]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
6a46079c AK |
39 | * |
40 | * (code doesn't rely on that order so it could be switched around) | |
41 | * ->tasklist_lock | |
42 | * anon_vma->lock (memory_failure, collect_procs_anon) | |
43 | * pte map lock | |
1da177e4 LT |
44 | */ |
45 | ||
46 | #include <linux/mm.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/swap.h> | |
49 | #include <linux/swapops.h> | |
50 | #include <linux/slab.h> | |
51 | #include <linux/init.h> | |
5ad64688 | 52 | #include <linux/ksm.h> |
1da177e4 LT |
53 | #include <linux/rmap.h> |
54 | #include <linux/rcupdate.h> | |
a48d07af | 55 | #include <linux/module.h> |
8a9f3ccd | 56 | #include <linux/memcontrol.h> |
cddb8a5c | 57 | #include <linux/mmu_notifier.h> |
64cdd548 | 58 | #include <linux/migrate.h> |
0fe6e20b | 59 | #include <linux/hugetlb.h> |
1da177e4 LT |
60 | |
61 | #include <asm/tlbflush.h> | |
62 | ||
b291f000 NP |
63 | #include "internal.h" |
64 | ||
fdd2e5f8 | 65 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 66 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
67 | |
68 | static inline struct anon_vma *anon_vma_alloc(void) | |
69 | { | |
70 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
71 | } | |
72 | ||
db114b83 | 73 | void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 AB |
74 | { |
75 | kmem_cache_free(anon_vma_cachep, anon_vma); | |
76 | } | |
1da177e4 | 77 | |
5beb4930 RR |
78 | static inline struct anon_vma_chain *anon_vma_chain_alloc(void) |
79 | { | |
80 | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); | |
81 | } | |
82 | ||
83 | void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | |
84 | { | |
85 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
86 | } | |
87 | ||
d9d332e0 LT |
88 | /** |
89 | * anon_vma_prepare - attach an anon_vma to a memory region | |
90 | * @vma: the memory region in question | |
91 | * | |
92 | * This makes sure the memory mapping described by 'vma' has | |
93 | * an 'anon_vma' attached to it, so that we can associate the | |
94 | * anonymous pages mapped into it with that anon_vma. | |
95 | * | |
96 | * The common case will be that we already have one, but if | |
97 | * if not we either need to find an adjacent mapping that we | |
98 | * can re-use the anon_vma from (very common when the only | |
99 | * reason for splitting a vma has been mprotect()), or we | |
100 | * allocate a new one. | |
101 | * | |
102 | * Anon-vma allocations are very subtle, because we may have | |
103 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
104 | * and that may actually touch the spinlock even in the newly | |
105 | * allocated vma (it depends on RCU to make sure that the | |
106 | * anon_vma isn't actually destroyed). | |
107 | * | |
108 | * As a result, we need to do proper anon_vma locking even | |
109 | * for the new allocation. At the same time, we do not want | |
110 | * to do any locking for the common case of already having | |
111 | * an anon_vma. | |
112 | * | |
113 | * This must be called with the mmap_sem held for reading. | |
114 | */ | |
1da177e4 LT |
115 | int anon_vma_prepare(struct vm_area_struct *vma) |
116 | { | |
117 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 118 | struct anon_vma_chain *avc; |
1da177e4 LT |
119 | |
120 | might_sleep(); | |
121 | if (unlikely(!anon_vma)) { | |
122 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 123 | struct anon_vma *allocated; |
1da177e4 | 124 | |
5beb4930 RR |
125 | avc = anon_vma_chain_alloc(); |
126 | if (!avc) | |
127 | goto out_enomem; | |
128 | ||
1da177e4 | 129 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
130 | allocated = NULL; |
131 | if (!anon_vma) { | |
1da177e4 LT |
132 | anon_vma = anon_vma_alloc(); |
133 | if (unlikely(!anon_vma)) | |
5beb4930 | 134 | goto out_enomem_free_avc; |
1da177e4 | 135 | allocated = anon_vma; |
5c341ee1 RR |
136 | /* |
137 | * This VMA had no anon_vma yet. This anon_vma is | |
138 | * the root of any anon_vma tree that might form. | |
139 | */ | |
140 | anon_vma->root = anon_vma; | |
1da177e4 LT |
141 | } |
142 | ||
cba48b98 | 143 | anon_vma_lock(anon_vma); |
1da177e4 LT |
144 | /* page_table_lock to protect against threads */ |
145 | spin_lock(&mm->page_table_lock); | |
146 | if (likely(!vma->anon_vma)) { | |
147 | vma->anon_vma = anon_vma; | |
5beb4930 RR |
148 | avc->anon_vma = anon_vma; |
149 | avc->vma = vma; | |
150 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
26ba0cb6 | 151 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
1da177e4 | 152 | allocated = NULL; |
31f2b0eb | 153 | avc = NULL; |
1da177e4 LT |
154 | } |
155 | spin_unlock(&mm->page_table_lock); | |
cba48b98 | 156 | anon_vma_unlock(anon_vma); |
31f2b0eb ON |
157 | |
158 | if (unlikely(allocated)) | |
1da177e4 | 159 | anon_vma_free(allocated); |
31f2b0eb | 160 | if (unlikely(avc)) |
5beb4930 | 161 | anon_vma_chain_free(avc); |
1da177e4 LT |
162 | } |
163 | return 0; | |
5beb4930 RR |
164 | |
165 | out_enomem_free_avc: | |
166 | anon_vma_chain_free(avc); | |
167 | out_enomem: | |
168 | return -ENOMEM; | |
1da177e4 LT |
169 | } |
170 | ||
5beb4930 RR |
171 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
172 | struct anon_vma_chain *avc, | |
173 | struct anon_vma *anon_vma) | |
1da177e4 | 174 | { |
5beb4930 RR |
175 | avc->vma = vma; |
176 | avc->anon_vma = anon_vma; | |
177 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
178 | ||
cba48b98 | 179 | anon_vma_lock(anon_vma); |
5beb4930 | 180 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
cba48b98 | 181 | anon_vma_unlock(anon_vma); |
1da177e4 LT |
182 | } |
183 | ||
5beb4930 RR |
184 | /* |
185 | * Attach the anon_vmas from src to dst. | |
186 | * Returns 0 on success, -ENOMEM on failure. | |
187 | */ | |
188 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 189 | { |
5beb4930 RR |
190 | struct anon_vma_chain *avc, *pavc; |
191 | ||
646d87b4 | 192 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
5beb4930 RR |
193 | avc = anon_vma_chain_alloc(); |
194 | if (!avc) | |
195 | goto enomem_failure; | |
196 | anon_vma_chain_link(dst, avc, pavc->anon_vma); | |
197 | } | |
198 | return 0; | |
1da177e4 | 199 | |
5beb4930 RR |
200 | enomem_failure: |
201 | unlink_anon_vmas(dst); | |
202 | return -ENOMEM; | |
1da177e4 LT |
203 | } |
204 | ||
5beb4930 RR |
205 | /* |
206 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
207 | * the corresponding VMA in the parent process is attached to. | |
208 | * Returns 0 on success, non-zero on failure. | |
209 | */ | |
210 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 211 | { |
5beb4930 RR |
212 | struct anon_vma_chain *avc; |
213 | struct anon_vma *anon_vma; | |
1da177e4 | 214 | |
5beb4930 RR |
215 | /* Don't bother if the parent process has no anon_vma here. */ |
216 | if (!pvma->anon_vma) | |
217 | return 0; | |
218 | ||
219 | /* | |
220 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
221 | * so rmap can find non-COWed pages in child processes. | |
222 | */ | |
223 | if (anon_vma_clone(vma, pvma)) | |
224 | return -ENOMEM; | |
225 | ||
226 | /* Then add our own anon_vma. */ | |
227 | anon_vma = anon_vma_alloc(); | |
228 | if (!anon_vma) | |
229 | goto out_error; | |
230 | avc = anon_vma_chain_alloc(); | |
231 | if (!avc) | |
232 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
233 | |
234 | /* | |
235 | * The root anon_vma's spinlock is the lock actually used when we | |
236 | * lock any of the anon_vmas in this anon_vma tree. | |
237 | */ | |
238 | anon_vma->root = pvma->anon_vma->root; | |
76545066 RR |
