]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/swap_state.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie | |
7 | * | |
8 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie | |
9 | */ | |
1da177e4 | 10 | #include <linux/mm.h> |
5a0e3ad6 | 11 | #include <linux/gfp.h> |
1da177e4 LT |
12 | #include <linux/kernel_stat.h> |
13 | #include <linux/swap.h> | |
46017e95 | 14 | #include <linux/swapops.h> |
1da177e4 LT |
15 | #include <linux/init.h> |
16 | #include <linux/pagemap.h> | |
1da177e4 | 17 | #include <linux/backing-dev.h> |
3fb5c298 | 18 | #include <linux/blkdev.h> |
c484d410 | 19 | #include <linux/pagevec.h> |
b20a3503 | 20 | #include <linux/migrate.h> |
4b3ef9da | 21 | #include <linux/vmalloc.h> |
67afa38e | 22 | #include <linux/swap_slots.h> |
38d8b4e6 | 23 | #include <linux/huge_mm.h> |
61ef1865 | 24 | #include <linux/shmem_fs.h> |
243bce09 | 25 | #include "internal.h" |
014bb1de | 26 | #include "swap.h" |
1da177e4 LT |
27 | |
28 | /* | |
29 | * swapper_space is a fiction, retained to simplify the path through | |
7eaceacc | 30 | * vmscan's shrink_page_list. |
1da177e4 | 31 | */ |
f5e54d6e | 32 | static const struct address_space_operations swap_aops = { |
1da177e4 | 33 | .writepage = swap_writepage, |
4c4a7634 | 34 | .dirty_folio = noop_dirty_folio, |
1c93923c | 35 | #ifdef CONFIG_MIGRATION |
54184650 | 36 | .migrate_folio = migrate_folio, |
1c93923c | 37 | #endif |
1da177e4 LT |
38 | }; |
39 | ||
783cb68e CD |
40 | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; |
41 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | |
f5c754d6 | 42 | static bool enable_vma_readahead __read_mostly = true; |
ec560175 | 43 | |
ec560175 YH |
44 | #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) |
45 | #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) | |
46 | #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK | |
47 | #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) | |
48 | ||
49 | #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) | |
50 | #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | |
51 | #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) | |
52 | ||
53 | #define SWAP_RA_VAL(addr, win, hits) \ | |
54 | (((addr) & PAGE_MASK) | \ | |
55 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ | |
56 | ((hits) & SWAP_RA_HITS_MASK)) | |
57 | ||
58 | /* Initial readahead hits is 4 to start up with a small window */ | |
59 | #define GET_SWAP_RA_VAL(vma) \ | |
60 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | |
1da177e4 | 61 | |
579f8290 SL |
62 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); |
63 | ||
1da177e4 LT |
64 | void show_swap_cache_info(void) |
65 | { | |
33806f06 | 66 | printk("%lu pages in swap cache\n", total_swapcache_pages()); |
ec8acf20 SL |
67 | printk("Free swap = %ldkB\n", |
68 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | |
1da177e4 LT |
69 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
70 | } | |
71 | ||
aae466b0 JK |
72 | void *get_shadow_from_swap_cache(swp_entry_t entry) |
73 | { | |
74 | struct address_space *address_space = swap_address_space(entry); | |
75 | pgoff_t idx = swp_offset(entry); | |
76 | struct page *page; | |
77 | ||
8c647dd1 | 78 | page = xa_load(&address_space->i_pages, idx); |
aae466b0 JK |
79 | if (xa_is_value(page)) |
80 | return page; | |
aae466b0 JK |
81 | return NULL; |
82 | } | |
83 | ||
1da177e4 | 84 | /* |
2bb876b5 | 85 | * add_to_swap_cache resembles filemap_add_folio on swapper_space, |
1da177e4 LT |
86 | * but sets SwapCache flag and private instead of mapping and index. |
87 | */ | |
3852f676 JK |
88 | int add_to_swap_cache(struct page *page, swp_entry_t entry, |
89 | gfp_t gfp, void **shadowp) | |
1da177e4 | 90 | { |
8d93b41c | 91 | struct address_space *address_space = swap_address_space(entry); |
38d8b4e6 | 92 | pgoff_t idx = swp_offset(entry); |
8d93b41c | 93 | XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); |
6c357848 | 94 | unsigned long i, nr = thp_nr_pages(page); |
3852f676 | 95 | void *old; |
1da177e4 | 96 | |
309381fe SL |
97 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
98 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
99 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | |
51726b12 | 100 | |
38d8b4e6 | 101 | page_ref_add(page, nr); |
31a56396 | 102 | SetPageSwapCache(page); |
31a56396 | 103 | |
8d93b41c MW |
104 | do { |
105 | xas_lock_irq(&xas); | |
106 | xas_create_range(&xas); | |
