]>
Commit | Line | Data |
---|---|---|
a2de733c AJ |
1 | /* |
2 | * Copyright (C) 2011 STRATO. All rights reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU General Public | |
6 | * License v2 as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
11 | * General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public | |
14 | * License along with this program; if not, write to the | |
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
16 | * Boston, MA 021110-1307, USA. | |
17 | */ | |
18 | ||
a2de733c | 19 | #include <linux/blkdev.h> |
558540c1 | 20 | #include <linux/ratelimit.h> |
a2de733c AJ |
21 | #include "ctree.h" |
22 | #include "volumes.h" | |
23 | #include "disk-io.h" | |
24 | #include "ordered-data.h" | |
0ef8e451 | 25 | #include "transaction.h" |
558540c1 | 26 | #include "backref.h" |
5da6fcbc | 27 | #include "extent_io.h" |
21adbd5c | 28 | #include "check-integrity.h" |
a2de733c AJ |
29 | |
30 | /* | |
31 | * This is only the first step towards a full-features scrub. It reads all | |
32 | * extent and super block and verifies the checksums. In case a bad checksum | |
33 | * is found or the extent cannot be read, good data will be written back if | |
34 | * any can be found. | |
35 | * | |
36 | * Future enhancements: | |
a2de733c AJ |
37 | * - In case an unrepairable extent is encountered, track which files are |
38 | * affected and report them | |
a2de733c | 39 | * - track and record media errors, throw out bad devices |
a2de733c | 40 | * - add a mode to also read unallocated space |
a2de733c AJ |
41 | */ |
42 | ||
b5d67f64 | 43 | struct scrub_block; |
a2de733c | 44 | struct scrub_dev; |
a2de733c AJ |
45 | |
46 | #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */ | |
47 | #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */ | |
b5d67f64 | 48 | #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ |
a2de733c AJ |
49 | |
50 | struct scrub_page { | |
b5d67f64 SB |
51 | struct scrub_block *sblock; |
52 | struct page *page; | |
53 | struct block_device *bdev; | |
a2de733c AJ |
54 | u64 flags; /* extent flags */ |
55 | u64 generation; | |
b5d67f64 SB |
56 | u64 logical; |
57 | u64 physical; | |
58 | struct { | |
59 | unsigned int mirror_num:8; | |
60 | unsigned int have_csum:1; | |
61 | unsigned int io_error:1; | |
62 | }; | |
a2de733c AJ |
63 | u8 csum[BTRFS_CSUM_SIZE]; |
64 | }; | |
65 | ||
66 | struct scrub_bio { | |
67 | int index; | |
68 | struct scrub_dev *sdev; | |
69 | struct bio *bio; | |
70 | int err; | |
71 | u64 logical; | |
72 | u64 physical; | |
b5d67f64 SB |
73 | struct scrub_page *pagev[SCRUB_PAGES_PER_BIO]; |
74 | int page_count; | |
a2de733c AJ |
75 | int next_free; |
76 | struct btrfs_work work; | |
77 | }; | |
78 | ||
b5d67f64 SB |
79 | struct scrub_block { |
80 | struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK]; | |
81 | int page_count; | |
82 | atomic_t outstanding_pages; | |
83 | atomic_t ref_count; /* free mem on transition to zero */ | |
84 | struct scrub_dev *sdev; | |
85 | struct { | |
86 | unsigned int header_error:1; | |
87 | unsigned int checksum_error:1; | |
88 | unsigned int no_io_error_seen:1; | |
89 | }; | |
90 | }; | |
91 | ||
a2de733c AJ |
92 | struct scrub_dev { |
93 | struct scrub_bio *bios[SCRUB_BIOS_PER_DEV]; | |
94 | struct btrfs_device *dev; | |
95 | int first_free; | |
96 | int curr; | |
97 | atomic_t in_flight; | |
0ef8e451 | 98 | atomic_t fixup_cnt; |
a2de733c AJ |
99 | spinlock_t list_lock; |
100 | wait_queue_head_t list_wait; | |
101 | u16 csum_size; | |
102 | struct list_head csum_list; | |
103 | atomic_t cancel_req; | |
8628764e | 104 | int readonly; |
b5d67f64 SB |
105 | int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */ |
106 | u32 sectorsize; | |
107 | u32 nodesize; | |
108 | u32 leafsize; | |
a2de733c AJ |
109 | /* |
110 | * statistics | |
111 | */ | |
112 | struct btrfs_scrub_progress stat; | |
113 | spinlock_t stat_lock; | |
114 | }; | |
115 | ||
0ef8e451 JS |
116 | struct scrub_fixup_nodatasum { |
117 | struct scrub_dev *sdev; | |
118 | u64 logical; | |
119 | struct btrfs_root *root; | |
120 | struct btrfs_work work; | |
121 | int mirror_num; | |
122 | }; | |
123 | ||
558540c1 JS |
124 | struct scrub_warning { |
125 | struct btrfs_path *path; | |
126 | u64 extent_item_size; | |
127 | char *scratch_buf; | |
128 | char *msg_buf; | |
129 | const char *errstr; | |
130 | sector_t sector; | |
131 | u64 logical; | |
132 | struct btrfs_device *dev; | |
133 | int msg_bufsize; | |
134 | int scratch_bufsize; | |
135 | }; | |
136 | ||
b5d67f64 SB |
137 | |
138 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); | |
139 | static int scrub_setup_recheck_block(struct scrub_dev *sdev, | |
140 | struct btrfs_mapping_tree *map_tree, | |
141 | u64 length, u64 logical, | |
142 | struct scrub_block *sblock); | |
143 | static int scrub_recheck_block(struct btrfs_fs_info *fs_info, | |
144 | struct scrub_block *sblock, int is_metadata, | |
145 | int have_csum, u8 *csum, u64 generation, | |
146 | u16 csum_size); | |
147 | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | |
148 | struct scrub_block *sblock, | |
149 | int is_metadata, int have_csum, | |
150 | const u8 *csum, u64 generation, | |
151 | u16 csum_size); | |
152 | static void scrub_complete_bio_end_io(struct bio *bio, int err); | |
153 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | |
154 | struct scrub_block *sblock_good, | |
155 | int force_write); | |
156 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | |
157 | struct scrub_block *sblock_good, | |
158 | int page_num, int force_write); | |
159 | static int scrub_checksum_data(struct scrub_block *sblock); | |
160 | static int scrub_checksum_tree_block(struct scrub_block *sblock); | |
161 | static int scrub_checksum_super(struct scrub_block *sblock); | |
162 | static void scrub_block_get(struct scrub_block *sblock); | |
163 | static void scrub_block_put(struct scrub_block *sblock); | |
164 | static int scrub_add_page_to_bio(struct scrub_dev *sdev, | |
165 | struct scrub_page *spage); | |
166 | static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, | |
167 | u64 physical, u64 flags, u64 gen, int mirror_num, | |
168 | u8 *csum, int force); | |
1623edeb | 169 | static void scrub_bio_end_io(struct bio *bio, int err); |
b5d67f64 SB |
170 | static void scrub_bio_end_io_worker(struct btrfs_work *work); |
171 | static void scrub_block_complete(struct scrub_block *sblock); | |
1623edeb SB |
172 | |
173 | ||
a2de733c AJ |
174 | static void scrub_free_csums(struct scrub_dev *sdev) |
175 | { | |
176 | while (!list_empty(&sdev->csum_list)) { | |
177 | struct btrfs_ordered_sum *sum; | |
178 | sum = list_first_entry(&sdev->csum_list, | |
179 | struct btrfs_ordered_sum, list); | |
180 | list_del(&sum->list); | |
181 | kfree(sum); | |
182 | } | |
183 | } | |
184 | ||
185 | static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev) | |
186 | { | |
187 | int i; | |
a2de733c AJ |
188 | |
189 | if (!sdev) | |
190 | return; | |
191 | ||
b5d67f64 SB |
192 | /* this can happen when scrub is cancelled */ |
193 | if (sdev->curr != -1) { | |
194 | struct scrub_bio *sbio = sdev->bios[sdev->curr]; | |
195 | ||
196 | for (i = 0; i < sbio->page_count; i++) { | |
197 | BUG_ON(!sbio->pagev[i]); | |
198 | BUG_ON(!sbio->pagev[i]->page); | |
199 | scrub_block_put(sbio->pagev[i]->sblock); | |
200 | } | |
201 | bio_put(sbio->bio); | |
202 | } | |
203 | ||
a2de733c AJ |
204 | for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { |
205 | struct scrub_bio *sbio = sdev->bios[i]; | |
a2de733c AJ |
206 | |
207 | if (!sbio) | |
208 | break; | |
a2de733c AJ |
209 | kfree(sbio); |
210 | } | |
211 | ||
212 | scrub_free_csums(sdev); | |
213 | kfree(sdev); | |
214 | } | |
215 | ||
216 | static noinline_for_stack | |
217 | struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) | |
218 | { | |
219 | struct scrub_dev *sdev; | |
220 | int i; | |
a2de733c | 221 | struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; |
b5d67f64 | 222 | int pages_per_bio; |
a2de733c | 223 | |
b5d67f64 SB |
224 | pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO, |
225 | bio_get_nr_vecs(dev->bdev)); | |
a2de733c AJ |
226 | sdev = kzalloc(sizeof(*sdev), GFP_NOFS); |
227 | if (!sdev) | |
228 | goto nomem; | |
229 | sdev->dev = dev; | |
b5d67f64 SB |
230 | sdev->pages_per_bio = pages_per_bio; |
231 | sdev->curr = -1; | |
a2de733c | 232 | for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { |
a2de733c AJ |
233 | struct scrub_bio *sbio; |
234 | ||
235 | sbio = kzalloc(sizeof(*sbio), GFP_NOFS); | |
236 | if (!sbio) | |
237 | goto nomem; | |
238 | sdev->bios[i] = sbio; | |
239 | ||
a2de733c AJ |
240 | sbio->index = i; |
241 | sbio->sdev = sdev; | |
b5d67f64 SB |
242 | sbio->page_count = 0; |
243 | sbio->work.func = scrub_bio_end_io_worker; | |
a2de733c AJ |
244 | |
245 | if (i != SCRUB_BIOS_PER_DEV-1) | |
246 | sdev->bios[i]->next_free = i + 1; | |
0ef8e451 | 247 | else |
a2de733c AJ |
248 | sdev->bios[i]->next_free = -1; |
249 | } | |
250 | sdev->first_free = 0; | |
b5d67f64 SB |
251 | sdev->nodesize = dev->dev_root->nodesize; |
252 | sdev->leafsize = dev->dev_root->leafsize; | |
253 | sdev->sectorsize = dev->dev_root->sectorsize; | |
a2de733c | 254 | atomic_set(&sdev->in_flight, 0); |
0ef8e451 | 255 | atomic_set(&sdev->fixup_cnt, 0); |
a2de733c | 256 | atomic_set(&sdev->cancel_req, 0); |
6c41761f | 257 | sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy); |
a2de733c AJ |
258 | INIT_LIST_HEAD(&sdev->csum_list); |
259 | ||
260 | spin_lock_init(&sdev->list_lock); | |
261 | spin_lock_init(&sdev->stat_lock); | |
262 | init_waitqueue_head(&sdev->list_wait); | |
263 | return sdev; | |
264 | ||
265 | nomem: | |
266 | scrub_free_dev(sdev); | |
267 | return ERR_PTR(-ENOMEM); | |
268 | } | |
269 | ||
558540c1 JS |
270 | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx) |
271 | { | |
272 | u64 isize; | |
273 | u32 nlink; | |
274 | int ret; | |
275 | int i; | |
276 | struct extent_buffer *eb; | |
277 | struct btrfs_inode_item *inode_item; | |
278 | struct scrub_warning *swarn = ctx; | |
279 | struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; | |
280 | struct inode_fs_paths *ipath = NULL; | |
281 | struct btrfs_root *local_root; | |
282 | struct btrfs_key root_key; | |
283 | ||
284 | root_key.objectid = root; | |
285 | root_key.type = BTRFS_ROOT_ITEM_KEY; | |
286 | root_key.offset = (u64)-1; | |
287 | local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); | |
288 | if (IS_ERR(local_root)) { | |
289 | ret = PTR_ERR(local_root); | |
290 | goto err; | |
291 | } | |
292 | ||
293 | ret = inode_item_info(inum, 0, local_root, swarn->path); | |
294 | if (ret) { | |
295 | btrfs_release_path(swarn->path); | |
296 | goto err; | |
297 | } | |
298 | ||
299 | eb = swarn->path->nodes[0]; | |
300 | inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], | |
301 | struct btrfs_inode_item); | |
302 | isize = btrfs_inode_size(eb, inode_item); | |
303 | nlink = btrfs_inode_nlink(eb, inode_item); | |
304 | btrfs_release_path(swarn->path); | |
305 | ||
306 | ipath = init_ipath(4096, local_root, swarn->path); | |
26bdef54 DC |
307 | if (IS_ERR(ipath)) { |
308 | ret = PTR_ERR(ipath); | |
309 | ipath = NULL; | |
310 | goto err; | |
311 | } | |
558540c1 JS |
312 | ret = paths_from_inode(inum, ipath); |
313 | ||
314 | if (ret < 0) | |
315 | goto err; | |
316 | ||
317 | /* | |
