]> Git Repo - linux.git/blame - fs/buffer.c
mm: fs: invalidate BH LRU during page migration
[linux.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <[email protected]>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
1da177e4 51
2b211dc0
BD
52#include "internal.h"
53
1da177e4 54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 56 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
57
58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
f0059afd
TH
60inline void touch_buffer(struct buffer_head *bh)
61{
5305cb83 62 trace_block_touch_buffer(bh);
f0059afd
TH
63 mark_page_accessed(bh->b_page);
64}
65EXPORT_SYMBOL(touch_buffer);
66
fc9b52cd 67void __lock_buffer(struct buffer_head *bh)
1da177e4 68{
74316201 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
70}
71EXPORT_SYMBOL(__lock_buffer);
72
fc9b52cd 73void unlock_buffer(struct buffer_head *bh)
1da177e4 74{
51b07fc3 75 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 76 smp_mb__after_atomic();
1da177e4
LT
77 wake_up_bit(&bh->b_state, BH_Lock);
78}
1fe72eaa 79EXPORT_SYMBOL(unlock_buffer);
1da177e4 80
b4597226
MG
81/*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88{
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112}
113EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
1da177e4
LT
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
74316201 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 123}
1fe72eaa 124EXPORT_SYMBOL(__wait_on_buffer);
1da177e4 125
b744c2ac 126static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 127{
432f16e6
RE
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
a1c6f057
DM
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
132}
133
134/*
68671f35
DM
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
1da177e4 141 */
68671f35 142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
143{
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
70246286 147 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
68671f35
DM
151}
152
153/*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158{
159 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
160 put_bh(bh);
161}
1fe72eaa 162EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
163
164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165{
1da177e4
LT
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
432f16e6 169 buffer_io_error(bh, ", lost sync page write");
87354e5d 170 mark_buffer_write_io_error(bh);
1da177e4
LT
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175}
1fe72eaa 176EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 177
1da177e4
LT
178/*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
b93b0163 184 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 185 * may be quite high. This code could TryLock the page, and if that
b93b0163 186 * succeeds, there is no need to take private_lock.
1da177e4
LT
187 */
188static struct buffer_head *
385fd4c5 189__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
190{
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
43636c80 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 200
09cbfeaf 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
97f76d3d
NK
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
1da177e4
LT
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
1da177e4
LT
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
43636c80
TH
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
1da177e4
LT
236 }
237out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 239 put_page(page);
1da177e4
LT
240out:
241 return ret;
242}
243
1da177e4
LT
244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245{
1da177e4 246 unsigned long flags;
a3972203 247 struct buffer_head *first;
1da177e4
LT
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
432f16e6 259 buffer_io_error(bh, ", async page read");
1da177e4
LT
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
a3972203 268 first = page_buffers(page);
f1e67e35 269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
1da177e4
LT
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
f1e67e35 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293still_busy:
f1e67e35 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
295 return;
296}
297
31fb992c
EB
298struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301};
302
303static void decrypt_bh(struct work_struct *work)
304{
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314}
315
316/*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321{
322 /* Decrypt if needed */
4f74d15f
EB
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
31fb992c
EB
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336}
337
1da177e4
LT
338/*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
35c80d5f 342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 343{
1da177e4 344 unsigned long flags;
a3972203 345 struct buffer_head *first;
1da177e4
LT
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
432f16e6 355 buffer_io_error(bh, ", lost async page write");
87354e5d 356 mark_buffer_write_io_error(bh);
1da177e4
LT
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
a3972203 361 first = page_buffers(page);
f1e67e35 362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
a3972203 363
1da177e4
LT
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
f1e67e35 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
375 end_page_writeback(page);
376 return;
377
378still_busy:
f1e67e35 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
380 return;
381}
1fe72eaa 382EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
383
384/*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405static void mark_buffer_async_read(struct buffer_head *bh)
406{
31fb992c 407 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
408 set_buffer_async_read(bh);
409}
410
1fe72eaa
HS
411static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
1da177e4 413{
35c80d5f 414 bh->b_end_io = handler;
1da177e4
LT
415 set_buffer_async_write(bh);
416}
35c80d5f
CM
417
418void mark_buffer_async_write(struct buffer_head *bh)
419{
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421}
1da177e4
LT
422EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425/*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474/*
475 * The buffer's backing address_space's private_lock must be held
476 */
dbacefc9 477static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
478{
479 list_del_init(&bh->b_assoc_buffers);
58ff407b 480 WARN_ON(!bh->b_assoc_map);
58ff407b 481 bh->b_assoc_map = NULL;
1da177e4
LT
482}
483
484int inode_has_buffers(struct inode *inode)
485{
486 return !list_empty(&inode->i_data.private_list);
487}
488
489/*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500{
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522}
523
08fdc8a0 524void emergency_thaw_bdev(struct super_block *sb)
c2d75438 525{
040f04bd 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
a1c6f057 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 528}
c2d75438 529
1da177e4 530/**
78a4a50a 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 532 * @mapping: the mapping which wants those buffers written
1da177e4
LT
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
67be2dd1
MW
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
1da177e4
LT
540 */
541int sync_mapping_buffers(struct address_space *mapping)
542{
252aa6f5 543 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550}
551EXPORT_SYMBOL(sync_mapping_buffers);
552
553/*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561{
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
dfec8a14 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
566 put_bh(bh);
567 }
568}
569
570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571{
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
252aa6f5
RA
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
1da177e4 578 } else {
252aa6f5 579 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 580 }
535ee2fb 581 if (!bh->b_assoc_map) {
1da177e4
LT
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
58ff407b 585 bh->b_assoc_map = mapping;
1da177e4
LT
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588}
589EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
787d2214 591/*
ec82e1c1 592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
787d2214
NP
593 * dirty.
594 *
595 * If warn is true, then emit a warning if the page is not uptodate and has
596 * not been truncated.
c4843a75 597 *
81f8c3a4 598 * The caller must hold lock_page_memcg().
787d2214 599 */
f82b3764 600void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 601 int warn)
787d2214 602{
227d53b3
KM
603 unsigned long flags;
604
b93b0163 605 xa_lock_irqsave(&mapping->i_pages, flags);
787d2214
NP
606 if (page->mapping) { /* Race with truncate? */
607 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 608 account_page_dirtied(page, mapping);
ec82e1c1
MW
609 __xa_set_mark(&mapping->i_pages, page_index(page),
610 PAGECACHE_TAG_DIRTY);
787d2214 611 }
b93b0163 612 xa_unlock_irqrestore(&mapping->i_pages, flags);
787d2214 613}
f82b3764 614EXPORT_SYMBOL_GPL(__set_page_dirty);
787d2214 615
1da177e4
LT
616/*
617 * Add a page to the dirty page list.
618 *
619 * It is a sad fact of life that this function is called from several places
620 * deeply under spinlocking. It may not sleep.
621 *
622 * If the page has buffers, the uptodate buffers are set dirty, to preserve
623 * dirty-state coherency between the page and the buffers. It the page does
624 * not have buffers then when they are later attached they will all be set
625 * dirty.
626 *
627 * The buffers are dirtied before the page is dirtied. There's a small race
628 * window in which a writepage caller may see the page cleanness but not the
629 * buffer dirtiness. That's fine. If this code were to set the page dirty
630 * before the buffers, a concurrent writepage caller could clear the page dirty
631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632 * page on the dirty page list.
633 *
634 * We use private_lock to lock against try_to_free_buffers while using the
635 * page's buffer list. Also use this to protect against clean buffers being
636 * added to the page after it was set dirty.
637 *
638 * FIXME: may need to call ->reservepage here as well. That's rather up to the
639 * address_space though.
640 */
641int __set_page_dirty_buffers(struct page *page)
642{
a8e7d49a 643 int newly_dirty;
787d2214 644 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
645
646 if (unlikely(!mapping))
647 return !TestSetPageDirty(page);
1da177e4
LT
648
649 spin_lock(&mapping->private_lock);
650 if (page_has_buffers(page)) {
651 struct buffer_head *head = page_buffers(page);
652 struct buffer_head *bh = head;
653
654 do {
655 set_buffer_dirty(bh);
656 bh = bh->b_this_page;
657 } while (bh != head);
658 }
c4843a75 659 /*
bcfe06bf 660 * Lock out page's memcg migration to keep PageDirty
81f8c3a4 661 * synchronized with per-memcg dirty page counters.
c4843a75 662 */
62cccb8c 663 lock_page_memcg(page);
a8e7d49a 664 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
665 spin_unlock(&mapping->private_lock);
666
a8e7d49a 667 if (newly_dirty)
62cccb8c 668 __set_page_dirty(page, mapping, 1);
c4843a75 669
62cccb8c 670 unlock_page_memcg(page);
c4843a75
GT
671
672 if (newly_dirty)
673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
a8e7d49a 675 return newly_dirty;
1da177e4
LT
676}
677EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679/*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699{
700 struct buffer_head *bh;
701 struct list_head tmp;
7eaceacc 702 struct address_space *mapping;
1da177e4 703 int err = 0, err2;
4ee2491e 704 struct blk_plug plug;
1da177e4
LT
705
706 INIT_LIST_HEAD(&tmp);
4ee2491e 707 blk_start_plug(&plug);
1da177e4
LT
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
535ee2fb 712 mapping = bh->b_assoc_map;
58ff407b 713 __remove_assoc_queue(bh);
535ee2fb
JK
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
1da177e4
LT
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 719 bh->b_assoc_map = mapping;
1da177e4
LT
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
9cb569d6
CH
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
1da177e4 729 */
70fd7614 730 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
1da177e4
LT
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
4ee2491e
JA
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
1da177e4
LT
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
1da177e4 750 get_bh(bh);
535ee2fb
JK
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
e3892296 758 &mapping->private_list);
535ee2fb
JK
759 bh->b_assoc_map = mapping;
760 }
1da177e4
LT
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775}
776
777/*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786void invalidate_inode_buffers(struct inode *inode)
787{
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
252aa6f5 791 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798}
52b19ac9 799EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
800
801/*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807int remove_inode_buffers(struct inode *inode)
808{
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
252aa6f5 814 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828}
829
830/*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 840 bool retry)
1da177e4
LT
841{
842 struct buffer_head *bh, *head;
f745c6f5 843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
1da177e4 844 long offset;
b87d8cef 845 struct mem_cgroup *memcg, *old_memcg;
1da177e4 846
640ab98f
JA
847 if (retry)
848 gfp |= __GFP_NOFAIL;
849
6eeb104e
JW
850 /* The page lock pins the memcg */
851 memcg = page_memcg(page);
b87d8cef 852 old_memcg = set_active_memcg(memcg);
f745c6f5 853
1da177e4
LT
854 head = NULL;
855 offset = PAGE_SIZE;
856 while ((offset -= size) >= 0) {
640ab98f 857 bh = alloc_buffer_head(gfp);
1da177e4
LT
858 if (!bh)
859 goto no_grow;
860
1da177e4
LT
861 bh->b_this_page = head;
862 bh->b_blocknr = -1;
863 head = bh;
864
1da177e4
LT
865 bh->b_size = size;
866
867 /* Link the buffer to its page */
868 set_bh_page(bh, page, offset);
1da177e4 869 }
f745c6f5 870out:
b87d8cef 871 set_active_memcg(old_memcg);
1da177e4
LT
872 return head;
873/*
874 * In case anything failed, we just free everything we got.
875 */
876no_grow:
877 if (head) {
878 do {
879 bh = head;
880 head = head->b_this_page;
881 free_buffer_head(bh);
882 } while (head);
883 }
884
f745c6f5 885 goto out;
1da177e4
LT
886}
887EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889static inline void
890link_dev_buffers(struct page *page, struct buffer_head *head)
891{
892 struct buffer_head *bh, *tail;
893
894 bh = head;
895 do {
896 tail = bh;
897 bh = bh->b_this_page;
898 } while (bh);
899 tail->b_this_page = head;
45dcfc27 900 attach_page_private(page, head);
1da177e4
LT
901}
902
bbec0270
LT
903static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904{
905 sector_t retval = ~((sector_t)0);
906 loff_t sz = i_size_read(bdev->bd_inode);
907
908 if (sz) {
909 unsigned int sizebits = blksize_bits(size);
910 retval = (sz >> sizebits);
911 }
912 return retval;
913}
914
1da177e4
LT
915/*
916 * Initialise the state of a blockdev page's buffers.