239 | /* |
240 | * With KSM refcounts, an anon_vma can stay around longer than the | |
241 | * process it belongs to. The root anon_vma needs to be pinned | |
242 | * until this anon_vma is freed, because the lock lives in the root. | |
243 | */ | |
244 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
245 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
246 | vma->anon_vma = anon_vma; | |
5c341ee1 | 247 | anon_vma_chain_link(vma, avc, anon_vma); |
5beb4930 RR |
248 | |
249 | return 0; | |
250 | ||
251 | out_error_free_anon_vma: | |
252 | anon_vma_free(anon_vma); | |
253 | out_error: | |
4946d54c | 254 | unlink_anon_vmas(vma); |
5beb4930 | 255 | return -ENOMEM; |
1da177e4 LT |
256 | } |
257 | ||
5beb4930 | 258 | static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) |
1da177e4 | 259 | { |
5beb4930 | 260 | struct anon_vma *anon_vma = anon_vma_chain->anon_vma; |
1da177e4 LT |
261 | int empty; |
262 | ||
5beb4930 | 263 | /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ |
1da177e4 LT |
264 | if (!anon_vma) |
265 | return; | |
266 | ||
cba48b98 | 267 | anon_vma_lock(anon_vma); |
5beb4930 | 268 | list_del(&anon_vma_chain->same_anon_vma); |
1da177e4 LT |
269 | |
270 | /* We must garbage collect the anon_vma if it's empty */ | |
7f60c214 | 271 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); |
cba48b98 | 272 | anon_vma_unlock(anon_vma); |
1da177e4 | 273 | |
76545066 RR |
274 | if (empty) { |
275 | /* We no longer need the root anon_vma */ | |
276 | if (anon_vma->root != anon_vma) | |
277 | drop_anon_vma(anon_vma->root); | |
1da177e4 | 278 | anon_vma_free(anon_vma); |
76545066 | 279 | } |
1da177e4 LT |
280 | } |
281 | ||
5beb4930 RR |
282 | void unlink_anon_vmas(struct vm_area_struct *vma) |
283 | { | |
284 | struct anon_vma_chain *avc, *next; | |
285 | ||
5c341ee1 RR |
286 | /* |
287 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
288 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
289 | */ | |
5beb4930 RR |
290 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
291 | anon_vma_unlink(avc); | |
292 | list_del(&avc->same_vma); | |
293 | anon_vma_chain_free(avc); | |
294 | } | |
295 | } | |
296 | ||
51cc5068 | 297 | static void anon_vma_ctor(void *data) |
1da177e4 | 298 | { |
a35afb83 | 299 | struct anon_vma *anon_vma = data; |
1da177e4 | 300 | |
a35afb83 | 301 | spin_lock_init(&anon_vma->lock); |
7f60c214 | 302 | anonvma_external_refcount_init(anon_vma); |
a35afb83 | 303 | INIT_LIST_HEAD(&anon_vma->head); |
1da177e4 LT |
304 | } |
305 | ||
306 | void __init anon_vma_init(void) | |
307 | { | |
308 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 309 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
5beb4930 | 310 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
1da177e4 LT |
311 | } |
312 | ||
313 | /* | |
314 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
315 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
316 | */ | |
10be22df | 317 | struct anon_vma *page_lock_anon_vma(struct page *page) |
1da177e4 | 318 | { |
34bbd704 | 319 | struct anon_vma *anon_vma; |
1da177e4 LT |
320 | unsigned long anon_mapping; |
321 | ||
322 | rcu_read_lock(); | |
80e14822 | 323 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
3ca7b3c5 | 324 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
325 | goto out; |
326 | if (!page_mapped(page)) | |
327 | goto out; | |
328 | ||
329 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
cba48b98 | 330 | anon_vma_lock(anon_vma); |
34bbd704 | 331 | return anon_vma; |
1da177e4 LT |
332 | out: |
333 | rcu_read_unlock(); | |
34bbd704 ON |
334 | return NULL; |
335 | } | |
336 | ||
10be22df | 337 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
34bbd704 | 338 | { |
cba48b98 | 339 | anon_vma_unlock(anon_vma); |
34bbd704 | 340 | rcu_read_unlock(); |
1da177e4 LT |
341 | } |
342 | ||
343 | /* | |
3ad33b24 LS |
344 | * At what user virtual address is page expected in @vma? |
345 | * Returns virtual address or -EFAULT if page's index/offset is not | |
346 | * within the range mapped the @vma. | |
1da177e4 LT |
347 | */ |
348 | static inline unsigned long | |
349 | vma_address(struct page *page, struct vm_area_struct *vma) | |
350 | { | |
351 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
352 | unsigned long address; | |
353 | ||
0fe6e20b NH |
354 | if (unlikely(is_vm_hugetlb_page(vma))) |
355 | pgoff = page->index << huge_page_order(page_hstate(page)); | |
1da177e4 LT |
356 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
357 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 358 | /* page should be within @vma mapping range */ |
1da177e4 LT |
359 | return -EFAULT; |
360 | } | |
361 | return address; | |
362 | } | |
363 | ||
364 | /* | |
bf89c8c8 | 365 | * At what user virtual address is page expected in vma? |
ab941e0f | 366 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
367 | */ |
368 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
369 | { | |
21d0d443 AA |
370 | if (PageAnon(page)) { |
371 | if (vma->anon_vma->root != page_anon_vma(page)->root) | |
372 | return -EFAULT; | |
373 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
374 | if (!vma->vm_file || |
375 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
376 | return -EFAULT; |
377 | } else | |
378 | return -EFAULT; | |
379 | return vma_address(page, vma); | |
380 | } | |
381 | ||
81b4082d ND |
382 | /* |
383 | * Check that @page is mapped at @address into @mm. | |
384 | * | |
479db0bf NP |
385 | * If @sync is false, page_check_address may perform a racy check to avoid |
386 | * the page table lock when the pte is not present (helpful when reclaiming | |
387 | * highly shared pages). | |
388 | * | |
b8072f09 | 389 | * On success returns with pte mapped and locked. |
81b4082d | 390 | */ |
ceffc078 | 391 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 392 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
393 | { |
394 | pgd_t *pgd; | |
395 | pud_t *pud; | |
396 | pmd_t *pmd; | |
397 | pte_t *pte; | |
c0718806 | 398 | spinlock_t *ptl; |
81b4082d | 399 | |
0fe6e20b NH |
400 | if (unlikely(PageHuge(page))) { |
401 | pte = huge_pte_offset(mm, address); | |
402 | ptl = &mm->page_table_lock; | |
403 | goto check; | |
404 | } | |
405 | ||
81b4082d | 406 | pgd = pgd_offset(mm, address); |
c0718806 HD |
407 | if (!pgd_present(*pgd)) |
408 | return NULL; | |
409 | ||
410 | pud = pud_offset(pgd, address); | |
411 | if (!pud_present(*pud)) | |
412 | return NULL; | |
413 | ||
414 | pmd = pmd_offset(pud, address); | |
415 | if (!pmd_present(*pmd)) | |
416 | return NULL; | |
417 | ||
418 | pte = pte_offset_map(pmd, address); | |
419 | /* Make a quick check before getting the lock */ | |
479db0bf | 420 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
421 | pte_unmap(pte); |
422 | return NULL; | |
423 | } | |
424 | ||
4c21e2f2 | 425 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 426 | check: |
c0718806 HD |
427 | spin_lock(ptl); |
428 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
429 | *ptlp = ptl; | |
430 | return pte; | |
81b4082d | 431 | } |
c0718806 HD |
432 | pte_unmap_unlock(pte, ptl); |
433 | return NULL; | |
81b4082d ND |
434 | } |
435 | ||
b291f000 NP |
436 | /** |
437 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
438 | * @page: the page to test | |
439 | * @vma: the VMA to test | |
440 | * | |
441 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
442 | * if the page is not mapped into the page tables of this VMA. Only | |
443 | * valid for normal file or anonymous VMAs. | |
444 | */ | |