318 | * we deliberately ignore the bit ipath might have been too small to | |
319 | * hold all of the paths here | |
320 | */ | |
321 | for (i = 0; i < ipath->fspath->elem_cnt; ++i) | |
322 | printk(KERN_WARNING "btrfs: %s at logical %llu on dev " | |
323 | "%s, sector %llu, root %llu, inode %llu, offset %llu, " | |
324 | "length %llu, links %u (path: %s)\n", swarn->errstr, | |
325 | swarn->logical, swarn->dev->name, | |
326 | (unsigned long long)swarn->sector, root, inum, offset, | |
327 | min(isize - offset, (u64)PAGE_SIZE), nlink, | |
745c4d8e | 328 | (char *)(unsigned long)ipath->fspath->val[i]); |
558540c1 JS |
329 | |
330 | free_ipath(ipath); | |
331 | return 0; | |
332 | ||
333 | err: | |
334 | printk(KERN_WARNING "btrfs: %s at logical %llu on dev " | |
335 | "%s, sector %llu, root %llu, inode %llu, offset %llu: path " | |
336 | "resolving failed with ret=%d\n", swarn->errstr, | |
337 | swarn->logical, swarn->dev->name, | |
338 | (unsigned long long)swarn->sector, root, inum, offset, ret); | |
339 | ||
340 | free_ipath(ipath); | |
341 | return 0; | |
342 | } | |
343 | ||
b5d67f64 | 344 | static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) |
558540c1 | 345 | { |
b5d67f64 | 346 | struct btrfs_device *dev = sblock->sdev->dev; |
558540c1 JS |
347 | struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; |
348 | struct btrfs_path *path; | |
349 | struct btrfs_key found_key; | |
350 | struct extent_buffer *eb; | |
351 | struct btrfs_extent_item *ei; | |
352 | struct scrub_warning swarn; | |
353 | u32 item_size; | |
354 | int ret; | |
355 | u64 ref_root; | |
356 | u8 ref_level; | |
357 | unsigned long ptr = 0; | |
358 | const int bufsize = 4096; | |
4692cf58 | 359 | u64 extent_item_pos; |
558540c1 JS |
360 | |
361 | path = btrfs_alloc_path(); | |
362 | ||
363 | swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); | |
364 | swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); | |
b5d67f64 SB |
365 | BUG_ON(sblock->page_count < 1); |
366 | swarn.sector = (sblock->pagev[0].physical) >> 9; | |
367 | swarn.logical = sblock->pagev[0].logical; | |
558540c1 JS |
368 | swarn.errstr = errstr; |
369 | swarn.dev = dev; | |
370 | swarn.msg_bufsize = bufsize; | |
371 | swarn.scratch_bufsize = bufsize; | |
372 | ||
373 | if (!path || !swarn.scratch_buf || !swarn.msg_buf) | |
374 | goto out; | |
375 | ||
376 | ret = extent_from_logical(fs_info, swarn.logical, path, &found_key); | |
377 | if (ret < 0) | |
378 | goto out; | |
379 | ||
4692cf58 | 380 | extent_item_pos = swarn.logical - found_key.objectid; |
558540c1 JS |
381 | swarn.extent_item_size = found_key.offset; |
382 | ||
383 | eb = path->nodes[0]; | |
384 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | |
385 | item_size = btrfs_item_size_nr(eb, path->slots[0]); | |
4692cf58 | 386 | btrfs_release_path(path); |
558540c1 JS |
387 | |
388 | if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | |
389 | do { | |
390 | ret = tree_backref_for_extent(&ptr, eb, ei, item_size, | |
391 | &ref_root, &ref_level); | |
1623edeb SB |
392 | printk(KERN_WARNING |
393 | "btrfs: %s at logical %llu on dev %s, " | |
558540c1 JS |
394 | "sector %llu: metadata %s (level %d) in tree " |
395 | "%llu\n", errstr, swarn.logical, dev->name, | |
396 | (unsigned long long)swarn.sector, | |
397 | ref_level ? "node" : "leaf", | |
398 | ret < 0 ? -1 : ref_level, | |
399 | ret < 0 ? -1 : ref_root); | |
400 | } while (ret != 1); | |
401 | } else { | |
402 | swarn.path = path; | |
7a3ae2f8 JS |
403 | iterate_extent_inodes(fs_info, found_key.objectid, |
404 | extent_item_pos, 1, | |
558540c1 JS |
405 | scrub_print_warning_inode, &swarn); |
406 | } | |
407 | ||
408 | out: | |
409 | btrfs_free_path(path); | |
410 | kfree(swarn.scratch_buf); | |
411 | kfree(swarn.msg_buf); | |
412 | } | |
413 | ||
0ef8e451 JS |
414 | static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx) |
415 | { | |
5da6fcbc | 416 | struct page *page = NULL; |
0ef8e451 JS |
417 | unsigned long index; |
418 | struct scrub_fixup_nodatasum *fixup = ctx; | |
419 | int ret; | |
5da6fcbc | 420 | int corrected = 0; |
0ef8e451 | 421 | struct btrfs_key key; |
5da6fcbc | 422 | struct inode *inode = NULL; |
0ef8e451 JS |
423 | u64 end = offset + PAGE_SIZE - 1; |
424 | struct btrfs_root *local_root; | |
425 | ||
426 | key.objectid = root; | |
427 | key.type = BTRFS_ROOT_ITEM_KEY; | |
428 | key.offset = (u64)-1; | |
429 | local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key); | |
430 | if (IS_ERR(local_root)) | |
431 | return PTR_ERR(local_root); | |
432 | ||
433 | key.type = BTRFS_INODE_ITEM_KEY; | |
434 | key.objectid = inum; | |
435 | key.offset = 0; | |
436 | inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL); | |
437 | if (IS_ERR(inode)) | |
438 | return PTR_ERR(inode); | |
439 | ||
0ef8e451 JS |
440 | index = offset >> PAGE_CACHE_SHIFT; |
441 | ||
442 | page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | |
5da6fcbc JS |
443 | if (!page) { |
444 | ret = -ENOMEM; | |
445 | goto out; | |
446 | } | |
447 | ||
448 | if (PageUptodate(page)) { | |
449 | struct btrfs_mapping_tree *map_tree; | |
450 | if (PageDirty(page)) { | |
451 | /* | |
452 | * we need to write the data to the defect sector. the | |
453 | * data that was in that sector is not in memory, | |
454 | * because the page was modified. we must not write the | |
455 | * modified page to that sector. | |
456 | * | |
457 | * TODO: what could be done here: wait for the delalloc | |
458 | * runner to write out that page (might involve | |
459 | * COW) and see whether the sector is still | |
460 | * referenced afterwards. | |
461 | * | |
462 | * For the meantime, we'll treat this error | |
463 | * incorrectable, although there is a chance that a | |
464 | * later scrub will find the bad sector again and that | |
465 | * there's no dirty page in memory, then. | |
466 | */ | |
467 | ret = -EIO; | |
468 | goto out; | |
469 | } | |
470 | map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; | |
471 | ret = repair_io_failure(map_tree, offset, PAGE_SIZE, | |
472 | fixup->logical, page, | |
473 | fixup->mirror_num); | |
474 | unlock_page(page); | |
475 | corrected = !ret; | |
476 | } else { | |
477 | /* | |
478 | * we need to get good data first. the general readpage path | |
479 | * will call repair_io_failure for us, we just have to make | |
480 | * sure we read the bad mirror. | |
481 | */ | |
482 | ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | |
483 | EXTENT_DAMAGED, GFP_NOFS); | |
484 | if (ret) { | |
485 | /* set_extent_bits should give proper error */ | |
486 | WARN_ON(ret > 0); | |
487 | if (ret > 0) | |
488 | ret = -EFAULT; | |
489 | goto out; | |
490 | } | |
491 | ||
492 | ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, | |
493 | btrfs_get_extent, | |
494 | fixup->mirror_num); | |
495 | wait_on_page_locked(page); | |
496 | ||
497 | corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, | |
498 | end, EXTENT_DAMAGED, 0, NULL); | |
499 | if (!corrected) | |
500 | clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | |
501 | EXTENT_DAMAGED, GFP_NOFS); | |
502 | } | |
503 | ||
504 | out: | |
505 | if (page) | |
506 | put_page(page); | |
507 | if (inode) | |
508 | iput(inode); | |
0ef8e451 JS |
509 | |
510 | if (ret < 0) | |
511 | return ret; | |
512 | ||
513 | if (ret == 0 && corrected) { | |
514 | /* | |
515 | * we only need to call readpage for one of the inodes belonging | |
516 | * to this extent. so make iterate_extent_inodes stop | |
517 | */ | |
518 | return 1; | |
519 | } | |
520 | ||
521 | return -EIO; | |
522 | } | |
523 | ||
524 | static void scrub_fixup_nodatasum(struct btrfs_work *work) | |
525 | { | |
526 | int ret; | |
527 | struct scrub_fixup_nodatasum *fixup; | |
528 | struct scrub_dev *sdev; | |
529 | struct btrfs_trans_handle *trans = NULL; | |
530 | struct btrfs_fs_info *fs_info; | |
531 | struct btrfs_path *path; | |
532 | int uncorrectable = 0; | |
533 | ||
534 | fixup = container_of(work, struct scrub_fixup_nodatasum, work); | |
535 | sdev = fixup->sdev; | |
536 | fs_info = fixup->root->fs_info; | |
537 | ||
538 | path = btrfs_alloc_path(); | |
539 | if (!path) { | |
540 | spin_lock(&sdev->stat_lock); | |
541 | ++sdev->stat.malloc_errors; | |
542 | spin_unlock(&sdev->stat_lock); | |
543 | uncorrectable = 1; | |
544 | goto out; | |
545 | } | |
546 | ||
547 | trans = btrfs_join_transaction(fixup->root); | |
548 | if (IS_ERR(trans)) { | |
549 | uncorrectable = 1; | |
550 | goto out; | |
551 | } | |
552 | ||
553 | /* | |
554 | * the idea is to trigger a regular read through the standard path. we | |
555 | * read a page from the (failed) logical address by specifying the | |
556 | * corresponding copynum of the failed sector. thus, that readpage is | |
557 | * expected to fail. | |
558 | * that is the point where on-the-fly error correction will kick in | |
559 | * (once it's finished) and rewrite the failed sector if a good copy | |
560 | * can be found. | |
561 | */ | |
562 | ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, | |
563 | path, scrub_fixup_readpage, | |
564 | fixup); | |
565 | if (ret < 0) { | |
566 | uncorrectable = 1; | |
567 | goto out; | |
568 | } | |
569 | WARN_ON(ret != 1); | |
570 | ||
571 | spin_lock(&sdev->stat_lock); | |
572 | ++sdev->stat.corrected_errors; | |
573 | spin_unlock(&sdev->stat_lock); | |
574 | ||
575 | out: | |
576 | if (trans && !IS_ERR(trans)) | |
577 | btrfs_end_transaction(trans, fixup->root); | |
578 | if (uncorrectable) { | |
579 | spin_lock(&sdev->stat_lock); | |
580 | ++sdev->stat.uncorrectable_errors; | |
581 | spin_unlock(&sdev->stat_lock); | |
b5d67f64 SB |
582 | printk_ratelimited(KERN_ERR |
583 | "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", | |
584 | (unsigned long long)fixup->logical, sdev->dev->name); | |
0ef8e451 JS |
585 | } |
586 | ||
587 | btrfs_free_path(path); | |
588 | kfree(fixup); | |
589 | ||
590 | /* see caller why we're pretending to be paused in the scrub counters */ | |
591 | mutex_lock(&fs_info->scrub_lock); | |
592 | atomic_dec(&fs_info->scrubs_running); | |
593 | atomic_dec(&fs_info->scrubs_paused); | |
594 | mutex_unlock(&fs_info->scrub_lock); | |
595 | atomic_dec(&sdev->fixup_cnt); | |
596 | wake_up(&fs_info->scrub_pause_wait); | |
597 | wake_up(&sdev->list_wait); | |
598 | } | |
599 | ||
a2de733c | 600 | /* |
b5d67f64 SB |
601 | * scrub_handle_errored_block gets called when either verification of the |
602 | * pages failed or the bio failed to read, e.g. with EIO. In the latter | |
603 | * case, this function handles all pages in the bio, even though only one | |
604 | * may be bad. | |
605 | * The goal of this function is to repair the errored block by using the | |
606 | * contents of one of the mirrors. | |
a2de733c | 607 | */ |
b5d67f64 | 608 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) |
a2de733c | 609 | { |
b5d67f64 SB |
610 | struct scrub_dev *sdev = sblock_to_check->sdev; |
611 | struct btrfs_fs_info *fs_info; | |
612 | u64 length; | |
613 | u64 logical; | |
614 | u64 generation; | |
615 | unsigned int failed_mirror_index; | |
616 | unsigned int is_metadata; | |
617 | unsigned int have_csum; | |
618 | u8 *csum; | |
619 | struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ | |
620 | struct scrub_block *sblock_bad; | |
621 | int ret; | |
622 | int mirror_index; | |
623 | int page_num; | |
624 | int success; | |