917 */
676ce6d5 918static sector_t
1da177e4
LT
919init_page_buffers(struct page *page, struct block_device *bdev,
920 sector_t block, int size)
921{
922 struct buffer_head *head = page_buffers(page);
923 struct buffer_head *bh = head;
924 int uptodate = PageUptodate(page);
bbec0270 925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
926
927 do {
928 if (!buffer_mapped(bh)) {
01950a34
EB
929 bh->b_end_io = NULL;
930 bh->b_private = NULL;
1da177e4
LT
931 bh->b_bdev = bdev;
932 bh->b_blocknr = block;
933 if (uptodate)
934 set_buffer_uptodate(bh);
080399aa
JM
935 if (block < end_block)
936 set_buffer_mapped(bh);
1da177e4
LT
937 }
938 block++;
939 bh = bh->b_this_page;
940 } while (bh != head);
676ce6d5
HD
941
942 /*
943 * Caller needs to validate requested block against end of device.
944 */
945 return end_block;
1da177e4
LT
946}
947
948/*
949 * Create the page-cache page that contains the requested block.
950 *
676ce6d5 951 * This is used purely for blockdev mappings.
1da177e4 952 */
676ce6d5 953static int
1da177e4 954grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 955 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
956{
957 struct inode *inode = bdev->bd_inode;
958 struct page *page;
959 struct buffer_head *bh;
676ce6d5 960 sector_t end_block;
c4b4c2a7 961 int ret = 0;
84235de3 962 gfp_t gfp_mask;
1da177e4 963
c62d2555 964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 965
84235de3
JW
966 /*
967 * XXX: __getblk_slow() can not really deal with failure and
968 * will endlessly loop on improvised global reclaim. Prefer
969 * looping in the allocator rather than here, at least that
970 * code knows what it's doing.
971 */
972 gfp_mask |= __GFP_NOFAIL;
973
974 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 975
e827f923 976 BUG_ON(!PageLocked(page));
1da177e4
LT
977
978 if (page_has_buffers(page)) {
979 bh = page_buffers(page);
980 if (bh->b_size == size) {
676ce6d5 981 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
982 (sector_t)index << sizebits,
983 size);
676ce6d5 984 goto done;
1da177e4
LT
985 }
986 if (!try_to_free_buffers(page))
987 goto failed;
988 }
989
990 /*
991 * Allocate some buffers for this page
992 */
94dc24c0 993 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
994
995 /*
996 * Link the page to the buffers and initialise them. Take the
997 * lock to be atomic wrt __find_get_block(), which does not
998 * run under the page lock.
999 */
1000 spin_lock(&inode->i_mapping->private_lock);
1001 link_dev_buffers(page, bh);
f2d5a944
AA
1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 size);
1da177e4 1004 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1005done:
1006 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1007failed:
1da177e4 1008 unlock_page(page);
09cbfeaf 1009 put_page(page);
676ce6d5 1010 return ret;
1da177e4
LT
1011}
1012
1013/*
1014 * Create buffers for the specified block device block's page. If
1015 * that page was dirty, the buffers are set dirty also.
1da177e4 1016 */
858119e1 1017static int
3b5e6454 1018grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1019{
1da177e4
LT
1020 pgoff_t index;
1021 int sizebits;
1022
1023 sizebits = -1;
1024 do {
1025 sizebits++;
1026 } while ((size << sizebits) < PAGE_SIZE);
1027
1028 index = block >> sizebits;
1da177e4 1029
e5657933
AM
1030 /*
1031 * Check for a block which wants to lie outside our maximum possible
1032 * pagecache index. (this comparison is done using sector_t types).
1033 */
1034 if (unlikely(index != block >> sizebits)) {
e5657933 1035 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1036 "device %pg\n",
8e24eea7 1037 __func__, (unsigned long long)block,
a1c6f057 1038 bdev);
e5657933
AM
1039 return -EIO;
1040 }
676ce6d5 1041
1da177e4 1042 /* Create a page with the proper size buffers.. */
3b5e6454 1043 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1044}
1045
0026ba40 1046static struct buffer_head *
3b5e6454
GK
1047__getblk_slow(struct block_device *bdev, sector_t block,
1048 unsigned size, gfp_t gfp)
1da177e4
LT
1049{
1050 /* Size must be multiple of hard sectorsize */
e1defc4f 1051 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1052 (size < 512 || size > PAGE_SIZE))) {
1053 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054 size);
e1defc4f
MP
1055 printk(KERN_ERR "logical block size: %d\n",
1056 bdev_logical_block_size(bdev));
1da177e4
LT
1057
1058 dump_stack();
1059 return NULL;
1060 }
1061
676ce6d5
HD
1062 for (;;) {
1063 struct buffer_head *bh;
1064 int ret;
1da177e4
LT
1065
1066 bh = __find_get_block(bdev, block, size);
1067 if (bh)
1068 return bh;
676ce6d5 1069
3b5e6454 1070 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1071 if (ret < 0)
1072 return NULL;
1da177e4
LT
1073 }
1074}
1075
1076/*
1077 * The relationship between dirty buffers and dirty pages:
1078 *
1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1080 * the page is tagged dirty in the page cache.
1da177e4
LT
1081 *
1082 * At all times, the dirtiness of the buffers represents the dirtiness of
1083 * subsections of the page. If the page has buffers, the page dirty bit is
1084 * merely a hint about the true dirty state.
1085 *
1086 * When a page is set dirty in its entirety, all its buffers are marked dirty
1087 * (if the page has buffers).
1088 *
1089 * When a buffer is marked dirty, its page is dirtied, but the page's other
1090 * buffers are not.
1091 *
1092 * Also. When blockdev buffers are explicitly read with bread(), they
1093 * individually become uptodate. But their backing page remains not
1094 * uptodate - even if all of its buffers are uptodate. A subsequent
1095 * block_read_full_page() against that page will discover all the uptodate
1096 * buffers, will set the page uptodate and will perform no I/O.
1097 */
1098
1099/**
1100 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1101 * @bh: the buffer_head to mark dirty
1da177e4 1102 *
ec82e1c1
MW
1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104 * its backing page dirty, then tag the page as dirty in the page cache
1105 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1106 * inode list.
1107 *
1108 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
b93b0163 1109 * i_pages lock and mapping->host->i_lock.
1da177e4 1110 */
fc9b52cd 1111void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1112{
787d2214 1113 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1114
5305cb83
TH
1115 trace_block_dirty_buffer(bh);
1116
1be62dc1
LT
1117 /*
1118 * Very *carefully* optimize the it-is-already-dirty case.
1119 *
1120 * Don't let the final "is it dirty" escape to before we
1121 * perhaps modified the buffer.
1122 */
1123 if (buffer_dirty(bh)) {
1124 smp_mb();
1125 if (buffer_dirty(bh))
1126 return;
1127 }
1128
a8e7d49a
LT
1129 if (!test_set_buffer_dirty(bh)) {
1130 struct page *page = bh->b_page;
c4843a75 1131 struct address_space *mapping = NULL;
c4843a75 1132
62cccb8c 1133 lock_page_memcg(page);
8e9d78ed 1134 if (!TestSetPageDirty(page)) {
c4843a75 1135 mapping = page_mapping(page);
8e9d78ed 1136 if (mapping)
62cccb8c 1137 __set_page_dirty(page, mapping, 0);
8e9d78ed 1138 }
62cccb8c 1139 unlock_page_memcg(page);
c4843a75
GT
1140 if (mapping)
1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1142 }
1da177e4 1143}
1fe72eaa 1144EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1145
87354e5d
JL
1146void mark_buffer_write_io_error(struct buffer_head *bh)
1147{
485e9605
JL
1148 struct super_block *sb;
1149
87354e5d
JL
1150 set_buffer_write_io_error(bh);
1151 /* FIXME: do we need to set this in both places? */
1152 if (bh->b_page && bh->b_page->mapping)
1153 mapping_set_error(bh->b_page->mapping, -EIO);
1154 if (bh->b_assoc_map)
1155 mapping_set_error(bh->b_assoc_map, -EIO);
485e9605
JL
1156 rcu_read_lock();
1157 sb = READ_ONCE(bh->b_bdev->bd_super);
1158 if (sb)
1159 errseq_set(&sb->s_wb_err, -EIO);
1160 rcu_read_unlock();
87354e5d
JL
1161}
1162EXPORT_SYMBOL(mark_buffer_write_io_error);
1163
1da177e4
LT
1164/*
1165 * Decrement a buffer_head's reference count. If all buffers against a page
1166 * have zero reference count, are clean and unlocked, and if the page is clean
1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169 * a page but it ends up not being freed, and buffers may later be reattached).
1170 */
1171void __brelse(struct buffer_head * buf)
1172{
1173 if (atomic_read(&buf->b_count)) {
1174 put_bh(buf);
1175 return;
1176 }
5c752ad9 1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1178}
1fe72eaa 1179EXPORT_SYMBOL(__brelse);
1da177e4
LT
1180
1181/*
1182 * bforget() is like brelse(), except it discards any
1183 * potentially dirty data.
1184 */
1185void __bforget(struct buffer_head *bh)
1186{
1187 clear_buffer_dirty(bh);
535ee2fb 1188 if (bh->b_assoc_map) {
1da177e4
LT
1189 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191 spin_lock(&buffer_mapping->private_lock);
1192 list_del_init(&bh->b_assoc_buffers);
58ff407b 1193 bh->b_assoc_map = NULL;
1da177e4
LT
1194 spin_unlock(&buffer_mapping->private_lock);
1195 }
1196 __brelse(bh);
1197}
1fe72eaa 1198EXPORT_SYMBOL(__bforget);
1da177e4
LT
1199
1200static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201{
1202 lock_buffer(bh);
1203 if (buffer_uptodate(bh)) {
1204 unlock_buffer(bh);
1205 return bh;
1206 } else {
1207 get_bh(bh);
1208 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1209 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1210 wait_on_buffer(bh);
1211 if (buffer_uptodate(bh))
1212 return bh;
1213 }
1214 brelse(bh);
1215 return NULL;
1216}
1217
1218/*
1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1221 * refcount elevated by one when they're in an LRU. A buffer can only appear
1222 * once in a particular CPU's LRU. A single buffer can be present in multiple
1223 * CPU's LRUs at the same time.
1224 *
1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226 * sb_find_get_block().
1227 *
1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1229 * a local interrupt disable for that.
1230 */
1231
86cf78d7 1232#define BH_LRU_SIZE 16
1da177e4
LT
1233
1234struct bh_lru {
1235 struct buffer_head *bhs[BH_LRU_SIZE];
1236};
1237
1238static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240#ifdef CONFIG_SMP
1241#define bh_lru_lock() local_irq_disable()
1242#define bh_lru_unlock() local_irq_enable()
1243#else
1244#define bh_lru_lock() preempt_disable()
1245#define bh_lru_unlock() preempt_enable()
1246#endif
1247
1248static inline void check_irqs_on(void)
1249{
1250#ifdef irqs_disabled
1251 BUG_ON(irqs_disabled());
1252#endif
1253}
1254
1255/*
241f01fb
EB
1256 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1257 * inserted at the front, and the buffer_head at the back if any is evicted.
1258 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1259 */
1260static void bh_lru_install(struct buffer_head *bh)
1261{
241f01fb
EB
1262 struct buffer_head *evictee = bh;
1263 struct bh_lru *b;
1264 int i;
1da177e4
LT
1265
1266 check_irqs_on();
8cc621d2
MK
1267 /*
1268 * the refcount of buffer_head in bh_lru prevents dropping the
1269 * attached page(i.e., try_to_free_buffers) so it could cause
1270 * failing page migration.
1271 * Skip putting upcoming bh into bh_lru until migration is done.
