]>
Commit | Line | Data |
---|---|---|
4bbd4c77 KS |
1 | #include <linux/kernel.h> |
2 | #include <linux/errno.h> | |
3 | #include <linux/err.h> | |
4 | #include <linux/spinlock.h> | |
5 | ||
4bbd4c77 | 6 | #include <linux/mm.h> |
3565fce3 | 7 | #include <linux/memremap.h> |
4bbd4c77 KS |
8 | #include <linux/pagemap.h> |
9 | #include <linux/rmap.h> | |
10 | #include <linux/swap.h> | |
11 | #include <linux/swapops.h> | |
12 | ||
174cd4b1 | 13 | #include <linux/sched/signal.h> |
2667f50e | 14 | #include <linux/rwsem.h> |
f30c59e9 | 15 | #include <linux/hugetlb.h> |
1027e443 | 16 | |
33a709b2 | 17 | #include <asm/mmu_context.h> |
2667f50e | 18 | #include <asm/pgtable.h> |
1027e443 | 19 | #include <asm/tlbflush.h> |
2667f50e | 20 | |
4bbd4c77 KS |
21 | #include "internal.h" |
22 | ||
69e68b4f KS |
23 | static struct page *no_page_table(struct vm_area_struct *vma, |
24 | unsigned int flags) | |
4bbd4c77 | 25 | { |
69e68b4f KS |
26 | /* |
27 | * When core dumping an enormous anonymous area that nobody | |
28 | * has touched so far, we don't want to allocate unnecessary pages or | |
29 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
30 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
31 | * But we can only make this optimization where a hole would surely | |
32 | * be zero-filled if handle_mm_fault() actually did handle it. | |
33 | */ | |
34 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
35 | return ERR_PTR(-EFAULT); | |
36 | return NULL; | |
37 | } | |
4bbd4c77 | 38 | |
1027e443 KS |
39 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
40 | pte_t *pte, unsigned int flags) | |
41 | { | |
42 | /* No page to get reference */ | |
43 | if (flags & FOLL_GET) | |
44 | return -EFAULT; | |
45 | ||
46 | if (flags & FOLL_TOUCH) { | |
47 | pte_t entry = *pte; | |
48 | ||
49 | if (flags & FOLL_WRITE) | |
50 | entry = pte_mkdirty(entry); | |
51 | entry = pte_mkyoung(entry); | |
52 | ||
53 | if (!pte_same(*pte, entry)) { | |
54 | set_pte_at(vma->vm_mm, address, pte, entry); | |
55 | update_mmu_cache(vma, address, pte); | |
56 | } | |
57 | } | |
58 | ||
59 | /* Proper page table entry exists, but no corresponding struct page */ | |
60 | return -EEXIST; | |
61 | } | |
62 | ||
19be0eaf LT |
63 | /* |
64 | * FOLL_FORCE can write to even unwritable pte's, but only | |
65 | * after we've gone through a COW cycle and they are dirty. | |
66 | */ | |
67 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
68 | { | |
f6f37321 | 69 | return pte_write(pte) || |
19be0eaf LT |
70 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
71 | } | |
72 | ||
69e68b4f KS |
73 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
74 | unsigned long address, pmd_t *pmd, unsigned int flags) | |
75 | { | |
76 | struct mm_struct *mm = vma->vm_mm; | |
3565fce3 | 77 | struct dev_pagemap *pgmap = NULL; |
69e68b4f KS |
78 | struct page *page; |
79 | spinlock_t *ptl; | |
80 | pte_t *ptep, pte; | |
4bbd4c77 | 81 | |
69e68b4f | 82 | retry: |
4bbd4c77 | 83 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 84 | return no_page_table(vma, flags); |
4bbd4c77 KS |
85 | |
86 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
87 | pte = *ptep; |
88 | if (!pte_present(pte)) { | |
89 | swp_entry_t entry; | |
90 | /* | |
91 | * KSM's break_ksm() relies upon recognizing a ksm page | |
92 | * even while it is being migrated, so for that case we | |
93 | * need migration_entry_wait(). | |
94 | */ | |
95 | if (likely(!(flags & FOLL_MIGRATION))) | |
96 | goto no_page; | |
0661a336 | 97 | if (pte_none(pte)) |
4bbd4c77 KS |
98 | goto no_page; |
99 | entry = pte_to_swp_entry(pte); | |
100 | if (!is_migration_entry(entry)) | |
101 | goto no_page; | |
102 | pte_unmap_unlock(ptep, ptl); | |
103 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 104 | goto retry; |
4bbd4c77 | 105 | } |
8a0516ed | 106 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 107 | goto no_page; |
19be0eaf | 108 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
109 | pte_unmap_unlock(ptep, ptl); |
110 | return NULL; | |
111 | } | |
4bbd4c77 KS |
112 | |
113 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
114 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
115 | /* | |
116 | * Only return device mapping pages in the FOLL_GET case since | |
117 | * they are only valid while holding the pgmap reference. | |
118 | */ | |
119 | pgmap = get_dev_pagemap(pte_pfn(pte), NULL); | |
120 | if (pgmap) | |
121 | page = pte_page(pte); | |
122 | else | |
123 | goto no_page; | |
124 | } else if (unlikely(!page)) { | |
1027e443 KS |
125 | if (flags & FOLL_DUMP) { |
126 | /* Avoid special (like zero) pages in core dumps */ | |
127 | page = ERR_PTR(-EFAULT); | |
128 | goto out; | |
129 | } | |
130 | ||
131 | if (is_zero_pfn(pte_pfn(pte))) { | |
132 | page = pte_page(pte); | |
133 | } else { | |
134 | int ret; | |
135 | ||
136 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
137 | page = ERR_PTR(ret); | |
138 | goto out; | |
139 | } | |
4bbd4c77 KS |
140 | } |
141 | ||
6742d293 KS |
142 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
143 | int ret; | |
144 | get_page(page); | |
145 | pte_unmap_unlock(ptep, ptl); | |
146 | lock_page(page); | |
147 | ret = split_huge_page(page); | |
148 | unlock_page(page); | |
149 | put_page(page); | |
150 | if (ret) | |
151 | return ERR_PTR(ret); | |
152 | goto retry; | |
153 | } | |
154 | ||
3565fce3 | 155 | if (flags & FOLL_GET) { |
ddc58f27 | 156 | get_page(page); |
3565fce3 DW |
157 | |
158 | /* drop the pgmap reference now that we hold the page */ | |
159 | if (pgmap) { | |
160 | put_dev_pagemap(pgmap); | |
161 | pgmap = NULL; | |
162 | } | |
163 | } | |
4bbd4c77 KS |
164 | if (flags & FOLL_TOUCH) { |
165 | if ((flags & FOLL_WRITE) && | |
166 | !pte_dirty(pte) && !PageDirty(page)) | |
167 | set_page_dirty(page); | |
168 | /* | |
169 | * pte_mkyoung() would be more correct here, but atomic care | |
170 | * is needed to avoid losing the dirty bit: it is easier to use | |
171 | * mark_page_accessed(). | |
172 | */ | |
173 | mark_page_accessed(page); | |
174 | } | |
de60f5f1 | 175 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
176 | /* Do not mlock pte-mapped THP */ |
177 | if (PageTransCompound(page)) | |
178 | goto out; | |
179 | ||
4bbd4c77 KS |
180 | /* |
181 | * The preliminary mapping check is mainly to avoid the | |
182 | * pointless overhead of lock_page on the ZERO_PAGE | |
183 | * which might bounce very badly if there is contention. | |
184 | * | |
185 | * If the page is already locked, we don't need to | |
186 | * handle it now - vmscan will handle it later if and | |
187 | * when it attempts to reclaim the page. | |
188 | */ | |
189 | if (page->mapping && trylock_page(page)) { | |
190 | lru_add_drain(); /* push cached pages to LRU */ | |
191 | /* | |
192 | * Because we lock page here, and migration is | |
193 | * blocked by the pte's page reference, and we | |
194 | * know the page is still mapped, we don't even | |
195 | * need to check for file-cache page truncation. | |
196 | */ | |
197 | mlock_vma_page(page); | |
198 | unlock_page(page); | |
199 | } | |
200 | } | |
1027e443 | 201 | out: |
4bbd4c77 | 202 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 203 | return page; |
4bbd4c77 KS |
204 | no_page: |
205 | pte_unmap_unlock(ptep, ptl); | |
206 | if (!pte_none(pte)) | |
69e68b4f KS |
207 | return NULL; |
208 | return no_page_table(vma, flags); | |
209 | } | |
210 | ||
080dbb61 AK |
211 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
212 | unsigned long address, pud_t *pudp, | |
213 | unsigned int flags, unsigned int *page_mask) | |
69e68b4f | 214 | { |
68827280 | 215 | pmd_t *pmd, pmdval; |
69e68b4f KS |
216 | spinlock_t *ptl; |
217 | struct page *page; | |
218 | struct mm_struct *mm = vma->vm_mm; | |
219 | ||
080dbb61 | 220 | pmd = pmd_offset(pudp, address); |
68827280 YH |
221 | /* |
222 | * The READ_ONCE() will stabilize the pmdval in a register or | |
223 | * on the stack so that it will stop changing under the code. | |
224 | */ | |
225 | pmdval = READ_ONCE(*pmd); | |
226 | if (pmd_none(pmdval)) | |
69e68b4f | 227 | return no_page_table(vma, flags); |
68827280 | 228 | if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { |
e66f17ff NH |
229 | page = follow_huge_pmd(mm, address, pmd, flags); |
230 | if (page) | |
231 | return page; | |
232 | return no_page_table(vma, flags); | |
69e68b4f | 233 | } |
68827280 | 234 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 235 | page = follow_huge_pd(vma, address, |
68827280 | 236 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
237 | PMD_SHIFT); |
238 | if (page) | |
239 | return page; | |
240 | return no_page_table(vma, flags); | |
241 | } | |
84c3fc4e | 242 | retry: |