558540c1 | 625 | static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, |
b5d67f64 SB |
626 | DEFAULT_RATELIMIT_BURST); |
627 | ||
628 | BUG_ON(sblock_to_check->page_count < 1); | |
629 | fs_info = sdev->dev->dev_root->fs_info; | |
630 | length = sblock_to_check->page_count * PAGE_SIZE; | |
631 | logical = sblock_to_check->pagev[0].logical; | |
632 | generation = sblock_to_check->pagev[0].generation; | |
633 | BUG_ON(sblock_to_check->pagev[0].mirror_num < 1); | |
634 | failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1; | |
635 | is_metadata = !(sblock_to_check->pagev[0].flags & | |
636 | BTRFS_EXTENT_FLAG_DATA); | |
637 | have_csum = sblock_to_check->pagev[0].have_csum; | |
638 | csum = sblock_to_check->pagev[0].csum; | |
13db62b7 | 639 | |
b5d67f64 SB |
640 | /* |
641 | * read all mirrors one after the other. This includes to | |
642 | * re-read the extent or metadata block that failed (that was | |
643 | * the cause that this fixup code is called) another time, | |
644 | * page by page this time in order to know which pages | |
645 | * caused I/O errors and which ones are good (for all mirrors). | |
646 | * It is the goal to handle the situation when more than one | |
647 | * mirror contains I/O errors, but the errors do not | |
648 | * overlap, i.e. the data can be repaired by selecting the | |
649 | * pages from those mirrors without I/O error on the | |
650 | * particular pages. One example (with blocks >= 2 * PAGE_SIZE) | |
651 | * would be that mirror #1 has an I/O error on the first page, | |
652 | * the second page is good, and mirror #2 has an I/O error on | |
653 | * the second page, but the first page is good. | |
654 | * Then the first page of the first mirror can be repaired by | |
655 | * taking the first page of the second mirror, and the | |
656 | * second page of the second mirror can be repaired by | |
657 | * copying the contents of the 2nd page of the 1st mirror. | |
658 | * One more note: if the pages of one mirror contain I/O | |
659 | * errors, the checksum cannot be verified. In order to get | |
660 | * the best data for repairing, the first attempt is to find | |
661 | * a mirror without I/O errors and with a validated checksum. | |
662 | * Only if this is not possible, the pages are picked from | |
663 | * mirrors with I/O errors without considering the checksum. | |
664 | * If the latter is the case, at the end, the checksum of the | |
665 | * repaired area is verified in order to correctly maintain | |
666 | * the statistics. | |
667 | */ | |
668 | ||
669 | sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * | |
670 | sizeof(*sblocks_for_recheck), | |
671 | GFP_NOFS); | |
672 | if (!sblocks_for_recheck) { | |
673 | spin_lock(&sdev->stat_lock); | |
674 | sdev->stat.malloc_errors++; | |
675 | sdev->stat.read_errors++; | |
676 | sdev->stat.uncorrectable_errors++; | |
677 | spin_unlock(&sdev->stat_lock); | |
678 | goto out; | |
a2de733c AJ |
679 | } |
680 | ||
b5d67f64 SB |
681 | /* setup the context, map the logical blocks and alloc the pages */ |
682 | ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length, | |
683 | logical, sblocks_for_recheck); | |
684 | if (ret) { | |
685 | spin_lock(&sdev->stat_lock); | |
686 | sdev->stat.read_errors++; | |
687 | sdev->stat.uncorrectable_errors++; | |
688 | spin_unlock(&sdev->stat_lock); | |
689 | goto out; | |
690 | } | |
691 | BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); | |
692 | sblock_bad = sblocks_for_recheck + failed_mirror_index; | |
13db62b7 | 693 | |
b5d67f64 SB |
694 | /* build and submit the bios for the failed mirror, check checksums */ |
695 | ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, | |
696 | csum, generation, sdev->csum_size); | |
697 | if (ret) { | |
698 | spin_lock(&sdev->stat_lock); | |
699 | sdev->stat.read_errors++; | |
700 | sdev->stat.uncorrectable_errors++; | |
701 | spin_unlock(&sdev->stat_lock); | |
702 | goto out; | |
703 | } | |
a2de733c | 704 | |
b5d67f64 SB |
705 | if (!sblock_bad->header_error && !sblock_bad->checksum_error && |
706 | sblock_bad->no_io_error_seen) { | |
707 | /* | |
708 | * the error disappeared after reading page by page, or | |
709 | * the area was part of a huge bio and other parts of the | |
710 | * bio caused I/O errors, or the block layer merged several | |
711 | * read requests into one and the error is caused by a | |
712 | * different bio (usually one of the two latter cases is | |
713 | * the cause) | |
714 | */ | |
715 | spin_lock(&sdev->stat_lock); | |
716 | sdev->stat.unverified_errors++; | |
717 | spin_unlock(&sdev->stat_lock); | |
a2de733c | 718 | |
b5d67f64 | 719 | goto out; |
a2de733c | 720 | } |
a2de733c | 721 | |
b5d67f64 SB |
722 | if (!sblock_bad->no_io_error_seen) { |
723 | spin_lock(&sdev->stat_lock); | |
724 | sdev->stat.read_errors++; | |
725 | spin_unlock(&sdev->stat_lock); | |
726 | if (__ratelimit(&_rs)) | |
727 | scrub_print_warning("i/o error", sblock_to_check); | |
728 | } else if (sblock_bad->checksum_error) { | |
729 | spin_lock(&sdev->stat_lock); | |
730 | sdev->stat.csum_errors++; | |
731 | spin_unlock(&sdev->stat_lock); | |
732 | if (__ratelimit(&_rs)) | |
733 | scrub_print_warning("checksum error", sblock_to_check); | |
734 | } else if (sblock_bad->header_error) { | |
735 | spin_lock(&sdev->stat_lock); | |
736 | sdev->stat.verify_errors++; | |
737 | spin_unlock(&sdev->stat_lock); | |
738 | if (__ratelimit(&_rs)) | |
739 | scrub_print_warning("checksum/header error", | |
740 | sblock_to_check); | |
741 | } | |
a2de733c | 742 | |
b5d67f64 SB |
743 | if (sdev->readonly) |
744 | goto did_not_correct_error; | |
a2de733c | 745 | |
b5d67f64 SB |
746 | if (!is_metadata && !have_csum) { |
747 | struct scrub_fixup_nodatasum *fixup_nodatasum; | |
a2de733c | 748 | |
b5d67f64 SB |
749 | /* |
750 | * !is_metadata and !have_csum, this means that the data | |
751 | * might not be COW'ed, that it might be modified | |
752 | * concurrently. The general strategy to work on the | |
753 | * commit root does not help in the case when COW is not | |
754 | * used. | |
755 | */ | |
756 | fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); | |
757 | if (!fixup_nodatasum) | |
758 | goto did_not_correct_error; | |
759 | fixup_nodatasum->sdev = sdev; | |
760 | fixup_nodatasum->logical = logical; | |
761 | fixup_nodatasum->root = fs_info->extent_root; | |
762 | fixup_nodatasum->mirror_num = failed_mirror_index + 1; | |
a2de733c | 763 | /* |
0ef8e451 JS |
764 | * increment scrubs_running to prevent cancel requests from |
765 | * completing as long as a fixup worker is running. we must also | |
766 | * increment scrubs_paused to prevent deadlocking on pause | |
767 | * requests used for transactions commits (as the worker uses a | |
768 | * transaction context). it is safe to regard the fixup worker | |
769 | * as paused for all matters practical. effectively, we only | |
770 | * avoid cancellation requests from completing. | |
a2de733c | 771 | */ |
0ef8e451 JS |
772 | mutex_lock(&fs_info->scrub_lock); |
773 | atomic_inc(&fs_info->scrubs_running); | |
774 | atomic_inc(&fs_info->scrubs_paused); | |
775 | mutex_unlock(&fs_info->scrub_lock); | |
776 | atomic_inc(&sdev->fixup_cnt); | |
b5d67f64 SB |
777 | fixup_nodatasum->work.func = scrub_fixup_nodatasum; |
778 | btrfs_queue_worker(&fs_info->scrub_workers, | |
779 | &fixup_nodatasum->work); | |
780 | goto out; | |
a2de733c AJ |
781 | } |
782 | ||
b5d67f64 SB |
783 | /* |
784 | * now build and submit the bios for the other mirrors, check | |
785 | * checksums | |
786 | */ | |
787 | for (mirror_index = 0; | |
788 | mirror_index < BTRFS_MAX_MIRRORS && | |
789 | sblocks_for_recheck[mirror_index].page_count > 0; | |
790 | mirror_index++) { | |
791 | if (mirror_index == failed_mirror_index) | |
792 | continue; | |
793 | ||
794 | /* build and submit the bios, check checksums */ | |
795 | ret = scrub_recheck_block(fs_info, | |
796 | sblocks_for_recheck + mirror_index, | |
797 | is_metadata, have_csum, csum, | |
798 | generation, sdev->csum_size); | |
799 | if (ret) | |
800 | goto did_not_correct_error; | |
a2de733c AJ |
801 | } |
802 | ||
b5d67f64 SB |
803 | /* |
804 | * first try to pick the mirror which is completely without I/O | |
805 | * errors and also does not have a checksum error. | |
806 | * If one is found, and if a checksum is present, the full block | |
807 | * that is known to contain an error is rewritten. Afterwards | |
808 | * the block is known to be corrected. | |
809 | * If a mirror is found which is completely correct, and no | |
810 | * checksum is present, only those pages are rewritten that had | |
811 | * an I/O error in the block to be repaired, since it cannot be | |
812 | * determined, which copy of the other pages is better (and it | |
813 | * could happen otherwise that a correct page would be | |
814 | * overwritten by a bad one). | |
815 | */ | |
816 | for (mirror_index = 0; | |
817 | mirror_index < BTRFS_MAX_MIRRORS && | |
818 | sblocks_for_recheck[mirror_index].page_count > 0; | |
819 | mirror_index++) { | |
820 | struct scrub_block *sblock_other = sblocks_for_recheck + | |
821 | mirror_index; | |
822 | ||
823 | if (!sblock_other->header_error && | |
824 | !sblock_other->checksum_error && | |
825 | sblock_other->no_io_error_seen) { | |
826 | int force_write = is_metadata || have_csum; | |
827 | ||
828 | ret = scrub_repair_block_from_good_copy(sblock_bad, | |
829 | sblock_other, | |
830 | force_write); | |
831 | if (0 == ret) | |
832 | goto corrected_error; | |
833 | } | |
834 | } | |
a2de733c AJ |
835 | |
836 | /* | |
b5d67f64 SB |
837 | * in case of I/O errors in the area that is supposed to be |
838 | * repaired, continue by picking good copies of those pages. | |
839 | * Select the good pages from mirrors to rewrite bad pages from | |
840 | * the area to fix. Afterwards verify the checksum of the block | |
841 | * that is supposed to be repaired. This verification step is | |
842 | * only done for the purpose of statistic counting and for the | |
843 | * final scrub report, whether errors remain. | |
844 | * A perfect algorithm could make use of the checksum and try | |
845 | * all possible combinations of pages from the different mirrors | |
846 | * until the checksum verification succeeds. For example, when | |
847 | * the 2nd page of mirror #1 faces I/O errors, and the 2nd page | |
848 | * of mirror #2 is readable but the final checksum test fails, | |
849 | * then the 2nd page of mirror #3 could be tried, whether now | |
850 | * the final checksum succeedes. But this would be a rare | |
851 | * exception and is therefore not implemented. At least it is | |
852 | * avoided that the good copy is overwritten. | |
853 | * A more useful improvement would be to pick the sectors | |
854 | * without I/O error based on sector sizes (512 bytes on legacy | |
855 | * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one | |
856 | * mirror could be repaired by taking 512 byte of a different | |
857 | * mirror, even if other 512 byte sectors in the same PAGE_SIZE | |
858 | * area are unreadable. | |
a2de733c | 859 | */ |
a2de733c | 860 | |
b5d67f64 SB |
861 | /* can only fix I/O errors from here on */ |
862 | if (sblock_bad->no_io_error_seen) | |
863 | goto did_not_correct_error; | |
864 | ||
865 | success = 1; | |
866 | for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | |
867 | struct scrub_page *page_bad = sblock_bad->pagev + page_num; | |
