]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU General Public License | |
6 | * as published by the Free Software Foundation; either version | |
7 | * 2 of the License, or (at your option) any later version. | |
8 | * | |
9 | * Authors: Alexey Kuznetsov, <[email protected]> | |
10 | */ | |
11 | ||
1da177e4 LT |
12 | #include <linux/module.h> |
13 | #include <asm/uaccess.h> | |
14 | #include <asm/system.h> | |
15 | #include <linux/bitops.h> | |
16 | #include <linux/types.h> | |
17 | #include <linux/kernel.h> | |
18 | #include <linux/jiffies.h> | |
19 | #include <linux/string.h> | |
20 | #include <linux/mm.h> | |
21 | #include <linux/socket.h> | |
22 | #include <linux/sockios.h> | |
23 | #include <linux/in.h> | |
24 | #include <linux/errno.h> | |
25 | #include <linux/interrupt.h> | |
26 | #include <linux/if_ether.h> | |
27 | #include <linux/inet.h> | |
28 | #include <linux/netdevice.h> | |
29 | #include <linux/etherdevice.h> | |
30 | #include <linux/notifier.h> | |
31 | #include <linux/init.h> | |
32 | #include <net/ip.h> | |
33 | #include <linux/ipv6.h> | |
34 | #include <net/route.h> | |
35 | #include <linux/skbuff.h> | |
36 | #include <net/sock.h> | |
37 | #include <net/pkt_sched.h> | |
38 | ||
39 | ||
40 | /* Stochastic Fairness Queuing algorithm. | |
41 | ======================================= | |
42 | ||
43 | Source: | |
44 | Paul E. McKenney "Stochastic Fairness Queuing", | |
45 | IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. | |
46 | ||
47 | Paul E. McKenney "Stochastic Fairness Queuing", | |
48 | "Interworking: Research and Experience", v.2, 1991, p.113-131. | |
49 | ||
50 | ||
51 | See also: | |
52 | M. Shreedhar and George Varghese "Efficient Fair | |
53 | Queuing using Deficit Round Robin", Proc. SIGCOMM 95. | |
54 | ||
55 | ||
56 | This is not the thing that is usually called (W)FQ nowadays. | |
57 | It does not use any timestamp mechanism, but instead | |
58 | processes queues in round-robin order. | |
59 | ||
60 | ADVANTAGE: | |
61 | ||
62 | - It is very cheap. Both CPU and memory requirements are minimal. | |
63 | ||
64 | DRAWBACKS: | |
65 | ||
66 | - "Stochastic" -> It is not 100% fair. | |
67 | When hash collisions occur, several flows are considered as one. | |
68 | ||
69 | - "Round-robin" -> It introduces larger delays than virtual clock | |
70 | based schemes, and should not be used for isolating interactive | |
71 | traffic from non-interactive. It means, that this scheduler | |
72 | should be used as leaf of CBQ or P3, which put interactive traffic | |
73 | to higher priority band. | |
74 | ||
75 | We still need true WFQ for top level CSZ, but using WFQ | |
76 | for the best effort traffic is absolutely pointless: | |
77 | SFQ is superior for this purpose. | |
78 | ||
79 | IMPLEMENTATION: | |
80 | This implementation limits maximal queue length to 128; | |
81 | maximal mtu to 2^15-1; number of hash buckets to 1024. | |
82 | The only goal of this restrictions was that all data | |
83 | fit into one 4K page :-). Struct sfq_sched_data is | |
84 | organized in anti-cache manner: all the data for a bucket | |
85 | are scattered over different locations. This is not good, | |
86 | but it allowed me to put it into 4K. | |