68827280 | 243 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
244 | if (likely(!(flags & FOLL_MIGRATION))) |
245 | return no_page_table(vma, flags); | |
246 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
247 | !is_pmd_migration_entry(pmdval)); |
248 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 249 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
250 | pmdval = READ_ONCE(*pmd); |
251 | /* | |
252 | * MADV_DONTNEED may convert the pmd to null because | |
253 | * mmap_sem is held in read mode | |
254 | */ | |
255 | if (pmd_none(pmdval)) | |
256 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
257 | goto retry; |
258 | } | |
68827280 | 259 | if (pmd_devmap(pmdval)) { |
3565fce3 DW |
260 | ptl = pmd_lock(mm, pmd); |
261 | page = follow_devmap_pmd(vma, address, pmd, flags); | |
262 | spin_unlock(ptl); | |
263 | if (page) | |
264 | return page; | |
265 | } | |
68827280 | 266 | if (likely(!pmd_trans_huge(pmdval))) |
6742d293 KS |
267 | return follow_page_pte(vma, address, pmd, flags); |
268 | ||
68827280 | 269 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
270 | return no_page_table(vma, flags); |
271 | ||
84c3fc4e | 272 | retry_locked: |
6742d293 | 273 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
274 | if (unlikely(pmd_none(*pmd))) { |
275 | spin_unlock(ptl); | |
276 | return no_page_table(vma, flags); | |
277 | } | |
84c3fc4e ZY |
278 | if (unlikely(!pmd_present(*pmd))) { |
279 | spin_unlock(ptl); | |
280 | if (likely(!(flags & FOLL_MIGRATION))) | |
281 | return no_page_table(vma, flags); | |
282 | pmd_migration_entry_wait(mm, pmd); | |
283 | goto retry_locked; | |
284 | } | |
6742d293 KS |
285 | if (unlikely(!pmd_trans_huge(*pmd))) { |
286 | spin_unlock(ptl); | |
287 | return follow_page_pte(vma, address, pmd, flags); | |
288 | } | |
6742d293 KS |
289 | if (flags & FOLL_SPLIT) { |
290 | int ret; | |
291 | page = pmd_page(*pmd); | |
292 | if (is_huge_zero_page(page)) { | |
293 | spin_unlock(ptl); | |
294 | ret = 0; | |
78ddc534 | 295 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
296 | if (pmd_trans_unstable(pmd)) |
297 | ret = -EBUSY; | |
6742d293 KS |
298 | } else { |
299 | get_page(page); | |
69e68b4f | 300 | spin_unlock(ptl); |
6742d293 KS |
301 | lock_page(page); |
302 | ret = split_huge_page(page); | |
303 | unlock_page(page); | |
304 | put_page(page); | |
baa355fd KS |
305 | if (pmd_none(*pmd)) |
306 | return no_page_table(vma, flags); | |
6742d293 KS |
307 | } |
308 | ||
309 | return ret ? ERR_PTR(ret) : | |
310 | follow_page_pte(vma, address, pmd, flags); | |
69e68b4f | 311 | } |
6742d293 KS |
312 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
313 | spin_unlock(ptl); | |
314 | *page_mask = HPAGE_PMD_NR - 1; | |
315 | return page; | |
4bbd4c77 KS |
316 | } |
317 | ||
080dbb61 AK |
318 | |
319 | static struct page *follow_pud_mask(struct vm_area_struct *vma, | |
320 | unsigned long address, p4d_t *p4dp, | |
321 | unsigned int flags, unsigned int *page_mask) | |
322 | { | |
323 | pud_t *pud; | |
324 | spinlock_t *ptl; | |
325 | struct page *page; | |
326 | struct mm_struct *mm = vma->vm_mm; | |
327 | ||
328 | pud = pud_offset(p4dp, address); | |
329 | if (pud_none(*pud)) | |
330 | return no_page_table(vma, flags); | |
331 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | |
332 | page = follow_huge_pud(mm, address, pud, flags); | |
333 | if (page) | |
334 | return page; | |
335 | return no_page_table(vma, flags); | |
336 | } | |
4dc71451 AK |
337 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
338 | page = follow_huge_pd(vma, address, | |
339 | __hugepd(pud_val(*pud)), flags, | |
340 | PUD_SHIFT); | |
341 | if (page) | |
342 | return page; | |
343 | return no_page_table(vma, flags); | |
344 | } | |
080dbb61 AK |
345 | if (pud_devmap(*pud)) { |
346 | ptl = pud_lock(mm, pud); | |
347 | page = follow_devmap_pud(vma, address, pud, flags); | |
348 | spin_unlock(ptl); | |
349 | if (page) | |
350 | return page; | |
351 | } | |
352 | if (unlikely(pud_bad(*pud))) | |
353 | return no_page_table(vma, flags); | |
354 | ||
355 | return follow_pmd_mask(vma, address, pud, flags, page_mask); | |
356 | } | |
357 | ||
358 | ||
359 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, | |
360 | unsigned long address, pgd_t *pgdp, | |
361 | unsigned int flags, unsigned int *page_mask) | |
362 | { | |
363 | p4d_t *p4d; | |
4dc71451 | 364 | struct page *page; |
080dbb61 AK |
365 | |
366 | p4d = p4d_offset(pgdp, address); | |
367 | if (p4d_none(*p4d)) | |
368 | return no_page_table(vma, flags); | |
369 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
370 | if (unlikely(p4d_bad(*p4d))) | |
371 | return no_page_table(vma, flags); | |
372 | ||
4dc71451 AK |
373 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
374 | page = follow_huge_pd(vma, address, | |
375 | __hugepd(p4d_val(*p4d)), flags, | |
376 | P4D_SHIFT); | |
377 | if (page) | |
378 | return page; | |
379 | return no_page_table(vma, flags); | |
380 | } | |
080dbb61 AK |
381 | return follow_pud_mask(vma, address, p4d, flags, page_mask); |
382 | } | |
383 | ||
384 | /** | |
385 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
386 | * @vma: vm_area_struct mapping @address | |
387 | * @address: virtual address to look up | |
388 | * @flags: flags modifying lookup behaviour | |
389 | * @page_mask: on output, *page_mask is set according to the size of the page | |
390 | * | |
391 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
392 | * | |
393 | * Returns the mapped (struct page *), %NULL if no mapping exists, or | |
394 | * an error pointer if there is a mapping to something not represented | |
395 | * by a page descriptor (see also vm_normal_page()). | |
396 | */ | |
397 | struct page *follow_page_mask(struct vm_area_struct *vma, | |
398 | unsigned long address, unsigned int flags, | |
399 | unsigned int *page_mask) | |
400 | { | |
401 | pgd_t *pgd; | |
402 | struct page *page; | |
403 | struct mm_struct *mm = vma->vm_mm; | |
404 | ||
405 | *page_mask = 0; | |
406 | ||
407 | /* make this handle hugepd */ | |
408 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
409 | if (!IS_ERR(page)) { | |
410 | BUG_ON(flags & FOLL_GET); | |
411 | return page; | |
412 | } | |
413 | ||
414 | pgd = pgd_offset(mm, address); | |
415 | ||
416 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
417 | return no_page_table(vma, flags); | |
418 | ||
faaa5b62 AK |
419 | if (pgd_huge(*pgd)) { |
420 | page = follow_huge_pgd(mm, address, pgd, flags); | |
421 | if (page) | |
422 | return page; | |
423 | return no_page_table(vma, flags); | |
424 | } | |
4dc71451 AK |
425 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
426 | page = follow_huge_pd(vma, address, | |
427 | __hugepd(pgd_val(*pgd)), flags, | |
428 | PGDIR_SHIFT); | |
429 | if (page) | |
430 | return page; | |
431 | return no_page_table(vma, flags); | |
432 | } | |
faaa5b62 | 433 | |
080dbb61 AK |
434 | return follow_p4d_mask(vma, address, pgd, flags, page_mask); |
435 | } | |
436 | ||
f2b495ca KS |
437 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
438 | unsigned int gup_flags, struct vm_area_struct **vma, | |
439 | struct page **page) | |
440 | { | |
441 | pgd_t *pgd; | |
c2febafc | 442 | p4d_t *p4d; |
f2b495ca KS |
443 | pud_t *pud; |
444 | pmd_t *pmd; | |
445 | pte_t *pte; | |
446 | int ret = -EFAULT; | |
447 | ||
448 | /* user gate pages are read-only */ | |
449 | if (gup_flags & FOLL_WRITE) | |
450 | return -EFAULT; | |
451 | if (address > TASK_SIZE) | |
452 | pgd = pgd_offset_k(address); | |
453 | else | |
454 | pgd = pgd_offset_gate(mm, address); | |
455 | BUG_ON(pgd_none(*pgd)); | |
c2febafc KS |
456 | p4d = p4d_offset(pgd, address); |
457 | BUG_ON(p4d_none(*p4d)); | |
458 | pud = pud_offset(p4d, address); | |
f2b495ca KS |
459 | BUG_ON(pud_none(*pud)); |
460 | pmd = pmd_offset(pud, address); | |
84c3fc4e | 461 | if (!pmd_present(*pmd)) |
f2b495ca KS |
462 | return -EFAULT; |
463 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
464 | pte = pte_offset_map(pmd, address); | |
465 | if (pte_none(*pte)) | |
466 | goto unmap; | |
467 | *vma = get_gate_vma(mm); | |
468 | if (!page) | |
469 | goto out; | |
470 | *page = vm_normal_page(*vma, address, *pte); | |
471 | if (!*page) { | |
472 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
473 | goto unmap; | |
474 | *page = pte_page(*pte); | |
df6ad698 JG |
475 | |
476 | /* | |
477 | * This should never happen (a device public page in the gate | |
478 | * area). | |
479 | */ | |
480 | if (is_device_public_page(*page)) | |
481 | goto unmap; | |
f2b495ca KS |
482 | } |
483 | get_page(*page); | |
484 | out: | |
485 | ret = 0; | |
486 | unmap: | |
487 | pte_unmap(pte); | |
488 | return ret; | |
489 | } | |
490 | ||