868 | ||
869 | if (!page_bad->io_error) | |
a2de733c | 870 | continue; |
b5d67f64 SB |
871 | |
872 | for (mirror_index = 0; | |
873 | mirror_index < BTRFS_MAX_MIRRORS && | |
874 | sblocks_for_recheck[mirror_index].page_count > 0; | |
875 | mirror_index++) { | |
876 | struct scrub_block *sblock_other = sblocks_for_recheck + | |
877 | mirror_index; | |
878 | struct scrub_page *page_other = sblock_other->pagev + | |
879 | page_num; | |
880 | ||
881 | if (!page_other->io_error) { | |
882 | ret = scrub_repair_page_from_good_copy( | |
883 | sblock_bad, sblock_other, page_num, 0); | |
884 | if (0 == ret) { | |
885 | page_bad->io_error = 0; | |
886 | break; /* succeeded for this page */ | |
887 | } | |
888 | } | |
96e36920 | 889 | } |
a2de733c | 890 | |
b5d67f64 SB |
891 | if (page_bad->io_error) { |
892 | /* did not find a mirror to copy the page from */ | |
893 | success = 0; | |
894 | } | |
a2de733c | 895 | } |
a2de733c | 896 | |
b5d67f64 SB |
897 | if (success) { |
898 | if (is_metadata || have_csum) { | |
899 | /* | |
900 | * need to verify the checksum now that all | |
901 | * sectors on disk are repaired (the write | |
902 | * request for data to be repaired is on its way). | |
903 | * Just be lazy and use scrub_recheck_block() | |
904 | * which re-reads the data before the checksum | |
905 | * is verified, but most likely the data comes out | |
906 | * of the page cache. | |
907 | */ | |
908 | ret = scrub_recheck_block(fs_info, sblock_bad, | |
909 | is_metadata, have_csum, csum, | |
910 | generation, sdev->csum_size); | |
911 | if (!ret && !sblock_bad->header_error && | |
912 | !sblock_bad->checksum_error && | |
913 | sblock_bad->no_io_error_seen) | |
914 | goto corrected_error; | |
915 | else | |
916 | goto did_not_correct_error; | |
917 | } else { | |
918 | corrected_error: | |
919 | spin_lock(&sdev->stat_lock); | |
920 | sdev->stat.corrected_errors++; | |
921 | spin_unlock(&sdev->stat_lock); | |
922 | printk_ratelimited(KERN_ERR | |
923 | "btrfs: fixed up error at logical %llu on dev %s\n", | |
924 | (unsigned long long)logical, sdev->dev->name); | |
8628764e | 925 | } |
b5d67f64 SB |
926 | } else { |
927 | did_not_correct_error: | |
928 | spin_lock(&sdev->stat_lock); | |
929 | sdev->stat.uncorrectable_errors++; | |
930 | spin_unlock(&sdev->stat_lock); | |
931 | printk_ratelimited(KERN_ERR | |
932 | "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", | |
933 | (unsigned long long)logical, sdev->dev->name); | |
96e36920 | 934 | } |
a2de733c | 935 | |
b5d67f64 SB |
936 | out: |
937 | if (sblocks_for_recheck) { | |
938 | for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; | |
939 | mirror_index++) { | |
940 | struct scrub_block *sblock = sblocks_for_recheck + | |
941 | mirror_index; | |
942 | int page_index; | |
943 | ||
944 | for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO; | |
945 | page_index++) | |
946 | if (sblock->pagev[page_index].page) | |
947 | __free_page( | |
948 | sblock->pagev[page_index].page); | |
949 | } | |
950 | kfree(sblocks_for_recheck); | |
951 | } | |
a2de733c | 952 | |
b5d67f64 SB |
953 | return 0; |
954 | } | |
a2de733c | 955 | |
b5d67f64 SB |
956 | static int scrub_setup_recheck_block(struct scrub_dev *sdev, |
957 | struct btrfs_mapping_tree *map_tree, | |
958 | u64 length, u64 logical, | |
959 | struct scrub_block *sblocks_for_recheck) | |
960 | { | |
961 | int page_index; | |
962 | int mirror_index; | |
963 | int ret; | |
964 | ||
965 | /* | |
966 | * note: the three members sdev, ref_count and outstanding_pages | |
967 | * are not used (and not set) in the blocks that are used for | |
968 | * the recheck procedure | |
969 | */ | |
970 | ||
971 | page_index = 0; | |
972 | while (length > 0) { | |
973 | u64 sublen = min_t(u64, length, PAGE_SIZE); | |
974 | u64 mapped_length = sublen; | |
975 | struct btrfs_bio *bbio = NULL; | |
a2de733c | 976 | |
b5d67f64 SB |
977 | /* |
978 | * with a length of PAGE_SIZE, each returned stripe | |
979 | * represents one mirror | |
980 | */ | |
981 | ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length, | |
982 | &bbio, 0); | |
983 | if (ret || !bbio || mapped_length < sublen) { | |
984 | kfree(bbio); | |
985 | return -EIO; | |
986 | } | |
a2de733c | 987 | |
b5d67f64 SB |
988 | BUG_ON(page_index >= SCRUB_PAGES_PER_BIO); |
989 | for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; | |
990 | mirror_index++) { | |
991 | struct scrub_block *sblock; | |
992 | struct scrub_page *page; | |
993 | ||
994 | if (mirror_index >= BTRFS_MAX_MIRRORS) | |
995 | continue; | |
996 | ||
997 | sblock = sblocks_for_recheck + mirror_index; | |
998 | page = sblock->pagev + page_index; | |
999 | page->logical = logical; | |
1000 | page->physical = bbio->stripes[mirror_index].physical; | |
ea9947b4 | 1001 | /* for missing devices, bdev is NULL */ |
b5d67f64 SB |
1002 | page->bdev = bbio->stripes[mirror_index].dev->bdev; |
1003 | page->mirror_num = mirror_index + 1; | |
1004 | page->page = alloc_page(GFP_NOFS); | |
1005 | if (!page->page) { | |
1006 | spin_lock(&sdev->stat_lock); | |
1007 | sdev->stat.malloc_errors++; | |
1008 | spin_unlock(&sdev->stat_lock); | |
1009 | return -ENOMEM; | |
1010 | } | |
1011 | sblock->page_count++; | |
1012 | } | |
1013 | kfree(bbio); | |
1014 | length -= sublen; | |
1015 | logical += sublen; | |
1016 | page_index++; | |
1017 | } | |
1018 | ||
1019 | return 0; | |
96e36920 ID |
1020 | } |
1021 | ||
b5d67f64 SB |
1022 | /* |
1023 | * this function will check the on disk data for checksum errors, header | |
1024 | * errors and read I/O errors. If any I/O errors happen, the exact pages | |
1025 | * which are errored are marked as being bad. The goal is to enable scrub | |
1026 | * to take those pages that are not errored from all the mirrors so that | |
1027 | * the pages that are errored in the just handled mirror can be repaired. | |
1028 | */ | |
1029 | static int scrub_recheck_block(struct btrfs_fs_info *fs_info, | |
1030 | struct scrub_block *sblock, int is_metadata, | |
1031 | int have_csum, u8 *csum, u64 generation, | |
1032 | u16 csum_size) | |
96e36920 | 1033 | { |
b5d67f64 | 1034 | int page_num; |
96e36920 | 1035 | |
b5d67f64 SB |
1036 | sblock->no_io_error_seen = 1; |
1037 | sblock->header_error = 0; | |
1038 | sblock->checksum_error = 0; | |
96e36920 | 1039 | |
b5d67f64 SB |
1040 | for (page_num = 0; page_num < sblock->page_count; page_num++) { |
1041 | struct bio *bio; | |
1042 | int ret; | |
1043 | struct scrub_page *page = sblock->pagev + page_num; | |
1044 | DECLARE_COMPLETION_ONSTACK(complete); | |
1045 | ||
ea9947b4 SB |
1046 | if (page->bdev == NULL) { |
1047 | page->io_error = 1; | |
1048 | sblock->no_io_error_seen = 0; | |
1049 | continue; | |
1050 | } | |
1051 | ||
b5d67f64 SB |
1052 | BUG_ON(!page->page); |
1053 | bio = bio_alloc(GFP_NOFS, 1); | |
e627ee7b TI |
1054 | if (!bio) |
1055 | return -EIO; | |
b5d67f64 SB |
1056 | bio->bi_bdev = page->bdev; |
1057 | bio->bi_sector = page->physical >> 9; | |
1058 | bio->bi_end_io = scrub_complete_bio_end_io; | |
1059 | bio->bi_private = &complete; | |
1060 | ||
1061 | ret = bio_add_page(bio, page->page, PAGE_SIZE, 0); | |
1062 | if (PAGE_SIZE != ret) { | |
1063 | bio_put(bio); | |
1064 | return -EIO; | |
1065 | } | |
1066 | btrfsic_submit_bio(READ, bio); | |
96e36920 | 1067 | |
b5d67f64 SB |
1068 | /* this will also unplug the queue */ |
1069 | wait_for_completion(&complete); | |
96e36920 | 1070 | |
b5d67f64 SB |
1071 | page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); |
1072 | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | |
1073 | sblock->no_io_error_seen = 0; | |
1074 | bio_put(bio); | |
1075 | } | |
96e36920 | 1076 | |
b5d67f64 SB |
1077 | if (sblock->no_io_error_seen) |
1078 | scrub_recheck_block_checksum(fs_info, sblock, is_metadata, | |
1079 | have_csum, csum, generation, | |
1080 | csum_size); | |
1081 | ||
1082 | return 0; | |
a2de733c AJ |
1083 | } |
1084 | ||
b5d67f64 SB |
1085 | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, |
1086 | struct scrub_block *sblock, | |
1087 | int is_metadata, int have_csum, | |
1088 | const u8 *csum, u64 generation, | |
1089 | u16 csum_size) | |
a2de733c | 1090 | { |
b5d67f64 SB |
1091 | int page_num; |
1092 | u8 calculated_csum[BTRFS_CSUM_SIZE]; | |
1093 | u32 crc = ~(u32)0; | |
1094 | struct btrfs_root *root = fs_info->extent_root; | |
1095 | void *mapped_buffer; | |
1096 | ||
1097 | BUG_ON(!sblock->pagev[0].page); | |
1098 | if (is_metadata) { | |
1099 | struct btrfs_header *h; | |
1100 | ||
9613bebb | 1101 | mapped_buffer = kmap_atomic(sblock->pagev[0].page); |
b5d67f64 SB |
1102 | h = (struct btrfs_header *)mapped_buffer; |
1103 | ||
1104 | if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) || | |
1105 | generation != le64_to_cpu(h->generation) || | |
1106 | memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || | |
1107 | memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | |
1108 | BTRFS_UUID_SIZE)) | |
1109 | sblock->header_error = 1; | |
1110 | csum = h->csum; | |
1111 | } else { | |
1112 | if (!have_csum) | |
1113 | return; | |
a2de733c | 1114 | |
9613bebb | 1115 | mapped_buffer = kmap_atomic(sblock->pagev[0].page); |
b5d67f64 | 1116 | } |
a2de733c | 1117 | |
b5d67f64 SB |
1118 | for (page_num = 0;;) { |
1119 | if (page_num == 0 && is_metadata) | |
1120 | crc = btrfs_csum_data(root, | |
1121 | ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, | |
1122 | crc, PAGE_SIZE - BTRFS_CSUM_SIZE); | |
1123 | else | |
1124 | crc = btrfs_csum_data(root, mapped_buffer, crc, | |
1125 | PAGE_SIZE); | |
1126 | ||
9613bebb | 1127 | kunmap_atomic(mapped_buffer); |
b5d67f64 SB |
1128 | page_num++; |
1129 | if (page_num >= sblock->page_count) | |
1130 | break; | |
1131 | BUG_ON(!sblock->pagev[page_num].page); | |
1132 | ||
9613bebb | 1133 | mapped_buffer = kmap_atomic(sblock->pagev[page_num].page); |
b5d67f64 SB |
1134 | } |
1135 | ||
1136 | btrfs_csum_final(crc, calculated_csum); | |
1137 | if (memcmp(calculated_csum, csum, csum_size)) | |
1138 | sblock->checksum_error = 1; | |
a2de733c AJ |
1139 | } |
1140 | ||
b5d67f64 | 1141 | static void scrub_complete_bio_end_io(struct bio *bio, int err) |
a2de733c | 1142 | { |
b5d67f64 SB |
1143 | complete((struct completion *)bio->bi_private); |
1144 | } | |
a2de733c | 1145 | |
b5d67f64 SB |
1146 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
1147 | struct scrub_block *sblock_good, | |
1148 | int force_write) | |
1149 | { | |
1150 | int page_num; | |
1151 | int ret = 0; | |
96e36920 | 1152 | |
b5d67f64 SB |
1153 | for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { |
1154 | int ret_sub; | |
96e36920 | 1155 | |
b5d67f64 SB |
1156 | ret_sub = scrub_repair_page_from_good_copy(sblock_bad, |
1157 | sblock_good, | |
1158 | page_num, | |
1159 | force_write); | |
1160 | if (ret_sub) | |
1161 | ret = ret_sub; | |
a2de733c | 1162 | } |
b5d67f64 SB |
1163 | |
1164 | return ret; | |
1165 | } | |
1166 | ||
1167 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | |
1168 | struct scrub_block *sblock_good, | |
1169 | int page_num, int force_write) | |
1170 | { | |
1171 | struct scrub_page *page_bad = sblock_bad->pagev + page_num; | |
1172 | struct scrub_page *page_good = sblock_good->pagev + page_num; | |
1173 | ||
1174 | BUG_ON(sblock_bad->pagev[page_num].page == NULL); | |
1175 | BUG_ON(sblock_good->pagev[page_num].page == NULL); | |