87 | ||
88 | It is easy to increase these values, but not in flight. */ | |
89 | ||
90 | #define SFQ_DEPTH 128 | |
91 | #define SFQ_HASH_DIVISOR 1024 | |
92 | ||
93 | /* This type should contain at least SFQ_DEPTH*2 values */ | |
94 | typedef unsigned char sfq_index; | |
95 | ||
96 | struct sfq_head | |
97 | { | |
98 | sfq_index next; | |
99 | sfq_index prev; | |
100 | }; | |
101 | ||
102 | struct sfq_sched_data | |
103 | { | |
104 | /* Parameters */ | |
105 | int perturb_period; | |
106 | unsigned quantum; /* Allotment per round: MUST BE >= MTU */ | |
107 | int limit; | |
108 | ||
109 | /* Variables */ | |
110 | struct timer_list perturb_timer; | |
111 | int perturbation; | |
112 | sfq_index tail; /* Index of current slot in round */ | |
113 | sfq_index max_depth; /* Maximal depth */ | |
114 | ||
115 | sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */ | |
116 | sfq_index next[SFQ_DEPTH]; /* Active slots link */ | |
117 | short allot[SFQ_DEPTH]; /* Current allotment per slot */ | |
118 | unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */ | |
119 | struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */ | |
120 | struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */ | |
121 | }; | |
122 | ||
123 | static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1) | |
124 | { | |
125 | int pert = q->perturbation; | |
126 | ||
127 | /* Have we any rotation primitives? If not, WHY? */ | |
128 | h ^= (h1<<pert) ^ (h1>>(0x1F - pert)); | |
129 | h ^= h>>10; | |
130 | return h & 0x3FF; | |
131 | } | |
132 | ||
133 | static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb) | |
134 | { | |
135 | u32 h, h2; | |
136 | ||
137 | switch (skb->protocol) { | |
138 | case __constant_htons(ETH_P_IP): | |
139 | { | |
140 | struct iphdr *iph = skb->nh.iph; | |
141 | h = iph->daddr; | |
142 | h2 = iph->saddr^iph->protocol; | |
143 | if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) && | |
144 | (iph->protocol == IPPROTO_TCP || | |
145 | iph->protocol == IPPROTO_UDP || | |
ae82af54 PM |
146 | iph->protocol == IPPROTO_SCTP || |
147 | iph->protocol == IPPROTO_DCCP || | |
1da177e4 LT |
148 | iph->protocol == IPPROTO_ESP)) |
149 | h2 ^= *(((u32*)iph) + iph->ihl); | |
150 | break; | |
151 | } | |
152 | case __constant_htons(ETH_P_IPV6): | |
153 | { | |
154 | struct ipv6hdr *iph = skb->nh.ipv6h; | |
155 | h = iph->daddr.s6_addr32[3]; | |
156 | h2 = iph->saddr.s6_addr32[3]^iph->nexthdr; | |
157 | if (iph->nexthdr == IPPROTO_TCP || | |
158 | iph->nexthdr == IPPROTO_UDP || | |
ae82af54 PM |
159 | iph->nexthdr == IPPROTO_SCTP || |
160 | iph->nexthdr == IPPROTO_DCCP || | |
1da177e4 LT |
161 | iph->nexthdr == IPPROTO_ESP) |
162 | h2 ^= *(u32*)&iph[1]; | |
163 | break; | |
164 | } | |
165 | default: | |
166 | h = (u32)(unsigned long)skb->dst^skb->protocol; | |
167 | h2 = (u32)(unsigned long)skb->sk; | |
168 | } | |
169 | return sfq_fold_hash(q, h, h2); | |
170 | } | |
171 | ||
172 | static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) | |
173 | { | |
174 | sfq_index p, n; | |
175 | int d = q->qs[x].qlen + SFQ_DEPTH; | |
176 | ||
177 | p = d; | |
178 | n = q->dep[d].next; | |
179 | q->dep[x].next = n; | |
180 | q->dep[x].prev = p; | |