6a46079c | 445 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
446 | { |
447 | unsigned long address; | |
448 | pte_t *pte; | |
449 | spinlock_t *ptl; | |
450 | ||
451 | address = vma_address(page, vma); | |
452 | if (address == -EFAULT) /* out of vma range */ | |
453 | return 0; | |
454 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
455 | if (!pte) /* the page is not in this mm */ | |
456 | return 0; | |
457 | pte_unmap_unlock(pte, ptl); | |
458 | ||
459 | return 1; | |
460 | } | |
461 | ||
1da177e4 LT |
462 | /* |
463 | * Subfunctions of page_referenced: page_referenced_one called | |
464 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
465 | */ | |
5ad64688 HD |
466 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
467 | unsigned long address, unsigned int *mapcount, | |
468 | unsigned long *vm_flags) | |
1da177e4 LT |
469 | { |
470 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 | 471 | pte_t *pte; |
c0718806 | 472 | spinlock_t *ptl; |
1da177e4 LT |
473 | int referenced = 0; |
474 | ||
479db0bf | 475 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 HD |
476 | if (!pte) |
477 | goto out; | |
1da177e4 | 478 | |
b291f000 NP |
479 | /* |
480 | * Don't want to elevate referenced for mlocked page that gets this far, | |
481 | * in order that it progresses to try_to_unmap and is moved to the | |
482 | * unevictable list. | |
483 | */ | |
5a9bbdcd | 484 | if (vma->vm_flags & VM_LOCKED) { |
5a9bbdcd | 485 | *mapcount = 1; /* break early from loop */ |
03ef83af | 486 | *vm_flags |= VM_LOCKED; |
b291f000 NP |
487 | goto out_unmap; |
488 | } | |
489 | ||
4917e5d0 JW |
490 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
491 | /* | |
492 | * Don't treat a reference through a sequentially read | |
493 | * mapping as such. If the page has been used in | |
494 | * another mapping, we will catch it; if this other | |
495 | * mapping is already gone, the unmap path will have | |
496 | * set PG_referenced or activated the page. | |
497 | */ | |
498 | if (likely(!VM_SequentialReadHint(vma))) | |
499 | referenced++; | |
500 | } | |
1da177e4 | 501 | |
c0718806 HD |
502 | /* Pretend the page is referenced if the task has the |
503 | swap token and is in the middle of a page fault. */ | |
f7b7fd8f | 504 | if (mm != current->mm && has_swap_token(mm) && |
c0718806 HD |
505 | rwsem_is_locked(&mm->mmap_sem)) |
506 | referenced++; | |
507 | ||
b291f000 | 508 | out_unmap: |
c0718806 HD |
509 | (*mapcount)--; |
510 | pte_unmap_unlock(pte, ptl); | |
273f047e | 511 | |
6fe6b7e3 WF |
512 | if (referenced) |
513 | *vm_flags |= vma->vm_flags; | |
273f047e | 514 | out: |
1da177e4 LT |
515 | return referenced; |
516 | } | |
517 | ||
bed7161a | 518 | static int page_referenced_anon(struct page *page, |
6fe6b7e3 WF |
519 | struct mem_cgroup *mem_cont, |
520 | unsigned long *vm_flags) | |
1da177e4 LT |
521 | { |
522 | unsigned int mapcount; | |
523 | struct anon_vma *anon_vma; | |
5beb4930 | 524 | struct anon_vma_chain *avc; |
1da177e4 LT |
525 | int referenced = 0; |
526 | ||
527 | anon_vma = page_lock_anon_vma(page); | |
528 | if (!anon_vma) | |
529 | return referenced; | |
530 | ||
531 | mapcount = page_mapcount(page); | |
5beb4930 RR |
532 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
533 | struct vm_area_struct *vma = avc->vma; | |
1cb1729b HD |
534 | unsigned long address = vma_address(page, vma); |
535 | if (address == -EFAULT) | |
536 | continue; | |
bed7161a BS |
537 | /* |
538 | * If we are reclaiming on behalf of a cgroup, skip | |
539 | * counting on behalf of references from different | |
540 | * cgroups | |
541 | */ | |
bd845e38 | 542 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 543 | continue; |
1cb1729b | 544 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 545 | &mapcount, vm_flags); |
1da177e4 LT |
546 | if (!mapcount) |
547 | break; | |
548 | } | |
34bbd704 ON |
549 | |
550 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
551 | return referenced; |
552 | } | |
553 | ||
554 | /** | |
555 | * page_referenced_file - referenced check for object-based rmap | |
556 | * @page: the page we're checking references on. | |
43d8eac4 | 557 | * @mem_cont: target memory controller |
6fe6b7e3 | 558 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
559 | * |
560 | * For an object-based mapped page, find all the places it is mapped and | |
561 | * check/clear the referenced flag. This is done by following the page->mapping | |
562 | * pointer, then walking the chain of vmas it holds. It returns the number | |
563 | * of references it found. | |
564 | * | |
565 | * This function is only called from page_referenced for object-based pages. | |
566 | */ | |
bed7161a | 567 | static int page_referenced_file(struct page *page, |
6fe6b7e3 WF |
568 | struct mem_cgroup *mem_cont, |
569 | unsigned long *vm_flags) | |
1da177e4 LT |
570 | { |
571 | unsigned int mapcount; | |
572 | struct address_space *mapping = page->mapping; | |
573 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
574 | struct vm_area_struct *vma; | |
575 | struct prio_tree_iter iter; | |
576 | int referenced = 0; | |
577 | ||
578 | /* | |
579 | * The caller's checks on page->mapping and !PageAnon have made | |
580 | * sure that this is a file page: the check for page->mapping | |
581 | * excludes the case just before it gets set on an anon page. | |
582 | */ | |
583 | BUG_ON(PageAnon(page)); | |
584 | ||
585 | /* | |
586 | * The page lock not only makes sure that page->mapping cannot | |
587 | * suddenly be NULLified by truncation, it makes sure that the | |
588 | * structure at mapping cannot be freed and reused yet, | |
589 | * so we can safely take mapping->i_mmap_lock. | |
590 | */ | |
591 | BUG_ON(!PageLocked(page)); | |
592 | ||
593 | spin_lock(&mapping->i_mmap_lock); | |
594 | ||
595 | /* | |
596 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
597 | * is more likely to be accurate if we note it after spinning. | |
598 | */ | |
599 | mapcount = page_mapcount(page); | |
600 | ||
601 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
602 | unsigned long address = vma_address(page, vma); |
603 | if (address == -EFAULT) | |
604 | continue; | |
bed7161a BS |
605 | /* |
606 | * If we are reclaiming on behalf of a cgroup, skip | |
607 | * counting on behalf of references from different | |
608 | * cgroups | |
609 | */ | |
bd845e38 | 610 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 611 | continue; |
1cb1729b | 612 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 613 | &mapcount, vm_flags); |
1da177e4 LT |
614 | if (!mapcount) |
615 | break; | |
616 | } | |
617 | ||
618 | spin_unlock(&mapping->i_mmap_lock); | |
619 | return referenced; | |
620 | } | |
621 | ||
622 | /** | |
623 | * page_referenced - test if the page was referenced | |
624 | * @page: the page to test | |
625 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 626 | * @mem_cont: target memory controller |
6fe6b7e3 | 627 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
628 | * |
629 | * Quick test_and_clear_referenced for all mappings to a page, | |
630 | * returns the number of ptes which referenced the page. | |
631 | */ | |
6fe6b7e3 WF |
632 | int page_referenced(struct page *page, |
633 | int is_locked, | |
634 | struct mem_cgroup *mem_cont, | |
635 | unsigned long *vm_flags) | |
1da177e4 LT |
636 | { |
637 | int referenced = 0; | |
5ad64688 | 638 | int we_locked = 0; |
1da177e4 | 639 | |
6fe6b7e3 | 640 | *vm_flags = 0; |
3ca7b3c5 | 641 | if (page_mapped(page) && page_rmapping(page)) { |