107 | if (xas_error(&xas)) | |
108 | goto unlock; | |
109 | for (i = 0; i < nr; i++) { | |
110 | VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); | |
3852f676 JK |
111 | old = xas_load(&xas); |
112 | if (xa_is_value(old)) { | |
3852f676 JK |
113 | if (shadowp) |
114 | *shadowp = old; | |
115 | } | |
8d93b41c | 116 | set_page_private(page + i, entry.val + i); |
4101196b | 117 | xas_store(&xas, page); |
8d93b41c MW |
118 | xas_next(&xas); |
119 | } | |
38d8b4e6 YH |
120 | address_space->nrpages += nr; |
121 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | |
b6038942 | 122 | __mod_lruvec_page_state(page, NR_SWAPCACHE, nr); |
8d93b41c MW |
123 | unlock: |
124 | xas_unlock_irq(&xas); | |
125 | } while (xas_nomem(&xas, gfp)); | |
31a56396 | 126 | |
8d93b41c MW |
127 | if (!xas_error(&xas)) |
128 | return 0; | |
31a56396 | 129 | |
8d93b41c MW |
130 | ClearPageSwapCache(page); |
131 | page_ref_sub(page, nr); | |
132 | return xas_error(&xas); | |
1da177e4 LT |
133 | } |
134 | ||
1da177e4 | 135 | /* |
ceff9d33 | 136 | * This must be called only on folios that have |
1da177e4 LT |
137 | * been verified to be in the swap cache. |
138 | */ | |
ceff9d33 | 139 | void __delete_from_swap_cache(struct folio *folio, |
3852f676 | 140 | swp_entry_t entry, void *shadow) |
1da177e4 | 141 | { |
4e17ec25 | 142 | struct address_space *address_space = swap_address_space(entry); |
ceff9d33 MWO |
143 | int i; |
144 | long nr = folio_nr_pages(folio); | |
4e17ec25 MW |
145 | pgoff_t idx = swp_offset(entry); |
146 | XA_STATE(xas, &address_space->i_pages, idx); | |
33806f06 | 147 | |
ceff9d33 MWO |
148 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
149 | VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); | |
150 | VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); | |
1da177e4 | 151 | |
38d8b4e6 | 152 | for (i = 0; i < nr; i++) { |
3852f676 | 153 | void *entry = xas_store(&xas, shadow); |
ceff9d33 MWO |
154 | VM_BUG_ON_FOLIO(entry != folio, folio); |
155 | set_page_private(folio_page(folio, i), 0); | |
4e17ec25 | 156 | xas_next(&xas); |
38d8b4e6 | 157 | } |
ceff9d33 | 158 | folio_clear_swapcache(folio); |
38d8b4e6 | 159 | address_space->nrpages -= nr; |
ceff9d33 MWO |
160 | __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); |
161 | __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); | |
1da177e4 LT |
162 | } |
163 | ||
164 | /** | |
09c02e56 MWO |
165 | * add_to_swap - allocate swap space for a folio |
166 | * @folio: folio we want to move to swap | |
1da177e4 | 167 | * |
09c02e56 MWO |
168 | * Allocate swap space for the folio and add the folio to the |
169 | * swap cache. | |
170 | * | |
171 | * Context: Caller needs to hold the folio lock. | |
172 | * Return: Whether the folio was added to the swap cache. | |
1da177e4 | 173 | */ |
09c02e56 | 174 | bool add_to_swap(struct folio *folio) |
1da177e4 LT |
175 | { |
176 | swp_entry_t entry; | |
1da177e4 LT |
177 | int err; |
178 | ||
09c02e56 MWO |
179 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
180 | VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); | |
1da177e4 | 181 | |
e2e3fdc7 | 182 | entry = folio_alloc_swap(folio); |
2ca4532a | 183 | if (!entry.val) |
09c02e56 | 184 | return false; |
0f074658 | 185 | |
2ca4532a | 186 | /* |
8d93b41c | 187 | * XArray node allocations from PF_MEMALLOC contexts could |
2ca4532a DN |
188 | * completely exhaust the page allocator. __GFP_NOMEMALLOC |
189 | * stops emergency reserves from being allocated. | |
190 | * | |
191 | * TODO: this could cause a theoretical memory reclaim | |
192 | * deadlock in the swap out path. | |
193 | */ | |
194 | /* | |
854e9ed0 | 195 | * Add it to the swap cache. |
2ca4532a | 196 | */ |
09c02e56 | 197 | err = add_to_swap_cache(&folio->page, entry, |
3852f676 | 198 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); |
38d8b4e6 | 199 | if (err) |
bd53b714 | 200 | /* |
2ca4532a DN |
201 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
202 | * clear SWAP_HAS_CACHE flag. | |
1da177e4 | 203 | */ |
0f074658 | 204 | goto fail; |
9625456c | 205 | /* |
09c02e56 MWO |
206 | * Normally the folio will be dirtied in unmap because its |
207 | * pte should be dirty. A special case is MADV_FREE page. The | |
208 | * page's pte could have dirty bit cleared but the folio's | |
209 | * SwapBacked flag is still set because clearing the dirty bit | |
210 | * and SwapBacked flag has no lock protected. For such folio, | |
