fmr_owner = XFS_FMR_OWN_REFC; | |
159 | break; | |
160 | case XFS_RMAP_OWN_COW: | |
161 | dest->fmr_owner = XFS_FMR_OWN_COW; | |
162 | break; | |
a1cae728 DW |
163 | case XFS_RMAP_OWN_NULL: /* "free" */ |
164 | dest->fmr_owner = XFS_FMR_OWN_FREE; | |
165 | break; | |
e89c0413 DW |
166 | default: |
167 | return -EFSCORRUPTED; | |
168 | } | |
169 | return 0; | |
170 | } | |
171 | ||
172 | /* getfsmap query state */ | |
173 | struct xfs_getfsmap_info { | |
174 | struct xfs_fsmap_head *head; | |
175 | xfs_fsmap_format_t formatter; /* formatting fn */ | |
176 | void *format_arg; /* format buffer */ | |
177 | struct xfs_buf *agf_bp; /* AGF, for refcount queries */ | |
178 | xfs_daddr_t next_daddr; /* next daddr we expect */ | |
179 | u64 missing_owner; /* owner of holes */ | |
180 | u32 dev; /* device id */ | |
181 | xfs_agnumber_t agno; /* AG number, if applicable */ | |
182 | struct xfs_rmap_irec low; /* low rmap key */ | |
183 | struct xfs_rmap_irec high; /* high rmap key */ | |
184 | bool last; /* last extent? */ | |
185 | }; | |
186 | ||
187 | /* Associate a device with a getfsmap handler. */ | |
188 | struct xfs_getfsmap_dev { | |
189 | u32 dev; | |
190 | int (*fn)(struct xfs_trans *tp, | |
191 | struct xfs_fsmap *keys, | |
192 | struct xfs_getfsmap_info *info); | |
193 | }; | |
194 | ||
195 | /* Compare two getfsmap device handlers. */ | |
196 | static int | |
197 | xfs_getfsmap_dev_compare( | |
198 | const void *p1, | |
199 | const void *p2) | |
200 | { | |
201 | const struct xfs_getfsmap_dev *d1 = p1; | |
202 | const struct xfs_getfsmap_dev *d2 = p2; | |
203 | ||
204 | return d1->dev - d2->dev; | |
205 | } | |
206 | ||
207 | /* Decide if this mapping is shared. */ | |
208 | STATIC int | |
209 | xfs_getfsmap_is_shared( | |
210 | struct xfs_trans *tp, | |
211 | struct xfs_getfsmap_info *info, | |
212 | struct xfs_rmap_irec *rec, | |
213 | bool *stat) | |
214 | { | |
215 | struct xfs_mount *mp = tp->t_mountp; | |
216 | struct xfs_btree_cur *cur; | |
217 | xfs_agblock_t fbno; | |
218 | xfs_extlen_t flen; | |
219 | int error; | |
220 | ||
221 | *stat = false; | |
222 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) | |
223 | return 0; | |
224 | /* rt files will have agno set to NULLAGNUMBER */ | |
225 | if (info->agno == NULLAGNUMBER) | |
226 | return 0; | |
227 | ||
228 | /* Are there any shared blocks here? */ | |
229 | flen = 0; | |
230 | cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, | |
231 | info->agno, NULL); | |
232 | ||
233 | error = xfs_refcount_find_shared(cur, rec->rm_startblock, | |
234 | rec->rm_blockcount, &fbno, &flen, false); | |
235 | ||
236 | xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); | |
237 | if (error) | |
238 | return error; | |
239 | ||
240 | *stat = flen > 0; | |
241 | return 0; | |
242 | } | |
243 | ||
244 | /* | |
245 | * Format a reverse mapping for getfsmap, having translated rm_startblock | |
246 | * into the appropriate daddr units. | |
247 | */ | |
248 | STATIC int | |
249 | xfs_getfsmap_helper( | |
250 | struct xfs_trans *tp, | |
251 | struct xfs_getfsmap_info *info, | |
252 | struct xfs_rmap_irec *rec, | |
253 | xfs_daddr_t rec_daddr) | |
254 | { | |
255 | struct xfs_fsmap fmr; | |
256 | struct xfs_mount *mp = tp->t_mountp; | |
257 | bool shared; | |
258 | int error; | |
259 | ||
260 | if (fatal_signal_pending(current)) | |
261 | return -EINTR; | |
262 | ||
263 | /* | |
264 | * Filter out records that start before our startpoint, if the | |
265 | * caller requested that. | |
266 | */ | |
267 | if (xfs_rmap_compare(rec, &info->low) < 0) { | |
268 | rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); | |
269 | if (info->next_daddr < rec_daddr) | |