1176 | if (force_write || sblock_bad->header_error || | |
1177 | sblock_bad->checksum_error || page_bad->io_error) { | |
1178 | struct bio *bio; | |
1179 | int ret; | |
1180 | DECLARE_COMPLETION_ONSTACK(complete); | |
1181 | ||
1182 | bio = bio_alloc(GFP_NOFS, 1); | |
e627ee7b TI |
1183 | if (!bio) |
1184 | return -EIO; | |
b5d67f64 SB |
1185 | bio->bi_bdev = page_bad->bdev; |
1186 | bio->bi_sector = page_bad->physical >> 9; | |
1187 | bio->bi_end_io = scrub_complete_bio_end_io; | |
1188 | bio->bi_private = &complete; | |
1189 | ||
1190 | ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); | |
1191 | if (PAGE_SIZE != ret) { | |
1192 | bio_put(bio); | |
1193 | return -EIO; | |
13db62b7 | 1194 | } |
b5d67f64 SB |
1195 | btrfsic_submit_bio(WRITE, bio); |
1196 | ||
1197 | /* this will also unplug the queue */ | |
1198 | wait_for_completion(&complete); | |
1199 | bio_put(bio); | |
a2de733c AJ |
1200 | } |
1201 | ||
b5d67f64 SB |
1202 | return 0; |
1203 | } | |
1204 | ||
1205 | static void scrub_checksum(struct scrub_block *sblock) | |
1206 | { | |
1207 | u64 flags; | |
1208 | int ret; | |
1209 | ||
1210 | BUG_ON(sblock->page_count < 1); | |
1211 | flags = sblock->pagev[0].flags; | |
1212 | ret = 0; | |
1213 | if (flags & BTRFS_EXTENT_FLAG_DATA) | |
1214 | ret = scrub_checksum_data(sblock); | |
1215 | else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | |
1216 | ret = scrub_checksum_tree_block(sblock); | |
1217 | else if (flags & BTRFS_EXTENT_FLAG_SUPER) | |
1218 | (void)scrub_checksum_super(sblock); | |
1219 | else | |
1220 | WARN_ON(1); | |
1221 | if (ret) | |
1222 | scrub_handle_errored_block(sblock); | |
a2de733c AJ |
1223 | } |
1224 | ||
b5d67f64 | 1225 | static int scrub_checksum_data(struct scrub_block *sblock) |
a2de733c | 1226 | { |
b5d67f64 | 1227 | struct scrub_dev *sdev = sblock->sdev; |
a2de733c | 1228 | u8 csum[BTRFS_CSUM_SIZE]; |
b5d67f64 SB |
1229 | u8 *on_disk_csum; |
1230 | struct page *page; | |
1231 | void *buffer; | |
a2de733c AJ |
1232 | u32 crc = ~(u32)0; |
1233 | int fail = 0; | |
1234 | struct btrfs_root *root = sdev->dev->dev_root; | |
b5d67f64 SB |
1235 | u64 len; |
1236 | int index; | |
a2de733c | 1237 | |
b5d67f64 SB |
1238 | BUG_ON(sblock->page_count < 1); |
1239 | if (!sblock->pagev[0].have_csum) | |
a2de733c AJ |
1240 | return 0; |
1241 | ||
b5d67f64 SB |
1242 | on_disk_csum = sblock->pagev[0].csum; |
1243 | page = sblock->pagev[0].page; | |
9613bebb | 1244 | buffer = kmap_atomic(page); |
b5d67f64 SB |
1245 | |
1246 | len = sdev->sectorsize; | |
1247 | index = 0; | |
1248 | for (;;) { | |
1249 | u64 l = min_t(u64, len, PAGE_SIZE); | |
1250 | ||
1251 | crc = btrfs_csum_data(root, buffer, crc, l); | |
9613bebb | 1252 | kunmap_atomic(buffer); |
b5d67f64 SB |
1253 | len -= l; |
1254 | if (len == 0) | |
1255 | break; | |
1256 | index++; | |
1257 | BUG_ON(index >= sblock->page_count); | |
1258 | BUG_ON(!sblock->pagev[index].page); | |
1259 | page = sblock->pagev[index].page; | |
9613bebb | 1260 | buffer = kmap_atomic(page); |
b5d67f64 SB |
1261 | } |
1262 | ||
a2de733c | 1263 | btrfs_csum_final(crc, csum); |
b5d67f64 | 1264 | if (memcmp(csum, on_disk_csum, sdev->csum_size)) |
a2de733c AJ |
1265 | fail = 1; |
1266 | ||
a2de733c AJ |
1267 | return fail; |
1268 | } | |
1269 | ||
b5d67f64 | 1270 | static int scrub_checksum_tree_block(struct scrub_block *sblock) |
a2de733c | 1271 | { |
b5d67f64 | 1272 | struct scrub_dev *sdev = sblock->sdev; |
a2de733c AJ |
1273 | struct btrfs_header *h; |
1274 | struct btrfs_root *root = sdev->dev->dev_root; | |
1275 | struct btrfs_fs_info *fs_info = root->fs_info; | |
b5d67f64 SB |
1276 | u8 calculated_csum[BTRFS_CSUM_SIZE]; |
1277 | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | |
1278 | struct page *page; | |
1279 | void *mapped_buffer; | |
1280 | u64 mapped_size; | |
1281 | void *p; | |
a2de733c AJ |
1282 | u32 crc = ~(u32)0; |
1283 | int fail = 0; | |
1284 | int crc_fail = 0; | |
b5d67f64 SB |
1285 | u64 len; |
1286 | int index; | |
1287 | ||
1288 | BUG_ON(sblock->page_count < 1); | |
1289 | page = sblock->pagev[0].page; | |
9613bebb | 1290 | mapped_buffer = kmap_atomic(page); |
b5d67f64 SB |
1291 | h = (struct btrfs_header *)mapped_buffer; |
1292 | memcpy(on_disk_csum, h->csum, sdev->csum_size); | |
a2de733c AJ |
1293 | |
1294 | /* | |
1295 | * we don't use the getter functions here, as we | |
1296 | * a) don't have an extent buffer and | |
1297 | * b) the page is already kmapped | |
1298 | */ | |
a2de733c | 1299 | |
b5d67f64 | 1300 | if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr)) |
a2de733c AJ |
1301 | ++fail; |
1302 | ||
b5d67f64 | 1303 | if (sblock->pagev[0].generation != le64_to_cpu(h->generation)) |
a2de733c AJ |
1304 | ++fail; |
1305 | ||
1306 | if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | |
1307 | ++fail; | |
1308 | ||
1309 | if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | |
1310 | BTRFS_UUID_SIZE)) | |
1311 | ++fail; | |
1312 | ||
b5d67f64 SB |
1313 | BUG_ON(sdev->nodesize != sdev->leafsize); |
1314 | len = sdev->nodesize - BTRFS_CSUM_SIZE; | |
1315 | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | |
1316 | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | |
1317 | index = 0; | |
1318 | for (;;) { | |
1319 | u64 l = min_t(u64, len, mapped_size); | |
1320 | ||
1321 | crc = btrfs_csum_data(root, p, crc, l); | |
9613bebb | 1322 | kunmap_atomic(mapped_buffer); |
b5d67f64 SB |
1323 | len -= l; |
1324 | if (len == 0) | |
1325 | break; | |
1326 | index++; | |
1327 | BUG_ON(index >= sblock->page_count); | |
1328 | BUG_ON(!sblock->pagev[index].page); | |
1329 | page = sblock->pagev[index].page; | |
9613bebb | 1330 | mapped_buffer = kmap_atomic(page); |
b5d67f64 SB |
1331 | mapped_size = PAGE_SIZE; |
1332 | p = mapped_buffer; | |
1333 | } | |
1334 | ||
1335 | btrfs_csum_final(crc, calculated_csum); | |
1336 | if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) | |
a2de733c AJ |
1337 | ++crc_fail; |
1338 | ||
a2de733c AJ |
1339 | return fail || crc_fail; |
1340 | } | |
1341 | ||
b5d67f64 | 1342 | static int scrub_checksum_super(struct scrub_block *sblock) |
a2de733c AJ |
1343 | { |
1344 | struct btrfs_super_block *s; | |
b5d67f64 | 1345 | struct scrub_dev *sdev = sblock->sdev; |
a2de733c AJ |
1346 | struct btrfs_root *root = sdev->dev->dev_root; |
1347 | struct btrfs_fs_info *fs_info = root->fs_info; | |
b5d67f64 SB |
1348 | u8 calculated_csum[BTRFS_CSUM_SIZE]; |
1349 | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | |
1350 | struct page *page; | |
1351 | void *mapped_buffer; | |
1352 | u64 mapped_size; | |
1353 | void *p; | |
a2de733c AJ |
1354 | u32 crc = ~(u32)0; |
1355 | int fail = 0; | |
b5d67f64 SB |
1356 | u64 len; |
1357 | int index; | |
a2de733c | 1358 | |
b5d67f64 SB |
1359 | BUG_ON(sblock->page_count < 1); |
1360 | page = sblock->pagev[0].page; | |
9613bebb | 1361 | mapped_buffer = kmap_atomic(page); |
b5d67f64 SB |
1362 | s = (struct btrfs_super_block *)mapped_buffer; |
1363 | memcpy(on_disk_csum, s->csum, sdev->csum_size); | |
a2de733c | 1364 | |
b5d67f64 | 1365 | if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr)) |
a2de733c AJ |
1366 | ++fail; |
1367 | ||
b5d67f64 | 1368 | if (sblock->pagev[0].generation != le64_to_cpu(s->generation)) |
a2de733c AJ |
1369 | ++fail; |
1370 | ||
1371 | if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | |
1372 | ++fail; | |
1373 | ||
b5d67f64 SB |
1374 | len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; |
1375 | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | |
1376 | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | |
1377 | index = 0; | |
1378 | for (;;) { | |
1379 | u64 l = min_t(u64, len, mapped_size); | |
1380 | ||
1381 | crc = btrfs_csum_data(root, p, crc, l); | |
9613bebb | 1382 | kunmap_atomic(mapped_buffer); |
b5d67f64 SB |
1383 | len -= l; |
1384 | if (len == 0) | |
1385 | break; | |
1386 | index++; | |
1387 | BUG_ON(index >= sblock->page_count); | |
1388 | BUG_ON(!sblock->pagev[index].page); | |
1389 | page = sblock->pagev[index].page; | |
9613bebb | 1390 | mapped_buffer = kmap_atomic(page); |
b5d67f64 SB |
1391 | mapped_size = PAGE_SIZE; |
1392 | p = mapped_buffer; | |
1393 | } | |
1394 | ||
1395 | btrfs_csum_final(crc, calculated_csum); | |
1396 | if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) | |
a2de733c AJ |
1397 | ++fail; |
1398 | ||
1399 | if (fail) { | |
1400 | /* | |
1401 | * if we find an error in a super block, we just report it. | |
1402 | * They will get written with the next transaction commit | |
1403 | * anyway | |
1404 | */ | |
1405 | spin_lock(&sdev->stat_lock); | |
1406 | ++sdev->stat.super_errors; | |
1407 | spin_unlock(&sdev->stat_lock); | |
1408 | } | |
1409 | ||
1410 | return fail; | |
1411 | } | |
1412 | ||
b5d67f64 SB |
1413 | static void scrub_block_get(struct scrub_block *sblock) |
1414 | { | |
1415 | atomic_inc(&sblock->ref_count); | |
1416 | } | |
1417 | ||
1418 | static void scrub_block_put(struct scrub_block *sblock) | |
1419 | { | |
1420 | if (atomic_dec_and_test(&sblock->ref_count)) { | |
1421 | int i; | |
1422 | ||
1423 | for (i = 0; i < sblock->page_count; i++) | |
1424 | if (sblock->pagev[i].page) | |
1425 | __free_page(sblock->pagev[i].page); | |
1426 | kfree(sblock); | |
1427 | } | |
1428 | } | |
1429 | ||
1623edeb | 1430 | static void scrub_submit(struct scrub_dev *sdev) |
a2de733c AJ |
1431 | { |
1432 | struct scrub_bio *sbio; | |
1433 | ||
1434 | if (sdev->curr == -1) | |
1623edeb | 1435 | return; |
a2de733c AJ |
1436 | |
1437 | sbio = sdev->bios[sdev->curr]; | |
a2de733c AJ |
1438 | sdev->curr = -1; |
1439 | atomic_inc(&sdev->in_flight); | |
1440 | ||
21adbd5c | 1441 | btrfsic_submit_bio(READ, sbio->bio); |
a2de733c AJ |
1442 | } |
1443 | ||
b5d67f64 SB |
1444 | static int scrub_add_page_to_bio(struct scrub_dev *sdev, |
1445 | struct scrub_page *spage) | |
a2de733c | 1446 | { |
b5d67f64 | 1447 | struct scrub_block *sblock = spage->sblock; |
a2de733c | 1448 | struct scrub_bio *sbio; |
69f4cb52 | 1449 | int ret; |
a2de733c AJ |
1450 | |
1451 | again: | |
1452 | /* | |
1453 | * grab a fresh bio or wait for one to become available | |
1454 | */ | |
1455 | while (sdev->curr == -1) { | |
1456 | spin_lock(&sdev->list_lock); | |
1457 | sdev->curr = sdev->first_free; | |
1458 | if (sdev->curr != -1) { | |
1459 | sdev->first_free = sdev->bios[sdev->curr]->next_free; | |
1460 | sdev->bios[sdev->curr]->next_free = -1; | |
b5d67f64 | 1461 | sdev->bios[sdev->curr]->page_count = 0; |
a2de733c AJ |
1462 | spin_unlock(&sdev->list_lock); |
1463 | } else { | |
1464 | spin_unlock(&sdev->list_lock); | |
1465 | wait_event(sdev->list_wait, sdev->first_free != -1); | |
1466 | } | |
1467 | } | |
1468 | sbio = sdev->bios[sdev->curr]; | |
b5d67f64 | 1469 | if (sbio->page_count == 0) { |
69f4cb52 AJ |
1470 | struct bio *bio; |
1471 | ||
b5d67f64 SB |
1472 | sbio->physical = spage->physical; |
1473 | sbio->logical = spage->logical; | |
1474 | bio = sbio->bio; | |
1475 | if (!bio) { | |
1476 | bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio); | |
1477 | if (!bio) | |
1478 | return -ENOMEM; | |
1479 | sbio->bio = bio; | |
1480 | } | |
69f4cb52 AJ |
1481 | |
1482 | bio->bi_private = sbio; | |
1483 | bio->bi_end_io = scrub_bio_end_io; | |
1484 | bio->bi_bdev = sdev->dev->bdev; | |
b5d67f64 | 1485 | bio->bi_sector = spage->physical >> 9; |
69f4cb52 | 1486 | sbio->err = 0; |
b5d67f64 SB |
1487 | } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