181 | q->dep[p].next = q->dep[n].prev = x; | |
182 | } | |
183 | ||
184 | static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) | |
185 | { | |
186 | sfq_index p, n; | |
187 | ||
188 | n = q->dep[x].next; | |
189 | p = q->dep[x].prev; | |
190 | q->dep[p].next = n; | |
191 | q->dep[n].prev = p; | |
192 | ||
193 | if (n == p && q->max_depth == q->qs[x].qlen + 1) | |
194 | q->max_depth--; | |
195 | ||
196 | sfq_link(q, x); | |
197 | } | |
198 | ||
199 | static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) | |
200 | { | |
201 | sfq_index p, n; | |
202 | int d; | |
203 | ||
204 | n = q->dep[x].next; | |
205 | p = q->dep[x].prev; | |
206 | q->dep[p].next = n; | |
207 | q->dep[n].prev = p; | |
208 | d = q->qs[x].qlen; | |
209 | if (q->max_depth < d) | |
210 | q->max_depth = d; | |
211 | ||
212 | sfq_link(q, x); | |
213 | } | |
214 | ||
215 | static unsigned int sfq_drop(struct Qdisc *sch) | |
216 | { | |
217 | struct sfq_sched_data *q = qdisc_priv(sch); | |
218 | sfq_index d = q->max_depth; | |
219 | struct sk_buff *skb; | |
220 | unsigned int len; | |
221 | ||
222 | /* Queue is full! Find the longest slot and | |
223 | drop a packet from it */ | |
224 | ||
225 | if (d > 1) { | |
226 | sfq_index x = q->dep[d+SFQ_DEPTH].next; | |
227 | skb = q->qs[x].prev; | |
228 | len = skb->len; | |
229 | __skb_unlink(skb, &q->qs[x]); | |
230 | kfree_skb(skb); | |
231 | sfq_dec(q, x); | |
232 | sch->q.qlen--; | |
233 | sch->qstats.drops++; | |
f5539eb8 | 234 | sch->qstats.backlog -= len; |
1da177e4 LT |
235 | return len; |
236 | } | |
237 | ||
238 | if (d == 1) { | |
239 | /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ | |
240 | d = q->next[q->tail]; | |
241 | q->next[q->tail] = q->next[d]; | |
242 | q->allot[q->next[d]] += q->quantum; | |
243 | skb = q->qs[d].prev; | |
244 | len = skb->len; | |
245 | __skb_unlink(skb, &q->qs[d]); | |
246 | kfree_skb(skb); | |
247 | sfq_dec(q, d); | |
248 | sch->q.qlen--; | |
249 | q->ht[q->hash[d]] = SFQ_DEPTH; | |
250 | sch->qstats.drops++; | |
f5539eb8 | 251 | sch->qstats.backlog -= len; |
1da177e4 LT |
252 | return len; |
253 | } | |
254 | ||
255 | return 0; | |
256 | } | |
257 | ||
258 | static int | |
259 | sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch) | |
260 | { | |
261 | struct sfq_sched_data *q = qdisc_priv(sch); | |
262 | unsigned hash = sfq_hash(q, skb); | |
263 | sfq_index x; | |
264 | ||
265 | x = q->ht[hash]; | |
266 | if (x == SFQ_DEPTH) { | |
267 | q->ht[hash] = x = q->dep[SFQ_DEPTH].next; | |
268 | q->hash[x] = hash; | |
269 | } | |
f5539eb8 | 270 | sch->qstats.backlog += skb->len; |
1da177e4 LT |
271 | __skb_queue_tail(&q->qs[x], skb); |
272 | sfq_inc(q, x); | |
273 | if (q->qs[x].qlen == 1) { /* The flow is new */ | |
274 | if (q->tail == SFQ_DEPTH) { /* It is the first flow */ | |
275 | q->tail = x; | |
276 | q->next[x] = x; | |
277 | q->allot[x] = q->quantum; | |
278 | } else { | |
279 | q->next[x] = q->next[q->tail]; | |
280 | q->next[q->tail] = x; | |
281 | q->tail = x; | |
282 | } | |
283 | } | |
284 | if (++sch->q.qlen < q->limit-1) { | |
285 | sch->bstats.bytes += skb->len; | |
286 | sch->bstats.packets++; | |
287 | return 0; | |
288 | } | |
289 | ||
290 | sfq_drop(sch); | |
291 | return NET_XMIT_CN; | |