211 | * unmap will not set dirty bit for it, so folio reclaim will | |
212 | * not write the folio out. This can cause data corruption when | |
213 | * the folio is swapped in later. Always setting the dirty flag | |
214 | * for the folio solves the problem. | |
9625456c | 215 | */ |
09c02e56 | 216 | folio_mark_dirty(folio); |
38d8b4e6 | 217 | |
09c02e56 | 218 | return true; |
38d8b4e6 | 219 | |
38d8b4e6 | 220 | fail: |
09c02e56 MWO |
221 | put_swap_page(&folio->page, entry); |
222 | return false; | |
1da177e4 LT |
223 | } |
224 | ||
225 | /* | |
75fa68a5 | 226 | * This must be called only on folios that have |
1da177e4 | 227 | * been verified to be in the swap cache and locked. |
75fa68a5 MWO |
228 | * It will never put the folio into the free list, |
229 | * the caller has a reference on the folio. | |
1da177e4 | 230 | */ |
75fa68a5 | 231 | void delete_from_swap_cache(struct folio *folio) |
1da177e4 | 232 | { |
75fa68a5 | 233 | swp_entry_t entry = folio_swap_entry(folio); |
4e17ec25 | 234 | struct address_space *address_space = swap_address_space(entry); |
1da177e4 | 235 | |
b93b0163 | 236 | xa_lock_irq(&address_space->i_pages); |
ceff9d33 | 237 | __delete_from_swap_cache(folio, entry, NULL); |
b93b0163 | 238 | xa_unlock_irq(&address_space->i_pages); |
1da177e4 | 239 | |
75fa68a5 MWO |
240 | put_swap_page(&folio->page, entry); |
241 | folio_ref_sub(folio, folio_nr_pages(folio)); | |
1da177e4 LT |
242 | } |
243 | ||
3852f676 JK |
244 | void clear_shadow_from_swap_cache(int type, unsigned long begin, |
245 | unsigned long end) | |
246 | { | |
247 | unsigned long curr = begin; | |
248 | void *old; | |
249 | ||
250 | for (;;) { | |
3852f676 JK |
251 | swp_entry_t entry = swp_entry(type, curr); |
252 | struct address_space *address_space = swap_address_space(entry); | |
253 | XA_STATE(xas, &address_space->i_pages, curr); | |
254 | ||
255 | xa_lock_irq(&address_space->i_pages); | |
256 | xas_for_each(&xas, old, end) { | |
257 | if (!xa_is_value(old)) | |
258 | continue; | |
259 | xas_store(&xas, NULL); | |
3852f676 | 260 | } |
3852f676 JK |
261 | xa_unlock_irq(&address_space->i_pages); |
262 | ||
263 | /* search the next swapcache until we meet end */ | |
264 | curr >>= SWAP_ADDRESS_SPACE_SHIFT; | |
265 | curr++; | |
266 | curr <<= SWAP_ADDRESS_SPACE_SHIFT; | |
267 | if (curr > end) | |
268 | break; | |
269 | } | |
270 | } | |
271 | ||
1da177e4 LT |
272 | /* |
273 | * If we are the only user, then try to free up the swap cache. | |
274 | * | |
275 | * Its ok to check for PageSwapCache without the page lock | |
a2c43eed HD |
276 | * here because we are going to recheck again inside |
277 | * try_to_free_swap() _with_ the lock. | |
1da177e4 LT |
278 | * - Marcelo |
279 | */ | |
f4c4a3f4 | 280 | void free_swap_cache(struct page *page) |
1da177e4 | 281 | { |
a2c43eed HD |
282 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
283 | try_to_free_swap(page); | |
1da177e4 LT |
284 | unlock_page(page); |
285 | } | |
286 | } | |
287 | ||
288 | /* | |
289 | * Perform a free_page(), also freeing any swap cache associated with | |
b8072f09 | 290 | * this page if it is the last user of the page. |
1da177e4 LT |
291 | */ |
292 | void free_page_and_swap_cache(struct page *page) | |
293 | { | |
294 | free_swap_cache(page); | |
6fcb52a5 | 295 | if (!is_huge_zero_page(page)) |
770a5370 | 296 | put_page(page); |
1da177e4 LT |
297 | } |
298 | ||
299 | /* | |
300 | * Passed an array of pages, drop them all from swapcache and then release | |
301 | * them. They are removed from the LRU and freed if this is their last use. | |
302 | */ | |
303 | void free_pages_and_swap_cache(struct page **pages, int nr) | |
304 | { | |
1da177e4 | 305 | struct page **pagep = pages; |
aabfb572 | 306 | int i; |
1da177e4 LT |
307 | |
308 | lru_add_drain(); | |
aabfb572 MH |
309 | for (i = 0; i < nr; i++) |
310 | free_swap_cache(pagep[i]); | |
c6f92f9f | 311 | release_pages(pagep, nr); |
1da177e4 LT |
312 | } |
313 | ||
e9e9b7ec MK |
314 | static inline bool swap_use_vma_readahead(void) |
315 | { | |
316 | return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); | |
317 | } | |
318 | ||
1da177e4 LT |
319 | /* |
320 | * Lookup a swap entry in the swap cache. A found page will be returned | |
321 | * unlocked and with its refcount incremented - we rely on the kernel | |
322 | * lock getting page table operations atomic even if we drop the page | |
323 | * lock before returning. | |
324 | */ | |
ec560175 YH |