1272 */
1273 if (lru_cache_disabled())
1274 return;
1275
1da177e4 1276 bh_lru_lock();
1da177e4 1277
241f01fb
EB
1278 b = this_cpu_ptr(&bh_lrus);
1279 for (i = 0; i < BH_LRU_SIZE; i++) {
1280 swap(evictee, b->bhs[i]);
1281 if (evictee == bh) {
1282 bh_lru_unlock();
1283 return;
1da177e4 1284 }
1da177e4 1285 }
1da177e4 1286
241f01fb
EB
1287 get_bh(bh);
1288 bh_lru_unlock();
1289 brelse(evictee);
1da177e4
LT
1290}
1291
1292/*
1293 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1294 */
858119e1 1295static struct buffer_head *
3991d3bd 1296lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1297{
1298 struct buffer_head *ret = NULL;
3991d3bd 1299 unsigned int i;
1da177e4
LT
1300
1301 check_irqs_on();
1302 bh_lru_lock();
1da177e4 1303 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1304 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1305
9470dd5d
ZB
1306 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1307 bh->b_size == size) {
1da177e4
LT
1308 if (i) {
1309 while (i) {
c7b92516
CL
1310 __this_cpu_write(bh_lrus.bhs[i],
1311 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1312 i--;
1313 }
c7b92516 1314 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1315 }
1316 get_bh(bh);
1317 ret = bh;
1318 break;
1319 }
1320 }
1321 bh_lru_unlock();
1322 return ret;
1323}
1324
1325/*
1326 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1327 * it in the LRU and mark it as accessed. If it is not present then return
1328 * NULL
1329 */
1330struct buffer_head *
3991d3bd 1331__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1332{
1333 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334
1335 if (bh == NULL) {
2457aec6 1336 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1337 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1338 if (bh)
1339 bh_lru_install(bh);
2457aec6 1340 } else
1da177e4 1341 touch_buffer(bh);
2457aec6 1342
1da177e4
LT
1343 return bh;
1344}
1345EXPORT_SYMBOL(__find_get_block);
1346
1347/*
3b5e6454 1348 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1349 * which corresponds to the passed block_device, block and size. The
1350 * returned buffer has its reference count incremented.
1351 *
3b5e6454
GK
1352 * __getblk_gfp() will lock up the machine if grow_dev_page's
1353 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1354 */
1355struct buffer_head *
3b5e6454
GK
1356__getblk_gfp(struct block_device *bdev, sector_t block,
1357 unsigned size, gfp_t gfp)
1da177e4
LT
1358{
1359 struct buffer_head *bh = __find_get_block(bdev, block, size);
1360
1361 might_sleep();
1362 if (bh == NULL)
3b5e6454 1363 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1364 return bh;
1365}
3b5e6454 1366EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1367
1368/*
1369 * Do async read-ahead on a buffer..
1370 */
3991d3bd 1371void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1372{
1373 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1374 if (likely(bh)) {
70246286 1375 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1376 brelse(bh);
1377 }
1da177e4
LT
1378}
1379EXPORT_SYMBOL(__breadahead);
1380
d87f6392
RG
1381void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1382 gfp_t gfp)
1383{
1384 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1385 if (likely(bh)) {
1386 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1387 brelse(bh);
1388 }
1389}
1390EXPORT_SYMBOL(__breadahead_gfp);
1391
1da177e4 1392/**
3b5e6454 1393 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1394 * @bdev: the block_device to read from
1da177e4
LT
1395 * @block: number of block
1396 * @size: size (in bytes) to read
3b5e6454
GK
1397 * @gfp: page allocation flag
1398 *
1da177e4 1399 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1400 * The page cache can be allocated from non-movable area
1401 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1402 * It returns NULL if the block was unreadable.
1403 */
1404struct buffer_head *
3b5e6454
GK
1405__bread_gfp(struct block_device *bdev, sector_t block,
1406 unsigned size, gfp_t gfp)
1da177e4 1407{
3b5e6454 1408 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1409
a3e713b5 1410 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1411 bh = __bread_slow(bh);
1412 return bh;
1413}
3b5e6454 1414EXPORT_SYMBOL(__bread_gfp);
1da177e4 1415
8cc621d2
MK
1416static void __invalidate_bh_lrus(struct bh_lru *b)
1417{
1418 int i;
1419
1420 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 brelse(b->bhs[i]);
1422 b->bhs[i] = NULL;
1423 }
1424}
1da177e4
LT
1425/*
1426 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1427 * This doesn't race because it runs in each cpu either in irq
1428 * or with preempt disabled.
1429 */
1430static void invalidate_bh_lru(void *arg)
1431{
1432 struct bh_lru *b = &get_cpu_var(bh_lrus);
1da177e4 1433
8cc621d2 1434 __invalidate_bh_lrus(b);
1da177e4
LT
1435 put_cpu_var(bh_lrus);
1436}
42be35d0 1437
8cc621d2 1438bool has_bh_in_lru(int cpu, void *dummy)
42be35d0
GBY
1439{
1440 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1441 int i;
1da177e4 1442
42be35d0
GBY
1443 for (i = 0; i < BH_LRU_SIZE; i++) {
1444 if (b->bhs[i])
1d706679 1445 return true;
42be35d0
GBY
1446 }
1447
1d706679 1448 return false;
42be35d0
GBY
1449}
1450
f9a14399 1451void invalidate_bh_lrus(void)
1da177e4 1452{
cb923159 1453 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1da177e4 1454}
9db5579b 1455EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4 1456
8cc621d2
MK
1457void invalidate_bh_lrus_cpu(int cpu)
1458{
1459 struct bh_lru *b;
1460
1461 bh_lru_lock();
1462 b = per_cpu_ptr(&bh_lrus, cpu);
1463 __invalidate_bh_lrus(b);
1464 bh_lru_unlock();
1465}
1466
1da177e4
LT
1467void set_bh_page(struct buffer_head *bh,
1468 struct page *page, unsigned long offset)
1469{
1470 bh->b_page = page;
e827f923 1471 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1472 if (PageHighMem(page))
1473 /*
1474 * This catches illegal uses and preserves the offset:
1475 */
1476 bh->b_data = (char *)(0 + offset);
1477 else
1478 bh->b_data = page_address(page) + offset;
1479}
1480EXPORT_SYMBOL(set_bh_page);
1481
1482/*
1483 * Called when truncating a buffer on a page completely.
1484 */
e7470ee8
MG
1485
1486/* Bits that are cleared during an invalidate */
1487#define BUFFER_FLAGS_DISCARD \
1488 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1489 1 << BH_Delay | 1 << BH_Unwritten)
1490
858119e1 1491static void discard_buffer(struct buffer_head * bh)
1da177e4 1492{
e7470ee8
MG
1493 unsigned long b_state, b_state_old;
1494
1da177e4
LT
1495 lock_buffer(bh);
1496 clear_buffer_dirty(bh);
1497 bh->b_bdev = NULL;
e7470ee8
MG
1498 b_state = bh->b_state;
1499 for (;;) {
1500 b_state_old = cmpxchg(&bh->b_state, b_state,
1501 (b_state & ~BUFFER_FLAGS_DISCARD));
1502 if (b_state_old == b_state)
1503 break;
1504 b_state = b_state_old;
1505 }
1da177e4
LT
1506 unlock_buffer(bh);
1507}
1508
1da177e4 1509/**
814e1d25 1510 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1511 *
1512 * @page: the page which is affected
d47992f8
LC
1513 * @offset: start of the range to invalidate
1514 * @length: length of the range to invalidate
1da177e4
LT
1515 *
1516 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1517 * invalidated by a truncate operation.
1da177e4
LT
1518 *
1519 * block_invalidatepage() does not have to release all buffers, but it must
1520 * ensure that no dirty buffer is left outside @offset and that no I/O
1521 * is underway against any of the blocks which are outside the truncation
1522 * point. Because the caller is about to free (and possibly reuse) those
1523 * blocks on-disk.
1524 */
d47992f8
LC
1525void block_invalidatepage(struct page *page, unsigned int offset,
1526 unsigned int length)
1da177e4
LT
1527{
1528 struct buffer_head *head, *bh, *next;
1529 unsigned int curr_off = 0;
d47992f8 1530 unsigned int stop = length + offset;
1da177e4
LT
1531
1532 BUG_ON(!PageLocked(page));
1533 if (!page_has_buffers(page))
1534 goto out;
1535
d47992f8
LC
1536 /*
1537 * Check for overflow
1538 */
09cbfeaf 1539 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1540
1da177e4
LT
1541 head = page_buffers(page);
1542 bh = head;
1543 do {
1544 unsigned int next_off = curr_off + bh->b_size;
1545 next = bh->b_this_page;
1546
d47992f8
LC
1547 /*
1548 * Are we still fully in range ?
1549 */
1550 if (next_off > stop)
1551 goto out;
1552
1da177e4
LT
1553 /*
1554 * is this block fully invalidated?
1555 */
1556 if (offset <= curr_off)
1557 discard_buffer(bh);
1558 curr_off = next_off;
1559 bh = next;
1560 } while (bh != head);
1561
1562 /*
1563 * We release buffers only if the entire page is being invalidated.
1564 * The get_block cached value has been unconditionally invalidated,
1565 * so real IO is not possible anymore.
1566 */
3172485f 1567 if (length == PAGE_SIZE)
2ff28e22 1568 try_to_release_page(page, 0);
1da177e4 1569out:
2ff28e22 1570 return;
1da177e4
LT
1571}
1572EXPORT_SYMBOL(block_invalidatepage);
1573
d47992f8 1574
1da177e4
LT
1575/*
1576 * We attach and possibly dirty the buffers atomically wrt
1577 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1578 * is already excluded via the page lock.
1579 */
1580void create_empty_buffers(struct page *page,
1581 unsigned long blocksize, unsigned long b_state)
1582{
1583 struct buffer_head *bh, *head, *tail;
1584
640ab98f 1585 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1586 bh = head;
1587 do {
1588 bh->b_state |= b_state;
1589 tail = bh;
1590 bh = bh->b_this_page;
1591 } while (bh);
1592 tail->b_this_page = head;
1593
1594 spin_lock(&page->mapping->private_lock);
1595 if (PageUptodate(page) || PageDirty(page)) {
1596 bh = head;
1597 do {
1598 if (PageDirty(page))
1599 set_buffer_dirty(bh);
1600 if (PageUptodate(page))
1601 set_buffer_uptodate(bh);
1602 bh = bh->b_this_page;
1603 } while (bh != head);
1604 }
45dcfc27 1605 attach_page_private(page, head);
1da177e4
LT
1606 spin_unlock(&page->mapping->private_lock);
1607}
1608EXPORT_SYMBOL(create_empty_buffers);
1609
29f3ad7d
JK
1610/**
1611 * clean_bdev_aliases: clean a range of buffers in block device
1612 * @bdev: Block device to clean buffers in
1613 * @block: Start of a range of blocks to clean
1614 * @len: Number of blocks to clean
1da177e4 1615 *
29f3ad7d
JK
1616 * We are taking a range of blocks for data and we don't want writeback of any
1617 * buffer-cache aliases starting from return from this function and until the
1618 * moment when something will explicitly mark the buffer dirty (hopefully that
1619 * will not happen until we will free that block ;-) We don't even need to mark
1620 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1621 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1622 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1623 * would confuse anyone who might pick it with bread() afterwards...
1624 *
1625 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1626 * writeout I/O going on against recently-freed buffers. We don't wait on that
1627 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1628 * need to. That happens here.
1da177e4 1629 */
29f3ad7d 1630void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1631{
29f3ad7d
JK
1632 struct inode *bd_inode = bdev->bd_inode;
1633 struct address_space *bd_mapping = bd_inode->i_mapping;
1634 struct pagevec pvec;
1635 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1636 pgoff_t end;
c10f778d 1637 int i, count;
29f3ad7d
JK
1638 struct buffer_head *bh;
1639 struct buffer_head *head;
1da177e4 1640
29f3ad7d 1641 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
86679820 1642 pagevec_init(&pvec);
397162ff 1643 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
c10f778d
JK
1644 count = pagevec_count(&pvec);
1645 for (i = 0; i < count; i++) {
29f3ad7d 1646 struct page *page = pvec.pages[i];
1da177e4 1647
29f3ad7d
JK
1648 if (!page_has_buffers(page))
1649 continue;
1650 /*
1651 * We use page lock instead of bd_mapping->private_lock
1652 * to pin buffers here since we can afford to sleep and
1653 * it scales better than a global spinlock lock.