270 | info->next_daddr = rec_daddr; | |
271 | return XFS_BTREE_QUERY_RANGE_CONTINUE; | |
272 | } | |
273 | ||
274 | /* Are we just counting mappings? */ | |
275 | if (info->head->fmh_count == 0) { | |
276 | if (rec_daddr > info->next_daddr) | |
277 | info->head->fmh_entries++; | |
278 | ||
279 | if (info->last) | |
280 | return XFS_BTREE_QUERY_RANGE_CONTINUE; | |
281 | ||
282 | info->head->fmh_entries++; | |
283 | ||
284 | rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); | |
285 | if (info->next_daddr < rec_daddr) | |
286 | info->next_daddr = rec_daddr; | |
287 | return XFS_BTREE_QUERY_RANGE_CONTINUE; | |
288 | } | |
289 | ||
290 | /* | |
291 | * If the record starts past the last physical block we saw, | |
292 | * then we've found a gap. Report the gap as being owned by | |
293 | * whatever the caller specified is the missing owner. | |
294 | */ | |
295 | if (rec_daddr > info->next_daddr) { | |
296 | if (info->head->fmh_entries >= info->head->fmh_count) | |
297 | return XFS_BTREE_QUERY_RANGE_ABORT; | |
298 | ||
299 | fmr.fmr_device = info->dev; | |
300 | fmr.fmr_physical = info->next_daddr; | |
301 | fmr.fmr_owner = info->missing_owner; | |
302 | fmr.fmr_offset = 0; | |
303 | fmr.fmr_length = rec_daddr - info->next_daddr; | |
304 | fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; | |
305 | error = info->formatter(&fmr, info->format_arg); | |
306 | if (error) | |
307 | return error; | |
308 | info->head->fmh_entries++; | |
309 | } | |
310 | ||
311 | if (info->last) | |
312 | goto out; | |
313 | ||
314 | /* Fill out the extent we found */ | |
315 | if (info->head->fmh_entries >= info->head->fmh_count) | |
316 | return XFS_BTREE_QUERY_RANGE_ABORT; | |
317 | ||
318 | trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec); | |
319 | ||
320 | fmr.fmr_device = info->dev; | |
321 | fmr.fmr_physical = rec_daddr; | |
322 | error = xfs_fsmap_owner_from_rmap(&fmr, rec); | |
323 | if (error) | |
324 | return error; | |
325 | fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); | |
326 | fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount); | |
327 | if (rec->rm_flags & XFS_RMAP_UNWRITTEN) | |
328 | fmr.fmr_flags |= FMR_OF_PREALLOC; | |
329 | if (rec->rm_flags & XFS_RMAP_ATTR_FORK) | |
330 | fmr.fmr_flags |= FMR_OF_ATTR_FORK; | |
331 | if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) | |
332 | fmr.fmr_flags |= FMR_OF_EXTENT_MAP; | |
333 | if (fmr.fmr_flags == 0) { | |
334 | error = xfs_getfsmap_is_shared(tp, info, rec, &shared); | |
335 | if (error) | |
336 | return error; | |
337 | if (shared) | |
338 | fmr.fmr_flags |= FMR_OF_SHARED; | |
339 | } | |
340 | error = info->formatter(&fmr, info->format_arg); | |
341 | if (error) | |
342 | return error; | |
343 | info->head->fmh_entries++; | |
344 | ||
345 | out: | |
346 | rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); | |
347 | if (info->next_daddr < rec_daddr) | |
348 | info->next_daddr = rec_daddr; | |
349 | return XFS_BTREE_QUERY_RANGE_CONTINUE; | |
350 | } | |
351 | ||
352 | /* Transform a rmapbt irec into a fsmap */ | |
353 | STATIC int | |
354 | xfs_getfsmap_datadev_helper( | |
355 | struct xfs_btree_cur *cur, | |
356 | struct xfs_rmap_irec *rec, | |
357 | void *priv) | |
358 | { | |
359 | struct xfs_mount *mp = cur->bc_mp; | |
360 | struct xfs_getfsmap_info *info = priv; | |
361 | xfs_fsblock_t fsb; | |
362 | xfs_daddr_t rec_daddr; | |
363 | ||
364 | fsb = XFS_AGB_TO_FSB(mp, cur->bc_private.a.agno, rec->rm_startblock); | |
365 | rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); | |
366 | ||
367 | return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr); | |
368 | } | |
369 | ||
a1cae728 DW |
370 | /* Transform a bnobt irec into a fsmap */ |