325 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, |
326 | unsigned long addr) | |
1da177e4 LT |
327 | { |
328 | struct page *page; | |
eb085574 | 329 | struct swap_info_struct *si; |
1da177e4 | 330 | |
eb085574 YH |
331 | si = get_swap_device(entry); |
332 | if (!si) | |
333 | return NULL; | |
f6ab1f7f | 334 | page = find_get_page(swap_address_space(entry), swp_offset(entry)); |
eb085574 | 335 | put_swap_device(si); |
1da177e4 | 336 | |
ec560175 | 337 | if (page) { |
eaf649eb MK |
338 | bool vma_ra = swap_use_vma_readahead(); |
339 | bool readahead; | |
340 | ||
eaf649eb MK |
341 | /* |
342 | * At the moment, we don't support PG_readahead for anon THP | |
343 | * so let's bail out rather than confusing the readahead stat. | |
344 | */ | |
ec560175 YH |
345 | if (unlikely(PageTransCompound(page))) |
346 | return page; | |
eaf649eb | 347 | |
ec560175 | 348 | readahead = TestClearPageReadahead(page); |
eaf649eb MK |
349 | if (vma && vma_ra) { |
350 | unsigned long ra_val; | |
351 | int win, hits; | |
352 | ||
353 | ra_val = GET_SWAP_RA_VAL(vma); | |
354 | win = SWAP_RA_WIN(ra_val); | |
355 | hits = SWAP_RA_HITS(ra_val); | |
ec560175 YH |
356 | if (readahead) |
357 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | |
358 | atomic_long_set(&vma->swap_readahead_info, | |
359 | SWAP_RA_VAL(addr, win, hits)); | |
360 | } | |
eaf649eb | 361 | |
ec560175 | 362 | if (readahead) { |
cbc65df2 | 363 | count_vm_event(SWAP_RA_HIT); |
eaf649eb | 364 | if (!vma || !vma_ra) |
ec560175 | 365 | atomic_inc(&swapin_readahead_hits); |
cbc65df2 | 366 | } |
579f8290 | 367 | } |
eaf649eb | 368 | |
1da177e4 LT |
369 | return page; |
370 | } | |
371 | ||
61ef1865 MWO |
372 | /** |
373 | * find_get_incore_page - Find and get a page from the page or swap caches. | |
374 | * @mapping: The address_space to search. | |
375 | * @index: The page cache index. | |
376 | * | |
377 | * This differs from find_get_page() in that it will also look for the | |
378 | * page in the swap cache. | |
379 | * | |
380 | * Return: The found page or %NULL. | |
381 | */ | |
382 | struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) | |
383 | { | |
384 | swp_entry_t swp; | |
385 | struct swap_info_struct *si; | |
44835d20 MWO |
386 | struct page *page = pagecache_get_page(mapping, index, |
387 | FGP_ENTRY | FGP_HEAD, 0); | |
61ef1865 | 388 | |
a6de4b48 | 389 | if (!page) |
61ef1865 | 390 | return page; |
a6de4b48 MWO |
391 | if (!xa_is_value(page)) |
392 | return find_subpage(page, index); | |
61ef1865 MWO |
393 | if (!shmem_mapping(mapping)) |
394 | return NULL; | |
395 | ||
396 | swp = radix_to_swp_entry(page); | |
ba6851b4 ML |
397 | /* There might be swapin error entries in shmem mapping. */ |
398 | if (non_swap_entry(swp)) | |
399 | return NULL; | |
61ef1865 MWO |
400 | /* Prevent swapoff from happening to us */ |
401 | si = get_swap_device(swp); | |
402 | if (!si) | |
403 | return NULL; | |
404 | page = find_get_page(swap_address_space(swp), swp_offset(swp)); | |
405 | put_swap_device(si); | |
406 | return page; | |
407 | } | |
408 | ||
5b999aad DS |
409 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
410 | struct vm_area_struct *vma, unsigned long addr, | |
411 | bool *new_page_allocated) | |
1da177e4 | 412 | { |
eb085574 | 413 | struct swap_info_struct *si; |
4c6355b2 | 414 | struct page *page; |
aae466b0 | 415 | void *shadow = NULL; |
4c6355b2 | 416 | |
5b999aad | 417 | *new_page_allocated = false; |
1da177e4 | 418 | |
4c6355b2 JW |
419 | for (;;) { |
420 | int err; | |
1da177e4 LT |
421 | /* |
422 | * First check the swap cache. Since this is normally | |
423 | * called after lookup_swap_cache() failed, re-calling | |
424 | * that would confuse statistics. | |
425 | */ | |
eb085574 YH |
426 | si = get_swap_device(entry); |
427 | if (!si) | |
4c6355b2 JW |
428 | return NULL; |
429 | page = find_get_page(swap_address_space(entry), | |
430 | swp_offset(entry)); | |
eb085574 | 431 | put_swap_device(si); |
4c6355b2 JW |
432 | if (page) |
433 | return page; | |
1da177e4 | 434 | |
ba81f838 YH |
435 | /* |
436 | * Just skip read ahead for unused swap slot. | |
437 | * During swap_off when swap_slot_cache is disabled, | |
438 | * we have to handle the race between putting | |
439 | * swap entry in swap cache and marking swap slot | |
440 | * as SWAP_HAS_CACHE. That's done in later part of code or | |
441 | * else swap_off will be aborted if we return NULL. | |
442 | */ | |