9a95f3cf PC |
491 | /* |
492 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
493 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
494 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
495 | */ | |
16744483 KS |
496 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
497 | unsigned long address, unsigned int *flags, int *nonblocking) | |
498 | { | |
16744483 KS |
499 | unsigned int fault_flags = 0; |
500 | int ret; | |
501 | ||
de60f5f1 EM |
502 | /* mlock all present pages, but do not fault in new pages */ |
503 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
504 | return -ENOENT; | |
16744483 KS |
505 | if (*flags & FOLL_WRITE) |
506 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
507 | if (*flags & FOLL_REMOTE) |
508 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
509 | if (nonblocking) |
510 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
511 | if (*flags & FOLL_NOWAIT) | |
512 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
513 | if (*flags & FOLL_TRIED) { |
514 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
515 | fault_flags |= FAULT_FLAG_TRIED; | |
516 | } | |
16744483 | 517 | |
dcddffd4 | 518 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 519 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
520 | int err = vm_fault_to_errno(ret, *flags); |
521 | ||
522 | if (err) | |
523 | return err; | |
16744483 KS |
524 | BUG(); |
525 | } | |
526 | ||
527 | if (tsk) { | |
528 | if (ret & VM_FAULT_MAJOR) | |
529 | tsk->maj_flt++; | |
530 | else | |
531 | tsk->min_flt++; | |
532 | } | |
533 | ||
534 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 535 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
536 | *nonblocking = 0; |
537 | return -EBUSY; | |
538 | } | |
539 | ||
540 | /* | |
541 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
542 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
543 | * can thus safely do subsequent page lookups as if they were reads. | |
544 | * But only do so when looping for pte_write is futile: in some cases | |
545 | * userspace may also be wanting to write to the gotten user page, | |
546 | * which a read fault here might prevent (a readonly page might get | |
547 | * reCOWed by userspace write). | |
548 | */ | |
549 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 550 | *flags |= FOLL_COW; |
16744483 KS |
551 | return 0; |
552 | } | |
553 | ||
fa5bb209 KS |
554 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
555 | { | |
556 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
557 | int write = (gup_flags & FOLL_WRITE); |
558 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
559 | |
560 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
561 | return -EFAULT; | |
562 | ||
7f7ccc2c WT |
563 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
564 | return -EFAULT; | |
565 | ||
1b2ee126 | 566 | if (write) { |
fa5bb209 KS |
567 | if (!(vm_flags & VM_WRITE)) { |
568 | if (!(gup_flags & FOLL_FORCE)) | |
569 | return -EFAULT; | |
570 | /* | |
571 | * We used to let the write,force case do COW in a | |
572 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
573 | * set a breakpoint in a read-only mapping of an | |
574 | * executable, without corrupting the file (yet only | |
575 | * when that file had been opened for writing!). | |
576 | * Anon pages in shared mappings are surprising: now | |
577 | * just reject it. | |
578 | */ | |
46435364 | 579 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 580 | return -EFAULT; |
fa5bb209 KS |
581 | } |
582 | } else if (!(vm_flags & VM_READ)) { | |
583 | if (!(gup_flags & FOLL_FORCE)) | |
584 | return -EFAULT; | |
585 | /* | |
586 | * Is there actually any vma we can reach here which does not | |
587 | * have VM_MAYREAD set? | |
588 | */ | |
589 | if (!(vm_flags & VM_MAYREAD)) | |
590 | return -EFAULT; | |
591 | } | |
d61172b4 DH |
592 | /* |
593 | * gups are always data accesses, not instruction | |
594 | * fetches, so execute=false here | |
595 | */ | |
596 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 597 | return -EFAULT; |
fa5bb209 KS |
598 | return 0; |
599 | } | |
600 | ||
4bbd4c77 KS |
601 | /** |
602 | * __get_user_pages() - pin user pages in memory | |
603 | * @tsk: task_struct of target task | |
604 | * @mm: mm_struct of target mm | |
605 | * @start: starting user address | |
606 | * @nr_pages: number of pages from start to pin | |
607 | * @gup_flags: flags modifying pin behaviour | |
608 | * @pages: array that receives pointers to the pages pinned. | |
609 | * Should be at least nr_pages long. Or NULL, if caller | |
610 | * only intends to ensure the pages are faulted in. | |
611 | * @vmas: array of pointers to vmas corresponding to each page. | |
612 | * Or NULL if the caller does not require them. | |
613 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
614 | * | |
615 | * Returns number of pages pinned. This may be fewer than the number | |
616 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
617 | * were pinned, returns -errno. Each page returned must be released | |
618 | * with a put_page() call when it is finished with. vmas will only | |
619 | * remain valid while mmap_sem is held. | |
620 | * | |
9a95f3cf | 621 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
622 | * |
623 | * __get_user_pages walks a process's page tables and takes a reference to | |
624 | * each struct page that each user address corresponds to at a given | |
625 | * instant. That is, it takes the page that would be accessed if a user | |
626 | * thread accesses the given user virtual address at that instant. | |
627 | * | |
628 | * This does not guarantee that the page exists in the user mappings when | |
629 | * __get_user_pages returns, and there may even be a completely different | |
630 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
631 | * and subsequently re faulted). However it does guarantee that the page | |
632 | * won't be freed completely. And mostly callers simply care that the page | |
633 | * contains data that was valid *at some point in time*. Typically, an IO | |
634 | * or similar operation cannot guarantee anything stronger anyway because | |
635 | * locks can't be held over the syscall boundary. | |
636 | * | |
637 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
638 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
639 | * appropriate) must be called after the page is finished with, and | |
640 | * before put_page is called. | |
641 | * | |
642 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
643 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
644 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
645 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
646 | * this case. | |
647 | * | |
648 | * A caller using such a combination of @nonblocking and @gup_flags | |
649 | * must therefore hold the mmap_sem for reading only, and recognize | |
650 | * when it's been released. Otherwise, it must be held for either | |
651 | * reading or writing and will not be released. | |
4bbd4c77 KS |
652 | * |
653 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
654 | * instead of __get_user_pages. __get_user_pages should be used only if | |
655 | * you need some special @gup_flags. | |
656 | */ | |
0d731759 | 657 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
658 | unsigned long start, unsigned long nr_pages, |
659 | unsigned int gup_flags, struct page **pages, | |
660 | struct vm_area_struct **vmas, int *nonblocking) | |
661 | { | |
fa5bb209 | 662 | long i = 0; |
4bbd4c77 | 663 | unsigned int page_mask; |
fa5bb209 | 664 | struct vm_area_struct *vma = NULL; |
4bbd4c77 KS |
665 | |
666 | if (!nr_pages) | |
667 | return 0; | |
668 | ||
669 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
670 | ||
671 | /* | |
672 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
673 | * fault information is unrelated to the reference behaviour of a task | |
674 | * using the address space | |
675 | */ | |
676 | if (!(gup_flags & FOLL_FORCE)) | |
677 | gup_flags |= FOLL_NUMA; | |
678 | ||
4bbd4c77 | 679 | do { |
fa5bb209 KS |
680 | struct page *page; |
681 | unsigned int foll_flags = gup_flags; | |
682 | unsigned int page_increm; | |
683 | ||
684 | /* first iteration or cross vma bound */ | |
685 | if (!vma || start >= vma->vm_end) { | |
686 | vma = find_extend_vma(mm, start); | |
687 | if (!vma && in_gate_area(mm, start)) { | |
688 | int ret; | |
689 | ret = get_gate_page(mm, start & PAGE_MASK, | |
690 | gup_flags, &vma, | |
691 | pages ? &pages[i] : NULL); | |
692 | if (ret) | |
693 | return i ? : ret; | |
694 | page_mask = 0; | |
695 | goto next_page; | |
696 | } | |
4bbd4c77 | 697 | |
fa5bb209 KS |