5ad64688 HD |
642 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { |
643 | we_locked = trylock_page(page); | |
644 | if (!we_locked) { | |
645 | referenced++; | |
646 | goto out; | |
647 | } | |
648 | } | |
649 | if (unlikely(PageKsm(page))) | |
650 | referenced += page_referenced_ksm(page, mem_cont, | |
651 | vm_flags); | |
652 | else if (PageAnon(page)) | |
6fe6b7e3 WF |
653 | referenced += page_referenced_anon(page, mem_cont, |
654 | vm_flags); | |
5ad64688 | 655 | else if (page->mapping) |
6fe6b7e3 WF |
656 | referenced += page_referenced_file(page, mem_cont, |
657 | vm_flags); | |
5ad64688 | 658 | if (we_locked) |
1da177e4 | 659 | unlock_page(page); |
1da177e4 | 660 | } |
5ad64688 | 661 | out: |
5b7baf05 CB |
662 | if (page_test_and_clear_young(page)) |
663 | referenced++; | |
664 | ||
1da177e4 LT |
665 | return referenced; |
666 | } | |
667 | ||
1cb1729b HD |
668 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
669 | unsigned long address) | |
d08b3851 PZ |
670 | { |
671 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 672 | pte_t *pte; |
d08b3851 PZ |
673 | spinlock_t *ptl; |
674 | int ret = 0; | |
675 | ||
479db0bf | 676 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
677 | if (!pte) |
678 | goto out; | |
679 | ||
c2fda5fe PZ |
680 | if (pte_dirty(*pte) || pte_write(*pte)) { |
681 | pte_t entry; | |
d08b3851 | 682 | |
c2fda5fe | 683 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 684 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
685 | entry = pte_wrprotect(entry); |
686 | entry = pte_mkclean(entry); | |
d6e88e67 | 687 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
688 | ret = 1; |
689 | } | |
d08b3851 | 690 | |
d08b3851 PZ |
691 | pte_unmap_unlock(pte, ptl); |
692 | out: | |
693 | return ret; | |
694 | } | |
695 | ||
696 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
697 | { | |
698 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
699 | struct vm_area_struct *vma; | |
700 | struct prio_tree_iter iter; | |
701 | int ret = 0; | |
702 | ||
703 | BUG_ON(PageAnon(page)); | |
704 | ||
705 | spin_lock(&mapping->i_mmap_lock); | |
706 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
707 | if (vma->vm_flags & VM_SHARED) { |
708 | unsigned long address = vma_address(page, vma); | |
709 | if (address == -EFAULT) | |
710 | continue; | |
711 | ret += page_mkclean_one(page, vma, address); | |
712 | } | |
d08b3851 PZ |
713 | } |
714 | spin_unlock(&mapping->i_mmap_lock); | |
715 | return ret; | |
716 | } | |
717 | ||
718 | int page_mkclean(struct page *page) | |
719 | { | |
720 | int ret = 0; | |
721 | ||
722 | BUG_ON(!PageLocked(page)); | |
723 | ||
724 | if (page_mapped(page)) { | |
725 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 726 | if (mapping) { |
d08b3851 | 727 | ret = page_mkclean_file(mapping, page); |
ce7e9fae CB |
728 | if (page_test_dirty(page)) { |
729 | page_clear_dirty(page); | |
730 | ret = 1; | |
731 | } | |
6c210482 | 732 | } |
d08b3851 PZ |
733 | } |
734 | ||
735 | return ret; | |
736 | } | |
60b59bea | 737 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 738 | |
c44b6743 RR |
739 | /** |
740 | * page_move_anon_rmap - move a page to our anon_vma | |
741 | * @page: the page to move to our anon_vma | |
742 | * @vma: the vma the page belongs to | |
743 | * @address: the user virtual address mapped | |
744 | * | |
745 | * When a page belongs exclusively to one process after a COW event, | |
746 | * that page can be moved into the anon_vma that belongs to just that | |
747 | * process, so the rmap code will not search the parent or sibling | |
748 | * processes. | |
749 | */ | |
750 | void page_move_anon_rmap(struct page *page, | |
751 | struct vm_area_struct *vma, unsigned long address) | |
752 | { | |
753 | struct anon_vma *anon_vma = vma->anon_vma; | |
754 | ||
755 | VM_BUG_ON(!PageLocked(page)); | |
756 | VM_BUG_ON(!anon_vma); | |
757 | VM_BUG_ON(page->index != linear_page_index(vma, address)); | |
758 | ||
759 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
760 | page->mapping = (struct address_space *) anon_vma; | |
761 | } | |
762 | ||
9617d95e | 763 | /** |
43d8eac4 | 764 | * __page_set_anon_rmap - setup new anonymous rmap |
9617d95e NP |
765 | * @page: the page to add the mapping to |
766 | * @vma: the vm area in which the mapping is added | |
767 | * @address: the user virtual address mapped | |
e8a03feb | 768 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
769 | */ |
770 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 771 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 772 | { |
e8a03feb | 773 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 774 | |
e8a03feb | 775 | BUG_ON(!anon_vma); |
ea90002b LT |
776 | |
777 | /* | |
e8a03feb RR |
778 | * If the page isn't exclusively mapped into this vma, |
779 | * we must use the _oldest_ possible anon_vma for the | |
780 | * page mapping! | |
ea90002b | 781 | */ |
e8a03feb | 782 | if (!exclusive) { |
288468c3 AA |
783 | if (PageAnon(page)) |
784 | return; | |
785 | anon_vma = anon_vma->root; | |
786 | } else { | |
787 | /* | |
788 | * In this case, swapped-out-but-not-discarded swap-cache | |
789 | * is remapped. So, no need to update page->mapping here. | |
790 | * We convice anon_vma poitned by page->mapping is not obsolete | |
791 | * because vma->anon_vma is necessary to be a family of it. | |
792 | */ | |
793 | if (PageAnon(page)) | |
794 | return; | |
e8a03feb | 795 | } |
9617d95e | 796 | |
9617d95e NP |
797 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
798 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 799 | page->index = linear_page_index(vma, address); |
9617d95e NP |
800 | } |
801 | ||
c97a9e10 | 802 | /** |
43d8eac4 | 803 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
804 | * @page: the page to add the mapping to |
805 | * @vma: the vm area in which the mapping is added | |
806 | * @address: the user virtual address mapped | |
807 | */ | |
808 | static void __page_check_anon_rmap(struct page *page, | |
809 | struct vm_area_struct *vma, unsigned long address) | |
810 | { | |
811 | #ifdef CONFIG_DEBUG_VM | |
812 | /* | |
813 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
814 | * be set up correctly at this point. | |
815 | * | |
816 | * We have exclusion against page_add_anon_rmap because the caller | |
817 | * always holds the page locked, except if called from page_dup_rmap, | |
818 | * in which case the page is already known to be setup. | |
819 | * | |
820 | * We have exclusion against page_add_new_anon_rmap because those pages | |
821 | * are initially only visible via the pagetables, and the pte is locked | |
822 | * over the call to page_add_new_anon_rmap. | |
823 | */ | |
44ab57a0 | 824 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
c97a9e10 NP |
825 | BUG_ON(page->index != linear_page_index(vma, address)); |
826 | #endif | |
827 | } | |
828 | ||
1da177e4 LT |
829 | /** |
830 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
831 | * @page: the page to add the mapping to | |
832 | * @vma: the vm area in which the mapping is added | |
833 | * @address: the user virtual address mapped | |
834 | * | |
5ad64688 | 835 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
836 | * the anon_vma case: to serialize mapping,index checking after setting, |
837 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
838 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
839 | */ |
840 | void page_add_anon_rmap(struct page *page, | |
841 | struct vm_area_struct *vma, unsigned long address) | |