1654 */
1655 lock_page(page);
1656 /* Recheck when the page is locked which pins bhs */
1657 if (!page_has_buffers(page))
1658 goto unlock_page;
1659 head = page_buffers(page);
1660 bh = head;
1661 do {
6c006a9d 1662 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1663 goto next;
1664 if (bh->b_blocknr >= block + len)
1665 break;
1666 clear_buffer_dirty(bh);
1667 wait_on_buffer(bh);
1668 clear_buffer_req(bh);
1669next:
1670 bh = bh->b_this_page;
1671 } while (bh != head);
1672unlock_page:
1673 unlock_page(page);
1674 }
1675 pagevec_release(&pvec);
1676 cond_resched();
c10f778d
JK
1677 /* End of range already reached? */
1678 if (index > end || !index)
1679 break;
1da177e4
LT
1680 }
1681}
29f3ad7d 1682EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1683
45bce8f3
LT
1684/*
1685 * Size is a power-of-two in the range 512..PAGE_SIZE,
1686 * and the case we care about most is PAGE_SIZE.
1687 *
1688 * So this *could* possibly be written with those
1689 * constraints in mind (relevant mostly if some
1690 * architecture has a slow bit-scan instruction)
1691 */
1692static inline int block_size_bits(unsigned int blocksize)
1693{
1694 return ilog2(blocksize);
1695}
1696
1697static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698{
1699 BUG_ON(!PageLocked(page));
1700
1701 if (!page_has_buffers(page))
6aa7de05
MR
1702 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1703 b_state);
45bce8f3
LT
1704 return page_buffers(page);
1705}
1706
1da177e4
LT
1707/*
1708 * NOTE! All mapped/uptodate combinations are valid:
1709 *
1710 * Mapped Uptodate Meaning
1711 *
1712 * No No "unknown" - must do get_block()
1713 * No Yes "hole" - zero-filled
1714 * Yes No "allocated" - allocated on disk, not read in
1715 * Yes Yes "valid" - allocated and up-to-date in memory.
1716 *
1717 * "Dirty" is valid only with the last case (mapped+uptodate).
1718 */
1719
1720/*
1721 * While block_write_full_page is writing back the dirty buffers under
1722 * the page lock, whoever dirtied the buffers may decide to clean them
1723 * again at any time. We handle that by only looking at the buffer
1724 * state inside lock_buffer().
1725 *
1726 * If block_write_full_page() is called for regular writeback
1727 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1728 * locked buffer. This only can happen if someone has written the buffer
1729 * directly, with submit_bh(). At the address_space level PageWriteback
1730 * prevents this contention from occurring.
6e34eedd
TT
1731 *
1732 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1733 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1734 * causes the writes to be flagged as synchronous writes.
1da177e4 1735 */
b4bba389 1736int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1737 get_block_t *get_block, struct writeback_control *wbc,
1738 bh_end_io_t *handler)
1da177e4
LT
1739{
1740 int err;
1741 sector_t block;
1742 sector_t last_block;
f0fbd5fc 1743 struct buffer_head *bh, *head;
45bce8f3 1744 unsigned int blocksize, bbits;
1da177e4 1745 int nr_underway = 0;
7637241e 1746 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1747
45bce8f3 1748 head = create_page_buffers(page, inode,
1da177e4 1749 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1750
1751 /*
1752 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1753 * here, and the (potentially unmapped) buffers may become dirty at
1754 * any time. If a buffer becomes dirty here after we've inspected it
1755 * then we just miss that fact, and the page stays dirty.
1756 *
1757 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1758 * handle that here by just cleaning them.
1759 */
1760
1da177e4 1761 bh = head;
45bce8f3
LT
1762 blocksize = bh->b_size;
1763 bbits = block_size_bits(blocksize);
1764
09cbfeaf 1765 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1766 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1767
1768 /*
1769 * Get all the dirty buffers mapped to disk addresses and
1770 * handle any aliases from the underlying blockdev's mapping.
1771 */
1772 do {
1773 if (block > last_block) {
1774 /*
1775 * mapped buffers outside i_size will occur, because
1776 * this page can be outside i_size when there is a
1777 * truncate in progress.
1778 */
1779 /*
1780 * The buffer was zeroed by block_write_full_page()
1781 */
1782 clear_buffer_dirty(bh);
1783 set_buffer_uptodate(bh);
29a814d2
AT
1784 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1785 buffer_dirty(bh)) {
b0cf2321 1786 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1787 err = get_block(inode, block, bh, 1);
1788 if (err)
1789 goto recover;
29a814d2 1790 clear_buffer_delay(bh);
1da177e4
LT
1791 if (buffer_new(bh)) {
1792 /* blockdev mappings never come here */
1793 clear_buffer_new(bh);
e64855c6 1794 clean_bdev_bh_alias(bh);
1da177e4
LT
1795 }
1796 }
1797 bh = bh->b_this_page;
1798 block++;
1799 } while (bh != head);
1800
1801 do {
1da177e4
LT
1802 if (!buffer_mapped(bh))
1803 continue;
1804 /*
1805 * If it's a fully non-blocking write attempt and we cannot
1806 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1807 * potentially cause a busy-wait loop from writeback threads
1808 * and kswapd activity, but those code paths have their own
1809 * higher-level throttling.
1da177e4 1810 */
1b430bee 1811 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1812 lock_buffer(bh);
ca5de404 1813 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1814 redirty_page_for_writepage(wbc, page);
1815 continue;
1816 }
1817 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1818 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1819 } else {
1820 unlock_buffer(bh);
1821 }
1822 } while ((bh = bh->b_this_page) != head);
1823
1824 /*
1825 * The page and its buffers are protected by PageWriteback(), so we can
1826 * drop the bh refcounts early.
1827 */
1828 BUG_ON(PageWriteback(page));
1829 set_page_writeback(page);
1da177e4
LT
1830
1831 do {
1832 struct buffer_head *next = bh->b_this_page;
1833 if (buffer_async_write(bh)) {
8e8f9298
JA
1834 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1835 inode->i_write_hint, wbc);
1da177e4
LT
1836 nr_underway++;
1837 }
1da177e4
LT
1838 bh = next;
1839 } while (bh != head);
05937baa 1840 unlock_page(page);
1da177e4
LT
1841
1842 err = 0;
1843done:
1844 if (nr_underway == 0) {
1845 /*
1846 * The page was marked dirty, but the buffers were
1847 * clean. Someone wrote them back by hand with
1848 * ll_rw_block/submit_bh. A rare case.
1849 */
1da177e4 1850 end_page_writeback(page);
3d67f2d7 1851
1da177e4
LT
1852 /*
1853 * The page and buffer_heads can be released at any time from
1854 * here on.
1855 */
1da177e4
LT
1856 }
1857 return err;
1858
1859recover:
1860 /*
1861 * ENOSPC, or some other error. We may already have added some
1862 * blocks to the file, so we need to write these out to avoid
1863 * exposing stale data.
1864 * The page is currently locked and not marked for writeback
1865 */
1866 bh = head;
1867 /* Recovery: lock and submit the mapped buffers */
1868 do {
29a814d2
AT
1869 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1870 !buffer_delay(bh)) {
1da177e4 1871 lock_buffer(bh);
35c80d5f 1872 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1873 } else {
1874 /*
1875 * The buffer may have been set dirty during
1876 * attachment to a dirty page.
1877 */
1878 clear_buffer_dirty(bh);
1879 }
1880 } while ((bh = bh->b_this_page) != head);
1881 SetPageError(page);
1882 BUG_ON(PageWriteback(page));
7e4c3690 1883 mapping_set_error(page->mapping, err);
1da177e4 1884 set_page_writeback(page);
1da177e4
LT
1885 do {
1886 struct buffer_head *next = bh->b_this_page;
1887 if (buffer_async_write(bh)) {
1888 clear_buffer_dirty(bh);
8e8f9298
JA
1889 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1890 inode->i_write_hint, wbc);
1da177e4
LT
1891 nr_underway++;
1892 }
1da177e4
LT
1893 bh = next;
1894 } while (bh != head);
ffda9d30 1895 unlock_page(page);
1da177e4
LT
1896 goto done;
1897}
b4bba389 1898EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1899
afddba49
NP
1900/*
1901 * If a page has any new buffers, zero them out here, and mark them uptodate
1902 * and dirty so they'll be written out (in order to prevent uninitialised
1903 * block data from leaking). And clear the new bit.
1904 */
1905void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1906{
1907 unsigned int block_start, block_end;
1908 struct buffer_head *head, *bh;
1909
1910 BUG_ON(!PageLocked(page));
1911 if (!page_has_buffers(page))
1912 return;
1913
1914 bh = head = page_buffers(page);
1915 block_start = 0;
1916 do {
1917 block_end = block_start + bh->b_size;
1918
1919 if (buffer_new(bh)) {
1920 if (block_end > from && block_start < to) {
1921 if (!PageUptodate(page)) {
1922 unsigned start, size;
1923
1924 start = max(from, block_start);
1925 size = min(to, block_end) - start;
1926
eebd2aa3 1927 zero_user(page, start, size);
afddba49
NP
1928 set_buffer_uptodate(bh);
1929 }
1930
1931 clear_buffer_new(bh);
1932 mark_buffer_dirty(bh);
1933 }
1934 }
1935
1936 block_start = block_end;
1937 bh = bh->b_this_page;
1938 } while (bh != head);
1939}
1940EXPORT_SYMBOL(page_zero_new_buffers);
1941
ae259a9c
CH
1942static void
1943iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1944 struct iomap *iomap)
1945{
1946 loff_t offset = block << inode->i_blkbits;
1947
1948 bh->b_bdev = iomap->bdev;
1949
1950 /*
1951 * Block points to offset in file we need to map, iomap contains
1952 * the offset at which the map starts. If the map ends before the
1953 * current block, then do not map the buffer and let the caller
1954 * handle it.
1955 */
1956 BUG_ON(offset >= iomap->offset + iomap->length);
1957
1958 switch (iomap->type) {
1959 case IOMAP_HOLE:
1960 /*
1961 * If the buffer is not up to date or beyond the current EOF,
1962 * we need to mark it as new to ensure sub-block zeroing is
1963 * executed if necessary.
1964 */
1965 if (!buffer_uptodate(bh) ||
1966 (offset >= i_size_read(inode)))
1967 set_buffer_new(bh);
1968 break;
1969 case IOMAP_DELALLOC:
1970 if (!buffer_uptodate(bh) ||
1971 (offset >= i_size_read(inode)))
1972 set_buffer_new(bh);
1973 set_buffer_uptodate(bh);
1974 set_buffer_mapped(bh);
1975 set_buffer_delay(bh);
1976 break;
1977 case IOMAP_UNWRITTEN:
1978 /*
3d7b6b21
AG
1979 * For unwritten regions, we always need to ensure that regions
1980 * in the block we are not writing to are zeroed. Mark the
1981 * buffer as new to ensure this.