1488 | spage->physical || | |
1489 | sbio->logical + sbio->page_count * PAGE_SIZE != | |
1490 | spage->logical) { | |
1623edeb | 1491 | scrub_submit(sdev); |
a2de733c AJ |
1492 | goto again; |
1493 | } | |
69f4cb52 | 1494 | |
b5d67f64 SB |
1495 | sbio->pagev[sbio->page_count] = spage; |
1496 | ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | |
1497 | if (ret != PAGE_SIZE) { | |
1498 | if (sbio->page_count < 1) { | |
1499 | bio_put(sbio->bio); | |
1500 | sbio->bio = NULL; | |
1501 | return -EIO; | |
1502 | } | |
1623edeb | 1503 | scrub_submit(sdev); |
69f4cb52 AJ |
1504 | goto again; |
1505 | } | |
1506 | ||
b5d67f64 SB |
1507 | scrub_block_get(sblock); /* one for the added page */ |
1508 | atomic_inc(&sblock->outstanding_pages); | |
1509 | sbio->page_count++; | |
1510 | if (sbio->page_count == sdev->pages_per_bio) | |
1511 | scrub_submit(sdev); | |
1512 | ||
1513 | return 0; | |
1514 | } | |
1515 | ||
1516 | static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, | |
1517 | u64 physical, u64 flags, u64 gen, int mirror_num, | |
1518 | u8 *csum, int force) | |
1519 | { | |
1520 | struct scrub_block *sblock; | |
1521 | int index; | |
1522 | ||
1523 | sblock = kzalloc(sizeof(*sblock), GFP_NOFS); | |
1524 | if (!sblock) { | |
1525 | spin_lock(&sdev->stat_lock); | |
1526 | sdev->stat.malloc_errors++; | |
1527 | spin_unlock(&sdev->stat_lock); | |
1528 | return -ENOMEM; | |
a2de733c | 1529 | } |
b5d67f64 SB |
1530 | |
1531 | /* one ref inside this function, plus one for each page later on */ | |
1532 | atomic_set(&sblock->ref_count, 1); | |
1533 | sblock->sdev = sdev; | |
1534 | sblock->no_io_error_seen = 1; | |
1535 | ||
1536 | for (index = 0; len > 0; index++) { | |
1537 | struct scrub_page *spage = sblock->pagev + index; | |
1538 | u64 l = min_t(u64, len, PAGE_SIZE); | |
1539 | ||
1540 | BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); | |
1541 | spage->page = alloc_page(GFP_NOFS); | |
1542 | if (!spage->page) { | |
1543 | spin_lock(&sdev->stat_lock); | |
1544 | sdev->stat.malloc_errors++; | |
1545 | spin_unlock(&sdev->stat_lock); | |
1546 | while (index > 0) { | |
1547 | index--; | |
1548 | __free_page(sblock->pagev[index].page); | |
1549 | } | |
1550 | kfree(sblock); | |
1551 | return -ENOMEM; | |
1552 | } | |
1553 | spage->sblock = sblock; | |
1554 | spage->bdev = sdev->dev->bdev; | |
1555 | spage->flags = flags; | |
1556 | spage->generation = gen; | |
1557 | spage->logical = logical; | |
1558 | spage->physical = physical; | |
1559 | spage->mirror_num = mirror_num; | |
1560 | if (csum) { | |
1561 | spage->have_csum = 1; | |
1562 | memcpy(spage->csum, csum, sdev->csum_size); | |
1563 | } else { | |
1564 | spage->have_csum = 0; | |
1565 | } | |
1566 | sblock->page_count++; | |
1567 | len -= l; | |
1568 | logical += l; | |
1569 | physical += l; | |
1570 | } | |
1571 | ||
1572 | BUG_ON(sblock->page_count == 0); | |
1573 | for (index = 0; index < sblock->page_count; index++) { | |
1574 | struct scrub_page *spage = sblock->pagev + index; | |
1bc87793 AJ |
1575 | int ret; |
1576 | ||
b5d67f64 SB |
1577 | ret = scrub_add_page_to_bio(sdev, spage); |
1578 | if (ret) { | |
1579 | scrub_block_put(sblock); | |
1bc87793 | 1580 | return ret; |
b5d67f64 | 1581 | } |
1bc87793 | 1582 | } |
a2de733c | 1583 | |
b5d67f64 | 1584 | if (force) |
1623edeb | 1585 | scrub_submit(sdev); |
a2de733c | 1586 | |
b5d67f64 SB |
1587 | /* last one frees, either here or in bio completion for last page */ |
1588 | scrub_block_put(sblock); | |
a2de733c AJ |
1589 | return 0; |
1590 | } | |
1591 | ||
b5d67f64 SB |
1592 | static void scrub_bio_end_io(struct bio *bio, int err) |
1593 | { | |
1594 | struct scrub_bio *sbio = bio->bi_private; | |
1595 | struct scrub_dev *sdev = sbio->sdev; | |
1596 | struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; | |
1597 | ||
1598 | sbio->err = err; | |
1599 | sbio->bio = bio; | |
1600 | ||
1601 | btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); | |
1602 | } | |
1603 | ||
1604 | static void scrub_bio_end_io_worker(struct btrfs_work *work) | |
1605 | { | |
1606 | struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | |
1607 | struct scrub_dev *sdev = sbio->sdev; | |
1608 | int i; | |
1609 | ||
1610 | BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO); | |
1611 | if (sbio->err) { | |
1612 | for (i = 0; i < sbio->page_count; i++) { | |
1613 | struct scrub_page *spage = sbio->pagev[i]; | |
1614 | ||
1615 | spage->io_error = 1; | |
1616 | spage->sblock->no_io_error_seen = 0; | |
1617 | } | |
1618 | } | |
1619 | ||
1620 | /* now complete the scrub_block items that have all pages completed */ | |
1621 | for (i = 0; i < sbio->page_count; i++) { | |
1622 | struct scrub_page *spage = sbio->pagev[i]; | |
1623 | struct scrub_block *sblock = spage->sblock; | |
1624 | ||
1625 | if (atomic_dec_and_test(&sblock->outstanding_pages)) | |
1626 | scrub_block_complete(sblock); | |
1627 | scrub_block_put(sblock); | |
1628 | } | |
1629 | ||
1630 | if (sbio->err) { | |
1631 | /* what is this good for??? */ | |
1632 | sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1); | |
1633 | sbio->bio->bi_flags |= 1 << BIO_UPTODATE; | |
1634 | sbio->bio->bi_phys_segments = 0; | |
1635 | sbio->bio->bi_idx = 0; | |
1636 | ||
1637 | for (i = 0; i < sbio->page_count; i++) { | |
1638 | struct bio_vec *bi; | |
1639 | bi = &sbio->bio->bi_io_vec[i]; | |
1640 | bi->bv_offset = 0; | |
1641 | bi->bv_len = PAGE_SIZE; | |
1642 | } | |
1643 | } | |
1644 | ||
1645 | bio_put(sbio->bio); | |
1646 | sbio->bio = NULL; | |
1647 | spin_lock(&sdev->list_lock); | |
1648 | sbio->next_free = sdev->first_free; | |
1649 | sdev->first_free = sbio->index; | |
1650 | spin_unlock(&sdev->list_lock); | |
1651 | atomic_dec(&sdev->in_flight); | |
1652 | wake_up(&sdev->list_wait); | |
1653 | } | |
1654 | ||
1655 | static void scrub_block_complete(struct scrub_block *sblock) | |
1656 | { | |
1657 | if (!sblock->no_io_error_seen) | |
1658 | scrub_handle_errored_block(sblock); | |
1659 | else | |
1660 | scrub_checksum(sblock); | |
1661 | } | |
1662 | ||
a2de733c AJ |
1663 | static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len, |
1664 | u8 *csum) | |
1665 | { | |
1666 | struct btrfs_ordered_sum *sum = NULL; | |
1667 | int ret = 0; | |
1668 | unsigned long i; | |
1669 | unsigned long num_sectors; | |
a2de733c AJ |
1670 | |
1671 | while (!list_empty(&sdev->csum_list)) { | |
1672 | sum = list_first_entry(&sdev->csum_list, | |
1673 | struct btrfs_ordered_sum, list); | |
1674 | if (sum->bytenr > logical) | |
1675 | return 0; | |
1676 | if (sum->bytenr + sum->len > logical) | |
1677 | break; | |
1678 | ||
1679 | ++sdev->stat.csum_discards; | |
1680 | list_del(&sum->list); | |
1681 | kfree(sum); | |
1682 | sum = NULL; | |
1683 | } | |
1684 | if (!sum) | |
1685 | return 0; | |
1686 | ||
b5d67f64 | 1687 | num_sectors = sum->len / sdev->sectorsize; |
a2de733c AJ |
1688 | for (i = 0; i < num_sectors; ++i) { |
1689 | if (sum->sums[i].bytenr == logical) { | |
1690 | memcpy(csum, &sum->sums[i].sum, sdev->csum_size); | |
1691 | ret = 1; | |
1692 | break; | |
1693 | } | |
1694 | } | |
1695 | if (ret && i == num_sectors - 1) { | |
1696 | list_del(&sum->list); | |
1697 | kfree(sum); | |
1698 | } | |
1699 | return ret; | |
1700 | } | |
1701 | ||
1702 | /* scrub extent tries to collect up to 64 kB for each bio */ | |
1703 | static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len, | |
e12fa9cd | 1704 | u64 physical, u64 flags, u64 gen, int mirror_num) |
a2de733c AJ |
1705 | { |
1706 | int ret; | |
1707 | u8 csum[BTRFS_CSUM_SIZE]; | |
b5d67f64 SB |
1708 | u32 blocksize; |
1709 | ||
1710 | if (flags & BTRFS_EXTENT_FLAG_DATA) { | |
1711 | blocksize = sdev->sectorsize; | |
1712 | spin_lock(&sdev->stat_lock); | |
1713 | sdev->stat.data_extents_scrubbed++; | |
1714 | sdev->stat.data_bytes_scrubbed += len; | |
1715 | spin_unlock(&sdev->stat_lock); | |
1716 | } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | |
1717 | BUG_ON(sdev->nodesize != sdev->leafsize); | |
1718 | blocksize = sdev->nodesize; | |
1719 | spin_lock(&sdev->stat_lock); | |
1720 | sdev->stat.tree_extents_scrubbed++; | |
1721 | sdev->stat.tree_bytes_scrubbed += len; | |
1722 | spin_unlock(&sdev->stat_lock); | |
1723 | } else { | |
1724 | blocksize = sdev->sectorsize; | |
1725 | BUG_ON(1); | |
1726 | } | |
a2de733c AJ |
1727 | |
1728 | while (len) { | |
b5d67f64 | 1729 | u64 l = min_t(u64, len, blocksize); |
a2de733c AJ |
1730 | int have_csum = 0; |
1731 | ||
1732 | if (flags & BTRFS_EXTENT_FLAG_DATA) { | |
1733 | /* push csums to sbio */ | |
1734 | have_csum = scrub_find_csum(sdev, logical, l, csum); | |
1735 | if (have_csum == 0) | |
1736 | ++sdev->stat.no_csum; | |
1737 | } | |
b5d67f64 SB |
1738 | ret = scrub_pages(sdev, logical, l, physical, flags, gen, |
1739 | mirror_num, have_csum ? csum : NULL, 0); | |
a2de733c AJ |
1740 | if (ret) |
1741 | return ret; | |
1742 | len -= l; | |
1743 | logical += l; | |
1744 | physical += l; | |
1745 | } | |
1746 | return 0; | |
1747 | } | |
1748 | ||
1749 | static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, | |
1750 | struct map_lookup *map, int num, u64 base, u64 length) | |
1751 | { | |
1752 | struct btrfs_path *path; | |
1753 | struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; | |
1754 | struct btrfs_root *root = fs_info->extent_root; | |
1755 | struct btrfs_root *csum_root = fs_info->csum_root; | |
1756 | struct btrfs_extent_item *extent; | |
e7786c3a | 1757 | struct blk_plug plug; |
a2de733c AJ |
1758 | u64 flags; |
1759 | int ret; | |
1760 | int slot; | |
1761 | int i; | |
1762 | u64 nstripes; | |
a2de733c AJ |
1763 | struct extent_buffer *l; |
1764 | struct btrfs_key key; | |
1765 | u64 physical; | |
1766 | u64 logical; | |
1767 | u64 generation; | |
e12fa9cd | 1768 | int mirror_num; |
7a26285e AJ |
1769 | struct reada_control *reada1; |
1770 | struct reada_control *reada2; | |
1771 | struct btrfs_key key_start; | |
1772 | struct btrfs_key key_end; | |
a2de733c AJ |
1773 | |
1774 | u64 increment = map->stripe_len; | |
1775 | u64 offset; | |
1776 | ||
1777 | nstripes = length; | |
1778 | offset = 0; | |
1779 | do_div(nstripes, map->stripe_len); | |
1780 | if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | |
1781 | offset = map->stripe_len * num; | |
1782 | increment = map->stripe_len * map->num_stripes; | |
193ea74b | 1783 | mirror_num = 1; |
a2de733c AJ |
1784 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
1785 | int factor = map->num_stripes / map->sub_stripes; | |
1786 | offset = map->stripe_len * (num / map->sub_stripes); | |
1787 | increment = map->stripe_len * factor; | |
193ea74b | 1788 | mirror_num = num % map->sub_stripes + 1; |
a2de733c AJ |
1789 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { |
1790 | increment = map->stripe_len; | |
193ea74b | 1791 | mirror_num = num % map->num_stripes + 1; |
a2de733c AJ |
1792 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
1793 | increment = map->stripe_len; | |
193ea74b | 1794 | mirror_num = num % map->num_stripes + 1; |
a2de733c AJ |
1795 | } else { |
1796 | increment = map->stripe_len; | |
193ea74b | 1797 | mirror_num = 1; |
a2de733c AJ |
1798 | } |
1799 | ||
1800 | path = btrfs_alloc_path(); | |
1801 | if (!path) | |
1802 | return -ENOMEM; | |
1803 | ||
b5d67f64 SB |
1804 | /* |
1805 | * work on commit root. The related disk blocks are static as | |