698 | if (!vma || check_vma_flags(vma, gup_flags)) |
699 | return i ? : -EFAULT; | |
700 | if (is_vm_hugetlb_page(vma)) { | |
701 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
702 | &start, &nr_pages, i, | |
87ffc118 | 703 | gup_flags, nonblocking); |
fa5bb209 | 704 | continue; |
4bbd4c77 | 705 | } |
fa5bb209 KS |
706 | } |
707 | retry: | |
708 | /* | |
709 | * If we have a pending SIGKILL, don't keep faulting pages and | |
710 | * potentially allocating memory. | |
711 | */ | |
712 | if (unlikely(fatal_signal_pending(current))) | |
713 | return i ? i : -ERESTARTSYS; | |
714 | cond_resched(); | |
715 | page = follow_page_mask(vma, start, foll_flags, &page_mask); | |
716 | if (!page) { | |
717 | int ret; | |
718 | ret = faultin_page(tsk, vma, start, &foll_flags, | |
719 | nonblocking); | |
720 | switch (ret) { | |
721 | case 0: | |
722 | goto retry; | |
723 | case -EFAULT: | |
724 | case -ENOMEM: | |
725 | case -EHWPOISON: | |
726 | return i ? i : ret; | |
727 | case -EBUSY: | |
728 | return i; | |
729 | case -ENOENT: | |
730 | goto next_page; | |
4bbd4c77 | 731 | } |
fa5bb209 | 732 | BUG(); |
1027e443 KS |
733 | } else if (PTR_ERR(page) == -EEXIST) { |
734 | /* | |
735 | * Proper page table entry exists, but no corresponding | |
736 | * struct page. | |
737 | */ | |
738 | goto next_page; | |
739 | } else if (IS_ERR(page)) { | |
fa5bb209 | 740 | return i ? i : PTR_ERR(page); |
1027e443 | 741 | } |
fa5bb209 KS |
742 | if (pages) { |
743 | pages[i] = page; | |
744 | flush_anon_page(vma, page, start); | |
745 | flush_dcache_page(page); | |
746 | page_mask = 0; | |
4bbd4c77 | 747 | } |
4bbd4c77 | 748 | next_page: |
fa5bb209 KS |
749 | if (vmas) { |
750 | vmas[i] = vma; | |
751 | page_mask = 0; | |
752 | } | |
753 | page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); | |
754 | if (page_increm > nr_pages) | |
755 | page_increm = nr_pages; | |
756 | i += page_increm; | |
757 | start += page_increm * PAGE_SIZE; | |
758 | nr_pages -= page_increm; | |
4bbd4c77 KS |
759 | } while (nr_pages); |
760 | return i; | |
4bbd4c77 | 761 | } |
4bbd4c77 | 762 | |
771ab430 TK |
763 | static bool vma_permits_fault(struct vm_area_struct *vma, |
764 | unsigned int fault_flags) | |
d4925e00 | 765 | { |
1b2ee126 DH |
766 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
767 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 768 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
769 | |
770 | if (!(vm_flags & vma->vm_flags)) | |
771 | return false; | |
772 | ||
33a709b2 DH |
773 | /* |
774 | * The architecture might have a hardware protection | |
1b2ee126 | 775 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
776 | * |
777 | * gup always represents data access, not instruction | |
778 | * fetches, so execute=false here: | |
33a709b2 | 779 | */ |
d61172b4 | 780 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
781 | return false; |
782 | ||
d4925e00 DH |
783 | return true; |
784 | } | |
785 | ||
4bbd4c77 KS |
786 | /* |
787 | * fixup_user_fault() - manually resolve a user page fault | |
788 | * @tsk: the task_struct to use for page fault accounting, or | |
789 | * NULL if faults are not to be recorded. | |
790 | * @mm: mm_struct of target mm | |
791 | * @address: user address | |
792 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
793 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
794 | * does not allow retry | |
4bbd4c77 KS |
795 | * |
796 | * This is meant to be called in the specific scenario where for locking reasons | |
797 | * we try to access user memory in atomic context (within a pagefault_disable() | |
798 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
799 | * trying again. | |
800 | * | |
801 | * Typically this is meant to be used by the futex code. | |
802 | * | |
803 | * The main difference with get_user_pages() is that this function will | |
804 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
805 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 806 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
807 | * |
808 | * This is important for some architectures where those bits also gate the | |
809 | * access permission to the page because they are maintained in software. On | |
810 | * such architectures, gup() will not be enough to make a subsequent access | |
811 | * succeed. | |
812 | * | |
4a9e1cda DD |
813 | * This function will not return with an unlocked mmap_sem. So it has not the |
814 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
815 | */ |
816 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
817 | unsigned long address, unsigned int fault_flags, |
818 | bool *unlocked) | |
4bbd4c77 KS |
819 | { |
820 | struct vm_area_struct *vma; | |
4a9e1cda DD |
821 | int ret, major = 0; |
822 | ||
823 | if (unlocked) | |
824 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 825 | |
4a9e1cda | 826 | retry: |
4bbd4c77 KS |
827 | vma = find_extend_vma(mm, address); |
828 | if (!vma || address < vma->vm_start) | |
829 | return -EFAULT; | |
830 | ||
d4925e00 | 831 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
832 | return -EFAULT; |
833 | ||
dcddffd4 | 834 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 835 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 836 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
837 | int err = vm_fault_to_errno(ret, 0); |
838 | ||
839 | if (err) | |
840 | return err; | |
4bbd4c77 KS |
841 | BUG(); |
842 | } | |
4a9e1cda DD |
843 | |
844 | if (ret & VM_FAULT_RETRY) { | |
845 | down_read(&mm->mmap_sem); | |
846 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
847 | *unlocked = true; | |
848 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
849 | fault_flags |= FAULT_FLAG_TRIED; | |
850 | goto retry; | |
851 | } | |
852 | } | |
853 | ||
4bbd4c77 | 854 | if (tsk) { |
4a9e1cda | 855 | if (major) |
4bbd4c77 KS |
856 | tsk->maj_flt++; |
857 | else | |
858 | tsk->min_flt++; | |
859 | } | |
860 | return 0; | |
861 | } | |
add6a0cd | 862 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 863 | |
f0818f47 AA |
864 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
865 | struct mm_struct *mm, | |
866 | unsigned long start, | |
867 | unsigned long nr_pages, | |
f0818f47 AA |
868 | struct page **pages, |
869 | struct vm_area_struct **vmas, | |
e716712f | 870 | int *locked, |
0fd71a56 | 871 | unsigned int flags) |
f0818f47 | 872 | { |
f0818f47 AA |
873 | long ret, pages_done; |
874 | bool lock_dropped; | |
875 | ||
876 | if (locked) { | |
877 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
878 | BUG_ON(vmas); | |
879 | /* check caller initialized locked */ | |
880 | BUG_ON(*locked != 1); | |
881 | } | |
882 | ||
883 | if (pages) | |
884 | flags |= FOLL_GET; | |
f0818f47 AA |
885 | |
886 | pages_done = 0; | |
887 | lock_dropped = false; | |
888 | for (;;) { | |
889 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
890 | vmas, locked); | |
891 | if (!locked) | |
892 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
893 | return ret; | |
894 | ||
895 | /* VM_FAULT_RETRY cannot return errors */ | |
896 | if (!*locked) { | |
897 | BUG_ON(ret < 0); | |
898 | BUG_ON(ret >= nr_pages); | |
899 | } | |
900 | ||
901 | if (!pages) | |
902 | /* If it's a prefault don't insist harder */ | |
903 | return ret; | |
904 | ||
905 | if (ret > 0) { | |
906 | nr_pages -= ret; | |
907 | pages_done += ret; | |
908 | if (!nr_pages) | |
909 | break; | |
910 | } | |
911 | if (*locked) { | |
96312e61 AA |
912 | /* |
913 | * VM_FAULT_RETRY didn't trigger or it was a | |
914 | * FOLL_NOWAIT. | |
915 | */ | |
f0818f47 AA |
916 | if (!pages_done) |
917 | pages_done = ret; | |
918 | break; | |
919 | } | |
920 | /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ | |
921 | pages += ret; | |
922 | start += ret << PAGE_SHIFT; | |
923 | ||
924 | /* | |
925 | * Repeat on the address that fired VM_FAULT_RETRY | |
926 | * without FAULT_FLAG_ALLOW_RETRY but with | |
927 | * FAULT_FLAG_TRIED. | |
928 | */ | |
929 | *locked = 1; | |
930 | lock_dropped = true; | |
931 | down_read(&mm->mmap_sem); | |
932 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
933 | pages, NULL, NULL); | |
934 | if (ret != 1) { | |
935 | BUG_ON(ret > 1); | |
936 | if (!pages_done) | |
937 | pages_done = ret; | |
938 | break; | |
939 | } | |
940 | nr_pages--; | |
941 | pages_done++; | |
942 | if (!nr_pages) | |
943 | break; | |
944 | pages++; | |
945 | start += PAGE_SIZE; | |
946 | } | |
e716712f | 947 | if (lock_dropped && *locked) { |
f0818f47 AA |
948 | /* |
949 | * We must let the caller know we temporarily dropped the lock | |
950 | * and so the critical section protected by it was lost. | |
951 | */ | |
952 | up_read(&mm->mmap_sem); | |
953 | *locked = 0; | |
954 | } | |
955 | return pages_done; | |