ae259a9c
CH
1982 */
1983 set_buffer_new(bh);
1984 set_buffer_unwritten(bh);
df561f66 1985 fallthrough;
ae259a9c 1986 case IOMAP_MAPPED:
3d7b6b21
AG
1987 if ((iomap->flags & IOMAP_F_NEW) ||
1988 offset >= i_size_read(inode))
ae259a9c 1989 set_buffer_new(bh);
19fe5f64
AG
1990 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1991 inode->i_blkbits;
ae259a9c
CH
1992 set_buffer_mapped(bh);
1993 break;
1994 }
1995}
1996
1997int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1998 get_block_t *get_block, struct iomap *iomap)
1da177e4 1999{
09cbfeaf 2000 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 2001 unsigned to = from + len;
6e1db88d 2002 struct inode *inode = page->mapping->host;
1da177e4
LT
2003 unsigned block_start, block_end;
2004 sector_t block;
2005 int err = 0;
2006 unsigned blocksize, bbits;
2007 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2008
2009 BUG_ON(!PageLocked(page));
09cbfeaf
KS
2010 BUG_ON(from > PAGE_SIZE);
2011 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
2012 BUG_ON(from > to);
2013
45bce8f3
LT
2014 head = create_page_buffers(page, inode, 0);
2015 blocksize = head->b_size;
2016 bbits = block_size_bits(blocksize);
1da177e4 2017
09cbfeaf 2018 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2019
2020 for(bh = head, block_start = 0; bh != head || !block_start;
2021 block++, block_start=block_end, bh = bh->b_this_page) {
2022 block_end = block_start + blocksize;
2023 if (block_end <= from || block_start >= to) {
2024 if (PageUptodate(page)) {
2025 if (!buffer_uptodate(bh))
2026 set_buffer_uptodate(bh);
2027 }
2028 continue;
2029 }
2030 if (buffer_new(bh))
2031 clear_buffer_new(bh);
2032 if (!buffer_mapped(bh)) {
b0cf2321 2033 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2034 if (get_block) {
2035 err = get_block(inode, block, bh, 1);
2036 if (err)
2037 break;
2038 } else {
2039 iomap_to_bh(inode, block, bh, iomap);
2040 }
2041
1da177e4 2042 if (buffer_new(bh)) {
e64855c6 2043 clean_bdev_bh_alias(bh);
1da177e4 2044 if (PageUptodate(page)) {
637aff46 2045 clear_buffer_new(bh);
1da177e4 2046 set_buffer_uptodate(bh);
637aff46 2047 mark_buffer_dirty(bh);
1da177e4
LT
2048 continue;
2049 }
eebd2aa3
CL
2050 if (block_end > to || block_start < from)
2051 zero_user_segments(page,
2052 to, block_end,
2053 block_start, from);
1da177e4
LT
2054 continue;
2055 }
2056 }
2057 if (PageUptodate(page)) {
2058 if (!buffer_uptodate(bh))
2059 set_buffer_uptodate(bh);
2060 continue;
2061 }
2062 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2063 !buffer_unwritten(bh) &&
1da177e4 2064 (block_start < from || block_end > to)) {
dfec8a14 2065 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2066 *wait_bh++=bh;
2067 }
2068 }
2069 /*
2070 * If we issued read requests - let them complete.
2071 */
2072 while(wait_bh > wait) {
2073 wait_on_buffer(*--wait_bh);
2074 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2075 err = -EIO;
1da177e4 2076 }
f9f07b6c 2077 if (unlikely(err))
afddba49 2078 page_zero_new_buffers(page, from, to);
1da177e4
LT
2079 return err;
2080}
ae259a9c
CH
2081
2082int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2083 get_block_t *get_block)
2084{
2085 return __block_write_begin_int(page, pos, len, get_block, NULL);
2086}
ebdec241 2087EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2088
2089static int __block_commit_write(struct inode *inode, struct page *page,
2090 unsigned from, unsigned to)
2091{
2092 unsigned block_start, block_end;
2093 int partial = 0;
2094 unsigned blocksize;
2095 struct buffer_head *bh, *head;
2096
45bce8f3
LT
2097 bh = head = page_buffers(page);
2098 blocksize = bh->b_size;
1da177e4 2099
45bce8f3
LT
2100 block_start = 0;
2101 do {
1da177e4
LT
2102 block_end = block_start + blocksize;
2103 if (block_end <= from || block_start >= to) {
2104 if (!buffer_uptodate(bh))
2105 partial = 1;
2106 } else {
2107 set_buffer_uptodate(bh);
2108 mark_buffer_dirty(bh);
2109 }
4ebd3aec
YG
2110 if (buffer_new(bh))
2111 clear_buffer_new(bh);
45bce8f3
LT
2112
2113 block_start = block_end;
2114 bh = bh->b_this_page;
2115 } while (bh != head);
1da177e4
LT
2116
2117 /*
2118 * If this is a partial write which happened to make all buffers
2119 * uptodate then we can optimize away a bogus readpage() for
2120 * the next read(). Here we 'discover' whether the page went
2121 * uptodate as a result of this (potentially partial) write.
2122 */
2123 if (!partial)
2124 SetPageUptodate(page);
2125 return 0;
2126}
2127
afddba49 2128/*
155130a4
CH
2129 * block_write_begin takes care of the basic task of block allocation and
2130 * bringing partial write blocks uptodate first.
2131 *
7bb46a67 2132 * The filesystem needs to handle block truncation upon failure.
afddba49 2133 */
155130a4
CH
2134int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2135 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2136{
09cbfeaf 2137 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2138 struct page *page;
6e1db88d 2139 int status;
afddba49 2140
6e1db88d
CH
2141 page = grab_cache_page_write_begin(mapping, index, flags);
2142 if (!page)
2143 return -ENOMEM;
afddba49 2144
6e1db88d 2145 status = __block_write_begin(page, pos, len, get_block);
afddba49 2146 if (unlikely(status)) {
6e1db88d 2147 unlock_page(page);
09cbfeaf 2148 put_page(page);
6e1db88d 2149 page = NULL;
afddba49
NP
2150 }
2151
6e1db88d 2152 *pagep = page;
afddba49
NP
2153 return status;
2154}
2155EXPORT_SYMBOL(block_write_begin);
2156
2157int block_write_end(struct file *file, struct address_space *mapping,
2158 loff_t pos, unsigned len, unsigned copied,
2159 struct page *page, void *fsdata)
2160{
2161 struct inode *inode = mapping->host;
2162 unsigned start;
2163
09cbfeaf 2164 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2165
2166 if (unlikely(copied < len)) {
2167 /*
2168 * The buffers that were written will now be uptodate, so we
2169 * don't have to worry about a readpage reading them and
2170 * overwriting a partial write. However if we have encountered
2171 * a short write and only partially written into a buffer, it
2172 * will not be marked uptodate, so a readpage might come in and
2173 * destroy our partial write.
2174 *
2175 * Do the simplest thing, and just treat any short write to a
2176 * non uptodate page as a zero-length write, and force the
2177 * caller to redo the whole thing.
2178 */
2179 if (!PageUptodate(page))
2180 copied = 0;
2181
2182 page_zero_new_buffers(page, start+copied, start+len);
2183 }
2184 flush_dcache_page(page);
2185
2186 /* This could be a short (even 0-length) commit */
2187 __block_commit_write(inode, page, start, start+copied);
2188
2189 return copied;
2190}
2191EXPORT_SYMBOL(block_write_end);
2192
2193int generic_write_end(struct file *file, struct address_space *mapping,
2194 loff_t pos, unsigned len, unsigned copied,
2195 struct page *page, void *fsdata)
2196{
8af54f29
CH
2197 struct inode *inode = mapping->host;
2198 loff_t old_size = inode->i_size;
2199 bool i_size_changed = false;
2200
afddba49 2201 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2202
2203 /*
2204 * No need to use i_size_read() here, the i_size cannot change under us
2205 * because we hold i_rwsem.
2206 *
2207 * But it's important to update i_size while still holding page lock:
2208 * page writeout could otherwise come in and zero beyond i_size.
2209 */
2210 if (pos + copied > inode->i_size) {
2211 i_size_write(inode, pos + copied);
2212 i_size_changed = true;
2213 }
2214
2215 unlock_page(page);
7a77dad7 2216 put_page(page);
8af54f29
CH
2217
2218 if (old_size < pos)
2219 pagecache_isize_extended(inode, old_size, pos);
2220 /*
2221 * Don't mark the inode dirty under page lock. First, it unnecessarily
2222 * makes the holding time of page lock longer. Second, it forces lock
2223 * ordering of page lock and transaction start for journaling
2224 * filesystems.
2225 */
2226 if (i_size_changed)
2227 mark_inode_dirty(inode);
26ddb1f4 2228 return copied;
afddba49
NP
2229}
2230EXPORT_SYMBOL(generic_write_end);
2231
8ab22b9a
HH
2232/*
2233 * block_is_partially_uptodate checks whether buffers within a page are
2234 * uptodate or not.
2235 *
2236 * Returns true if all buffers which correspond to a file portion
2237 * we want to read are uptodate.
2238 */
c186afb4
AV
2239int block_is_partially_uptodate(struct page *page, unsigned long from,
2240 unsigned long count)
8ab22b9a 2241{
8ab22b9a
HH
2242 unsigned block_start, block_end, blocksize;
2243 unsigned to;
2244 struct buffer_head *bh, *head;
2245 int ret = 1;
2246
2247 if (!page_has_buffers(page))
2248 return 0;
2249
45bce8f3
LT
2250 head = page_buffers(page);
2251 blocksize = head->b_size;
09cbfeaf 2252 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2253 to = from + to;
09cbfeaf 2254 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2255 return 0;
2256
8ab22b9a
HH
2257 bh = head;
2258 block_start = 0;
2259 do {
2260 block_end = block_start + blocksize;
2261 if (block_end > from && block_start < to) {
2262 if (!buffer_uptodate(bh)) {
2263 ret = 0;
2264 break;
2265 }
2266 if (block_end >= to)
2267 break;
2268 }
2269 block_start = block_end;
2270 bh = bh->b_this_page;
2271 } while (bh != head);
2272
2273 return ret;
2274}
2275EXPORT_SYMBOL(block_is_partially_uptodate);
2276
1da177e4
LT
2277/*
2278 * Generic "read page" function for block devices that have the normal
2279 * get_block functionality. This is most of the block device filesystems.
2280 * Reads the page asynchronously --- the unlock_buffer() and
2281 * set/clear_buffer_uptodate() functions propagate buffer state into the
2282 * page struct once IO has completed.
2283 */
2284int block_read_full_page(struct page *page, get_block_t *get_block)
2285{
2286 struct inode *inode = page->mapping->host;
2287 sector_t iblock, lblock;
2288 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2289 unsigned int blocksize, bbits;
1da177e4
LT
2290 int nr, i;
2291 int fully_mapped = 1;
2292
45bce8f3
LT
2293 head = create_page_buffers(page, inode, 0);
2294 blocksize = head->b_size;
2295 bbits = block_size_bits(blocksize);
1da177e4 2296
09cbfeaf 2297 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2298 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2299 bh = head;
2300 nr = 0;
2301 i = 0;
2302
2303 do {
2304 if (buffer_uptodate(bh))
2305 continue;
2306
2307 if (!buffer_mapped(bh)) {
c64610ba
AM
2308 int err = 0;
2309
1da177e4
LT
2310 fully_mapped = 0;
2311 if (iblock < lblock) {
b0cf2321 2312 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2313 err = get_block(inode, iblock, bh, 0);
2314 if (err)
1da177e4
LT
2315 SetPageError(page);
2316 }
2317 if (!buffer_mapped(bh)) {
eebd2aa3 2318 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2319 if (!err)
2320 set_buffer_uptodate(bh);
1da177e4
LT
2321 continue;
2322 }
2323 /*
2324 * get_block() might have updated the buffer
2325 * synchronously
2326 */
2327 if (buffer_uptodate(bh))
2328 continue;
2329 }
2330 arr[nr++] = bh;
2331 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2332
2333 if (fully_mapped)
2334 SetPageMappedToDisk(page);
2335
2336 if (!nr) {
2337 /*
2338 * All buffers are uptodate - we can set the page uptodate
2339 * as well. But not if get_block() returned an error.
2340 */
2341 if (!PageError(page))
2342 SetPageUptodate(page);
2343 unlock_page(page);
2344 return 0;
2345 }
2346
2347 /* Stage two: lock the buffers */
2348 for (i = 0; i < nr; i++) {
2349 bh = arr[i];
2350 lock_buffer(bh);
2351 mark_buffer_async_read(bh);
2352 }
2353
2354 /*
2355 * Stage 3: start the IO. Check for uptodateness
2356 * inside the buffer lock in case another process reading
2357 * the underlying blockdev brought it uptodate (the sct fix).
2358 */
2359 for (i = 0; i < nr; i++) {
2360 bh = arr[i];
2361 if (buffer_uptodate(bh))
2362 end_buffer_async_read(bh, 1);
2363 else
2a222ca9 2364 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2365 }
2366 return 0;
2367}
1fe72eaa 2368EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2369
2370/* utility function for filesystems that need to do work on expanding
89e10787 2371 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2372 * deal with the hole.