ad8c2ee8 RR |
842 | { |
843 | do_page_add_anon_rmap(page, vma, address, 0); | |
844 | } | |
845 | ||
846 | /* | |
847 | * Special version of the above for do_swap_page, which often runs | |
848 | * into pages that are exclusively owned by the current process. | |
849 | * Everybody else should continue to use page_add_anon_rmap above. | |
850 | */ | |
851 | void do_page_add_anon_rmap(struct page *page, | |
852 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1da177e4 | 853 | { |
5ad64688 HD |
854 | int first = atomic_inc_and_test(&page->_mapcount); |
855 | if (first) | |
856 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
857 | if (unlikely(PageKsm(page))) | |
858 | return; | |
859 | ||
c97a9e10 NP |
860 | VM_BUG_ON(!PageLocked(page)); |
861 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
5ad64688 | 862 | if (first) |
ad8c2ee8 | 863 | __page_set_anon_rmap(page, vma, address, exclusive); |
69029cd5 | 864 | else |
c97a9e10 | 865 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
866 | } |
867 | ||
43d8eac4 | 868 | /** |
9617d95e NP |
869 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
870 | * @page: the page to add the mapping to | |
871 | * @vma: the vm area in which the mapping is added | |
872 | * @address: the user virtual address mapped | |
873 | * | |
874 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
875 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 876 | * Page does not have to be locked. |
9617d95e NP |
877 | */ |
878 | void page_add_new_anon_rmap(struct page *page, | |
879 | struct vm_area_struct *vma, unsigned long address) | |
880 | { | |
b5934c53 | 881 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
cbf84b7a HD |
882 | SetPageSwapBacked(page); |
883 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
5ad64688 | 884 | __inc_zone_page_state(page, NR_ANON_PAGES); |
e8a03feb | 885 | __page_set_anon_rmap(page, vma, address, 1); |
b5934c53 | 886 | if (page_evictable(page, vma)) |
cbf84b7a | 887 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
b5934c53 HD |
888 | else |
889 | add_page_to_unevictable_list(page); | |
9617d95e NP |
890 | } |
891 | ||
1da177e4 LT |
892 | /** |
893 | * page_add_file_rmap - add pte mapping to a file page | |
894 | * @page: the page to add the mapping to | |
895 | * | |
b8072f09 | 896 | * The caller needs to hold the pte lock. |
1da177e4 LT |
897 | */ |
898 | void page_add_file_rmap(struct page *page) | |
899 | { | |
d69b042f | 900 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 901 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
d8046582 | 902 | mem_cgroup_update_file_mapped(page, 1); |
d69b042f | 903 | } |
1da177e4 LT |
904 | } |
905 | ||
906 | /** | |
907 | * page_remove_rmap - take down pte mapping from a page | |
908 | * @page: page to remove mapping from | |
909 | * | |
b8072f09 | 910 | * The caller needs to hold the pte lock. |
1da177e4 | 911 | */ |
edc315fd | 912 | void page_remove_rmap(struct page *page) |
1da177e4 | 913 | { |
b904dcfe KM |
914 | /* page still mapped by someone else? */ |
915 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
916 | return; | |
917 | ||
918 | /* | |
919 | * Now that the last pte has gone, s390 must transfer dirty | |
920 | * flag from storage key to struct page. We can usually skip | |
921 | * this if the page is anon, so about to be freed; but perhaps | |
922 | * not if it's in swapcache - there might be another pte slot | |
923 | * containing the swap entry, but page not yet written to swap. | |
924 | */ | |
925 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { | |
926 | page_clear_dirty(page); | |
927 | set_page_dirty(page); | |
1da177e4 | 928 | } |
0fe6e20b NH |
929 | /* |
930 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED | |
931 | * and not charged by memcg for now. | |
932 | */ | |
933 | if (unlikely(PageHuge(page))) | |
934 | return; | |
b904dcfe KM |
935 | if (PageAnon(page)) { |
936 | mem_cgroup_uncharge_page(page); | |
937 | __dec_zone_page_state(page, NR_ANON_PAGES); | |
938 | } else { | |
939 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
d8046582 | 940 | mem_cgroup_update_file_mapped(page, -1); |
b904dcfe | 941 | } |
b904dcfe KM |
942 | /* |
943 | * It would be tidy to reset the PageAnon mapping here, | |
944 | * but that might overwrite a racing page_add_anon_rmap | |
945 | * which increments mapcount after us but sets mapping | |
946 | * before us: so leave the reset to free_hot_cold_page, | |
947 | * and remember that it's only reliable while mapped. | |
948 | * Leaving it set also helps swapoff to reinstate ptes | |
949 | * faster for those pages still in swapcache. | |
950 | */ | |
1da177e4 LT |
951 | } |
952 | ||
953 | /* | |
954 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
955 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
956 | */ | |
5ad64688 HD |
957 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
958 | unsigned long address, enum ttu_flags flags) | |
1da177e4 LT |
959 | { |
960 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
961 | pte_t *pte; |
962 | pte_t pteval; | |
c0718806 | 963 | spinlock_t *ptl; |
1da177e4 LT |
964 | int ret = SWAP_AGAIN; |
965 | ||
479db0bf | 966 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 967 | if (!pte) |
81b4082d | 968 | goto out; |
1da177e4 LT |
969 | |
970 | /* | |
971 | * If the page is mlock()d, we cannot swap it out. | |
972 | * If it's recently referenced (perhaps page_referenced | |
973 | * skipped over this mm) then we should reactivate it. | |
974 | */ | |
14fa31b8 | 975 | if (!(flags & TTU_IGNORE_MLOCK)) { |
caed0f48 KM |
976 | if (vma->vm_flags & VM_LOCKED) |
977 | goto out_mlock; | |
978 | ||
af8e3354 | 979 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
53f79acb | 980 | goto out_unmap; |
14fa31b8 AK |
981 | } |
982 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
983 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
984 | ret = SWAP_FAIL; | |
985 | goto out_unmap; | |
986 | } | |
987 | } | |
1da177e4 | 988 | |
1da177e4 LT |
989 | /* Nuke the page table entry. */ |
990 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 991 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
992 | |
993 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
994 | if (pte_dirty(pteval)) | |
995 | set_page_dirty(page); | |
996 | ||
365e9c87 HD |
997 | /* Update high watermark before we lower rss */ |
998 | update_hiwater_rss(mm); | |
999 | ||
888b9f7c AK |
1000 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
1001 | if (PageAnon(page)) | |
d559db08 | 1002 | dec_mm_counter(mm, MM_ANONPAGES); |
888b9f7c | 1003 | else |
d559db08 | 1004 | dec_mm_counter(mm, MM_FILEPAGES); |
888b9f7c AK |
1005 | set_pte_at(mm, address, pte, |
1006 | swp_entry_to_pte(make_hwpoison_entry(page))); | |
1007 | } else if (PageAnon(page)) { | |
4c21e2f2 | 1008 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
1009 | |
1010 | if (PageSwapCache(page)) { | |
1011 | /* | |
1012 | * Store the swap location in the pte. | |
1013 | * See handle_pte_fault() ... | |
1014 | */ | |
570a335b HD |
1015 | if (swap_duplicate(entry) < 0) { |
1016 | set_pte_at(mm, address, pte, pteval); | |
1017 | ret = SWAP_FAIL; | |
1018 | goto out_unmap; | |
1019 | } | |
0697212a CL |
1020 | if (list_empty(&mm->mmlist)) { |
1021 | spin_lock(&mmlist_lock); | |
1022 | if (list_empty(&mm->mmlist)) | |
1023 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1024 | spin_unlock(&mmlist_lock); | |
1025 | } | |
d559db08 | 1026 | dec_mm_counter(mm, MM_ANONPAGES); |