443 | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | |
4c6355b2 | 444 | return NULL; |
e8c26ab6 | 445 | |
1da177e4 | 446 | /* |
4c6355b2 JW |
447 | * Get a new page to read into from swap. Allocate it now, |
448 | * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will | |
449 | * cause any racers to loop around until we add it to cache. | |
1da177e4 | 450 | */ |
4c6355b2 JW |
451 | page = alloc_page_vma(gfp_mask, vma, addr); |
452 | if (!page) | |
453 | return NULL; | |
1da177e4 | 454 | |
f000944d HD |
455 | /* |
456 | * Swap entry may have been freed since our caller observed it. | |
457 | */ | |
355cfa73 | 458 | err = swapcache_prepare(entry); |
4c6355b2 | 459 | if (!err) |
f000944d HD |
460 | break; |
461 | ||
4c6355b2 JW |
462 | put_page(page); |
463 | if (err != -EEXIST) | |
464 | return NULL; | |
465 | ||
2ca4532a | 466 | /* |
4c6355b2 JW |
467 | * We might race against __delete_from_swap_cache(), and |
468 | * stumble across a swap_map entry whose SWAP_HAS_CACHE | |
469 | * has not yet been cleared. Or race against another | |
470 | * __read_swap_cache_async(), which has set SWAP_HAS_CACHE | |
471 | * in swap_map, but not yet added its page to swap cache. | |
2ca4532a | 472 | */ |
029c4628 | 473 | schedule_timeout_uninterruptible(1); |
4c6355b2 JW |
474 | } |
475 | ||
476 | /* | |
477 | * The swap entry is ours to swap in. Prepare the new page. | |
478 | */ | |
479 | ||
480 | __SetPageLocked(page); | |
481 | __SetPageSwapBacked(page); | |
482 | ||
0add0c77 | 483 | if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry)) |
4c6355b2 | 484 | goto fail_unlock; |
4c6355b2 | 485 | |
0add0c77 SB |
486 | /* May fail (-ENOMEM) if XArray node allocation failed. */ |
487 | if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) | |
4c6355b2 | 488 | goto fail_unlock; |
0add0c77 SB |
489 | |
490 | mem_cgroup_swapin_uncharge_swap(entry); | |
4c6355b2 | 491 | |
aae466b0 | 492 | if (shadow) |
0995d7e5 | 493 | workingset_refault(page_folio(page), shadow); |
314b57fb | 494 | |
4c6355b2 | 495 | /* Caller will initiate read into locked page */ |
6058eaec | 496 | lru_cache_add(page); |
4c6355b2 JW |
497 | *new_page_allocated = true; |
498 | return page; | |
1da177e4 | 499 | |
4c6355b2 | 500 | fail_unlock: |
0add0c77 | 501 | put_swap_page(page, entry); |
4c6355b2 JW |
502 | unlock_page(page); |
503 | put_page(page); | |
504 | return NULL; | |
1da177e4 | 505 | } |
46017e95 | 506 | |
5b999aad DS |
507 | /* |
508 | * Locate a page of swap in physical memory, reserving swap cache space | |
509 | * and reading the disk if it is not already cached. | |
510 | * A failure return means that either the page allocation failed or that | |
511 | * the swap entry is no longer in use. | |
512 | */ | |
513 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |
5169b844 N |
514 | struct vm_area_struct *vma, |
515 | unsigned long addr, bool do_poll, | |
516 | struct swap_iocb **plug) | |
5b999aad DS |
517 | { |
518 | bool page_was_allocated; | |
519 | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | |
520 | vma, addr, &page_was_allocated); | |
521 | ||
522 | if (page_was_allocated) | |
5169b844 | 523 | swap_readpage(retpage, do_poll, plug); |
5b999aad DS |
524 | |
525 | return retpage; | |
526 | } | |
527 | ||
ec560175 YH |
528 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, |
529 | unsigned long offset, | |
530 | int hits, | |
531 | int max_pages, | |
532 | int prev_win) | |
579f8290 | 533 | { |
ec560175 | 534 | unsigned int pages, last_ra; |
579f8290 SL |
535 | |
536 | /* | |
537 | * This heuristic has been found to work well on both sequential and | |
538 | * random loads, swapping to hard disk or to SSD: please don't ask | |
539 | * what the "+ 2" means, it just happens to work well, that's all. | |
540 | */ | |
ec560175 | 541 | pages = hits + 2; |
579f8290 SL |
542 | if (pages == 2) { |
543 | /* | |
544 | * We can have no readahead hits to judge by: but must not get | |
545 | * stuck here forever, so check for an adjacent offset instead | |
546 | * (and don't even bother to check whether swap type is same). | |
547 | */ | |
548 | if (offset != prev_offset + 1 && offset != prev_offset - 1) | |
549 | pages = 1; | |
579f8290 SL |
550 | } else { |
551 | unsigned int roundup = 4; | |
552 | while (roundup < pages) | |
553 | roundup <<= 1; | |
554 | pages = roundup; | |
555 | } | |
556 | ||
557 | if (pages > max_pages) | |
558 | pages = max_pages; | |
559 | ||
560 | /* Don't shrink readahead too fast */ | |