1806 | * long as COW is applied. This means, it is save to rewrite | |
1807 | * them to repair disk errors without any race conditions | |
1808 | */ | |
a2de733c AJ |
1809 | path->search_commit_root = 1; |
1810 | path->skip_locking = 1; | |
1811 | ||
1812 | /* | |
7a26285e AJ |
1813 | * trigger the readahead for extent tree csum tree and wait for |
1814 | * completion. During readahead, the scrub is officially paused | |
1815 | * to not hold off transaction commits | |
a2de733c AJ |
1816 | */ |
1817 | logical = base + offset; | |
a2de733c | 1818 | |
7a26285e AJ |
1819 | wait_event(sdev->list_wait, |
1820 | atomic_read(&sdev->in_flight) == 0); | |
1821 | atomic_inc(&fs_info->scrubs_paused); | |
1822 | wake_up(&fs_info->scrub_pause_wait); | |
1823 | ||
1824 | /* FIXME it might be better to start readahead at commit root */ | |
1825 | key_start.objectid = logical; | |
1826 | key_start.type = BTRFS_EXTENT_ITEM_KEY; | |
1827 | key_start.offset = (u64)0; | |
1828 | key_end.objectid = base + offset + nstripes * increment; | |
1829 | key_end.type = BTRFS_EXTENT_ITEM_KEY; | |
1830 | key_end.offset = (u64)0; | |
1831 | reada1 = btrfs_reada_add(root, &key_start, &key_end); | |
1832 | ||
1833 | key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | |
1834 | key_start.type = BTRFS_EXTENT_CSUM_KEY; | |
1835 | key_start.offset = logical; | |
1836 | key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | |
1837 | key_end.type = BTRFS_EXTENT_CSUM_KEY; | |
1838 | key_end.offset = base + offset + nstripes * increment; | |
1839 | reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); | |
1840 | ||
1841 | if (!IS_ERR(reada1)) | |
1842 | btrfs_reada_wait(reada1); | |
1843 | if (!IS_ERR(reada2)) | |
1844 | btrfs_reada_wait(reada2); | |
1845 | ||
1846 | mutex_lock(&fs_info->scrub_lock); | |
1847 | while (atomic_read(&fs_info->scrub_pause_req)) { | |
1848 | mutex_unlock(&fs_info->scrub_lock); | |
1849 | wait_event(fs_info->scrub_pause_wait, | |
1850 | atomic_read(&fs_info->scrub_pause_req) == 0); | |
1851 | mutex_lock(&fs_info->scrub_lock); | |
a2de733c | 1852 | } |
7a26285e AJ |
1853 | atomic_dec(&fs_info->scrubs_paused); |
1854 | mutex_unlock(&fs_info->scrub_lock); | |
1855 | wake_up(&fs_info->scrub_pause_wait); | |
a2de733c AJ |
1856 | |
1857 | /* | |
1858 | * collect all data csums for the stripe to avoid seeking during | |
1859 | * the scrub. This might currently (crc32) end up to be about 1MB | |
1860 | */ | |
e7786c3a | 1861 | blk_start_plug(&plug); |
a2de733c | 1862 | |
a2de733c AJ |
1863 | /* |
1864 | * now find all extents for each stripe and scrub them | |
1865 | */ | |
7a26285e AJ |
1866 | logical = base + offset; |
1867 | physical = map->stripes[num].physical; | |
a2de733c | 1868 | ret = 0; |
7a26285e | 1869 | for (i = 0; i < nstripes; ++i) { |
a2de733c AJ |
1870 | /* |
1871 | * canceled? | |
1872 | */ | |
1873 | if (atomic_read(&fs_info->scrub_cancel_req) || | |
1874 | atomic_read(&sdev->cancel_req)) { | |
1875 | ret = -ECANCELED; | |
1876 | goto out; | |
1877 | } | |
1878 | /* | |
1879 | * check to see if we have to pause | |
1880 | */ | |
1881 | if (atomic_read(&fs_info->scrub_pause_req)) { | |
1882 | /* push queued extents */ | |
1883 | scrub_submit(sdev); | |
1884 | wait_event(sdev->list_wait, | |
1885 | atomic_read(&sdev->in_flight) == 0); | |
1886 | atomic_inc(&fs_info->scrubs_paused); | |
1887 | wake_up(&fs_info->scrub_pause_wait); | |
1888 | mutex_lock(&fs_info->scrub_lock); | |
1889 | while (atomic_read(&fs_info->scrub_pause_req)) { | |
1890 | mutex_unlock(&fs_info->scrub_lock); | |
1891 | wait_event(fs_info->scrub_pause_wait, | |
1892 | atomic_read(&fs_info->scrub_pause_req) == 0); | |
1893 | mutex_lock(&fs_info->scrub_lock); | |
1894 | } | |
1895 | atomic_dec(&fs_info->scrubs_paused); | |
1896 | mutex_unlock(&fs_info->scrub_lock); | |
1897 | wake_up(&fs_info->scrub_pause_wait); | |
a2de733c AJ |
1898 | } |
1899 | ||
7a26285e AJ |
1900 | ret = btrfs_lookup_csums_range(csum_root, logical, |
1901 | logical + map->stripe_len - 1, | |
1902 | &sdev->csum_list, 1); | |
1903 | if (ret) | |
1904 | goto out; | |
1905 | ||
a2de733c AJ |
1906 | key.objectid = logical; |
1907 | key.type = BTRFS_EXTENT_ITEM_KEY; | |
1908 | key.offset = (u64)0; | |
1909 | ||
1910 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
1911 | if (ret < 0) | |
1912 | goto out; | |
8c51032f | 1913 | if (ret > 0) { |
a2de733c AJ |
1914 | ret = btrfs_previous_item(root, path, 0, |
1915 | BTRFS_EXTENT_ITEM_KEY); | |
1916 | if (ret < 0) | |
1917 | goto out; | |
8c51032f AJ |
1918 | if (ret > 0) { |
1919 | /* there's no smaller item, so stick with the | |
1920 | * larger one */ | |
1921 | btrfs_release_path(path); | |
1922 | ret = btrfs_search_slot(NULL, root, &key, | |
1923 | path, 0, 0); | |
1924 | if (ret < 0) | |
1925 | goto out; | |
1926 | } | |
a2de733c AJ |
1927 | } |
1928 | ||
1929 | while (1) { | |
1930 | l = path->nodes[0]; | |
1931 | slot = path->slots[0]; | |
1932 | if (slot >= btrfs_header_nritems(l)) { | |
1933 | ret = btrfs_next_leaf(root, path); | |
1934 | if (ret == 0) | |
1935 | continue; | |
1936 | if (ret < 0) | |
1937 | goto out; | |
1938 | ||
1939 | break; | |
1940 | } | |
1941 | btrfs_item_key_to_cpu(l, &key, slot); | |
1942 | ||
1943 | if (key.objectid + key.offset <= logical) | |
1944 | goto next; | |
1945 | ||
1946 | if (key.objectid >= logical + map->stripe_len) | |
1947 | break; | |
1948 | ||
1949 | if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) | |
1950 | goto next; | |
1951 | ||
1952 | extent = btrfs_item_ptr(l, slot, | |
1953 | struct btrfs_extent_item); | |
1954 | flags = btrfs_extent_flags(l, extent); | |
1955 | generation = btrfs_extent_generation(l, extent); | |
1956 | ||
1957 | if (key.objectid < logical && | |
1958 | (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { | |
1959 | printk(KERN_ERR | |
1960 | "btrfs scrub: tree block %llu spanning " | |
1961 | "stripes, ignored. logical=%llu\n", | |
1962 | (unsigned long long)key.objectid, | |
1963 | (unsigned long long)logical); | |
1964 | goto next; | |
1965 | } | |
1966 | ||
1967 | /* | |
1968 | * trim extent to this stripe | |
1969 | */ | |
1970 | if (key.objectid < logical) { | |
1971 | key.offset -= logical - key.objectid; | |
1972 | key.objectid = logical; | |
1973 | } | |
1974 | if (key.objectid + key.offset > | |
1975 | logical + map->stripe_len) { | |
1976 | key.offset = logical + map->stripe_len - | |
1977 | key.objectid; | |
1978 | } | |
1979 | ||
1980 | ret = scrub_extent(sdev, key.objectid, key.offset, | |
1981 | key.objectid - logical + physical, | |
1982 | flags, generation, mirror_num); | |
1983 | if (ret) | |
1984 | goto out; | |
1985 | ||
1986 | next: | |
1987 | path->slots[0]++; | |
1988 | } | |
71267333 | 1989 | btrfs_release_path(path); |
a2de733c AJ |
1990 | logical += increment; |
1991 | physical += map->stripe_len; | |
1992 | spin_lock(&sdev->stat_lock); | |
1993 | sdev->stat.last_physical = physical; | |
1994 | spin_unlock(&sdev->stat_lock); | |
1995 | } | |
1996 | /* push queued extents */ | |
1997 | scrub_submit(sdev); | |
1998 | ||
1999 | out: | |
e7786c3a | 2000 | blk_finish_plug(&plug); |
a2de733c AJ |
2001 | btrfs_free_path(path); |
2002 | return ret < 0 ? ret : 0; | |
2003 | } | |
2004 | ||
2005 | static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev, | |
859acaf1 AJ |
2006 | u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length, |
2007 | u64 dev_offset) | |
a2de733c AJ |
2008 | { |
2009 | struct btrfs_mapping_tree *map_tree = | |
2010 | &sdev->dev->dev_root->fs_info->mapping_tree; | |
2011 | struct map_lookup *map; | |
2012 | struct extent_map *em; | |
2013 | int i; | |
2014 | int ret = -EINVAL; | |
2015 | ||
2016 | read_lock(&map_tree->map_tree.lock); | |
2017 | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | |
2018 | read_unlock(&map_tree->map_tree.lock); | |
2019 | ||
2020 | if (!em) | |
2021 | return -EINVAL; | |
2022 | ||
2023 | map = (struct map_lookup *)em->bdev; | |
2024 | if (em->start != chunk_offset) | |
2025 | goto out; | |
2026 | ||
2027 | if (em->len < length) | |
2028 | goto out; | |
2029 | ||
2030 | for (i = 0; i < map->num_stripes; ++i) { | |
859acaf1 AJ |
2031 | if (map->stripes[i].dev == sdev->dev && |
2032 | map->stripes[i].physical == dev_offset) { | |
a2de733c AJ |
2033 | ret = scrub_stripe(sdev, map, i, chunk_offset, length); |
2034 | if (ret) | |
2035 | goto out; | |
2036 | } | |
2037 | } | |
2038 | out: | |
2039 | free_extent_map(em); | |
2040 | ||
2041 | return ret; | |
2042 | } | |
2043 | ||
2044 | static noinline_for_stack | |
2045 | int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end) | |
2046 | { | |
2047 | struct btrfs_dev_extent *dev_extent = NULL; | |
2048 | struct btrfs_path *path; | |
2049 | struct btrfs_root *root = sdev->dev->dev_root; | |
2050 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2051 | u64 length; | |
2052 | u64 chunk_tree; | |
2053 | u64 chunk_objectid; | |
2054 | u64 chunk_offset; | |
2055 | int ret; | |
2056 | int slot; | |
2057 | struct extent_buffer *l; | |
2058 | struct btrfs_key key; | |
2059 | struct btrfs_key found_key; | |
2060 | struct btrfs_block_group_cache *cache; | |
2061 | ||
2062 | path = btrfs_alloc_path(); | |
2063 | if (!path) | |
2064 | return -ENOMEM; | |
2065 | ||
2066 | path->reada = 2; | |
2067 | path->search_commit_root = 1; | |
2068 | path->skip_locking = 1; | |
2069 | ||
2070 | key.objectid = sdev->dev->devid; | |
2071 | key.offset = 0ull; | |
2072 | key.type = BTRFS_DEV_EXTENT_KEY; | |
2073 | ||
2074 | ||
2075 | while (1) { | |
2076 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
2077 | if (ret < 0) | |
8c51032f AJ |
2078 | break; |
2079 | if (ret > 0) { | |
2080 | if (path->slots[0] >= | |
2081 | btrfs_header_nritems(path->nodes[0])) { | |
2082 | ret = btrfs_next_leaf(root, path); | |
2083 | if (ret) | |
2084 | break; | |
2085 | } | |
2086 | } | |
a2de733c AJ |
2087 | |
2088 | l = path->nodes[0]; | |
2089 | slot = path->slots[0]; | |
2090 | ||
2091 | btrfs_item_key_to_cpu(l, &found_key, slot); | |
2092 | ||
2093 | if (found_key.objectid != sdev->dev->devid) | |
2094 | break; | |
2095 | ||
8c51032f | 2096 | if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) |
a2de733c AJ |
2097 | break; |
2098 | ||
2099 | if (found_key.offset >= end) | |
2100 | break; | |
2101 | ||
2102 | if (found_key.offset < key.offset) | |
2103 | break; | |
2104 | ||
2105 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | |
2106 | length = btrfs_dev_extent_length(l, dev_extent); | |
2107 | ||
2108 | if (found_key.offset + length <= start) { | |
2109 | key.offset = found_key.offset + length; | |
71267333 | 2110 | btrfs_release_path(path); |
a2de733c AJ |
2111 | continue; |
2112 | } | |
2113 | ||
2114 | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | |
2115 | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | |
2116 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | |
2117 | ||
2118 | /* | |
2119 | * get a reference on the corresponding block group to prevent | |
2120 | * the chunk from going away while we scrub it | |
2121 | */ | |
2122 | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | |
2123 | if (!cache) { | |
2124 | ret = -ENOENT; | |
8c51032f | 2125 | break; |
a2de733c AJ |
2126 | } |
2127 | ret = scrub_chunk(sdev, chunk_tree, chunk_objectid, | |
859acaf1 | 2128 | chunk_offset, length, found_key.offset); |
a2de733c AJ |