371 | STATIC int | |
372 | xfs_getfsmap_datadev_bnobt_helper( | |
373 | struct xfs_btree_cur *cur, | |
374 | struct xfs_alloc_rec_incore *rec, | |
375 | void *priv) | |
376 | { | |
377 | struct xfs_mount *mp = cur->bc_mp; | |
378 | struct xfs_getfsmap_info *info = priv; | |
379 | struct xfs_rmap_irec irec; | |
380 | xfs_daddr_t rec_daddr; | |
381 | ||
382 | rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_private.a.agno, | |
383 | rec->ar_startblock); | |
384 | ||
385 | irec.rm_startblock = rec->ar_startblock; | |
386 | irec.rm_blockcount = rec->ar_blockcount; | |
387 | irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ | |
388 | irec.rm_offset = 0; | |
389 | irec.rm_flags = 0; | |
390 | ||
391 | return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr); | |
392 | } | |
393 | ||
e89c0413 DW |
394 | /* Set rmap flags based on the getfsmap flags */ |
395 | static void | |
396 | xfs_getfsmap_set_irec_flags( | |
397 | struct xfs_rmap_irec *irec, | |
398 | struct xfs_fsmap *fmr) | |
399 | { | |
400 | irec->rm_flags = 0; | |
401 | if (fmr->fmr_flags & FMR_OF_ATTR_FORK) | |
402 | irec->rm_flags |= XFS_RMAP_ATTR_FORK; | |
403 | if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) | |
404 | irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; | |
405 | if (fmr->fmr_flags & FMR_OF_PREALLOC) | |
406 | irec->rm_flags |= XFS_RMAP_UNWRITTEN; | |
407 | } | |
408 | ||
409 | /* Execute a getfsmap query against the log device. */ | |
410 | STATIC int | |
411 | xfs_getfsmap_logdev( | |
412 | struct xfs_trans *tp, | |
413 | struct xfs_fsmap *keys, | |
414 | struct xfs_getfsmap_info *info) | |
415 | { | |
416 | struct xfs_mount *mp = tp->t_mountp; | |
417 | struct xfs_rmap_irec rmap; | |
418 | int error; | |
419 | ||
420 | /* Set up search keys */ | |
421 | info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); | |
422 | info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); | |
423 | error = xfs_fsmap_owner_to_rmap(&info->low, keys); | |
424 | if (error) | |
425 | return error; | |
426 | info->low.rm_blockcount = 0; | |
427 | xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); | |
428 | ||
429 | error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1); | |
430 | if (error) | |
431 | return error; | |
432 | info->high.rm_startblock = -1U; | |
433 | info->high.rm_owner = ULLONG_MAX; | |
434 | info->high.rm_offset = ULLONG_MAX; | |
435 | info->high.rm_blockcount = 0; | |
436 | info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; | |
437 | info->missing_owner = XFS_FMR_OWN_FREE; | |
438 | ||
439 | trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); | |
440 | trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); | |
441 | ||
442 | if (keys[0].fmr_physical > 0) | |
443 | return 0; | |
444 | ||
445 | /* Fabricate an rmap entry for the external log device. */ | |
446 | rmap.rm_startblock = 0; | |
447 | rmap.rm_blockcount = mp->m_sb.sb_logblocks; | |
448 | rmap.rm_owner = XFS_RMAP_OWN_LOG; | |
449 | rmap.rm_offset = 0; | |
450 | rmap.rm_flags = 0; | |
451 | ||
452 | return xfs_getfsmap_helper(tp, info, &rmap, 0); | |
453 | } | |
454 | ||
785545c8 AB |
455 | #ifdef CONFIG_XFS_RT |
456 | /* Transform a rtbitmap "record" into a fsmap */ | |
457 | STATIC int | |
458 | xfs_getfsmap_rtdev_rtbitmap_helper( | |
459 | struct xfs_trans *tp, | |
460 | struct xfs_rtalloc_rec *rec, | |
461 | void *priv) | |
462 | { | |
463 | struct xfs_mount *mp = tp->t_mountp; | |
464 | struct xfs_getfsmap_info *info = priv; | |
465 | struct xfs_rmap_irec irec; | |
466 | xfs_daddr_t rec_daddr; | |
467 | ||
468 | rec_daddr = XFS_FSB_TO_BB(mp, rec->ar_startblock); | |
469 | ||
470 | irec.rm_startblock = rec->ar_startblock; | |