ec560175 | 561 | last_ra = prev_win / 2; |
579f8290 SL |
562 | if (pages < last_ra) |
563 | pages = last_ra; | |
ec560175 YH |
564 | |
565 | return pages; | |
566 | } | |
567 | ||
568 | static unsigned long swapin_nr_pages(unsigned long offset) | |
569 | { | |
570 | static unsigned long prev_offset; | |
571 | unsigned int hits, pages, max_pages; | |
572 | static atomic_t last_readahead_pages; | |
573 | ||
574 | max_pages = 1 << READ_ONCE(page_cluster); | |
575 | if (max_pages <= 1) | |
576 | return 1; | |
577 | ||
578 | hits = atomic_xchg(&swapin_readahead_hits, 0); | |
d6c1f098 QC |
579 | pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, |
580 | max_pages, | |
ec560175 YH |
581 | atomic_read(&last_readahead_pages)); |
582 | if (!hits) | |
d6c1f098 | 583 | WRITE_ONCE(prev_offset, offset); |
579f8290 SL |
584 | atomic_set(&last_readahead_pages, pages); |
585 | ||
586 | return pages; | |
587 | } | |
588 | ||
46017e95 | 589 | /** |
e9e9b7ec | 590 | * swap_cluster_readahead - swap in pages in hope we need them soon |
46017e95 | 591 | * @entry: swap entry of this memory |
7682486b | 592 | * @gfp_mask: memory allocation flags |
e9e9b7ec | 593 | * @vmf: fault information |
46017e95 HD |
594 | * |
595 | * Returns the struct page for entry and addr, after queueing swapin. | |
596 | * | |
597 | * Primitive swap readahead code. We simply read an aligned block of | |
598 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
599 | * because it doesn't cost us any seek time. We also make sure to queue | |
600 | * the 'original' request together with the readahead ones... | |
601 | * | |
602 | * This has been extended to use the NUMA policies from the mm triggering | |
603 | * the readahead. | |
604 | * | |
c1e8d7c6 | 605 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
46017e95 | 606 | */ |
e9e9b7ec MK |
607 | struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, |
608 | struct vm_fault *vmf) | |
46017e95 | 609 | { |
46017e95 | 610 | struct page *page; |
579f8290 SL |
611 | unsigned long entry_offset = swp_offset(entry); |
612 | unsigned long offset = entry_offset; | |
67f96aa2 | 613 | unsigned long start_offset, end_offset; |
579f8290 | 614 | unsigned long mask; |
e9a6effa | 615 | struct swap_info_struct *si = swp_swap_info(entry); |
3fb5c298 | 616 | struct blk_plug plug; |
5169b844 | 617 | struct swap_iocb *splug = NULL; |
c4fa6309 | 618 | bool do_poll = true, page_allocated; |
e9e9b7ec MK |
619 | struct vm_area_struct *vma = vmf->vma; |
620 | unsigned long addr = vmf->address; | |
46017e95 | 621 | |
579f8290 SL |
622 | mask = swapin_nr_pages(offset) - 1; |
623 | if (!mask) | |
624 | goto skip; | |
625 | ||
23955622 | 626 | do_poll = false; |
67f96aa2 RR |
627 | /* Read a page_cluster sized and aligned cluster around offset. */ |
628 | start_offset = offset & ~mask; | |
629 | end_offset = offset | mask; | |
630 | if (!start_offset) /* First page is swap header. */ | |
631 | start_offset++; | |
e9a6effa HY |
632 | if (end_offset >= si->max) |
633 | end_offset = si->max - 1; | |
67f96aa2 | 634 | |
3fb5c298 | 635 | blk_start_plug(&plug); |
67f96aa2 | 636 | for (offset = start_offset; offset <= end_offset ; offset++) { |
46017e95 | 637 | /* Ok, do the async read-ahead now */ |
c4fa6309 YH |
638 | page = __read_swap_cache_async( |
639 | swp_entry(swp_type(entry), offset), | |
640 | gfp_mask, vma, addr, &page_allocated); | |
46017e95 | 641 | if (!page) |
67f96aa2 | 642 | continue; |
c4fa6309 | 643 | if (page_allocated) { |
5169b844 | 644 | swap_readpage(page, false, &splug); |
eaf649eb | 645 | if (offset != entry_offset) { |
c4fa6309 YH |
646 | SetPageReadahead(page); |
647 | count_vm_event(SWAP_RA); | |
648 | } | |
cbc65df2 | 649 | } |
09cbfeaf | 650 | put_page(page); |
46017e95 | 651 | } |
3fb5c298 | 652 | blk_finish_plug(&plug); |
5169b844 | 653 | swap_read_unplug(splug); |
3fb5c298 | 654 | |
46017e95 | 655 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
579f8290 | 656 | skip: |
5169b844 N |
657 | /* The page was likely read above, so no need for plugging here */ |
658 | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); | |
46017e95 | 659 | } |
4b3ef9da YH |
660 | |
661 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | |
662 | { | |
663 | struct address_space *spaces, *space; | |
664 | unsigned int i, nr; | |
665 | ||
666 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | |
778e1cdd | 667 | spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); |
