]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/profile.c | |
3 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
4 | * with configurable resolution, support for restricting the cpus on | |
5 | * which profiling is done, and switching between cpu time and | |
6 | * schedule() calls via kernel command line parameters passed at boot. | |
7 | * | |
8 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
9 | * Red Hat, July 2004 | |
10 | * Consolidation of architecture support code for profiling, | |
6d49e352 | 11 | * Nadia Yvette Chambers, Oracle, July 2004 |
1da177e4 | 12 | * Amortized hit count accounting via per-cpu open-addressed hashtables |
6d49e352 NYC |
13 | * to resolve timer interrupt livelocks, Nadia Yvette Chambers, |
14 | * Oracle, 2004 | |
1da177e4 LT |
15 | */ |
16 | ||
9984de1a | 17 | #include <linux/export.h> |
1da177e4 LT |
18 | #include <linux/profile.h> |
19 | #include <linux/bootmem.h> | |
20 | #include <linux/notifier.h> | |
21 | #include <linux/mm.h> | |
22 | #include <linux/cpumask.h> | |
23 | #include <linux/cpu.h> | |
1da177e4 | 24 | #include <linux/highmem.h> |
97d1f15b | 25 | #include <linux/mutex.h> |
22b8ce94 DH |
26 | #include <linux/slab.h> |
27 | #include <linux/vmalloc.h> | |
1da177e4 | 28 | #include <asm/sections.h> |
7d12e780 | 29 | #include <asm/irq_regs.h> |
e8edc6e0 | 30 | #include <asm/ptrace.h> |
1da177e4 LT |
31 | |
32 | struct profile_hit { | |
33 | u32 pc, hits; | |
34 | }; | |
35 | #define PROFILE_GRPSHIFT 3 | |
36 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
37 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
38 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
39 | ||
1da177e4 LT |
40 | static atomic_t *prof_buffer; |
41 | static unsigned long prof_len, prof_shift; | |
07031e14 | 42 | |
ece8a684 | 43 | int prof_on __read_mostly; |
07031e14 IM |
44 | EXPORT_SYMBOL_GPL(prof_on); |
45 | ||
c309b917 | 46 | static cpumask_var_t prof_cpu_mask; |
1da177e4 LT |
47 | #ifdef CONFIG_SMP |
48 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | |
49 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 50 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
51 | #endif /* CONFIG_SMP */ |
52 | ||
22b8ce94 | 53 | int profile_setup(char *str) |
1da177e4 | 54 | { |
f3da64d1 FF |
55 | static const char schedstr[] = "schedule"; |
56 | static const char sleepstr[] = "sleep"; | |
57 | static const char kvmstr[] = "kvm"; | |
1da177e4 LT |
58 | int par; |
59 | ||
ece8a684 | 60 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73 | 61 | #ifdef CONFIG_SCHEDSTATS |
ece8a684 IM |
62 | prof_on = SLEEP_PROFILING; |
63 | if (str[strlen(sleepstr)] == ',') | |
64 | str += strlen(sleepstr) + 1; | |
65 | if (get_option(&str, &par)) | |
66 | prof_shift = par; | |
aba871f1 | 67 | pr_info("kernel sleep profiling enabled (shift: %ld)\n", |
ece8a684 | 68 | prof_shift); |
b3da2a73 | 69 | #else |
aba871f1 | 70 | pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); |
b3da2a73 | 71 | #endif /* CONFIG_SCHEDSTATS */ |
a75acf85 | 72 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 73 | prof_on = SCHED_PROFILING; |
dfaa9c94 NYC |
74 | if (str[strlen(schedstr)] == ',') |
75 | str += strlen(schedstr) + 1; | |
76 | if (get_option(&str, &par)) | |
77 | prof_shift = par; | |
aba871f1 | 78 | pr_info("kernel schedule profiling enabled (shift: %ld)\n", |
dfaa9c94 | 79 | prof_shift); |
07031e14 IM |
80 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
81 | prof_on = KVM_PROFILING; | |
82 | if (str[strlen(kvmstr)] == ',') | |
83 | str += strlen(kvmstr) + 1; | |
84 | if (get_option(&str, &par)) | |
85 | prof_shift = par; | |
aba871f1 | 86 | pr_info("kernel KVM profiling enabled (shift: %ld)\n", |
07031e14 | 87 | prof_shift); |
dfaa9c94 | 88 | } else if (get_option(&str, &par)) { |
1da177e4 LT |
89 | prof_shift = par; |
90 | prof_on = CPU_PROFILING; | |
aba871f1 | 91 | pr_info("kernel profiling enabled (shift: %ld)\n", |
1da177e4 LT |
92 | prof_shift); |
93 | } | |
94 | return 1; | |
95 | } | |
96 | __setup("profile=", profile_setup); | |
97 | ||
98 | ||
ce05fcc3 | 99 | int __ref profile_init(void) |
1da177e4 | 100 | { |
22b8ce94 | 101 | int buffer_bytes; |
1ad82fd5 | 102 | if (!prof_on) |
22b8ce94 | 103 | return 0; |
1ad82fd5 | 104 | |
1da177e4 LT |
105 | /* only text is profiled */ |
106 | prof_len = (_etext - _stext) >> prof_shift; | |
22b8ce94 | 107 | buffer_bytes = prof_len*sizeof(atomic_t); |
22b8ce94 | 108 | |
c309b917 RR |
109 | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) |
110 | return -ENOMEM; | |
111 | ||
acd89579 HD |
112 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
113 | ||
b62f495d | 114 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
22b8ce94 DH |
115 | if (prof_buffer) |
116 | return 0; | |
117 | ||
b62f495d MG |
118 | prof_buffer = alloc_pages_exact(buffer_bytes, |
119 | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | |
22b8ce94 DH |
120 | if (prof_buffer) |
121 | return 0; | |
122 | ||
559fa6e7 JJ |