2129 | btrfs_put_block_group(cache); |
2130 | if (ret) | |
2131 | break; | |
2132 | ||
2133 | key.offset = found_key.offset + length; | |
71267333 | 2134 | btrfs_release_path(path); |
a2de733c AJ |
2135 | } |
2136 | ||
a2de733c | 2137 | btrfs_free_path(path); |
8c51032f AJ |
2138 | |
2139 | /* | |
2140 | * ret can still be 1 from search_slot or next_leaf, | |
2141 | * that's not an error | |
2142 | */ | |
2143 | return ret < 0 ? ret : 0; | |
a2de733c AJ |
2144 | } |
2145 | ||
2146 | static noinline_for_stack int scrub_supers(struct scrub_dev *sdev) | |
2147 | { | |
2148 | int i; | |
2149 | u64 bytenr; | |
2150 | u64 gen; | |
2151 | int ret; | |
2152 | struct btrfs_device *device = sdev->dev; | |
2153 | struct btrfs_root *root = device->dev_root; | |
2154 | ||
79787eaa JM |
2155 | if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) |
2156 | return -EIO; | |
2157 | ||
a2de733c AJ |
2158 | gen = root->fs_info->last_trans_committed; |
2159 | ||
2160 | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | |
2161 | bytenr = btrfs_sb_offset(i); | |
1623edeb | 2162 | if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) |
a2de733c AJ |
2163 | break; |
2164 | ||
b5d67f64 SB |
2165 | ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, |
2166 | BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1); | |
a2de733c AJ |
2167 | if (ret) |
2168 | return ret; | |
2169 | } | |
2170 | wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); | |
2171 | ||
2172 | return 0; | |
2173 | } | |
2174 | ||
2175 | /* | |
2176 | * get a reference count on fs_info->scrub_workers. start worker if necessary | |
2177 | */ | |
2178 | static noinline_for_stack int scrub_workers_get(struct btrfs_root *root) | |
2179 | { | |
2180 | struct btrfs_fs_info *fs_info = root->fs_info; | |
0dc3b84a | 2181 | int ret = 0; |
a2de733c AJ |
2182 | |
2183 | mutex_lock(&fs_info->scrub_lock); | |
632dd772 AJ |
2184 | if (fs_info->scrub_workers_refcnt == 0) { |
2185 | btrfs_init_workers(&fs_info->scrub_workers, "scrub", | |
2186 | fs_info->thread_pool_size, &fs_info->generic_worker); | |
2187 | fs_info->scrub_workers.idle_thresh = 4; | |
0dc3b84a JB |
2188 | ret = btrfs_start_workers(&fs_info->scrub_workers); |
2189 | if (ret) | |
2190 | goto out; | |
632dd772 | 2191 | } |
a2de733c | 2192 | ++fs_info->scrub_workers_refcnt; |
0dc3b84a | 2193 | out: |
a2de733c AJ |
2194 | mutex_unlock(&fs_info->scrub_lock); |
2195 | ||
0dc3b84a | 2196 | return ret; |
a2de733c AJ |
2197 | } |
2198 | ||
2199 | static noinline_for_stack void scrub_workers_put(struct btrfs_root *root) | |
2200 | { | |
2201 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2202 | ||
2203 | mutex_lock(&fs_info->scrub_lock); | |
2204 | if (--fs_info->scrub_workers_refcnt == 0) | |
2205 | btrfs_stop_workers(&fs_info->scrub_workers); | |
2206 | WARN_ON(fs_info->scrub_workers_refcnt < 0); | |
2207 | mutex_unlock(&fs_info->scrub_lock); | |
2208 | } | |
2209 | ||
2210 | ||
2211 | int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end, | |
8628764e | 2212 | struct btrfs_scrub_progress *progress, int readonly) |
a2de733c AJ |
2213 | { |
2214 | struct scrub_dev *sdev; | |
2215 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2216 | int ret; | |
2217 | struct btrfs_device *dev; | |
2218 | ||
7841cb28 | 2219 | if (btrfs_fs_closing(root->fs_info)) |
a2de733c AJ |
2220 | return -EINVAL; |
2221 | ||
2222 | /* | |
2223 | * check some assumptions | |
2224 | */ | |
b5d67f64 SB |
2225 | if (root->nodesize != root->leafsize) { |
2226 | printk(KERN_ERR | |
2227 | "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", | |
2228 | root->nodesize, root->leafsize); | |
2229 | return -EINVAL; | |
2230 | } | |
2231 | ||
2232 | if (root->nodesize > BTRFS_STRIPE_LEN) { | |
2233 | /* | |
2234 | * in this case scrub is unable to calculate the checksum | |
2235 | * the way scrub is implemented. Do not handle this | |
2236 | * situation at all because it won't ever happen. | |
2237 | */ | |
2238 | printk(KERN_ERR | |
2239 | "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", | |
2240 | root->nodesize, BTRFS_STRIPE_LEN); | |
2241 | return -EINVAL; | |
2242 | } | |
2243 | ||
2244 | if (root->sectorsize != PAGE_SIZE) { | |
2245 | /* not supported for data w/o checksums */ | |
2246 | printk(KERN_ERR | |
2247 | "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", | |
2248 | root->sectorsize, (unsigned long long)PAGE_SIZE); | |
a2de733c AJ |
2249 | return -EINVAL; |
2250 | } | |
2251 | ||
2252 | ret = scrub_workers_get(root); | |
2253 | if (ret) | |
2254 | return ret; | |
2255 | ||
2256 | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | |
2257 | dev = btrfs_find_device(root, devid, NULL, NULL); | |
2258 | if (!dev || dev->missing) { | |
2259 | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | |
2260 | scrub_workers_put(root); | |
2261 | return -ENODEV; | |
2262 | } | |
2263 | mutex_lock(&fs_info->scrub_lock); | |
2264 | ||
2265 | if (!dev->in_fs_metadata) { | |
2266 | mutex_unlock(&fs_info->scrub_lock); | |
2267 | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | |
2268 | scrub_workers_put(root); | |
2269 | return -ENODEV; | |
2270 | } | |
2271 | ||
2272 | if (dev->scrub_device) { | |
2273 | mutex_unlock(&fs_info->scrub_lock); | |
2274 | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | |
2275 | scrub_workers_put(root); | |
2276 | return -EINPROGRESS; | |
2277 | } | |
2278 | sdev = scrub_setup_dev(dev); | |
2279 | if (IS_ERR(sdev)) { | |
2280 | mutex_unlock(&fs_info->scrub_lock); | |
2281 | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | |
2282 | scrub_workers_put(root); | |
2283 | return PTR_ERR(sdev); | |
2284 | } | |
8628764e | 2285 | sdev->readonly = readonly; |
a2de733c AJ |
2286 | dev->scrub_device = sdev; |
2287 | ||
2288 | atomic_inc(&fs_info->scrubs_running); | |
2289 | mutex_unlock(&fs_info->scrub_lock); | |
2290 | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | |
2291 | ||
2292 | down_read(&fs_info->scrub_super_lock); | |
2293 | ret = scrub_supers(sdev); | |
2294 | up_read(&fs_info->scrub_super_lock); | |
2295 | ||
2296 | if (!ret) | |
2297 | ret = scrub_enumerate_chunks(sdev, start, end); | |
2298 | ||
2299 | wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); | |
a2de733c AJ |
2300 | atomic_dec(&fs_info->scrubs_running); |
2301 | wake_up(&fs_info->scrub_pause_wait); | |
2302 | ||
0ef8e451 JS |
2303 | wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0); |
2304 | ||
a2de733c AJ |
2305 | if (progress) |
2306 | memcpy(progress, &sdev->stat, sizeof(*progress)); | |
2307 | ||
2308 | mutex_lock(&fs_info->scrub_lock); | |
2309 | dev->scrub_device = NULL; | |
2310 | mutex_unlock(&fs_info->scrub_lock); | |
2311 | ||
2312 | scrub_free_dev(sdev); | |
2313 | scrub_workers_put(root); | |
2314 | ||
2315 | return ret; | |
2316 | } | |
2317 | ||
143bede5 | 2318 | void btrfs_scrub_pause(struct btrfs_root *root) |
a2de733c AJ |
2319 | { |
2320 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2321 | ||
2322 | mutex_lock(&fs_info->scrub_lock); | |
2323 | atomic_inc(&fs_info->scrub_pause_req); | |
2324 | while (atomic_read(&fs_info->scrubs_paused) != | |
2325 | atomic_read(&fs_info->scrubs_running)) { | |
2326 | mutex_unlock(&fs_info->scrub_lock); | |
2327 | wait_event(fs_info->scrub_pause_wait, | |
2328 | atomic_read(&fs_info->scrubs_paused) == | |
2329 | atomic_read(&fs_info->scrubs_running)); | |
2330 | mutex_lock(&fs_info->scrub_lock); | |
2331 | } | |
2332 | mutex_unlock(&fs_info->scrub_lock); | |
a2de733c AJ |
2333 | } |
2334 | ||
143bede5 | 2335 | void btrfs_scrub_continue(struct btrfs_root *root) |
a2de733c AJ |
2336 | { |
2337 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2338 | ||
2339 | atomic_dec(&fs_info->scrub_pause_req); | |
2340 | wake_up(&fs_info->scrub_pause_wait); | |
a2de733c AJ |
2341 | } |
2342 | ||
143bede5 | 2343 | void btrfs_scrub_pause_super(struct btrfs_root *root) |
a2de733c AJ |
2344 | { |
2345 | down_write(&root->fs_info->scrub_super_lock); | |
a2de733c AJ |
2346 | } |
2347 | ||
143bede5 | 2348 | void btrfs_scrub_continue_super(struct btrfs_root *root) |
a2de733c AJ |
2349 | { |
2350 | up_write(&root->fs_info->scrub_super_lock); | |
a2de733c AJ |
2351 | } |
2352 | ||
49b25e05 | 2353 | int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
a2de733c | 2354 | { |
a2de733c AJ |
2355 | |
2356 | mutex_lock(&fs_info->scrub_lock); | |
2357 | if (!atomic_read(&fs_info->scrubs_running)) { | |
2358 | mutex_unlock(&fs_info->scrub_lock); | |
2359 | return -ENOTCONN; | |
2360 | } | |
2361 | ||
2362 | atomic_inc(&fs_info->scrub_cancel_req); | |
2363 | while (atomic_read(&fs_info->scrubs_running)) { | |
2364 | mutex_unlock(&fs_info->scrub_lock); | |
2365 | wait_event(fs_info->scrub_pause_wait, | |
2366 | atomic_read(&fs_info->scrubs_running) == 0); | |
2367 | mutex_lock(&fs_info->scrub_lock); | |
2368 | } | |
2369 | atomic_dec(&fs_info->scrub_cancel_req); | |
2370 | mutex_unlock(&fs_info->scrub_lock); | |
2371 | ||
2372 | return 0; | |
2373 | } | |
2374 | ||
49b25e05 JM |
2375 | int btrfs_scrub_cancel(struct btrfs_root *root) |
2376 | { | |
2377 | return __btrfs_scrub_cancel(root->fs_info); | |
2378 | } | |
2379 | ||
a2de733c AJ |
2380 | int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev) |
2381 | { | |
2382 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2383 | struct scrub_dev *sdev; | |
2384 | ||
2385 | mutex_lock(&fs_info->scrub_lock); | |
2386 | sdev = dev->scrub_device; | |
2387 | if (!sdev) { | |
2388 | mutex_unlock(&fs_info->scrub_lock); | |
2389 | return -ENOTCONN; | |
2390 | } | |
2391 | atomic_inc(&sdev->cancel_req); | |
2392 | while (dev->scrub_device) { | |
2393 | mutex_unlock(&fs_info->scrub_lock); | |
2394 | wait_event(fs_info->scrub_pause_wait, | |
2395 | dev->scrub_device == NULL); | |
2396 | mutex_lock(&fs_info->scrub_lock); | |
2397 | } | |
2398 | mutex_unlock(&fs_info->scrub_lock); | |
2399 | ||
2400 | return 0; | |
2401 | } | |
1623edeb | 2402 | |
a2de733c AJ |
2403 | int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) |
2404 | { | |
2405 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2406 | struct btrfs_device *dev; | |
2407 | int ret; | |
2408 | ||
2409 | /* | |
2410 | * we have to hold the device_list_mutex here so the device | |
2411 | * does not go away in cancel_dev. FIXME: find a better solution | |
2412 | */ | |
2413 | mutex_lock(&fs_info->fs_devices->device_list_mutex); | |
2414 | dev = btrfs_find_device(root, devid, NULL, NULL); | |
2415 | if (!dev) { | |
2416 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | |
2417 | return -ENODEV; | |
2418 | } | |
2419 | ret = btrfs_scrub_cancel_dev(root, dev); | |
2420 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | |
2421 | ||
2422 | return ret; | |
2423 | } | |
2424 | ||
2425 | int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, | |
2426 | struct btrfs_scrub_progress *progress) | |
2427 | { | |
2428 | struct btrfs_device *dev; | |
2429 | struct scrub_dev *sdev = NULL; | |
2430 | ||
2431 | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | |
2432 | dev = btrfs_find_device(root, devid, NULL, NULL); | |
2433 | if (dev) | |
2434 | sdev = dev->scrub_device; | |
2435 | if (sdev) | |
2436 | memcpy(progress, &sdev->stat, sizeof(*progress)); | |
2437 | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | |
2438 | ||
2439 | return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV; | |
2440 | } |