b084d435 | 1027 | inc_mm_counter(mm, MM_SWAPENTS); |
64cdd548 | 1028 | } else if (PAGE_MIGRATION) { |
0697212a CL |
1029 | /* |
1030 | * Store the pfn of the page in a special migration | |
1031 | * pte. do_swap_page() will wait until the migration | |
1032 | * pte is removed and then restart fault handling. | |
1033 | */ | |
14fa31b8 | 1034 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); |
0697212a | 1035 | entry = make_migration_entry(page, pte_write(pteval)); |
1da177e4 LT |
1036 | } |
1037 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1038 | BUG_ON(pte_file(*pte)); | |
14fa31b8 | 1039 | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { |
04e62a29 CL |
1040 | /* Establish migration entry for a file page */ |
1041 | swp_entry_t entry; | |
1042 | entry = make_migration_entry(page, pte_write(pteval)); | |
1043 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1044 | } else | |
d559db08 | 1045 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 | 1046 | |
edc315fd | 1047 | page_remove_rmap(page); |
1da177e4 LT |
1048 | page_cache_release(page); |
1049 | ||
1050 | out_unmap: | |
c0718806 | 1051 | pte_unmap_unlock(pte, ptl); |
caed0f48 KM |
1052 | out: |
1053 | return ret; | |
53f79acb | 1054 | |
caed0f48 KM |
1055 | out_mlock: |
1056 | pte_unmap_unlock(pte, ptl); | |
1057 | ||
1058 | ||
1059 | /* | |
1060 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | |
1061 | * unstable result and race. Plus, We can't wait here because | |
1062 | * we now hold anon_vma->lock or mapping->i_mmap_lock. | |
1063 | * if trylock failed, the page remain in evictable lru and later | |
1064 | * vmscan could retry to move the page to unevictable lru if the | |
1065 | * page is actually mlocked. | |
1066 | */ | |
1067 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
1068 | if (vma->vm_flags & VM_LOCKED) { | |
1069 | mlock_vma_page(page); | |
1070 | ret = SWAP_MLOCK; | |
53f79acb | 1071 | } |
caed0f48 | 1072 | up_read(&vma->vm_mm->mmap_sem); |
53f79acb | 1073 | } |
1da177e4 LT |
1074 | return ret; |
1075 | } | |
1076 | ||
1077 | /* | |
1078 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
1079 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
1080 | * Consequently, given a particular page and its ->index, we cannot locate the | |
1081 | * ptes which are mapping that page without an exhaustive linear search. | |
1082 | * | |
1083 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
1084 | * maps the file to which the target page belongs. The ->vm_private_data field | |
1085 | * holds the current cursor into that scan. Successive searches will circulate | |
1086 | * around the vma's virtual address space. | |
1087 | * | |
1088 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
1089 | * more scanning pressure is placed against them as well. Eventually pages | |
1090 | * will become fully unmapped and are eligible for eviction. | |
1091 | * | |
1092 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
1093 | * there there won't be many ptes located within the scan cluster. In this case | |
1094 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
1095 | * |
1096 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
1097 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
1098 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
1099 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
1100 | */ |
1101 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
1102 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
1103 | ||
b291f000 NP |
1104 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
1105 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
1106 | { |
1107 | struct mm_struct *mm = vma->vm_mm; | |
1108 | pgd_t *pgd; | |
1109 | pud_t *pud; | |
1110 | pmd_t *pmd; | |
c0718806 | 1111 | pte_t *pte; |
1da177e4 | 1112 | pte_t pteval; |
c0718806 | 1113 | spinlock_t *ptl; |
1da177e4 LT |
1114 | struct page *page; |
1115 | unsigned long address; | |
1116 | unsigned long end; | |
b291f000 NP |
1117 | int ret = SWAP_AGAIN; |
1118 | int locked_vma = 0; | |
1da177e4 | 1119 | |
1da177e4 LT |
1120 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
1121 | end = address + CLUSTER_SIZE; | |
1122 | if (address < vma->vm_start) | |
1123 | address = vma->vm_start; | |
1124 | if (end > vma->vm_end) | |
1125 | end = vma->vm_end; | |
1126 | ||
1127 | pgd = pgd_offset(mm, address); | |
1128 | if (!pgd_present(*pgd)) | |
b291f000 | 1129 | return ret; |
1da177e4 LT |
1130 | |
1131 | pud = pud_offset(pgd, address); | |
1132 | if (!pud_present(*pud)) | |
b291f000 | 1133 | return ret; |
1da177e4 LT |
1134 | |
1135 | pmd = pmd_offset(pud, address); | |
1136 | if (!pmd_present(*pmd)) | |
b291f000 NP |
1137 | return ret; |
1138 | ||
1139 | /* | |
af8e3354 | 1140 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
b291f000 NP |
1141 | * keep the sem while scanning the cluster for mlocking pages. |
1142 | */ | |
af8e3354 | 1143 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
b291f000 NP |
1144 | locked_vma = (vma->vm_flags & VM_LOCKED); |
1145 | if (!locked_vma) | |
1146 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
1147 | } | |
c0718806 HD |
1148 | |
1149 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 1150 | |
365e9c87 HD |
1151 | /* Update high watermark before we lower rss */ |
1152 | update_hiwater_rss(mm); | |
1153 | ||
c0718806 | 1154 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
1155 | if (!pte_present(*pte)) |
1156 | continue; | |
6aab341e LT |
1157 | page = vm_normal_page(vma, address, *pte); |
1158 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 1159 | |
b291f000 NP |
1160 | if (locked_vma) { |
1161 | mlock_vma_page(page); /* no-op if already mlocked */ | |
1162 | if (page == check_page) | |
1163 | ret = SWAP_MLOCK; | |
1164 | continue; /* don't unmap */ | |
1165 | } | |
1166 | ||
cddb8a5c | 1167 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
1168 | continue; |
1169 | ||
1170 | /* Nuke the page table entry. */ | |
eca35133 | 1171 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 1172 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
1173 | |
1174 | /* If nonlinear, store the file page offset in the pte. */ | |
1175 | if (page->index != linear_page_index(vma, address)) | |
1176 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
1177 | ||
1178 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1179 | if (pte_dirty(pteval)) | |
1180 | set_page_dirty(page); | |
1181 | ||
edc315fd | 1182 | page_remove_rmap(page); |
1da177e4 | 1183 | page_cache_release(page); |
d559db08 | 1184 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 LT |
1185 | (*mapcount)--; |
1186 | } | |
c0718806 | 1187 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
1188 | if (locked_vma) |
1189 | up_read(&vma->vm_mm->mmap_sem); | |
1190 | return ret; | |
1da177e4 LT |
1191 | } |
1192 | ||
a8bef8ff MG |
1193 | static bool is_vma_temporary_stack(struct vm_area_struct *vma) |
1194 | { | |
1195 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1196 | ||
1197 | if (!maybe_stack) | |
1198 | return false; | |
1199 | ||
1200 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1201 | VM_STACK_INCOMPLETE_SETUP) | |
1202 | return true; | |
1203 | ||
1204 | return false; | |
1205 | } | |
1206 | ||
b291f000 NP |
1207 | /** |
1208 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
1209 | * rmap method | |
1210 | * @page: the page to unmap/unlock | |
8051be5e | 1211 | * @flags: action and flags |
b291f000 NP |
1212 | * |