471 | irec.rm_blockcount = rec->ar_blockcount; | |
472 | irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ | |
473 | irec.rm_offset = 0; | |
474 | irec.rm_flags = 0; | |
475 | ||
476 | return xfs_getfsmap_helper(tp, info, &irec, rec_daddr); | |
477 | } | |
478 | ||
4c934c7d DW |
479 | /* Execute a getfsmap query against the realtime device. */ |
480 | STATIC int | |
481 | __xfs_getfsmap_rtdev( | |
482 | struct xfs_trans *tp, | |
483 | struct xfs_fsmap *keys, | |
484 | int (*query_fn)(struct xfs_trans *, | |
485 | struct xfs_getfsmap_info *), | |
486 | struct xfs_getfsmap_info *info) | |
487 | { | |
488 | struct xfs_mount *mp = tp->t_mountp; | |
489 | xfs_fsblock_t start_fsb; | |
490 | xfs_fsblock_t end_fsb; | |
491 | xfs_daddr_t eofs; | |
492 | int error = 0; | |
493 | ||
494 | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); | |
495 | if (keys[0].fmr_physical >= eofs) | |
496 | return 0; | |
497 | if (keys[1].fmr_physical >= eofs) | |
498 | keys[1].fmr_physical = eofs - 1; | |
499 | start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); | |
500 | end_fsb = XFS_BB_TO_FSB(mp, keys[1].fmr_physical); | |
501 | ||
502 | /* Set up search keys */ | |
503 | info->low.rm_startblock = start_fsb; | |
504 | error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); | |
505 | if (error) | |
506 | return error; | |
507 | info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); | |
508 | info->low.rm_blockcount = 0; | |
509 | xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); | |
510 | ||
511 | info->high.rm_startblock = end_fsb; | |
512 | error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); | |
513 | if (error) | |
514 | return error; | |
515 | info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset); | |
516 | info->high.rm_blockcount = 0; | |
517 | xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); | |
518 | ||
519 | trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); | |
520 | trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); | |
521 | ||
522 | return query_fn(tp, info); | |
523 | } | |
524 | ||
525 | /* Actually query the realtime bitmap. */ | |
526 | STATIC int | |
527 | xfs_getfsmap_rtdev_rtbitmap_query( | |
528 | struct xfs_trans *tp, | |
529 | struct xfs_getfsmap_info *info) | |
530 | { | |
531 | struct xfs_rtalloc_rec alow; | |
532 | struct xfs_rtalloc_rec ahigh; | |
533 | int error; | |
534 | ||
535 | xfs_ilock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); | |
536 | ||
537 | alow.ar_startblock = info->low.rm_startblock; | |
538 | ahigh.ar_startblock = info->high.rm_startblock; | |
539 | error = xfs_rtalloc_query_range(tp, &alow, &ahigh, | |
540 | xfs_getfsmap_rtdev_rtbitmap_helper, info); | |
541 | if (error) | |
542 | goto err; | |
543 | ||
544 | /* Report any gaps at the end of the rtbitmap */ | |
545 | info->last = true; | |
546 | error = xfs_getfsmap_rtdev_rtbitmap_helper(tp, &ahigh, info); | |
547 | if (error) | |
548 | goto err; | |
549 | err: | |
550 | xfs_iunlock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); | |
551 | return error; | |
552 | } | |
553 | ||
554 | /* Execute a getfsmap query against the realtime device rtbitmap. */ | |
555 | STATIC int | |
556 | xfs_getfsmap_rtdev_rtbitmap( | |
557 | struct xfs_trans *tp, | |
558 | struct xfs_fsmap *keys, | |
559 | struct xfs_getfsmap_info *info) | |
560 | { | |
561 | info->missing_owner = XFS_FMR_OWN_UNKNOWN; | |
562 | return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query, | |
563 | info); | |
564 | } | |
bb9c2e54 | 565 | #endif /* CONFIG_XFS_RT */ |
4c934c7d | 566 | |
e89c0413 DW |
567 | /* Execute a getfsmap query against the regular data device. */ |