2373 */
89e10787 2374int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2375{
2376 struct address_space *mapping = inode->i_mapping;
2377 struct page *page;
89e10787 2378 void *fsdata;
1da177e4
LT
2379 int err;
2380
c08d3b0e
NP
2381 err = inode_newsize_ok(inode, size);
2382 if (err)
1da177e4
LT
2383 goto out;
2384
89e10787 2385 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2386 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2387 if (err)
05eb0b51 2388 goto out;
05eb0b51 2389
89e10787
NP
2390 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2391 BUG_ON(err > 0);
05eb0b51 2392
1da177e4
LT
2393out:
2394 return err;
2395}
1fe72eaa 2396EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2397
f1e3af72
AB
2398static int cont_expand_zero(struct file *file, struct address_space *mapping,
2399 loff_t pos, loff_t *bytes)
1da177e4 2400{
1da177e4 2401 struct inode *inode = mapping->host;
93407472 2402 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2403 struct page *page;
2404 void *fsdata;
2405 pgoff_t index, curidx;
2406 loff_t curpos;
2407 unsigned zerofrom, offset, len;
2408 int err = 0;
1da177e4 2409
09cbfeaf
KS
2410 index = pos >> PAGE_SHIFT;
2411 offset = pos & ~PAGE_MASK;
89e10787 2412
09cbfeaf
KS
2413 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2414 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2415 if (zerofrom & (blocksize-1)) {
2416 *bytes |= (blocksize-1);
2417 (*bytes)++;
2418 }
09cbfeaf 2419 len = PAGE_SIZE - zerofrom;
1da177e4 2420
c718a975
TH
2421 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2422 &page, &fsdata);
89e10787
NP
2423 if (err)
2424 goto out;
eebd2aa3 2425 zero_user(page, zerofrom, len);
89e10787
NP
2426 err = pagecache_write_end(file, mapping, curpos, len, len,
2427 page, fsdata);
2428 if (err < 0)
2429 goto out;
2430 BUG_ON(err != len);
2431 err = 0;
061e9746
OH
2432
2433 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2434
08d405c8 2435 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2436 err = -EINTR;
2437 goto out;
2438 }
89e10787 2439 }
1da177e4 2440
89e10787
NP
2441 /* page covers the boundary, find the boundary offset */
2442 if (index == curidx) {
09cbfeaf 2443 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2444 /* if we will expand the thing last block will be filled */
89e10787
NP
2445 if (offset <= zerofrom) {
2446 goto out;
2447 }
2448 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2449 *bytes |= (blocksize-1);
2450 (*bytes)++;
2451 }
89e10787 2452 len = offset - zerofrom;
1da177e4 2453
c718a975
TH
2454 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2455 &page, &fsdata);
89e10787
NP
2456 if (err)
2457 goto out;
eebd2aa3 2458 zero_user(page, zerofrom, len);
89e10787
NP
2459 err = pagecache_write_end(file, mapping, curpos, len, len,
2460 page, fsdata);
2461 if (err < 0)
2462 goto out;
2463 BUG_ON(err != len);
2464 err = 0;
1da177e4 2465 }
89e10787
NP
2466out:
2467 return err;
2468}
2469
2470/*
2471 * For moronic filesystems that do not allow holes in file.
2472 * We may have to extend the file.
2473 */
282dc178 2474int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2475 loff_t pos, unsigned len, unsigned flags,
2476 struct page **pagep, void **fsdata,
2477 get_block_t *get_block, loff_t *bytes)
2478{
2479 struct inode *inode = mapping->host;
93407472
FF
2480 unsigned int blocksize = i_blocksize(inode);
2481 unsigned int zerofrom;
89e10787
NP
2482 int err;
2483
2484 err = cont_expand_zero(file, mapping, pos, bytes);
2485 if (err)
155130a4 2486 return err;
89e10787 2487
09cbfeaf 2488 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2489 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2490 *bytes |= (blocksize-1);
2491 (*bytes)++;
1da177e4 2492 }
1da177e4 2493
155130a4 2494 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2495}
1fe72eaa 2496EXPORT_SYMBOL(cont_write_begin);
1da177e4 2497
1da177e4
LT
2498int block_commit_write(struct page *page, unsigned from, unsigned to)
2499{
2500 struct inode *inode = page->mapping->host;
2501 __block_commit_write(inode,page,from,to);
2502 return 0;
2503}
1fe72eaa 2504EXPORT_SYMBOL(block_commit_write);
1da177e4 2505
54171690
DC
2506/*
2507 * block_page_mkwrite() is not allowed to change the file size as it gets
2508 * called from a page fault handler when a page is first dirtied. Hence we must
2509 * be careful to check for EOF conditions here. We set the page up correctly
2510 * for a written page which means we get ENOSPC checking when writing into
2511 * holes and correct delalloc and unwritten extent mapping on filesystems that
2512 * support these features.
2513 *
2514 * We are not allowed to take the i_mutex here so we have to play games to
2515 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2516 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2517 * page lock we can determine safely if the page is beyond EOF. If it is not
2518 * beyond EOF, then the page is guaranteed safe against truncation until we
2519 * unlock the page.
ea13a864 2520 *
14da9200 2521 * Direct callers of this function should protect against filesystem freezing
5c500029 2522 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2523 */
5c500029 2524int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2525 get_block_t get_block)
54171690 2526{
c2ec175c 2527 struct page *page = vmf->page;
496ad9aa 2528 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2529 unsigned long end;
2530 loff_t size;
24da4fab 2531 int ret;
54171690
DC
2532
2533 lock_page(page);
2534 size = i_size_read(inode);
2535 if ((page->mapping != inode->i_mapping) ||
18336338 2536 (page_offset(page) > size)) {
24da4fab
JK
2537 /* We overload EFAULT to mean page got truncated */
2538 ret = -EFAULT;
2539 goto out_unlock;
54171690
DC
2540 }
2541
2542 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2543 if (((page->index + 1) << PAGE_SHIFT) > size)
2544 end = size & ~PAGE_MASK;
54171690 2545 else
09cbfeaf 2546 end = PAGE_SIZE;
54171690 2547
ebdec241 2548 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2549 if (!ret)
2550 ret = block_commit_write(page, 0, end);
2551
24da4fab
JK
2552 if (unlikely(ret < 0))
2553 goto out_unlock;
ea13a864 2554 set_page_dirty(page);
1d1d1a76 2555 wait_for_stable_page(page);
24da4fab
JK
2556 return 0;
2557out_unlock:
2558 unlock_page(page);
54171690 2559 return ret;
24da4fab 2560}
1fe72eaa 2561EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2562
2563/*
03158cd7 2564 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2565 * immediately, while under the page lock. So it needs a special end_io
2566 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2567 */
2568static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2569{
68671f35 2570 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2571}
2572
03158cd7
NP
2573/*
2574 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2575 * the page (converting it to circular linked list and taking care of page
2576 * dirty races).
2577 */
2578static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2579{
2580 struct buffer_head *bh;
2581
2582 BUG_ON(!PageLocked(page));
2583
2584 spin_lock(&page->mapping->private_lock);
2585 bh = head;
2586 do {
2587 if (PageDirty(page))
2588 set_buffer_dirty(bh);
2589 if (!bh->b_this_page)
2590 bh->b_this_page = head;
2591 bh = bh->b_this_page;
2592 } while (bh != head);
45dcfc27 2593 attach_page_private(page, head);
03158cd7
NP
2594 spin_unlock(&page->mapping->private_lock);
2595}
2596
1da177e4 2597/*
ea0f04e5
CH
2598 * On entry, the page is fully not uptodate.
2599 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2600 * The filesystem needs to handle block truncation upon failure.
1da177e4 2601 */
ea0f04e5 2602int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2603 loff_t pos, unsigned len, unsigned flags,
2604 struct page **pagep, void **fsdata,
1da177e4
LT
2605 get_block_t *get_block)
2606{
03158cd7 2607 struct inode *inode = mapping->host;
1da177e4
LT
2608 const unsigned blkbits = inode->i_blkbits;
2609 const unsigned blocksize = 1 << blkbits;
a4b0672d 2610 struct buffer_head *head, *bh;
03158cd7
NP
2611 struct page *page;
2612 pgoff_t index;
2613 unsigned from, to;
1da177e4 2614 unsigned block_in_page;
a4b0672d 2615 unsigned block_start, block_end;
1da177e4 2616 sector_t block_in_file;
1da177e4 2617 int nr_reads = 0;
1da177e4
LT
2618 int ret = 0;
2619 int is_mapped_to_disk = 1;
1da177e4 2620
09cbfeaf
KS
2621 index = pos >> PAGE_SHIFT;
2622 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2623 to = from + len;
2624
54566b2c 2625 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2626 if (!page)
2627 return -ENOMEM;
2628 *pagep = page;
2629 *fsdata = NULL;
2630
2631 if (page_has_buffers(page)) {
309f77ad
NK
2632 ret = __block_write_begin(page, pos, len, get_block);
2633 if (unlikely(ret))
2634 goto out_release;
2635 return ret;
03158cd7 2636 }
a4b0672d 2637
1da177e4
LT
2638 if (PageMappedToDisk(page))
2639 return 0;
2640
a4b0672d
NP
2641 /*
2642 * Allocate buffers so that we can keep track of state, and potentially
2643 * attach them to the page if an error occurs. In the common case of
2644 * no error, they will just be freed again without ever being attached
2645 * to the page (which is all OK, because we're under the page lock).
2646 *
2647 * Be careful: the buffer linked list is a NULL terminated one, rather
2648 * than the circular one we're used to.
2649 */
640ab98f 2650 head = alloc_page_buffers(page, blocksize, false);
03158cd7
NP
2651 if (!head) {
2652 ret = -ENOMEM;
2653 goto out_release;
2654 }
a4b0672d 2655
09cbfeaf 2656 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2657
2658 /*
2659 * We loop across all blocks in the page, whether or not they are
2660 * part of the affected region. This is so we can discover if the
2661 * page is fully mapped-to-disk.
2662 */
a4b0672d 2663 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2664 block_start < PAGE_SIZE;
a4b0672d 2665 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2666 int create;
2667
a4b0672d
NP
2668 block_end = block_start + blocksize;
2669 bh->b_state = 0;
1da177e4
LT
2670 create = 1;
2671 if (block_start >= to)
2672 create = 0;
2673 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2674 bh, create);
1da177e4
LT
2675 if (ret)
2676 goto failed;
a4b0672d 2677 if (!buffer_mapped(bh))
1da177e4 2678 is_mapped_to_disk = 0;
a4b0672d 2679 if (buffer_new(bh))
e64855c6 2680 clean_bdev_bh_alias(bh);
a4b0672d
NP
2681 if (PageUptodate(page)) {
2682 set_buffer_uptodate(bh);
1da177e4 2683 continue;
a4b0672d
NP
2684 }
2685 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2686 zero_user_segments(page, block_start, from,
2687 to, block_end);
1da177e4
LT
2688 continue;
2689 }
a4b0672d 2690 if (buffer_uptodate(bh))
1da177e4
LT
2691 continue; /* reiserfs does this */
2692 if (block_start < from || block_end > to) {
a4b0672d
NP
2693 lock_buffer(bh);
2694 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2695 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2696 nr_reads++;
1da177e4
LT
2697 }
2698 }
2699
2700 if (nr_reads) {
1da177e4
LT
2701 /*
2702 * The page is locked, so these buffers are protected from
2703 * any VM or truncate activity. Hence we don't need to care
2704 * for the buffer_head refcounts.
2705 */
a4b0672d 2706 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2707 wait_on_buffer(bh);
2708 if (!buffer_uptodate(bh))
2709 ret = -EIO;
1da177e4
LT
2710 }
2711 if (ret)
2712 goto failed;
2713 }
2714
2715 if (is_mapped_to_disk)
2716 SetPageMappedToDisk(page);
1da177e4 2717
03158cd7 2718 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2719
1da177e4
LT
2720 return 0;
2721
2722failed:
03158cd7 2723 BUG_ON(!ret);
1da177e4 2724 /*
a4b0672d
NP
2725 * Error recovery is a bit difficult. We need to zero out blocks that
2726 * were newly allocated, and dirty them to ensure they get written out.