1213 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1214 | * contained in the anon_vma struct it points to. | |
1215 | * | |
1216 | * This function is only called from try_to_unmap/try_to_munlock for | |
1217 | * anonymous pages. | |
1218 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1219 | * where the page was found will be held for write. So, we won't recheck | |
1220 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1221 | * 'LOCKED. | |
1222 | */ | |
14fa31b8 | 1223 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1224 | { |
1225 | struct anon_vma *anon_vma; | |
5beb4930 | 1226 | struct anon_vma_chain *avc; |
1da177e4 | 1227 | int ret = SWAP_AGAIN; |
b291f000 | 1228 | |
1da177e4 LT |
1229 | anon_vma = page_lock_anon_vma(page); |
1230 | if (!anon_vma) | |
1231 | return ret; | |
1232 | ||
5beb4930 RR |
1233 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1234 | struct vm_area_struct *vma = avc->vma; | |
a8bef8ff MG |
1235 | unsigned long address; |
1236 | ||
1237 | /* | |
1238 | * During exec, a temporary VMA is setup and later moved. | |
1239 | * The VMA is moved under the anon_vma lock but not the | |
1240 | * page tables leading to a race where migration cannot | |
1241 | * find the migration ptes. Rather than increasing the | |
1242 | * locking requirements of exec(), migration skips | |
1243 | * temporary VMAs until after exec() completes. | |
1244 | */ | |
1245 | if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && | |
1246 | is_vma_temporary_stack(vma)) | |
1247 | continue; | |
1248 | ||
1249 | address = vma_address(page, vma); | |
1cb1729b HD |
1250 | if (address == -EFAULT) |
1251 | continue; | |
1252 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1253 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1254 | break; | |
1da177e4 | 1255 | } |
34bbd704 ON |
1256 | |
1257 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
1258 | return ret; |
1259 | } | |
1260 | ||
1261 | /** | |
b291f000 NP |
1262 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1263 | * @page: the page to unmap/unlock | |
14fa31b8 | 1264 | * @flags: action and flags |
1da177e4 LT |
1265 | * |
1266 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1267 | * contained in the address_space struct it points to. | |
1268 | * | |
b291f000 NP |
1269 | * This function is only called from try_to_unmap/try_to_munlock for |
1270 | * object-based pages. | |
1271 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1272 | * where the page was found will be held for write. So, we won't recheck | |
1273 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1274 | * 'LOCKED. | |
1da177e4 | 1275 | */ |
14fa31b8 | 1276 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1277 | { |
1278 | struct address_space *mapping = page->mapping; | |
1279 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1280 | struct vm_area_struct *vma; | |
1281 | struct prio_tree_iter iter; | |
1282 | int ret = SWAP_AGAIN; | |
1283 | unsigned long cursor; | |
1284 | unsigned long max_nl_cursor = 0; | |
1285 | unsigned long max_nl_size = 0; | |
1286 | unsigned int mapcount; | |
1287 | ||
1288 | spin_lock(&mapping->i_mmap_lock); | |
1289 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
1290 | unsigned long address = vma_address(page, vma); |
1291 | if (address == -EFAULT) | |
1292 | continue; | |
1293 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1294 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1295 | goto out; | |
1da177e4 LT |
1296 | } |
1297 | ||
1298 | if (list_empty(&mapping->i_mmap_nonlinear)) | |
1299 | goto out; | |
1300 | ||
53f79acb HD |
1301 | /* |
1302 | * We don't bother to try to find the munlocked page in nonlinears. | |
1303 | * It's costly. Instead, later, page reclaim logic may call | |
1304 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. | |
1305 | */ | |
1306 | if (TTU_ACTION(flags) == TTU_MUNLOCK) | |
1307 | goto out; | |
1308 | ||
1da177e4 LT |
1309 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1310 | shared.vm_set.list) { | |
1da177e4 LT |
1311 | cursor = (unsigned long) vma->vm_private_data; |
1312 | if (cursor > max_nl_cursor) | |
1313 | max_nl_cursor = cursor; | |
1314 | cursor = vma->vm_end - vma->vm_start; | |
1315 | if (cursor > max_nl_size) | |
1316 | max_nl_size = cursor; | |
1317 | } | |
1318 | ||
b291f000 | 1319 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1320 | ret = SWAP_FAIL; |
1321 | goto out; | |
1322 | } | |
1323 | ||
1324 | /* | |
1325 | * We don't try to search for this page in the nonlinear vmas, | |
1326 | * and page_referenced wouldn't have found it anyway. Instead | |
1327 | * just walk the nonlinear vmas trying to age and unmap some. | |
1328 | * The mapcount of the page we came in with is irrelevant, | |
1329 | * but even so use it as a guide to how hard we should try? | |
1330 | */ | |
1331 | mapcount = page_mapcount(page); | |
1332 | if (!mapcount) | |
1333 | goto out; | |
1334 | cond_resched_lock(&mapping->i_mmap_lock); | |
1335 | ||
1336 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1337 | if (max_nl_cursor == 0) | |
1338 | max_nl_cursor = CLUSTER_SIZE; | |
1339 | ||
1340 | do { | |
1341 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1342 | shared.vm_set.list) { | |
1da177e4 | 1343 | cursor = (unsigned long) vma->vm_private_data; |
839b9685 | 1344 | while ( cursor < max_nl_cursor && |
1da177e4 | 1345 | cursor < vma->vm_end - vma->vm_start) { |
53f79acb HD |
1346 | if (try_to_unmap_cluster(cursor, &mapcount, |
1347 | vma, page) == SWAP_MLOCK) | |
1348 | ret = SWAP_MLOCK; | |
1da177e4 LT |
1349 | cursor += CLUSTER_SIZE; |
1350 | vma->vm_private_data = (void *) cursor; | |
1351 | if ((int)mapcount <= 0) | |
1352 | goto out; | |
1353 | } | |
1354 | vma->vm_private_data = (void *) max_nl_cursor; | |
1355 | } | |
1356 | cond_resched_lock(&mapping->i_mmap_lock); | |
1357 | max_nl_cursor += CLUSTER_SIZE; | |
1358 | } while (max_nl_cursor <= max_nl_size); | |
1359 | ||
1360 | /* | |
1361 | * Don't loop forever (perhaps all the remaining pages are | |
1362 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1363 | * vmas, now forgetting on which ones it had fallen behind. | |
1364 | */ | |
101d2be7 HD |
1365 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1366 | vma->vm_private_data = NULL; | |
1da177e4 LT |
1367 | out: |
1368 | spin_unlock(&mapping->i_mmap_lock); | |
1369 | return ret; | |
1370 | } | |
1371 | ||
1372 | /** | |
1373 | * try_to_unmap - try to remove all page table mappings to a page | |
1374 | * @page: the page to get unmapped | |
14fa31b8 | 1375 | * @flags: action and flags |
1da177e4 LT |
1376 | * |
1377 | * Tries to remove all the page table entries which are mapping this | |
1378 | * page, used in the pageout path. Caller must hold the page lock. | |
1379 | * Return values are: | |
1380 | * | |
1381 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1382 | * SWAP_AGAIN - we missed a mapping, try again later | |
1383 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1384 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1385 | */ |
14fa31b8 | 1386 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1387 | { |
1388 | int ret; | |
1389 | ||
1da177e4 LT |
1390 | BUG_ON(!PageLocked(page)); |
1391 | ||
5ad64688 HD |
1392 | if (unlikely(PageKsm(page))) |
1393 | ret = try_to_unmap_ksm(page, flags); | |
1394 | else if (PageAnon(page)) | |
14fa31b8 | 1395 | ret = try_to_unmap_anon(page, flags); |
1da177e4 | 1396 | else |
14fa31b8 | 1397 | ret = try_to_unmap_file(page, flags); |
b291f000 | 1398 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1399 | ret = SWAP_SUCCESS; |