568 | STATIC int | |
569 | __xfs_getfsmap_datadev( | |
570 | struct xfs_trans *tp, | |
571 | struct xfs_fsmap *keys, | |
572 | struct xfs_getfsmap_info *info, | |
573 | int (*query_fn)(struct xfs_trans *, | |
574 | struct xfs_getfsmap_info *, | |
575 | struct xfs_btree_cur **, | |
576 | void *), | |
577 | void *priv) | |
578 | { | |
579 | struct xfs_mount *mp = tp->t_mountp; | |
580 | struct xfs_btree_cur *bt_cur = NULL; | |
581 | xfs_fsblock_t start_fsb; | |
582 | xfs_fsblock_t end_fsb; | |
583 | xfs_agnumber_t start_ag; | |
584 | xfs_agnumber_t end_ag; | |
585 | xfs_daddr_t eofs; | |
586 | int error = 0; | |
587 | ||
588 | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | |
589 | if (keys[0].fmr_physical >= eofs) | |
590 | return 0; | |
591 | if (keys[1].fmr_physical >= eofs) | |
592 | keys[1].fmr_physical = eofs - 1; | |
593 | start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); | |
594 | end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical); | |
595 | ||
596 | /* | |
597 | * Convert the fsmap low/high keys to AG based keys. Initialize | |
598 | * low to the fsmap low key and max out the high key to the end | |
599 | * of the AG. | |
600 | */ | |
601 | info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); | |
602 | info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); | |
603 | error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); | |
604 | if (error) | |
605 | return error; | |
606 | info->low.rm_blockcount = 0; | |
607 | xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); | |
608 | ||
609 | info->high.rm_startblock = -1U; | |
610 | info->high.rm_owner = ULLONG_MAX; | |
611 | info->high.rm_offset = ULLONG_MAX; | |
612 | info->high.rm_blockcount = 0; | |
613 | info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; | |
614 | ||
615 | start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); | |
616 | end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); | |
617 | ||
618 | /* Query each AG */ | |
619 | for (info->agno = start_ag; info->agno <= end_ag; info->agno++) { | |
620 | /* | |
621 | * Set the AG high key from the fsmap high key if this | |
622 | * is the last AG that we're querying. | |
623 | */ | |
624 | if (info->agno == end_ag) { | |
625 | info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, | |
626 | end_fsb); | |
627 | info->high.rm_offset = XFS_BB_TO_FSBT(mp, | |
628 | keys[1].fmr_offset); | |
629 | error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); | |
630 | if (error) | |
631 | goto err; | |
632 | xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); | |
633 | } | |
634 | ||
635 | if (bt_cur) { | |
636 | xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); | |
637 | bt_cur = NULL; | |
638 | xfs_trans_brelse(tp, info->agf_bp); | |
639 | info->agf_bp = NULL; | |
640 | } | |
641 | ||
642 | error = xfs_alloc_read_agf(mp, tp, info->agno, 0, | |
643 | &info->agf_bp); | |
644 | if (error) | |
645 | goto err; | |
646 | ||
647 | trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); | |
648 | trace_xfs_fsmap_high_key(mp, info->dev, info->agno, | |
649 | &info->high); | |
650 | ||
651 | error = query_fn(tp, info, &bt_cur, priv); | |
652 | if (error) | |
653 | goto err; | |
654 | ||
655 | /* | |
656 | * Set the AG low key to the start of the AG prior to | |
657 | * moving on to the next AG. | |
658 | */ | |
659 | if (info->agno == start_ag) { | |
660 | info->low.rm_startblock = 0; | |
661 | info->low.rm_owner = 0; | |
662 | info->low.rm_offset = 0; | |
663 | info->low.rm_flags = 0; | |
664 | } | |
665 | } | |
666 | ||
667 | /* Report any gap at the end of the AG */ | |
668 | info->last = true; | |
669 | error = query_fn(tp, info, &bt_cur, priv); | |