2727 * Buffers need to be attached to the page at this point, otherwise
2728 * the handling of potential IO errors during writeout would be hard
2729 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2730 */
03158cd7
NP
2731 attach_nobh_buffers(page, head);
2732 page_zero_new_buffers(page, from, to);
a4b0672d 2733
03158cd7
NP
2734out_release:
2735 unlock_page(page);
09cbfeaf 2736 put_page(page);
03158cd7 2737 *pagep = NULL;
a4b0672d 2738
7bb46a67
NP
2739 return ret;
2740}
03158cd7 2741EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2742
03158cd7
NP
2743int nobh_write_end(struct file *file, struct address_space *mapping,
2744 loff_t pos, unsigned len, unsigned copied,
2745 struct page *page, void *fsdata)
1da177e4
LT
2746{
2747 struct inode *inode = page->mapping->host;
efdc3131 2748 struct buffer_head *head = fsdata;
03158cd7 2749 struct buffer_head *bh;
5b41e74a 2750 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2751
d4cf109f 2752 if (unlikely(copied < len) && head)
5b41e74a
DM
2753 attach_nobh_buffers(page, head);
2754 if (page_has_buffers(page))
2755 return generic_write_end(file, mapping, pos, len,
2756 copied, page, fsdata);
a4b0672d 2757
22c8ca78 2758 SetPageUptodate(page);
1da177e4 2759 set_page_dirty(page);
03158cd7
NP
2760 if (pos+copied > inode->i_size) {
2761 i_size_write(inode, pos+copied);
1da177e4
LT
2762 mark_inode_dirty(inode);
2763 }
03158cd7
NP
2764
2765 unlock_page(page);
09cbfeaf 2766 put_page(page);
03158cd7 2767
03158cd7
NP
2768 while (head) {
2769 bh = head;
2770 head = head->b_this_page;
2771 free_buffer_head(bh);
2772 }
2773
2774 return copied;
1da177e4 2775}
03158cd7 2776EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2777
2778/*
2779 * nobh_writepage() - based on block_full_write_page() except
2780 * that it tries to operate without attaching bufferheads to
2781 * the page.
2782 */
2783int nobh_writepage(struct page *page, get_block_t *get_block,
2784 struct writeback_control *wbc)
2785{
2786 struct inode * const inode = page->mapping->host;
2787 loff_t i_size = i_size_read(inode);
09cbfeaf 2788 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2789 unsigned offset;
1da177e4
LT
2790 int ret;
2791
2792 /* Is the page fully inside i_size? */
2793 if (page->index < end_index)
2794 goto out;
2795
2796 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2797 offset = i_size & (PAGE_SIZE-1);
1da177e4 2798 if (page->index >= end_index+1 || !offset) {
1da177e4
LT
2799 unlock_page(page);
2800 return 0; /* don't care */
2801 }
2802
2803 /*
2804 * The page straddles i_size. It must be zeroed out on each and every
2805 * writepage invocation because it may be mmapped. "A file is mapped
2806 * in multiples of the page size. For a file that is not a multiple of
2807 * the page size, the remaining memory is zeroed when mapped, and
2808 * writes to that region are not written out to the file."
2809 */
09cbfeaf 2810 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2811out:
2812 ret = mpage_writepage(page, get_block, wbc);
2813 if (ret == -EAGAIN)
35c80d5f
CM
2814 ret = __block_write_full_page(inode, page, get_block, wbc,
2815 end_buffer_async_write);
1da177e4
LT
2816 return ret;
2817}
2818EXPORT_SYMBOL(nobh_writepage);
2819
03158cd7
NP
2820int nobh_truncate_page(struct address_space *mapping,
2821 loff_t from, get_block_t *get_block)
1da177e4 2822{
09cbfeaf
KS
2823 pgoff_t index = from >> PAGE_SHIFT;
2824 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2825 unsigned blocksize;
2826 sector_t iblock;
2827 unsigned length, pos;
2828 struct inode *inode = mapping->host;
1da177e4 2829 struct page *page;
03158cd7
NP
2830 struct buffer_head map_bh;
2831 int err;
1da177e4 2832
93407472 2833 blocksize = i_blocksize(inode);
03158cd7
NP
2834 length = offset & (blocksize - 1);
2835
2836 /* Block boundary? Nothing to do */
2837 if (!length)
2838 return 0;
2839
2840 length = blocksize - length;
09cbfeaf 2841 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2842
1da177e4 2843 page = grab_cache_page(mapping, index);
03158cd7 2844 err = -ENOMEM;
1da177e4
LT
2845 if (!page)
2846 goto out;
2847
03158cd7
NP
2848 if (page_has_buffers(page)) {
2849has_buffers:
2850 unlock_page(page);
09cbfeaf 2851 put_page(page);
03158cd7
NP
2852 return block_truncate_page(mapping, from, get_block);
2853 }
2854
2855 /* Find the buffer that contains "offset" */
2856 pos = blocksize;
2857 while (offset >= pos) {
2858 iblock++;
2859 pos += blocksize;
2860 }
2861
460bcf57
TT
2862 map_bh.b_size = blocksize;
2863 map_bh.b_state = 0;
03158cd7
NP
2864 err = get_block(inode, iblock, &map_bh, 0);
2865 if (err)
2866 goto unlock;
2867 /* unmapped? It's a hole - nothing to do */
2868 if (!buffer_mapped(&map_bh))
2869 goto unlock;
2870
2871 /* Ok, it's mapped. Make sure it's up-to-date */
2872 if (!PageUptodate(page)) {
2873 err = mapping->a_ops->readpage(NULL, page);
2874 if (err) {
09cbfeaf 2875 put_page(page);
03158cd7
NP
2876 goto out;
2877 }
2878 lock_page(page);
2879 if (!PageUptodate(page)) {
2880 err = -EIO;
2881 goto unlock;
2882 }
2883 if (page_has_buffers(page))
2884 goto has_buffers;
1da177e4 2885 }
eebd2aa3 2886 zero_user(page, offset, length);
03158cd7
NP
2887 set_page_dirty(page);
2888 err = 0;
2889
2890unlock:
1da177e4 2891 unlock_page(page);
09cbfeaf 2892 put_page(page);
1da177e4 2893out:
03158cd7 2894 return err;
1da177e4
LT
2895}
2896EXPORT_SYMBOL(nobh_truncate_page);
2897
2898int block_truncate_page(struct address_space *mapping,
2899 loff_t from, get_block_t *get_block)
2900{
09cbfeaf
KS
2901 pgoff_t index = from >> PAGE_SHIFT;
2902 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2903 unsigned blocksize;
54b21a79 2904 sector_t iblock;
1da177e4
LT
2905 unsigned length, pos;
2906 struct inode *inode = mapping->host;
2907 struct page *page;
2908 struct buffer_head *bh;
1da177e4
LT
2909 int err;
2910
93407472 2911 blocksize = i_blocksize(inode);
1da177e4
LT
2912 length = offset & (blocksize - 1);
2913
2914 /* Block boundary? Nothing to do */
2915 if (!length)
2916 return 0;
2917
2918 length = blocksize - length;
09cbfeaf 2919 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2920
2921 page = grab_cache_page(mapping, index);
2922 err = -ENOMEM;
2923 if (!page)
2924 goto out;
2925
2926 if (!page_has_buffers(page))
2927 create_empty_buffers(page, blocksize, 0);
2928
2929 /* Find the buffer that contains "offset" */
2930 bh = page_buffers(page);
2931 pos = blocksize;
2932 while (offset >= pos) {
2933 bh = bh->b_this_page;
2934 iblock++;
2935 pos += blocksize;
2936 }
2937
2938 err = 0;
2939 if (!buffer_mapped(bh)) {
b0cf2321 2940 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2941 err = get_block(inode, iblock, bh, 0);
2942 if (err)
2943 goto unlock;
2944 /* unmapped? It's a hole - nothing to do */
2945 if (!buffer_mapped(bh))
2946 goto unlock;
2947 }
2948
2949 /* Ok, it's mapped. Make sure it's up-to-date */
2950 if (PageUptodate(page))
2951 set_buffer_uptodate(bh);
2952
33a266dd 2953 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2954 err = -EIO;
dfec8a14 2955 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2956 wait_on_buffer(bh);
2957 /* Uhhuh. Read error. Complain and punt. */
2958 if (!buffer_uptodate(bh))
2959 goto unlock;
2960 }
2961
eebd2aa3 2962 zero_user(page, offset, length);
1da177e4
LT
2963 mark_buffer_dirty(bh);
2964 err = 0;
2965
2966unlock:
2967 unlock_page(page);
09cbfeaf 2968 put_page(page);
1da177e4
LT
2969out:
2970 return err;
2971}
1fe72eaa 2972EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2973
2974/*
2975 * The generic ->writepage function for buffer-backed address_spaces
2976 */
1b938c08
MW
2977int block_write_full_page(struct page *page, get_block_t *get_block,
2978 struct writeback_control *wbc)
1da177e4
LT
2979{
2980 struct inode * const inode = page->mapping->host;
2981 loff_t i_size = i_size_read(inode);
09cbfeaf 2982 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2983 unsigned offset;
1da177e4
LT
2984
2985 /* Is the page fully inside i_size? */
2986 if (page->index < end_index)
35c80d5f 2987 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2988 end_buffer_async_write);
1da177e4
LT
2989
2990 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2991 offset = i_size & (PAGE_SIZE-1);
1da177e4 2992 if (page->index >= end_index+1 || !offset) {
1da177e4
LT
2993 unlock_page(page);
2994 return 0; /* don't care */
2995 }
2996
2997 /*
2998 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2999 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
3000 * in multiples of the page size. For a file that is not a multiple of
3001 * the page size, the remaining memory is zeroed when mapped, and
3002 * writes to that region are not written out to the file."
3003 */
09cbfeaf 3004 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
3005 return __block_write_full_page(inode, page, get_block, wbc,
3006 end_buffer_async_write);
35c80d5f 3007}
1fe72eaa 3008EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3009
1da177e4
LT
3010sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3011 get_block_t *get_block)
3012{
1da177e4 3013 struct inode *inode = mapping->host;
2a527d68
AP
3014 struct buffer_head tmp = {
3015 .b_size = i_blocksize(inode),
3016 };
3017
1da177e4
LT
3018 get_block(inode, block, &tmp, 0);
3019 return tmp.b_blocknr;
3020}
1fe72eaa 3021EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3022
4246a0b6 3023static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3024{
3025 struct buffer_head *bh = bio->bi_private;
3026
b7c44ed9 3027 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3028 set_bit(BH_Quiet, &bh->b_state);
3029
4e4cbee9 3030 bh->b_end_io(bh, !bio->bi_status);
1da177e4 3031 bio_put(bio);
1da177e4
LT
3032}
3033
2a222ca9 3034static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3035 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3036{
3037 struct bio *bio;
1da177e4
LT
3038
3039 BUG_ON(!buffer_locked(bh));
3040 BUG_ON(!buffer_mapped(bh));
3041 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3042 BUG_ON(buffer_delay(bh));
3043 BUG_ON(buffer_unwritten(bh));
1da177e4 3044
1da177e4 3045 /*
48fd4f93 3046 * Only clear out a write error when rewriting
1da177e4 3047 */
2a222ca9 3048 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3049 clear_buffer_write_io_error(bh);
3050
1da177e4
LT
3051 bio = bio_alloc(GFP_NOIO, 1);
3052
4f74d15f
EB
3053 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3054
4f024f37 3055 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 3056 bio_set_dev(bio, bh->b_bdev);
8e8f9298 3057 bio->bi_write_hint = write_hint;
1da177e4 3058
6cf66b4c
KO
3059 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3060 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3061
3062 bio->bi_end_io = end_bio_bh_io_sync;
3063 bio->bi_private = bh;
3064
877f962c 3065 if (buffer_meta(bh))
2a222ca9 3066 op_flags |= REQ_META;
877f962c 3067 if (buffer_prio(bh))
2a222ca9
MC
3068 op_flags |= REQ_PRIO;
3069 bio_set_op_attrs(bio, op, op_flags);
877f962c 3070
83c9c547
ML
3071 /* Take care of bh's that straddle the end of the device */
3072 guard_bio_eod(bio);
3073
fd42df30
DZ
3074 if (wbc) {
3075 wbc_init_bio(wbc, bio);
34e51a5e 3076 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
3077 }
3078
4e49ea4a 3079 submit_bio(bio);
f6454b04 3080 return 0;
1da177e4 3081}
bafc0dba 3082
020c2833 3083int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3084{
8e8f9298 3085 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3086}
1fe72eaa 3087EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3088
3089/**
3090 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3091 * @op: whether to %READ or %WRITE
ef295ecf 3092 * @op_flags: req_flag_bits
1da177e4
LT
3093 * @nr: number of &struct buffer_heads in the array
3094 * @bhs: array of pointers to &struct buffer_head
3095 *
a7662236 3096 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3097 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3098 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3099 * %REQ_RAHEAD.