1400 | return ret; | |
1401 | } | |
81b4082d | 1402 | |
b291f000 NP |
1403 | /** |
1404 | * try_to_munlock - try to munlock a page | |
1405 | * @page: the page to be munlocked | |
1406 | * | |
1407 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1408 | * to make sure nobody else has this page mlocked. The page will be | |
1409 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1410 | * | |
1411 | * Return values are: | |
1412 | * | |
53f79acb | 1413 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1414 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1415 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1416 | * SWAP_MLOCK - page is now mlocked. |
1417 | */ | |
1418 | int try_to_munlock(struct page *page) | |
1419 | { | |
1420 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1421 | ||
5ad64688 HD |
1422 | if (unlikely(PageKsm(page))) |
1423 | return try_to_unmap_ksm(page, TTU_MUNLOCK); | |
1424 | else if (PageAnon(page)) | |
14fa31b8 | 1425 | return try_to_unmap_anon(page, TTU_MUNLOCK); |
b291f000 | 1426 | else |
14fa31b8 | 1427 | return try_to_unmap_file(page, TTU_MUNLOCK); |
b291f000 | 1428 | } |
e9995ef9 | 1429 | |
76545066 RR |
1430 | #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) |
1431 | /* | |
1432 | * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root | |
1433 | * if necessary. Be careful to do all the tests under the lock. Once | |
1434 | * we know we are the last user, nobody else can get a reference and we | |
1435 | * can do the freeing without the lock. | |
1436 | */ | |
1437 | void drop_anon_vma(struct anon_vma *anon_vma) | |
1438 | { | |
44ab57a0 | 1439 | BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); |
76545066 RR |
1440 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { |
1441 | struct anon_vma *root = anon_vma->root; | |
1442 | int empty = list_empty(&anon_vma->head); | |
1443 | int last_root_user = 0; | |
1444 | int root_empty = 0; | |
1445 | ||
1446 | /* | |
1447 | * The refcount on a non-root anon_vma got dropped. Drop | |
1448 | * the refcount on the root and check if we need to free it. | |
1449 | */ | |
1450 | if (empty && anon_vma != root) { | |
44ab57a0 | 1451 | BUG_ON(atomic_read(&root->external_refcount) <= 0); |
76545066 RR |
1452 | last_root_user = atomic_dec_and_test(&root->external_refcount); |
1453 | root_empty = list_empty(&root->head); | |
1454 | } | |
1455 | anon_vma_unlock(anon_vma); | |
1456 | ||
1457 | if (empty) { | |
1458 | anon_vma_free(anon_vma); | |
1459 | if (root_empty && last_root_user) | |
1460 | anon_vma_free(root); | |
1461 | } | |
1462 | } | |
1463 | } | |
1464 | #endif | |
1465 | ||
e9995ef9 HD |
1466 | #ifdef CONFIG_MIGRATION |
1467 | /* | |
1468 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | |
1469 | * Called by migrate.c to remove migration ptes, but might be used more later. | |
1470 | */ | |
1471 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |
1472 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1473 | { | |
1474 | struct anon_vma *anon_vma; | |
5beb4930 | 1475 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1476 | int ret = SWAP_AGAIN; |
1477 | ||
1478 | /* | |
1479 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() | |
1480 | * because that depends on page_mapped(); but not all its usages | |
3f6c8272 MG |
1481 | * are holding mmap_sem. Users without mmap_sem are required to |
1482 | * take a reference count to prevent the anon_vma disappearing | |
e9995ef9 HD |
1483 | */ |
1484 | anon_vma = page_anon_vma(page); | |
1485 | if (!anon_vma) | |
1486 | return ret; | |
cba48b98 | 1487 | anon_vma_lock(anon_vma); |
5beb4930 RR |
1488 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1489 | struct vm_area_struct *vma = avc->vma; | |
e9995ef9 HD |
1490 | unsigned long address = vma_address(page, vma); |
1491 | if (address == -EFAULT) | |
1492 | continue; | |
1493 | ret = rmap_one(page, vma, address, arg); | |
1494 | if (ret != SWAP_AGAIN) | |
1495 | break; | |
1496 | } | |
cba48b98 | 1497 | anon_vma_unlock(anon_vma); |
e9995ef9 HD |
1498 | return ret; |
1499 | } | |
1500 | ||
1501 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, | |
1502 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1503 | { | |
1504 | struct address_space *mapping = page->mapping; | |
1505 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1506 | struct vm_area_struct *vma; | |
1507 | struct prio_tree_iter iter; | |
1508 | int ret = SWAP_AGAIN; | |
1509 | ||
1510 | if (!mapping) | |
1511 | return ret; | |
1512 | spin_lock(&mapping->i_mmap_lock); | |
1513 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1514 | unsigned long address = vma_address(page, vma); | |
1515 | if (address == -EFAULT) | |
1516 | continue; | |
1517 | ret = rmap_one(page, vma, address, arg); | |
1518 | if (ret != SWAP_AGAIN) | |
1519 | break; | |
1520 | } | |
1521 | /* | |
1522 | * No nonlinear handling: being always shared, nonlinear vmas | |
1523 | * never contain migration ptes. Decide what to do about this | |
1524 | * limitation to linear when we need rmap_walk() on nonlinear. | |
1525 | */ | |
1526 | spin_unlock(&mapping->i_mmap_lock); | |
1527 | return ret; | |
1528 | } | |
1529 | ||
1530 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | |
1531 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1532 | { | |
1533 | VM_BUG_ON(!PageLocked(page)); | |
1534 | ||
1535 | if (unlikely(PageKsm(page))) | |
1536 | return rmap_walk_ksm(page, rmap_one, arg); | |
1537 | else if (PageAnon(page)) | |
1538 | return rmap_walk_anon(page, rmap_one, arg); | |
1539 | else | |
1540 | return rmap_walk_file(page, rmap_one, arg); | |
1541 | } | |
1542 | #endif /* CONFIG_MIGRATION */ | |
0fe6e20b | 1543 | |
e3390f67 | 1544 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1545 | /* |
1546 | * The following three functions are for anonymous (private mapped) hugepages. | |
1547 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1548 | * and no lru code, because we handle hugepages differently from common pages. | |
1549 | */ | |
1550 | static void __hugepage_set_anon_rmap(struct page *page, | |
1551 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1552 | { | |
1553 | struct anon_vma *anon_vma = vma->anon_vma; | |
1554 | BUG_ON(!anon_vma); | |
1555 | if (!exclusive) { | |
1556 | struct anon_vma_chain *avc; | |
1557 | avc = list_entry(vma->anon_vma_chain.prev, | |
1558 | struct anon_vma_chain, same_vma); | |
1559 | anon_vma = avc->anon_vma; | |
1560 | } | |
1561 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
1562 | page->mapping = (struct address_space *) anon_vma; | |
1563 | page->index = linear_page_index(vma, address); | |
1564 | } | |
1565 | ||
1566 | void hugepage_add_anon_rmap(struct page *page, | |
1567 | struct vm_area_struct *vma, unsigned long address) | |
1568 | { | |
1569 | struct anon_vma *anon_vma = vma->anon_vma; | |
1570 | int first; | |
1571 | BUG_ON(!anon_vma); | |
1572 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1573 | first = atomic_inc_and_test(&page->_mapcount); | |
1574 | if (first) | |
1575 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1576 | } | |
1577 | ||
1578 | void hugepage_add_new_anon_rmap(struct page *page, | |
1579 | struct vm_area_struct *vma, unsigned long address) | |
1580 | { | |
1581 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1582 | atomic_set(&page->_mapcount, 0); | |
1583 | __hugepage_set_anon_rmap(page, vma, address, 1); | |
1584 | } | |
e3390f67 | 1585 | #endif /* CONFIG_HUGETLB_PAGE */ |