670 | if (error) | |
671 | goto err; | |
672 | ||
673 | err: | |
674 | if (bt_cur) | |
675 | xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : | |
676 | XFS_BTREE_NOERROR); | |
677 | if (info->agf_bp) { | |
678 | xfs_trans_brelse(tp, info->agf_bp); | |
679 | info->agf_bp = NULL; | |
680 | } | |
681 | ||
682 | return error; | |
683 | } | |
684 | ||
685 | /* Actually query the rmap btree. */ | |
686 | STATIC int | |
687 | xfs_getfsmap_datadev_rmapbt_query( | |
688 | struct xfs_trans *tp, | |
689 | struct xfs_getfsmap_info *info, | |
690 | struct xfs_btree_cur **curpp, | |
691 | void *priv) | |
692 | { | |
693 | /* Report any gap at the end of the last AG. */ | |
694 | if (info->last) | |
695 | return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); | |
696 | ||
697 | /* Allocate cursor for this AG and query_range it. */ | |
698 | *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, | |
699 | info->agno); | |
700 | return xfs_rmap_query_range(*curpp, &info->low, &info->high, | |
701 | xfs_getfsmap_datadev_helper, info); | |
702 | } | |
703 | ||
704 | /* Execute a getfsmap query against the regular data device rmapbt. */ | |
705 | STATIC int | |
706 | xfs_getfsmap_datadev_rmapbt( | |
707 | struct xfs_trans *tp, | |
708 | struct xfs_fsmap *keys, | |
709 | struct xfs_getfsmap_info *info) | |
710 | { | |
711 | info->missing_owner = XFS_FMR_OWN_FREE; | |
712 | return __xfs_getfsmap_datadev(tp, keys, info, | |
713 | xfs_getfsmap_datadev_rmapbt_query, NULL); | |
714 | } | |
715 | ||
a1cae728 DW |
716 | /* Actually query the bno btree. */ |
717 | STATIC int | |
718 | xfs_getfsmap_datadev_bnobt_query( | |
719 | struct xfs_trans *tp, | |
720 | struct xfs_getfsmap_info *info, | |
721 | struct xfs_btree_cur **curpp, | |
722 | void *priv) | |
723 | { | |
724 | struct xfs_alloc_rec_incore *key = priv; | |
725 | ||
726 | /* Report any gap at the end of the last AG. */ | |
727 | if (info->last) | |
728 | return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); | |
729 | ||
730 | /* Allocate cursor for this AG and query_range it. */ | |
731 | *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp, | |
732 | info->agno, XFS_BTNUM_BNO); | |
733 | key->ar_startblock = info->low.rm_startblock; | |
734 | key[1].ar_startblock = info->high.rm_startblock; | |
735 | return xfs_alloc_query_range(*curpp, key, &key[1], | |
736 | xfs_getfsmap_datadev_bnobt_helper, info); | |
737 | } | |
738 | ||
739 | /* Execute a getfsmap query against the regular data device's bnobt. */ | |
740 | STATIC int | |
741 | xfs_getfsmap_datadev_bnobt( | |
742 | struct xfs_trans *tp, | |
743 | struct xfs_fsmap *keys, | |
744 | struct xfs_getfsmap_info *info) | |
745 | { | |
746 | struct xfs_alloc_rec_incore akeys[2]; | |
747 | ||
748 | info->missing_owner = XFS_FMR_OWN_UNKNOWN; | |
749 | return __xfs_getfsmap_datadev(tp, keys, info, | |
750 | xfs_getfsmap_datadev_bnobt_query, &akeys[0]); | |
751 | } | |
752 | ||
e89c0413 DW |
753 | /* Do we recognize the device? */ |
754 | STATIC bool | |
755 | xfs_getfsmap_is_valid_device( | |
756 | struct xfs_mount *mp, | |
757 | struct xfs_fsmap *fm) | |
758 | { | |
759 | if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || | |
760 | fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) | |
761 | return true; | |
762 | if (mp->m_logdev_targp && | |
763 | fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) | |
764 | return true; | |
4c934c7d DW |
765 | if (mp->m_rtdev_targp && |
766 | fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) | |
767 | return true; | |
e89c0413 DW |
768 | return false; |
769 | } | |
770 | ||
771 | /* Ensure that the low key is less than the high key. */ | |