956 | } | |
957 | ||
958 | /* | |
959 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
960 | * paths better by using either get_user_pages_locked() or | |
961 | * get_user_pages_unlocked(). | |
962 | * | |
963 | * get_user_pages_locked() is suitable to replace the form: | |
964 | * | |
965 | * down_read(&mm->mmap_sem); | |
966 | * do_something() | |
967 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
968 | * up_read(&mm->mmap_sem); | |
969 | * | |
970 | * to: | |
971 | * | |
972 | * int locked = 1; | |
973 | * down_read(&mm->mmap_sem); | |
974 | * do_something() | |
975 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
976 | * if (locked) | |
977 | * up_read(&mm->mmap_sem); | |
978 | */ | |
c12d2da5 | 979 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
3b913179 | 980 | unsigned int gup_flags, struct page **pages, |
f0818f47 AA |
981 | int *locked) |
982 | { | |
cde70140 | 983 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 984 | pages, NULL, locked, |
3b913179 | 985 | gup_flags | FOLL_TOUCH); |
f0818f47 | 986 | } |
c12d2da5 | 987 | EXPORT_SYMBOL(get_user_pages_locked); |
f0818f47 AA |
988 | |
989 | /* | |
990 | * get_user_pages_unlocked() is suitable to replace the form: | |
991 | * | |
992 | * down_read(&mm->mmap_sem); | |
993 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
994 | * up_read(&mm->mmap_sem); | |
995 | * | |
996 | * with: | |
997 | * | |
998 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
999 | * | |
1000 | * It is functionally equivalent to get_user_pages_fast so | |
80a79516 LS |
1001 | * get_user_pages_fast should be used instead if specific gup_flags |
1002 | * (e.g. FOLL_FORCE) are not required. | |
f0818f47 | 1003 | */ |
c12d2da5 | 1004 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
c164154f | 1005 | struct page **pages, unsigned int gup_flags) |
f0818f47 | 1006 | { |
c803c9c6 AV |
1007 | struct mm_struct *mm = current->mm; |
1008 | int locked = 1; | |
1009 | long ret; | |
1010 | ||
1011 | down_read(&mm->mmap_sem); | |
1012 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
e716712f | 1013 | &locked, gup_flags | FOLL_TOUCH); |
c803c9c6 AV |
1014 | if (locked) |
1015 | up_read(&mm->mmap_sem); | |
1016 | return ret; | |
f0818f47 | 1017 | } |
c12d2da5 | 1018 | EXPORT_SYMBOL(get_user_pages_unlocked); |
f0818f47 | 1019 | |
4bbd4c77 | 1020 | /* |
1e987790 | 1021 | * get_user_pages_remote() - pin user pages in memory |
4bbd4c77 KS |
1022 | * @tsk: the task_struct to use for page fault accounting, or |
1023 | * NULL if faults are not to be recorded. | |
1024 | * @mm: mm_struct of target mm | |
1025 | * @start: starting user address | |
1026 | * @nr_pages: number of pages from start to pin | |
9beae1ea | 1027 | * @gup_flags: flags modifying lookup behaviour |
4bbd4c77 KS |
1028 | * @pages: array that receives pointers to the pages pinned. |
1029 | * Should be at least nr_pages long. Or NULL, if caller | |
1030 | * only intends to ensure the pages are faulted in. | |
1031 | * @vmas: array of pointers to vmas corresponding to each page. | |
1032 | * Or NULL if the caller does not require them. | |
5b56d49f LS |
1033 | * @locked: pointer to lock flag indicating whether lock is held and |
1034 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1035 | * utilised. Lock must initially be held. | |
4bbd4c77 KS |
1036 | * |
1037 | * Returns number of pages pinned. This may be fewer than the number | |
1038 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1039 | * were pinned, returns -errno. Each page returned must be released | |
1040 | * with a put_page() call when it is finished with. vmas will only | |
1041 | * remain valid while mmap_sem is held. | |
1042 | * | |
1043 | * Must be called with mmap_sem held for read or write. | |
1044 | * | |
1045 | * get_user_pages walks a process's page tables and takes a reference to | |
1046 | * each struct page that each user address corresponds to at a given | |
1047 | * instant. That is, it takes the page that would be accessed if a user | |
1048 | * thread accesses the given user virtual address at that instant. | |
1049 | * | |
1050 | * This does not guarantee that the page exists in the user mappings when | |
1051 | * get_user_pages returns, and there may even be a completely different | |
1052 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1053 | * and subsequently re faulted). However it does guarantee that the page | |
1054 | * won't be freed completely. And mostly callers simply care that the page | |
1055 | * contains data that was valid *at some point in time*. Typically, an IO | |
1056 | * or similar operation cannot guarantee anything stronger anyway because | |
1057 | * locks can't be held over the syscall boundary. | |
1058 | * | |
9beae1ea LS |
1059 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
1060 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1061 | * be called after the page is finished with, and before put_page is called. | |
4bbd4c77 KS |
1062 | * |
1063 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1064 | * handle on the memory by some means other than accesses via the user virtual | |
1065 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1066 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1067 | * use the correct cache flushing APIs. | |
1068 | * | |
1069 | * See also get_user_pages_fast, for performance critical applications. | |
f0818f47 AA |
1070 | * |
1071 | * get_user_pages should be phased out in favor of | |
1072 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1073 | * should use get_user_pages because it cannot pass | |
1074 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
4bbd4c77 | 1075 | */ |
1e987790 DH |
1076 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1077 | unsigned long start, unsigned long nr_pages, | |
9beae1ea | 1078 | unsigned int gup_flags, struct page **pages, |
5b56d49f | 1079 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1080 | { |
859110d7 | 1081 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, |
e716712f | 1082 | locked, |
9beae1ea | 1083 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); |
1e987790 DH |
1084 | } |
1085 | EXPORT_SYMBOL(get_user_pages_remote); | |
1086 | ||
1087 | /* | |
d4edcf0d DH |
1088 | * This is the same as get_user_pages_remote(), just with a |
1089 | * less-flexible calling convention where we assume that the task | |
5b56d49f LS |
1090 | * and mm being operated on are the current task's and don't allow |
1091 | * passing of a locked parameter. We also obviously don't pass | |
1092 | * FOLL_REMOTE in here. | |
1e987790 | 1093 | */ |
c12d2da5 | 1094 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
768ae309 | 1095 | unsigned int gup_flags, struct page **pages, |
1e987790 DH |
1096 | struct vm_area_struct **vmas) |
1097 | { | |
cde70140 | 1098 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
e716712f | 1099 | pages, vmas, NULL, |
768ae309 | 1100 | gup_flags | FOLL_TOUCH); |
4bbd4c77 | 1101 | } |
c12d2da5 | 1102 | EXPORT_SYMBOL(get_user_pages); |
4bbd4c77 | 1103 | |
2bb6d283 DW |
1104 | #ifdef CONFIG_FS_DAX |
1105 | /* | |
1106 | * This is the same as get_user_pages() in that it assumes we are | |
1107 | * operating on the current task's mm, but it goes further to validate | |
1108 | * that the vmas associated with the address range are suitable for | |
1109 | * longterm elevated page reference counts. For example, filesystem-dax | |
1110 | * mappings are subject to the lifetime enforced by the filesystem and | |
1111 | * we need guarantees that longterm users like RDMA and V4L2 only | |
1112 | * establish mappings that have a kernel enforced revocation mechanism. | |
1113 | * | |
1114 | * "longterm" == userspace controlled elevated page count lifetime. | |
1115 | * Contrast this to iov_iter_get_pages() usages which are transient. | |
1116 | */ | |
1117 | long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, | |
1118 | unsigned int gup_flags, struct page **pages, | |
1119 | struct vm_area_struct **vmas_arg) | |
1120 | { | |
1121 | struct vm_area_struct **vmas = vmas_arg; | |
1122 | struct vm_area_struct *vma_prev = NULL; | |
1123 | long rc, i; | |
1124 | ||
1125 | if (!pages) | |
1126 | return -EINVAL; | |
1127 | ||
1128 | if (!vmas) { | |
1129 | vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), | |
1130 | GFP_KERNEL); | |
1131 | if (!vmas) | |
1132 | return -ENOMEM; | |
1133 | } | |
1134 | ||
1135 | rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); | |
1136 | ||
1137 | for (i = 0; i < rc; i++) { | |
1138 | struct vm_area_struct *vma = vmas[i]; | |
1139 | ||
1140 | if (vma == vma_prev) | |
1141 | continue; | |
1142 | ||
1143 | vma_prev = vma; | |
1144 | ||