292 | } | |
293 | ||
294 | static int | |
295 | sfq_requeue(struct sk_buff *skb, struct Qdisc* sch) | |
296 | { | |
297 | struct sfq_sched_data *q = qdisc_priv(sch); | |
298 | unsigned hash = sfq_hash(q, skb); | |
299 | sfq_index x; | |
300 | ||
301 | x = q->ht[hash]; | |
302 | if (x == SFQ_DEPTH) { | |
303 | q->ht[hash] = x = q->dep[SFQ_DEPTH].next; | |
304 | q->hash[x] = hash; | |
305 | } | |
f5539eb8 | 306 | sch->qstats.backlog += skb->len; |
1da177e4 LT |
307 | __skb_queue_head(&q->qs[x], skb); |
308 | sfq_inc(q, x); | |
309 | if (q->qs[x].qlen == 1) { /* The flow is new */ | |
310 | if (q->tail == SFQ_DEPTH) { /* It is the first flow */ | |
311 | q->tail = x; | |
312 | q->next[x] = x; | |
313 | q->allot[x] = q->quantum; | |
314 | } else { | |
315 | q->next[x] = q->next[q->tail]; | |
316 | q->next[q->tail] = x; | |
317 | q->tail = x; | |
318 | } | |
319 | } | |
320 | if (++sch->q.qlen < q->limit - 1) { | |
321 | sch->qstats.requeues++; | |
322 | return 0; | |
323 | } | |
324 | ||
325 | sch->qstats.drops++; | |
326 | sfq_drop(sch); | |
327 | return NET_XMIT_CN; | |
328 | } | |
329 | ||
330 | ||
331 | ||
332 | ||
333 | static struct sk_buff * | |
334 | sfq_dequeue(struct Qdisc* sch) | |
335 | { | |
336 | struct sfq_sched_data *q = qdisc_priv(sch); | |
337 | struct sk_buff *skb; | |
338 | sfq_index a, old_a; | |
339 | ||
340 | /* No active slots */ | |
341 | if (q->tail == SFQ_DEPTH) | |
342 | return NULL; | |
343 | ||
344 | a = old_a = q->next[q->tail]; | |
345 | ||
346 | /* Grab packet */ | |
347 | skb = __skb_dequeue(&q->qs[a]); | |
348 | sfq_dec(q, a); | |
349 | sch->q.qlen--; | |
f5539eb8 | 350 | sch->qstats.backlog -= skb->len; |
1da177e4 LT |
351 | |
352 | /* Is the slot empty? */ | |
353 | if (q->qs[a].qlen == 0) { | |
354 | q->ht[q->hash[a]] = SFQ_DEPTH; | |
355 | a = q->next[a]; | |
356 | if (a == old_a) { | |
357 | q->tail = SFQ_DEPTH; | |
358 | return skb; | |
359 | } | |
360 | q->next[q->tail] = a; | |
361 | q->allot[a] += q->quantum; | |
362 | } else if ((q->allot[a] -= skb->len) <= 0) { | |
363 | q->tail = a; | |
364 | a = q->next[a]; | |
365 | q->allot[a] += q->quantum; | |
366 | } | |
367 | return skb; | |
368 | } | |
369 | ||
370 | static void | |
371 | sfq_reset(struct Qdisc* sch) | |
372 | { | |
373 | struct sk_buff *skb; | |
374 | ||
375 | while ((skb = sfq_dequeue(sch)) != NULL) | |
376 | kfree_skb(skb); | |
377 | } | |
378 | ||
379 | static void sfq_perturbation(unsigned long arg) | |
380 | { | |
381 | struct Qdisc *sch = (struct Qdisc*)arg; | |
382 | struct sfq_sched_data *q = qdisc_priv(sch); | |
383 | ||
384 | q->perturbation = net_random()&0x1F; | |
385 | ||
386 | if (q->perturb_period) { | |
387 | q->perturb_timer.expires = jiffies + q->perturb_period; | |
388 | add_timer(&q->perturb_timer); | |
389 | } | |
390 | } | |
391 | ||
392 | static int sfq_change(struct Qdisc *sch, struct rtattr *opt) | |
393 | { | |
394 | struct sfq_sched_data *q = qdisc_priv(sch); | |
395 | struct tc_sfq_qopt *ctl = RTA_DATA(opt); | |
396 | ||
397 | if (opt->rta_len < RTA_LENGTH(sizeof(*ctl))) | |
398 | return -EINVAL; | |
399 | ||
400 | sch_tree_lock(sch); | |
401 | q->quantum = ctl->quantum ? : psched_mtu(sch->dev); | |