772 | STATIC bool | |
773 | xfs_getfsmap_check_keys( | |
774 | struct xfs_fsmap *low_key, | |
775 | struct xfs_fsmap *high_key) | |
776 | { | |
777 | if (low_key->fmr_device > high_key->fmr_device) | |
778 | return false; | |
779 | if (low_key->fmr_device < high_key->fmr_device) | |
780 | return true; | |
781 | ||
782 | if (low_key->fmr_physical > high_key->fmr_physical) | |
783 | return false; | |
784 | if (low_key->fmr_physical < high_key->fmr_physical) | |
785 | return true; | |
786 | ||
787 | if (low_key->fmr_owner > high_key->fmr_owner) | |
788 | return false; | |
789 | if (low_key->fmr_owner < high_key->fmr_owner) | |
790 | return true; | |
791 | ||
792 | if (low_key->fmr_offset > high_key->fmr_offset) | |
793 | return false; | |
794 | if (low_key->fmr_offset < high_key->fmr_offset) | |
795 | return true; | |
796 | ||
797 | return false; | |
798 | } | |
799 | ||
bb9c2e54 DC |
800 | /* |
801 | * There are only two devices if we didn't configure RT devices at build time. | |
802 | */ | |
803 | #ifdef CONFIG_XFS_RT | |
4c934c7d | 804 | #define XFS_GETFSMAP_DEVS 3 |
bb9c2e54 DC |
805 | #else |
806 | #define XFS_GETFSMAP_DEVS 2 | |
807 | #endif /* CONFIG_XFS_RT */ | |
808 | ||
e89c0413 DW |
809 | /* |
810 | * Get filesystem's extents as described in head, and format for | |
811 | * output. Calls formatter to fill the user's buffer until all | |
812 | * extents are mapped, until the passed-in head->fmh_count slots have | |
813 | * been filled, or until the formatter short-circuits the loop, if it | |
814 | * is tracking filled-in extents on its own. | |
815 | * | |
816 | * Key to Confusion | |
817 | * ---------------- | |
818 | * There are multiple levels of keys and counters at work here: | |
819 | * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; | |
820 | * these reflect fs-wide sector addrs. | |
821 | * dkeys -- fmh_keys used to query each device; | |
822 | * these are fmh_keys but w/ the low key | |
823 | * bumped up by fmr_length. | |
824 | * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this | |
825 | * is how we detect gaps in the fsmap | |
826 | records and report them. | |
827 | * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from | |
828 | * dkeys; used to query the metadata. | |
829 | */ | |
830 | int | |
831 | xfs_getfsmap( | |
832 | struct xfs_mount *mp, | |
833 | struct xfs_fsmap_head *head, | |
834 | xfs_fsmap_format_t formatter, | |
835 | void *arg) | |
836 | { | |
837 | struct xfs_trans *tp = NULL; | |
838 | struct xfs_fsmap dkeys[2]; /* per-dev keys */ | |
839 | struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; | |
fad5656b | 840 | struct xfs_getfsmap_info info = { NULL }; |
ea9a46e1 | 841 | bool use_rmap; |
e89c0413 DW |
842 | int i; |
843 | int error = 0; | |
844 | ||
e89c0413 DW |
845 | if (head->fmh_iflags & ~FMH_IF_VALID) |
846 | return -EINVAL; | |
847 | if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || | |
848 | !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) | |
849 | return -EINVAL; | |
850 | ||
ea9a46e1 DW |
851 | use_rmap = capable(CAP_SYS_ADMIN) && |
852 | xfs_sb_version_hasrmapbt(&mp->m_sb); | |
e89c0413 DW |
853 | head->fmh_entries = 0; |
854 | ||
855 | /* Set up our device handlers. */ | |
856 | memset(handlers, 0, sizeof(handlers)); | |
857 | handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); | |
ea9a46e1 | 858 | if (use_rmap) |
a1cae728 DW |
859 | handlers[0].fn = xfs_getfsmap_datadev_rmapbt; |
860 | else | |
861 | handlers[0].fn = xfs_getfsmap_datadev_bnobt; | |
e89c0413 DW |
862 | if (mp->m_logdev_targp != mp->m_ddev_targp) { |
863 | handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); | |
864 | handlers[1].fn = xfs_getfsmap_logdev; | |