1145 | if (vma_is_fsdax(vma)) | |
1146 | break; | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | * Either get_user_pages() failed, or the vma validation | |
1151 | * succeeded, in either case we don't need to put_page() before | |
1152 | * returning. | |
1153 | */ | |
1154 | if (i >= rc) | |
1155 | goto out; | |
1156 | ||
1157 | for (i = 0; i < rc; i++) | |
1158 | put_page(pages[i]); | |
1159 | rc = -EOPNOTSUPP; | |
1160 | out: | |
1161 | if (vmas != vmas_arg) | |
1162 | kfree(vmas); | |
1163 | return rc; | |
1164 | } | |
1165 | EXPORT_SYMBOL(get_user_pages_longterm); | |
1166 | #endif /* CONFIG_FS_DAX */ | |
1167 | ||
acc3c8d1 KS |
1168 | /** |
1169 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1170 | * @vma: target vma | |
1171 | * @start: start address | |
1172 | * @end: end address | |
1173 | * @nonblocking: | |
1174 | * | |
1175 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1176 | * | |
1177 | * return 0 on success, negative error code on error. | |
1178 | * | |
1179 | * vma->vm_mm->mmap_sem must be held. | |
1180 | * | |
1181 | * If @nonblocking is NULL, it may be held for read or write and will | |
1182 | * be unperturbed. | |
1183 | * | |
1184 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1185 | * released. If it's released, *@nonblocking will be set to 0. | |
1186 | */ | |
1187 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1188 | unsigned long start, unsigned long end, int *nonblocking) | |
1189 | { | |
1190 | struct mm_struct *mm = vma->vm_mm; | |
1191 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1192 | int gup_flags; | |
1193 | ||
1194 | VM_BUG_ON(start & ~PAGE_MASK); | |
1195 | VM_BUG_ON(end & ~PAGE_MASK); | |
1196 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1197 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1198 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1199 | ||
de60f5f1 EM |
1200 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; |
1201 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1202 | gup_flags &= ~FOLL_POPULATE; | |
acc3c8d1 KS |
1203 | /* |
1204 | * We want to touch writable mappings with a write fault in order | |
1205 | * to break COW, except for shared mappings because these don't COW | |
1206 | * and we would not want to dirty them for nothing. | |
1207 | */ | |
1208 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1209 | gup_flags |= FOLL_WRITE; | |
1210 | ||
1211 | /* | |
1212 | * We want mlock to succeed for regions that have any permissions | |
1213 | * other than PROT_NONE. | |
1214 | */ | |
1215 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1216 | gup_flags |= FOLL_FORCE; | |
1217 | ||
1218 | /* | |
1219 | * We made sure addr is within a VMA, so the following will | |
1220 | * not result in a stack expansion that recurses back here. | |
1221 | */ | |
1222 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1223 | NULL, NULL, nonblocking); | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1228 | * | |
1229 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1230 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1231 | * mmap_sem must not be held. | |
1232 | */ | |
1233 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1234 | { | |
1235 | struct mm_struct *mm = current->mm; | |
1236 | unsigned long end, nstart, nend; | |
1237 | struct vm_area_struct *vma = NULL; | |
1238 | int locked = 0; | |
1239 | long ret = 0; | |
1240 | ||
1241 | VM_BUG_ON(start & ~PAGE_MASK); | |
1242 | VM_BUG_ON(len != PAGE_ALIGN(len)); | |
1243 | end = start + len; | |
1244 | ||
1245 | for (nstart = start; nstart < end; nstart = nend) { | |
1246 | /* | |
1247 | * We want to fault in pages for [nstart; end) address range. | |
1248 | * Find first corresponding VMA. | |
1249 | */ | |
1250 | if (!locked) { | |
1251 | locked = 1; | |
1252 | down_read(&mm->mmap_sem); | |
1253 | vma = find_vma(mm, nstart); | |
1254 | } else if (nstart >= vma->vm_end) | |
1255 | vma = vma->vm_next; | |
1256 | if (!vma || vma->vm_start >= end) | |
1257 | break; | |
1258 | /* | |
1259 | * Set [nstart; nend) to intersection of desired address | |
1260 | * range with the first VMA. Also, skip undesirable VMA types. | |
1261 | */ | |
1262 | nend = min(end, vma->vm_end); | |
1263 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1264 | continue; | |
1265 | if (nstart < vma->vm_start) | |
1266 | nstart = vma->vm_start; | |
1267 | /* | |
1268 | * Now fault in a range of pages. populate_vma_page_range() | |
1269 | * double checks the vma flags, so that it won't mlock pages | |
1270 | * if the vma was already munlocked. | |
1271 | */ | |
1272 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1273 | if (ret < 0) { | |
1274 | if (ignore_errors) { | |
1275 | ret = 0; | |
1276 | continue; /* continue at next VMA */ | |
1277 | } | |
1278 | break; | |
1279 | } | |
1280 | nend = nstart + ret * PAGE_SIZE; | |
1281 | ret = 0; | |
1282 | } | |
1283 | if (locked) | |
1284 | up_read(&mm->mmap_sem); | |
1285 | return ret; /* 0 or negative error code */ | |
1286 | } | |
1287 | ||
4bbd4c77 KS |
1288 | /** |
1289 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1290 | * @addr: user address | |
1291 | * | |
1292 | * Returns struct page pointer of user page pinned for dump, | |
ea1754a0 | 1293 | * to be freed afterwards by put_page(). |
4bbd4c77 KS |
1294 | * |
1295 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1296 | * the corefile, to preserve alignment with its headers; and also returns | |
1297 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1298 | * allowing a hole to be left in the corefile to save diskspace. | |
1299 | * | |
1300 | * Called without mmap_sem, but after all other threads have been killed. | |
1301 | */ | |
1302 | #ifdef CONFIG_ELF_CORE | |
1303 | struct page *get_dump_page(unsigned long addr) | |
1304 | { | |
1305 | struct vm_area_struct *vma; | |
1306 | struct page *page; | |
1307 | ||
1308 | if (__get_user_pages(current, current->mm, addr, 1, | |
1309 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1310 | NULL) < 1) | |
1311 | return NULL; | |
1312 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1313 | return page; | |
1314 | } | |
1315 | #endif /* CONFIG_ELF_CORE */ | |
2667f50e SC |
1316 | |
1317 | /* | |
e585513b | 1318 | * Generic Fast GUP |
2667f50e SC |
1319 | * |
1320 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1321 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1322 | * protected from page table pages being freed from under it, and should | |
1323 | * block any THP splits. | |
1324 | * | |
1325 | * One way to achieve this is to have the walker disable interrupts, and | |
1326 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1327 | * pages are freed. This is unsuitable for architectures that do not need | |
1328 | * to broadcast an IPI when invalidating TLBs. | |
1329 | * | |
1330 | * Another way to achieve this is to batch up page table containing pages | |
1331 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1332 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1333 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1334 | * (which is a relatively rare event). The code below adopts this strategy. | |
1335 | * | |
1336 | * Before activating this code, please be aware that the following assumptions | |
1337 | * are currently made: | |
1338 | * | |
e585513b KS |
1339 | * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
1340 | * free pages containing page tables or TLB flushing requires IPI broadcast. | |
2667f50e | 1341 | * |
2667f50e SC |
1342 | * *) ptes can be read atomically by the architecture. |
1343 | * | |
1344 | * *) access_ok is sufficient to validate userspace address ranges. | |
1345 | * | |
1346 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1347 | * | |
1348 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1349 | */ | |
e585513b | 1350 | #ifdef CONFIG_HAVE_GENERIC_GUP |
2667f50e | 1351 | |
0005d20b KS |
1352 | #ifndef gup_get_pte |
1353 | /* | |
1354 | * We assume that the PTE can be read atomically. If this is not the case for | |
1355 | * your architecture, please provide the helper. | |
1356 | */ | |
1357 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1358 | { | |
1359 | return READ_ONCE(*ptep); | |
1360 | } | |
1361 | #endif | |
1362 | ||
b59f65fa KS |
1363 | static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) |
1364 | { | |
1365 | while ((*nr) - nr_start) { | |
1366 | struct page *page = pages[--(*nr)]; | |
1367 | ||
1368 | ClearPageReferenced(page); | |
1369 | put_page(page); | |
1370 | } | |
1371 | } | |
1372 | ||
3010a5ea | 1373 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e SC |
1374 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