402 | q->perturb_period = ctl->perturb_period*HZ; | |
403 | if (ctl->limit) | |
404 | q->limit = min_t(u32, ctl->limit, SFQ_DEPTH); | |
405 | ||
406 | while (sch->q.qlen >= q->limit-1) | |
407 | sfq_drop(sch); | |
408 | ||
409 | del_timer(&q->perturb_timer); | |
410 | if (q->perturb_period) { | |
411 | q->perturb_timer.expires = jiffies + q->perturb_period; | |
412 | add_timer(&q->perturb_timer); | |
413 | } | |
414 | sch_tree_unlock(sch); | |
415 | return 0; | |
416 | } | |
417 | ||
418 | static int sfq_init(struct Qdisc *sch, struct rtattr *opt) | |
419 | { | |
420 | struct sfq_sched_data *q = qdisc_priv(sch); | |
421 | int i; | |
422 | ||
423 | init_timer(&q->perturb_timer); | |
424 | q->perturb_timer.data = (unsigned long)sch; | |
425 | q->perturb_timer.function = sfq_perturbation; | |
426 | ||
427 | for (i=0; i<SFQ_HASH_DIVISOR; i++) | |
428 | q->ht[i] = SFQ_DEPTH; | |
429 | for (i=0; i<SFQ_DEPTH; i++) { | |
430 | skb_queue_head_init(&q->qs[i]); | |
431 | q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH; | |
432 | q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH; | |
433 | } | |
434 | q->limit = SFQ_DEPTH; | |
435 | q->max_depth = 0; | |
436 | q->tail = SFQ_DEPTH; | |
437 | if (opt == NULL) { | |
438 | q->quantum = psched_mtu(sch->dev); | |
439 | q->perturb_period = 0; | |
440 | } else { | |
441 | int err = sfq_change(sch, opt); | |
442 | if (err) | |
443 | return err; | |
444 | } | |
445 | for (i=0; i<SFQ_DEPTH; i++) | |
446 | sfq_link(q, i); | |
447 | return 0; | |
448 | } | |
449 | ||
450 | static void sfq_destroy(struct Qdisc *sch) | |
451 | { | |
452 | struct sfq_sched_data *q = qdisc_priv(sch); | |
453 | del_timer(&q->perturb_timer); | |
454 | } | |
455 | ||
456 | static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) | |
457 | { | |
458 | struct sfq_sched_data *q = qdisc_priv(sch); | |
459 | unsigned char *b = skb->tail; | |
460 | struct tc_sfq_qopt opt; | |
461 | ||
462 | opt.quantum = q->quantum; | |
463 | opt.perturb_period = q->perturb_period/HZ; | |
464 | ||
465 | opt.limit = q->limit; | |
466 | opt.divisor = SFQ_HASH_DIVISOR; | |
467 | opt.flows = q->limit; | |
468 | ||
469 | RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt); | |
470 | ||
471 | return skb->len; | |
472 | ||
473 | rtattr_failure: | |
474 | skb_trim(skb, b - skb->data); | |
475 | return -1; | |
476 | } | |
477 | ||
478 | static struct Qdisc_ops sfq_qdisc_ops = { | |
479 | .next = NULL, | |
480 | .cl_ops = NULL, | |
481 | .id = "sfq", | |
482 | .priv_size = sizeof(struct sfq_sched_data), | |
483 | .enqueue = sfq_enqueue, | |
484 | .dequeue = sfq_dequeue, | |
485 | .requeue = sfq_requeue, | |
486 | .drop = sfq_drop, | |
487 | .init = sfq_init, | |
488 | .reset = sfq_reset, | |
489 | .destroy = sfq_destroy, | |
490 | .change = NULL, | |
491 | .dump = sfq_dump, | |
492 | .owner = THIS_MODULE, | |
493 | }; | |
494 | ||
495 | static int __init sfq_module_init(void) | |
496 | { | |
497 | return register_qdisc(&sfq_qdisc_ops); | |
498 | } | |
499 | static void __exit sfq_module_exit(void) | |
500 | { | |
501 | unregister_qdisc(&sfq_qdisc_ops); | |
502 | } | |
503 | module_init(sfq_module_init) | |
504 | module_exit(sfq_module_exit) | |
505 | MODULE_LICENSE("GPL"); |