1da177e4
LT
3100 *
3101 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3102 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3103 * request, and any buffer that appears to be up-to-date when doing read
3104 * request. Further it marks as clean buffers that are processed for
3105 * writing (the buffer cache won't assume that they are actually clean
3106 * until the buffer gets unlocked).
1da177e4
LT
3107 *
3108 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3109 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3110 * any waiters.
3111 *
3112 * All of the buffers must be for the same device, and must also be a
3113 * multiple of the current approved size for the device.
3114 */
dfec8a14 3115void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3116{
3117 int i;
3118
3119 for (i = 0; i < nr; i++) {
3120 struct buffer_head *bh = bhs[i];
3121
9cb569d6 3122 if (!trylock_buffer(bh))
1da177e4 3123 continue;
dfec8a14 3124 if (op == WRITE) {
1da177e4 3125 if (test_clear_buffer_dirty(bh)) {
76c3073a 3126 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3127 get_bh(bh);
dfec8a14 3128 submit_bh(op, op_flags, bh);
1da177e4
LT
3129 continue;
3130 }
3131 } else {
1da177e4 3132 if (!buffer_uptodate(bh)) {
76c3073a 3133 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3134 get_bh(bh);
dfec8a14 3135 submit_bh(op, op_flags, bh);
1da177e4
LT
3136 continue;
3137 }
3138 }
3139 unlock_buffer(bh);
1da177e4
LT
3140 }
3141}
1fe72eaa 3142EXPORT_SYMBOL(ll_rw_block);
1da177e4 3143
2a222ca9 3144void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3145{
3146 lock_buffer(bh);
3147 if (!test_clear_buffer_dirty(bh)) {
3148 unlock_buffer(bh);
3149 return;
3150 }
3151 bh->b_end_io = end_buffer_write_sync;
3152 get_bh(bh);
2a222ca9 3153 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3154}
3155EXPORT_SYMBOL(write_dirty_buffer);
3156
1da177e4
LT
3157/*
3158 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3159 * and then start new I/O and then wait upon it. The caller must have a ref on
3160 * the buffer_head.
3161 */
2a222ca9 3162int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3163{
3164 int ret = 0;
3165
3166 WARN_ON(atomic_read(&bh->b_count) < 1);
3167 lock_buffer(bh);
3168 if (test_clear_buffer_dirty(bh)) {
377254b2
XT
3169 /*
3170 * The bh should be mapped, but it might not be if the
3171 * device was hot-removed. Not much we can do but fail the I/O.
3172 */
3173 if (!buffer_mapped(bh)) {
3174 unlock_buffer(bh);
3175 return -EIO;
3176 }
3177
1da177e4
LT
3178 get_bh(bh);
3179 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3180 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3181 wait_on_buffer(bh);
1da177e4
LT
3182 if (!ret && !buffer_uptodate(bh))
3183 ret = -EIO;
3184 } else {
3185 unlock_buffer(bh);
3186 }
3187 return ret;
3188}
87e99511
CH
3189EXPORT_SYMBOL(__sync_dirty_buffer);
3190
3191int sync_dirty_buffer(struct buffer_head *bh)
3192{
70fd7614 3193 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3194}
1fe72eaa 3195EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3196
3197/*
3198 * try_to_free_buffers() checks if all the buffers on this particular page
3199 * are unused, and releases them if so.
3200 *
3201 * Exclusion against try_to_free_buffers may be obtained by either
3202 * locking the page or by holding its mapping's private_lock.
3203 *
3204 * If the page is dirty but all the buffers are clean then we need to
3205 * be sure to mark the page clean as well. This is because the page
3206 * may be against a block device, and a later reattachment of buffers
3207 * to a dirty page will set *all* buffers dirty. Which would corrupt
3208 * filesystem data on the same device.
3209 *
3210 * The same applies to regular filesystem pages: if all the buffers are
3211 * clean then we set the page clean and proceed. To do that, we require
3212 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3213 * private_lock.
3214 *
3215 * try_to_free_buffers() is non-blocking.
3216 */
3217static inline int buffer_busy(struct buffer_head *bh)
3218{
3219 return atomic_read(&bh->b_count) |
3220 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3221}
3222
3223static int
3224drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3225{
3226 struct buffer_head *head = page_buffers(page);
3227 struct buffer_head *bh;
3228
3229 bh = head;
3230 do {
1da177e4
LT
3231 if (buffer_busy(bh))
3232 goto failed;
3233 bh = bh->b_this_page;
3234 } while (bh != head);
3235
3236 do {
3237 struct buffer_head *next = bh->b_this_page;
3238
535ee2fb 3239 if (bh->b_assoc_map)
1da177e4
LT
3240 __remove_assoc_queue(bh);
3241 bh = next;
3242 } while (bh != head);
3243 *buffers_to_free = head;
45dcfc27 3244 detach_page_private(page);
1da177e4
LT
3245 return 1;
3246failed:
3247 return 0;
3248}
3249
3250int try_to_free_buffers(struct page *page)
3251{
3252 struct address_space * const mapping = page->mapping;
3253 struct buffer_head *buffers_to_free = NULL;
3254 int ret = 0;
3255
3256 BUG_ON(!PageLocked(page));
ecdfc978 3257 if (PageWriteback(page))
1da177e4
LT
3258 return 0;
3259
3260 if (mapping == NULL) { /* can this still happen? */
3261 ret = drop_buffers(page, &buffers_to_free);
3262 goto out;
3263 }
3264
3265 spin_lock(&mapping->private_lock);
3266 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3267
3268 /*
3269 * If the filesystem writes its buffers by hand (eg ext3)
3270 * then we can have clean buffers against a dirty page. We
3271 * clean the page here; otherwise the VM will never notice
3272 * that the filesystem did any IO at all.
3273 *
3274 * Also, during truncate, discard_buffer will have marked all
3275 * the page's buffers clean. We discover that here and clean
3276 * the page also.
87df7241
NP
3277 *
3278 * private_lock must be held over this entire operation in order
3279 * to synchronise against __set_page_dirty_buffers and prevent the
3280 * dirty bit from being lost.
ecdfc978 3281 */
11f81bec
TH
3282 if (ret)
3283 cancel_dirty_page(page);
87df7241 3284 spin_unlock(&mapping->private_lock);
1da177e4
LT
3285out:
3286 if (buffers_to_free) {
3287 struct buffer_head *bh = buffers_to_free;
3288
3289 do {
3290 struct buffer_head *next = bh->b_this_page;
3291 free_buffer_head(bh);
3292 bh = next;
3293 } while (bh != buffers_to_free);
3294 }
3295 return ret;
3296}
3297EXPORT_SYMBOL(try_to_free_buffers);
3298
1da177e4
LT
3299/*
3300 * There are no bdflush tunables left. But distributions are
3301 * still running obsolete flush daemons, so we terminate them here.
3302 *
3303 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3304 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3305 */
bdc480e3 3306SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3307{
3308 static int msg_count;
3309
3310 if (!capable(CAP_SYS_ADMIN))
3311 return -EPERM;
3312
3313 if (msg_count < 5) {
3314 msg_count++;
3315 printk(KERN_INFO
3316 "warning: process `%s' used the obsolete bdflush"
3317 " system call\n", current->comm);
3318 printk(KERN_INFO "Fix your initscripts?\n");
3319 }
3320
3321 if (func == 1)
3322 do_exit(0);
3323 return 0;
3324}
3325
3326/*
3327 * Buffer-head allocation
3328 */
a0a9b043 3329static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3330
3331/*
3332 * Once the number of bh's in the machine exceeds this level, we start
3333 * stripping them in writeback.
3334 */
43be594a 3335static unsigned long max_buffer_heads;
1da177e4
LT
3336
3337int buffer_heads_over_limit;
3338
3339struct bh_accounting {
3340 int nr; /* Number of live bh's */
3341 int ratelimit; /* Limit cacheline bouncing */
3342};
3343
3344static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3345
3346static void recalc_bh_state(void)
3347{
3348 int i;
3349 int tot = 0;
3350
ee1be862 3351 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3352 return;
c7b92516 3353 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3354 for_each_online_cpu(i)
1da177e4
LT
3355 tot += per_cpu(bh_accounting, i).nr;
3356 buffer_heads_over_limit = (tot > max_buffer_heads);
3357}
c7b92516 3358
dd0fc66f 3359struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3360{
019b4d12 3361 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3362 if (ret) {
a35afb83 3363 INIT_LIST_HEAD(&ret->b_assoc_buffers);
f1e67e35 3364 spin_lock_init(&ret->b_uptodate_lock);
c7b92516
CL
3365 preempt_disable();
3366 __this_cpu_inc(bh_accounting.nr);
1da177e4 3367 recalc_bh_state();
c7b92516 3368 preempt_enable();
1da177e4
LT
3369 }
3370 return ret;
3371}
3372EXPORT_SYMBOL(alloc_buffer_head);
3373
3374void free_buffer_head(struct buffer_head *bh)
3375{
3376 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3377 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3378 preempt_disable();
3379 __this_cpu_dec(bh_accounting.nr);
1da177e4 3380 recalc_bh_state();
c7b92516 3381 preempt_enable();
1da177e4
LT
3382}
3383EXPORT_SYMBOL(free_buffer_head);
3384
fc4d24c9 3385static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3386{
3387 int i;
3388 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3389
3390 for (i = 0; i < BH_LRU_SIZE; i++) {
3391 brelse(b->bhs[i]);
3392 b->bhs[i] = NULL;
3393 }
c7b92516 3394 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3395 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3396 return 0;
1da177e4 3397}
1da177e4 3398
389d1b08 3399/**
a6b91919 3400 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3401 * @bh: struct buffer_head
3402 *
3403 * Return true if the buffer is up-to-date and false,
3404 * with the buffer locked, if not.
3405 */
3406int bh_uptodate_or_lock(struct buffer_head *bh)
3407{
3408 if (!buffer_uptodate(bh)) {
3409 lock_buffer(bh);
3410 if (!buffer_uptodate(bh))
3411 return 0;
3412 unlock_buffer(bh);
3413 }
3414 return 1;
3415}
3416EXPORT_SYMBOL(bh_uptodate_or_lock);
3417
3418/**
a6b91919 3419 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3420 * @bh: struct buffer_head
3421 *
3422 * Returns zero on success and -EIO on error.
3423 */
3424int bh_submit_read(struct buffer_head *bh)
3425{
3426 BUG_ON(!buffer_locked(bh));
3427
3428 if (buffer_uptodate(bh)) {
3429 unlock_buffer(bh);
3430 return 0;
3431 }
3432
3433 get_bh(bh);
3434 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3435 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3436 wait_on_buffer(bh);
3437 if (buffer_uptodate(bh))
3438 return 0;
3439 return -EIO;
3440}
3441EXPORT_SYMBOL(bh_submit_read);
3442
1da177e4
LT
3443void __init buffer_init(void)
3444{
43be594a 3445 unsigned long nrpages;
fc4d24c9 3446 int ret;
1da177e4 3447
b98938c3
CL
3448 bh_cachep = kmem_cache_create("buffer_head",
3449 sizeof(struct buffer_head), 0,
3450 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3451 SLAB_MEM_SPREAD),
019b4d12 3452 NULL);
1da177e4
LT
3453
3454 /*
3455 * Limit the bh occupancy to 10% of ZONE_NORMAL
3456 */
3457 nrpages = (nr_free_buffer_pages() * 10) / 100;
3458 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3459 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3460 NULL, buffer_exit_cpu_dead);
3461 WARN_ON(ret < 0);
1da177e4 3462}
This page took 1.845743 seconds and 4 git commands to generate.