1375 | int write, struct page **pages, int *nr) | |
1376 | { | |
b59f65fa KS |
1377 | struct dev_pagemap *pgmap = NULL; |
1378 | int nr_start = *nr, ret = 0; | |
2667f50e | 1379 | pte_t *ptep, *ptem; |
2667f50e SC |
1380 | |
1381 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1382 | do { | |
0005d20b | 1383 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1384 | struct page *head, *page; |
2667f50e SC |
1385 | |
1386 | /* | |
1387 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1388 | * path using the pte_protnone check. |
2667f50e | 1389 | */ |
e7884f8e KS |
1390 | if (pte_protnone(pte)) |
1391 | goto pte_unmap; | |
1392 | ||
1393 | if (!pte_access_permitted(pte, write)) | |
1394 | goto pte_unmap; | |
1395 | ||
b59f65fa KS |
1396 | if (pte_devmap(pte)) { |
1397 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); | |
1398 | if (unlikely(!pgmap)) { | |
1399 | undo_dev_pagemap(nr, nr_start, pages); | |
1400 | goto pte_unmap; | |
1401 | } | |
1402 | } else if (pte_special(pte)) | |
2667f50e SC |
1403 | goto pte_unmap; |
1404 | ||
1405 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1406 | page = pte_page(pte); | |
7aef4172 | 1407 | head = compound_head(page); |
2667f50e | 1408 | |
7aef4172 | 1409 | if (!page_cache_get_speculative(head)) |
2667f50e SC |
1410 | goto pte_unmap; |
1411 | ||
1412 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1413 | put_page(head); |
2667f50e SC |
1414 | goto pte_unmap; |
1415 | } | |
1416 | ||
7aef4172 | 1417 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1418 | |
1419 | SetPageReferenced(page); | |
2667f50e SC |
1420 | pages[*nr] = page; |
1421 | (*nr)++; | |
1422 | ||
1423 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1424 | ||
1425 | ret = 1; | |
1426 | ||
1427 | pte_unmap: | |
832d7aa0 CH |
1428 | if (pgmap) |
1429 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1430 | pte_unmap(ptem); |
1431 | return ret; | |
1432 | } | |
1433 | #else | |
1434 | ||
1435 | /* | |
1436 | * If we can't determine whether or not a pte is special, then fail immediately | |
1437 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1438 | * to be special. | |
1439 | * | |
1440 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1441 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1442 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1443 | */ | |
1444 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
1445 | int write, struct page **pages, int *nr) | |
1446 | { | |
1447 | return 0; | |
1448 | } | |
3010a5ea | 1449 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1450 | |
09180ca4 | 1451 | #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1452 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1453 | unsigned long end, struct page **pages, int *nr) | |
1454 | { | |
1455 | int nr_start = *nr; | |
1456 | struct dev_pagemap *pgmap = NULL; | |
1457 | ||
1458 | do { | |
1459 | struct page *page = pfn_to_page(pfn); | |
1460 | ||
1461 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1462 | if (unlikely(!pgmap)) { | |
1463 | undo_dev_pagemap(nr, nr_start, pages); | |
1464 | return 0; | |
1465 | } | |
1466 | SetPageReferenced(page); | |
1467 | pages[*nr] = page; | |
1468 | get_page(page); | |
b59f65fa KS |
1469 | (*nr)++; |
1470 | pfn++; | |
1471 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1472 | |
1473 | if (pgmap) | |
1474 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1475 | return 1; |
1476 | } | |
1477 | ||
a9b6de77 | 1478 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1479 | unsigned long end, struct page **pages, int *nr) |
1480 | { | |
1481 | unsigned long fault_pfn; | |
a9b6de77 DW |
1482 | int nr_start = *nr; |
1483 | ||
1484 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1485 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1486 | return 0; | |
b59f65fa | 1487 | |
a9b6de77 DW |
1488 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1489 | undo_dev_pagemap(nr, nr_start, pages); | |
1490 | return 0; | |
1491 | } | |
1492 | return 1; | |
b59f65fa KS |
1493 | } |
1494 | ||
a9b6de77 | 1495 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1496 | unsigned long end, struct page **pages, int *nr) |
1497 | { | |
1498 | unsigned long fault_pfn; | |
a9b6de77 DW |
1499 | int nr_start = *nr; |
1500 | ||
1501 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
1502 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1503 | return 0; | |
b59f65fa | 1504 | |
a9b6de77 DW |
1505 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
1506 | undo_dev_pagemap(nr, nr_start, pages); | |
1507 | return 0; | |
1508 | } | |
1509 | return 1; | |
b59f65fa KS |
1510 | } |
1511 | #else | |
a9b6de77 | 1512 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1513 | unsigned long end, struct page **pages, int *nr) |
1514 | { | |
1515 | BUILD_BUG(); | |
1516 | return 0; | |
1517 | } | |
1518 | ||
a9b6de77 | 1519 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1520 | unsigned long end, struct page **pages, int *nr) |
1521 | { | |
1522 | BUILD_BUG(); | |
1523 | return 0; | |
1524 | } | |
1525 | #endif | |
1526 | ||
2667f50e SC |
1527 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
1528 | unsigned long end, int write, struct page **pages, int *nr) | |
1529 | { | |
ddc58f27 | 1530 | struct page *head, *page; |
2667f50e SC |
1531 | int refs; |
1532 | ||
e7884f8e | 1533 | if (!pmd_access_permitted(orig, write)) |
2667f50e SC |
1534 | return 0; |
1535 | ||
b59f65fa | 1536 | if (pmd_devmap(orig)) |
a9b6de77 | 1537 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
b59f65fa | 1538 | |
2667f50e | 1539 | refs = 0; |
d63206ee | 1540 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
2667f50e | 1541 | do { |
2667f50e SC |
1542 | pages[*nr] = page; |
1543 | (*nr)++; | |
1544 | page++; | |
1545 | refs++; | |
1546 | } while (addr += PAGE_SIZE, addr != end); | |
1547 | ||
d63206ee | 1548 | head = compound_head(pmd_page(orig)); |
2667f50e SC |
1549 | if (!page_cache_add_speculative(head, refs)) { |
1550 | *nr -= refs; | |
1551 | return 0; | |
1552 | } | |
1553 | ||
1554 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
1555 | *nr -= refs; | |
1556 | while (refs--) | |
1557 | put_page(head); | |
1558 | return 0; | |
1559 | } | |
1560 | ||
e9348053 | 1561 | SetPageReferenced(head); |
2667f50e SC |
1562 | return 1; |
1563 | } | |
1564 | ||
1565 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
1566 | unsigned long end, int write, struct page **pages, int *nr) | |
1567 | { | |
ddc58f27 | 1568 | struct page *head, *page; |
2667f50e SC |
1569 | int refs; |
1570 | ||
e7884f8e | 1571 | if (!pud_access_permitted(orig, write)) |
2667f50e SC |
1572 | return 0; |
1573 | ||
b59f65fa | 1574 | if (pud_devmap(orig)) |
a9b6de77 | 1575 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
b59f65fa | 1576 | |
2667f50e | 1577 | refs = 0; |
d63206ee | 1578 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
2667f50e | 1579 | do { |
2667f50e SC |
1580 | pages[*nr] = page; |
1581 | (*nr)++; | |
1582 | page++; | |
1583 | refs++; | |
1584 | } while (addr += PAGE_SIZE, addr != end); | |
1585 | ||
d63206ee | 1586 | head = compound_head(pud_page(orig)); |
2667f50e SC |
1587 | if (!page_cache_add_speculative(head, refs)) { |
1588 | *nr -= refs; | |
1589 | return 0; | |
1590 | } | |
1591 | ||
1592 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
1593 | *nr -= refs; | |
1594 | while (refs--) | |
1595 | put_page(head); | |
1596 | return 0; | |
1597 | } | |
1598 | ||
e9348053 | 1599 | SetPageReferenced(head); |
2667f50e SC |
1600 | return 1; |
1601 | } | |
1602 | ||
f30c59e9 AK |
1603 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
1604 | unsigned long end, int write, | |
1605 | struct page **pages, int *nr) | |
1606 | { | |
1607 | int refs; | |
ddc58f27 | 1608 | struct page *head, *page; |
f30c59e9 | 1609 | |
e7884f8e | 1610 | if (!pgd_access_permitted(orig, write)) |
f30c59e9 AK |
1611 | return 0; |
1612 | ||
b59f65fa | 1613 | BUILD_BUG_ON(pgd_devmap(orig)); |
f30c59e9 | 1614 | refs = 0; |
d63206ee | 1615 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
f30c59e9 | 1616 | do { |
f30c59e9 AK |
1617 | pages[*nr] = page; |
1618 | (*nr)++; | |
1619 | page++; | |
1620 | refs++; | |
1621 | } while (addr += PAGE_SIZE, addr != end); | |
1622 | ||
d63206ee | 1623 | head = compound_head(pgd_page(orig)); |
f30c59e9 AK |
1624 | if (!page_cache_add_speculative(head, refs)) { |
1625 | *nr -= refs; | |
1626 | return 0; | |
1627 | } | |
1628 | ||
1629 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
1630 | *nr -= refs; | |
1631 | while (refs--) | |
1632 | put_page(head); | |
1633 | return 0; | |
1634 | } | |
1635 | ||
e9348053 | 1636 | SetPageReferenced(head); |