4b3ef9da YH |
668 | if (!spaces) |
669 | return -ENOMEM; | |
670 | for (i = 0; i < nr; i++) { | |
671 | space = spaces + i; | |
a2833486 | 672 | xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); |
4b3ef9da YH |
673 | atomic_set(&space->i_mmap_writable, 0); |
674 | space->a_ops = &swap_aops; | |
675 | /* swap cache doesn't use writeback related tags */ | |
676 | mapping_set_no_writeback_tags(space); | |
4b3ef9da YH |
677 | } |
678 | nr_swapper_spaces[type] = nr; | |
054f1d1f | 679 | swapper_spaces[type] = spaces; |
4b3ef9da YH |
680 | |
681 | return 0; | |
682 | } | |
683 | ||
684 | void exit_swap_address_space(unsigned int type) | |
685 | { | |
eea4a501 YH |
686 | int i; |
687 | struct address_space *spaces = swapper_spaces[type]; | |
688 | ||
689 | for (i = 0; i < nr_swapper_spaces[type]; i++) | |
690 | VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); | |
691 | kvfree(spaces); | |
4b3ef9da | 692 | nr_swapper_spaces[type] = 0; |
054f1d1f | 693 | swapper_spaces[type] = NULL; |
4b3ef9da | 694 | } |
ec560175 YH |
695 | |
696 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | |
697 | unsigned long faddr, | |
698 | unsigned long lpfn, | |
699 | unsigned long rpfn, | |
700 | unsigned long *start, | |
701 | unsigned long *end) | |
702 | { | |
703 | *start = max3(lpfn, PFN_DOWN(vma->vm_start), | |
704 | PFN_DOWN(faddr & PMD_MASK)); | |
705 | *end = min3(rpfn, PFN_DOWN(vma->vm_end), | |
706 | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | |
707 | } | |
708 | ||
eaf649eb MK |
709 | static void swap_ra_info(struct vm_fault *vmf, |
710 | struct vma_swap_readahead *ra_info) | |
ec560175 YH |
711 | { |
712 | struct vm_area_struct *vma = vmf->vma; | |
eaf649eb | 713 | unsigned long ra_val; |
ec560175 YH |
714 | unsigned long faddr, pfn, fpfn; |
715 | unsigned long start, end; | |
eaf649eb | 716 | pte_t *pte, *orig_pte; |
ec560175 YH |
717 | unsigned int max_win, hits, prev_win, win, left; |
718 | #ifndef CONFIG_64BIT | |
719 | pte_t *tpte; | |
720 | #endif | |
721 | ||
61b63972 YH |
722 | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), |
723 | SWAP_RA_ORDER_CEILING); | |
724 | if (max_win == 1) { | |
eaf649eb MK |
725 | ra_info->win = 1; |
726 | return; | |
61b63972 YH |
727 | } |
728 | ||
ec560175 | 729 | faddr = vmf->address; |
eaf649eb | 730 | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); |
ec560175 | 731 | |
ec560175 | 732 | fpfn = PFN_DOWN(faddr); |
eaf649eb MK |
733 | ra_val = GET_SWAP_RA_VAL(vma); |
734 | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | |
735 | prev_win = SWAP_RA_WIN(ra_val); | |
736 | hits = SWAP_RA_HITS(ra_val); | |
737 | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | |
ec560175 YH |
738 | max_win, prev_win); |
739 | atomic_long_set(&vma->swap_readahead_info, | |
740 | SWAP_RA_VAL(faddr, win, 0)); | |
741 | ||
eaf649eb MK |
742 | if (win == 1) { |
743 | pte_unmap(orig_pte); | |
744 | return; | |
745 | } | |
ec560175 YH |
746 | |
747 | /* Copy the PTEs because the page table may be unmapped */ | |
748 | if (fpfn == pfn + 1) | |
749 | swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | |
750 | else if (pfn == fpfn + 1) | |
751 | swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | |
752 | &start, &end); | |
753 | else { | |
754 | left = (win - 1) / 2; | |
755 | swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | |
756 | &start, &end); | |
757 | } | |
eaf649eb MK |
758 | ra_info->nr_pte = end - start; |
759 | ra_info->offset = fpfn - start; | |
760 | pte -= ra_info->offset; | |
ec560175 | 761 | #ifdef CONFIG_64BIT |
eaf649eb | 762 | ra_info->ptes = pte; |
ec560175 | 763 | #else |
eaf649eb | 764 | tpte = ra_info->ptes; |
ec560175 YH |
765 | for (pfn = start; pfn != end; pfn++) |
766 | *tpte++ = *pte++; | |
767 | #endif | |
eaf649eb | 768 | pte_unmap(orig_pte); |
ec560175 YH |
769 | } |
770 | ||
e9f59873 YS |
771 | /** |
772 | * swap_vma_readahead - swap in pages in hope we need them soon | |
27ec4878 | 773 | * @fentry: swap entry of this memory |
e9f59873 YS |
774 | * @gfp_mask: memory allocation flags |
775 | * @vmf: fault information | |
776 | * | |
777 | * Returns the struct page for entry and addr, after queueing swapin. | |
778 | * | |
cb152a1a | 779 | * Primitive swap readahead code. We simply read in a few pages whose |
e9f59873 YS |
780 | * virtual addresses are around the fault address in the same vma. |
781 | * | |
c1e8d7c6 | 782 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