865 | } | |
bb9c2e54 | 866 | #ifdef CONFIG_XFS_RT |
4c934c7d DW |
867 | if (mp->m_rtdev_targp) { |
868 | handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); | |
869 | handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; | |
870 | } | |
bb9c2e54 | 871 | #endif /* CONFIG_XFS_RT */ |
e89c0413 DW |
872 | |
873 | xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), | |
874 | xfs_getfsmap_dev_compare); | |
875 | ||
876 | /* | |
877 | * To continue where we left off, we allow userspace to use the | |
878 | * last mapping from a previous call as the low key of the next. | |
879 | * This is identified by a non-zero length in the low key. We | |
880 | * have to increment the low key in this scenario to ensure we | |
881 | * don't return the same mapping again, and instead return the | |
882 | * very next mapping. | |
883 | * | |
884 | * If the low key mapping refers to file data, the same physical | |
885 | * blocks could be mapped to several other files/offsets. | |
886 | * According to rmapbt record ordering, the minimal next | |
887 | * possible record for the block range is the next starting | |
888 | * offset in the same inode. Therefore, bump the file offset to | |
889 | * continue the search appropriately. For all other low key | |
890 | * mapping types (attr blocks, metadata), bump the physical | |
891 | * offset as there can be no other mapping for the same physical | |
892 | * block range. | |
893 | */ | |
894 | dkeys[0] = head->fmh_keys[0]; | |
895 | if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { | |
896 | dkeys[0].fmr_physical += dkeys[0].fmr_length; | |
897 | dkeys[0].fmr_owner = 0; | |
898 | if (dkeys[0].fmr_offset) | |
899 | return -EINVAL; | |
900 | } else | |
901 | dkeys[0].fmr_offset += dkeys[0].fmr_length; | |
902 | dkeys[0].fmr_length = 0; | |
903 | memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); | |
904 | ||
905 | if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1])) | |
906 | return -EINVAL; | |
907 | ||
908 | info.next_daddr = head->fmh_keys[0].fmr_physical + | |
909 | head->fmh_keys[0].fmr_length; | |
910 | info.formatter = formatter; | |
911 | info.format_arg = arg; | |
912 | info.head = head; | |
913 | ||
914 | /* For each device we support... */ | |
915 | for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { | |
916 | /* Is this device within the range the user asked for? */ | |
917 | if (!handlers[i].fn) | |
918 | continue; | |
919 | if (head->fmh_keys[0].fmr_device > handlers[i].dev) | |
920 | continue; | |
921 | if (head->fmh_keys[1].fmr_device < handlers[i].dev) | |
922 | break; | |
923 | ||
924 | /* | |
925 | * If this device number matches the high key, we have | |
926 | * to pass the high key to the handler to limit the | |
927 | * query results. If the device number exceeds the | |
928 | * low key, zero out the low key so that we get | |
929 | * everything from the beginning. | |
930 | */ | |
931 | if (handlers[i].dev == head->fmh_keys[1].fmr_device) | |
932 | dkeys[1] = head->fmh_keys[1]; | |
933 | if (handlers[i].dev > head->fmh_keys[0].fmr_device) | |
934 | memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); | |
935 | ||
936 | error = xfs_trans_alloc_empty(mp, &tp); | |
937 | if (error) | |
938 | break; | |
939 | ||
940 | info.dev = handlers[i].dev; | |
941 | info.last = false; | |
942 | info.agno = NULLAGNUMBER; | |
943 | error = handlers[i].fn(tp, dkeys, &info); | |
944 | if (error) | |
945 | break; | |
946 | xfs_trans_cancel(tp); | |
947 | tp = NULL; | |
948 | info.next_daddr = 0; | |
949 | } | |
950 | ||
951 | if (tp) | |
952 | xfs_trans_cancel(tp); | |
953 | head->fmh_oflags = FMH_OF_DEV_T; | |
954 | return error; | |
955 | } |