f30c59e9 AK |
1637 | return 1; |
1638 | } | |
1639 | ||
2667f50e SC |
1640 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
1641 | int write, struct page **pages, int *nr) | |
1642 | { | |
1643 | unsigned long next; | |
1644 | pmd_t *pmdp; | |
1645 | ||
1646 | pmdp = pmd_offset(&pud, addr); | |
1647 | do { | |
38c5ce93 | 1648 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
1649 | |
1650 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1651 | if (!pmd_present(pmd)) |
2667f50e SC |
1652 | return 0; |
1653 | ||
1654 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { | |
1655 | /* | |
1656 | * NUMA hinting faults need to be handled in the GUP | |
1657 | * slowpath for accounting purposes and so that they | |
1658 | * can be serialised against THP migration. | |
1659 | */ | |
8a0516ed | 1660 | if (pmd_protnone(pmd)) |
2667f50e SC |
1661 | return 0; |
1662 | ||
1663 | if (!gup_huge_pmd(pmd, pmdp, addr, next, write, | |
1664 | pages, nr)) | |
1665 | return 0; | |
1666 | ||
f30c59e9 AK |
1667 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
1668 | /* | |
1669 | * architecture have different format for hugetlbfs | |
1670 | * pmd format and THP pmd format | |
1671 | */ | |
1672 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
1673 | PMD_SHIFT, next, write, pages, nr)) | |
1674 | return 0; | |
2667f50e | 1675 | } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) |
2923117b | 1676 | return 0; |
2667f50e SC |
1677 | } while (pmdp++, addr = next, addr != end); |
1678 | ||
1679 | return 1; | |
1680 | } | |
1681 | ||
c2febafc | 1682 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
f30c59e9 | 1683 | int write, struct page **pages, int *nr) |
2667f50e SC |
1684 | { |
1685 | unsigned long next; | |
1686 | pud_t *pudp; | |
1687 | ||
c2febafc | 1688 | pudp = pud_offset(&p4d, addr); |
2667f50e | 1689 | do { |
e37c6982 | 1690 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
1691 | |
1692 | next = pud_addr_end(addr, end); | |
1693 | if (pud_none(pud)) | |
1694 | return 0; | |
f30c59e9 | 1695 | if (unlikely(pud_huge(pud))) { |
2667f50e | 1696 | if (!gup_huge_pud(pud, pudp, addr, next, write, |
f30c59e9 AK |
1697 | pages, nr)) |
1698 | return 0; | |
1699 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
1700 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
1701 | PUD_SHIFT, next, write, pages, nr)) | |
2667f50e SC |
1702 | return 0; |
1703 | } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) | |
1704 | return 0; | |
1705 | } while (pudp++, addr = next, addr != end); | |
1706 | ||
1707 | return 1; | |
1708 | } | |
1709 | ||
c2febafc KS |
1710 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
1711 | int write, struct page **pages, int *nr) | |
1712 | { | |
1713 | unsigned long next; | |
1714 | p4d_t *p4dp; | |
1715 | ||
1716 | p4dp = p4d_offset(&pgd, addr); | |
1717 | do { | |
1718 | p4d_t p4d = READ_ONCE(*p4dp); | |
1719 | ||
1720 | next = p4d_addr_end(addr, end); | |
1721 | if (p4d_none(p4d)) | |
1722 | return 0; | |
1723 | BUILD_BUG_ON(p4d_huge(p4d)); | |
1724 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
1725 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
1726 | P4D_SHIFT, next, write, pages, nr)) | |
1727 | return 0; | |
ce70df08 | 1728 | } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) |
c2febafc KS |
1729 | return 0; |
1730 | } while (p4dp++, addr = next, addr != end); | |
1731 | ||
1732 | return 1; | |
1733 | } | |
1734 | ||
5b65c467 KS |
1735 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
1736 | int write, struct page **pages, int *nr) | |
1737 | { | |
1738 | unsigned long next; | |
1739 | pgd_t *pgdp; | |
1740 | ||
1741 | pgdp = pgd_offset(current->mm, addr); | |
1742 | do { | |
1743 | pgd_t pgd = READ_ONCE(*pgdp); | |
1744 | ||
1745 | next = pgd_addr_end(addr, end); | |
1746 | if (pgd_none(pgd)) | |
1747 | return; | |
1748 | if (unlikely(pgd_huge(pgd))) { | |
1749 | if (!gup_huge_pgd(pgd, pgdp, addr, next, write, | |
1750 | pages, nr)) | |
1751 | return; | |
1752 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
1753 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
1754 | PGDIR_SHIFT, next, write, pages, nr)) | |
1755 | return; | |
1756 | } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) | |
1757 | return; | |
1758 | } while (pgdp++, addr = next, addr != end); | |
1759 | } | |
1760 | ||
1761 | #ifndef gup_fast_permitted | |
1762 | /* | |
1763 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
1764 | * we need to fall back to the slow version: | |
1765 | */ | |
1766 | bool gup_fast_permitted(unsigned long start, int nr_pages, int write) | |
1767 | { | |
1768 | unsigned long len, end; | |
1769 | ||
1770 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
1771 | end = start + len; | |
1772 | return end >= start; | |
1773 | } | |
1774 | #endif | |
1775 | ||
2667f50e SC |
1776 | /* |
1777 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
1778 | * the regular GUP. |
1779 | * Note a difference with get_user_pages_fast: this always returns the | |
1780 | * number of pages pinned, 0 if no pages were pinned. | |
2667f50e SC |
1781 | */ |
1782 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
1783 | struct page **pages) | |
1784 | { | |
2667f50e | 1785 | unsigned long addr, len, end; |
5b65c467 | 1786 | unsigned long flags; |
2667f50e SC |
1787 | int nr = 0; |
1788 | ||
1789 | start &= PAGE_MASK; | |
1790 | addr = start; | |
1791 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
1792 | end = start + len; | |
1793 | ||
1794 | if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, | |
aa2369f1 | 1795 | (void __user *)start, len))) |
2667f50e SC |
1796 | return 0; |
1797 | ||
1798 | /* | |
1799 | * Disable interrupts. We use the nested form as we can already have | |
1800 | * interrupts disabled by get_futex_key. | |
1801 | * | |
1802 | * With interrupts disabled, we block page table pages from being | |
1803 | * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h | |
1804 | * for more details. | |
1805 | * | |
1806 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
1807 | * block IPIs that come from THPs splitting. | |
1808 | */ | |
1809 | ||
5b65c467 KS |
1810 | if (gup_fast_permitted(start, nr_pages, write)) { |
1811 | local_irq_save(flags); | |
1812 | gup_pgd_range(addr, end, write, pages, &nr); | |
1813 | local_irq_restore(flags); | |
1814 | } | |
2667f50e SC |
1815 | |
1816 | return nr; | |
1817 | } | |
1818 | ||
1819 | /** | |
1820 | * get_user_pages_fast() - pin user pages in memory | |
1821 | * @start: starting user address | |
1822 | * @nr_pages: number of pages from start to pin | |
1823 | * @write: whether pages will be written to | |
1824 | * @pages: array that receives pointers to the pages pinned. | |
1825 | * Should be at least nr_pages long. | |
1826 | * | |
1827 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
1828 | * If not successful, it will fall back to taking the lock and | |
1829 | * calling get_user_pages(). | |
1830 | * | |
1831 | * Returns number of pages pinned. This may be fewer than the number | |
1832 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
1833 | * were pinned, returns -errno. | |
1834 | */ | |
1835 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
1836 | struct page **pages) | |
1837 | { | |
5b65c467 | 1838 | unsigned long addr, len, end; |
73e10a61 | 1839 | int nr = 0, ret = 0; |
2667f50e SC |
1840 | |
1841 | start &= PAGE_MASK; | |
5b65c467 KS |
1842 | addr = start; |
1843 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
1844 | end = start + len; | |
1845 | ||
c61611f7 MT |
1846 | if (nr_pages <= 0) |
1847 | return 0; | |
1848 | ||
5b65c467 KS |
1849 | if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, |
1850 | (void __user *)start, len))) | |
c61611f7 | 1851 | return -EFAULT; |
73e10a61 KS |
1852 | |
1853 | if (gup_fast_permitted(start, nr_pages, write)) { | |
5b65c467 KS |
1854 | local_irq_disable(); |
1855 | gup_pgd_range(addr, end, write, pages, &nr); | |
1856 | local_irq_enable(); | |
73e10a61 KS |
1857 | ret = nr; |
1858 | } | |
2667f50e SC |
1859 | |
1860 | if (nr < nr_pages) { | |
1861 | /* Try to get the remaining pages with get_user_pages */ | |
1862 | start += nr << PAGE_SHIFT; | |
1863 | pages += nr; | |
1864 | ||
c164154f LS |
1865 | ret = get_user_pages_unlocked(start, nr_pages - nr, pages, |
1866 | write ? FOLL_WRITE : 0); | |
2667f50e SC |
1867 | |
1868 | /* Have to be a bit careful with return values */ | |
1869 | if (nr > 0) { | |
1870 | if (ret < 0) | |
1871 | ret = nr; | |
1872 | else | |
1873 | ret += nr; | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | return ret; | |
1878 | } | |
1879 | ||
e585513b | 1880 | #endif /* CONFIG_HAVE_GENERIC_GUP */ |