e9f59873 YS |
783 | * |
784 | */ | |
f5c754d6 CIK |
785 | static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, |
786 | struct vm_fault *vmf) | |
ec560175 YH |
787 | { |
788 | struct blk_plug plug; | |
5169b844 | 789 | struct swap_iocb *splug = NULL; |
ec560175 YH |
790 | struct vm_area_struct *vma = vmf->vma; |
791 | struct page *page; | |
792 | pte_t *pte, pentry; | |
793 | swp_entry_t entry; | |
794 | unsigned int i; | |
795 | bool page_allocated; | |
e97af699 ML |
796 | struct vma_swap_readahead ra_info = { |
797 | .win = 1, | |
798 | }; | |
ec560175 | 799 | |
eaf649eb MK |
800 | swap_ra_info(vmf, &ra_info); |
801 | if (ra_info.win == 1) | |
ec560175 YH |
802 | goto skip; |
803 | ||
804 | blk_start_plug(&plug); | |
eaf649eb | 805 | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; |
ec560175 YH |
806 | i++, pte++) { |
807 | pentry = *pte; | |
92bafb20 | 808 | if (!is_swap_pte(pentry)) |
ec560175 YH |
809 | continue; |
810 | entry = pte_to_swp_entry(pentry); | |
811 | if (unlikely(non_swap_entry(entry))) | |
812 | continue; | |
813 | page = __read_swap_cache_async(entry, gfp_mask, vma, | |
814 | vmf->address, &page_allocated); | |
815 | if (!page) | |
816 | continue; | |
817 | if (page_allocated) { | |
5169b844 | 818 | swap_readpage(page, false, &splug); |
eaf649eb | 819 | if (i != ra_info.offset) { |
ec560175 YH |
820 | SetPageReadahead(page); |
821 | count_vm_event(SWAP_RA); | |
822 | } | |
823 | } | |
824 | put_page(page); | |
825 | } | |
826 | blk_finish_plug(&plug); | |
5169b844 | 827 | swap_read_unplug(splug); |
ec560175 YH |
828 | lru_add_drain(); |
829 | skip: | |
5169b844 | 830 | /* The page was likely read above, so no need for plugging here */ |
ec560175 | 831 | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, |
5169b844 | 832 | ra_info.win == 1, NULL); |
ec560175 | 833 | } |
d9bfcfdc | 834 | |
e9e9b7ec MK |
835 | /** |
836 | * swapin_readahead - swap in pages in hope we need them soon | |
837 | * @entry: swap entry of this memory | |
838 | * @gfp_mask: memory allocation flags | |
839 | * @vmf: fault information | |
840 | * | |
841 | * Returns the struct page for entry and addr, after queueing swapin. | |
842 | * | |
843 | * It's a main entry function for swap readahead. By the configuration, | |
844 | * it will read ahead blocks by cluster-based(ie, physical disk based) | |
845 | * or vma-based(ie, virtual address based on faulty address) readahead. | |
846 | */ | |
847 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | |
848 | struct vm_fault *vmf) | |
849 | { | |
850 | return swap_use_vma_readahead() ? | |
851 | swap_vma_readahead(entry, gfp_mask, vmf) : | |
852 | swap_cluster_readahead(entry, gfp_mask, vmf); | |
853 | } | |
854 | ||
d9bfcfdc YH |
855 | #ifdef CONFIG_SYSFS |
856 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | |
857 | struct kobj_attribute *attr, char *buf) | |
858 | { | |
ae7a927d JP |
859 | return sysfs_emit(buf, "%s\n", |
860 | enable_vma_readahead ? "true" : "false"); | |
d9bfcfdc YH |
861 | } |
862 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | |
863 | struct kobj_attribute *attr, | |
864 | const char *buf, size_t count) | |
865 | { | |
717aeab4 JG |
866 | ssize_t ret; |
867 | ||
868 | ret = kstrtobool(buf, &enable_vma_readahead); | |
869 | if (ret) | |
870 | return ret; | |
d9bfcfdc YH |
871 | |
872 | return count; | |
873 | } | |
6106b93e | 874 | static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); |
d9bfcfdc | 875 | |
d9bfcfdc YH |
876 | static struct attribute *swap_attrs[] = { |
877 | &vma_ra_enabled_attr.attr, | |
d9bfcfdc YH |
878 | NULL, |
879 | }; | |
880 | ||
e48333b6 | 881 | static const struct attribute_group swap_attr_group = { |
d9bfcfdc YH |
882 | .attrs = swap_attrs, |
883 | }; | |
884 | ||
885 | static int __init swap_init_sysfs(void) | |
886 | { | |
887 | int err; | |
888 | struct kobject *swap_kobj; | |
889 | ||
890 | swap_kobj = kobject_create_and_add("swap", mm_kobj); | |
891 | if (!swap_kobj) { | |
892 | pr_err("failed to create swap kobject\n"); | |
893 | return -ENOMEM; | |
894 | } | |
895 | err = sysfs_create_group(swap_kobj, &swap_attr_group); | |
896 | if (err) { | |
897 | pr_err("failed to register swap group\n"); | |
898 | goto delete_obj; | |
899 | } | |
900 | return 0; | |
901 | ||
902 | delete_obj: | |
903 | kobject_put(swap_kobj); | |
904 | return err; | |
905 | } | |
906 | subsys_initcall(swap_init_sysfs); | |
907 | #endif |