123 | prof_buffer = vzalloc(buffer_bytes); |
124 | if (prof_buffer) | |
22b8ce94 DH |
125 | return 0; |
126 | ||
c309b917 | 127 | free_cpumask_var(prof_cpu_mask); |
22b8ce94 | 128 | return -ENOMEM; |
1da177e4 LT |
129 | } |
130 | ||
131 | /* Profile event notifications */ | |
1ad82fd5 | 132 | |
e041c683 AS |
133 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
134 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | |
135 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | |
1ad82fd5 PC |
136 | |
137 | void profile_task_exit(struct task_struct *task) | |
1da177e4 | 138 | { |
e041c683 | 139 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4 | 140 | } |
1ad82fd5 PC |
141 | |
142 | int profile_handoff_task(struct task_struct *task) | |
1da177e4 LT |
143 | { |
144 | int ret; | |
e041c683 | 145 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4 LT |
146 | return (ret == NOTIFY_OK) ? 1 : 0; |
147 | } | |
148 | ||
149 | void profile_munmap(unsigned long addr) | |
150 | { | |
e041c683 | 151 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4 LT |
152 | } |
153 | ||
1ad82fd5 | 154 | int task_handoff_register(struct notifier_block *n) |
1da177e4 | 155 | { |
e041c683 | 156 | return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4 | 157 | } |
1ad82fd5 | 158 | EXPORT_SYMBOL_GPL(task_handoff_register); |
1da177e4 | 159 | |
1ad82fd5 | 160 | int task_handoff_unregister(struct notifier_block *n) |
1da177e4 | 161 | { |
e041c683 | 162 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4 | 163 | } |
1ad82fd5 | 164 | EXPORT_SYMBOL_GPL(task_handoff_unregister); |
1da177e4 | 165 | |
1ad82fd5 | 166 | int profile_event_register(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
167 | { |
168 | int err = -EINVAL; | |
1ad82fd5 | 169 | |
1da177e4 | 170 | switch (type) { |
1ad82fd5 PC |
171 | case PROFILE_TASK_EXIT: |
172 | err = blocking_notifier_chain_register( | |
173 | &task_exit_notifier, n); | |
174 | break; | |
175 | case PROFILE_MUNMAP: | |
176 | err = blocking_notifier_chain_register( | |
177 | &munmap_notifier, n); | |
178 | break; | |
1da177e4 | 179 | } |
1ad82fd5 | 180 | |
1da177e4 LT |
181 | return err; |
182 | } | |
1ad82fd5 | 183 | EXPORT_SYMBOL_GPL(profile_event_register); |
1da177e4 | 184 | |
1ad82fd5 | 185 | int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
186 | { |
187 | int err = -EINVAL; | |
1ad82fd5 | 188 | |
1da177e4 | 189 | switch (type) { |
1ad82fd5 PC |
190 | case PROFILE_TASK_EXIT: |
191 | err = blocking_notifier_chain_unregister( | |
192 | &task_exit_notifier, n); | |
193 | break; | |
194 | case PROFILE_MUNMAP: | |
195 | err = blocking_notifier_chain_unregister( | |
196 | &munmap_notifier, n); | |
197 | break; | |
1da177e4 LT |
198 | } |
199 | ||
1da177e4 LT |
200 | return err; |
201 | } | |
1ad82fd5 | 202 | EXPORT_SYMBOL_GPL(profile_event_unregister); |
1da177e4 | 203 | |
1da177e4 LT |
204 | #ifdef CONFIG_SMP |
205 | /* | |
206 | * Each cpu has a pair of open-addressed hashtables for pending | |
207 | * profile hits. read_profile() IPI's all cpus to request them | |
208 | * to flip buffers and flushes their contents to prof_buffer itself. | |
209 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
210 | * use of having a second hashtable is for avoiding cacheline | |
211 | * contention that would otherwise happen during flushes of pending | |
212 | * profile hits required for the accuracy of reported profile hits | |
213 | * and so resurrect the interrupt livelock issue. | |
214 | * | |
215 | * The open-addressed hashtables are indexed by profile buffer slot | |
216 | * and hold the number of pending hits to that profile buffer slot on | |
217 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
218 | * are accounted to their corresponding profile buffer slots with | |
219 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
220 | * may be accounted to a profile buffer slot in a hashtable entry, | |
221 | * this amortizes a number of atomic profile buffer increments likely | |
222 | * to be far larger than the number of entries in the hashtable, | |
223 | * particularly given that the number of distinct profile buffer | |
224 | * positions to which hits are accounted during short intervals (e.g. | |
225 | * several seconds) is usually very small. Exclusion from buffer | |
226 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
227 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
228 | * process context). | |
1da177e4 LT |
229 | * The hash function is meant to be lightweight as opposed to strong, |
230 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
231 | * pagetable hash functions, but uses a full hashtable full of finite | |
232 | * collision chains, not just pairs of them. | |
233 | * | |
6d49e352 | 234 | * -- nyc |
1da177e4 LT |
235 | */ |
236 | static void __profile_flip_buffers(void *unused) | |
237 | { | |
238 | int cpu = smp_processor_id(); | |
239 | ||
240 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
241 | } | |
242 | ||
243 | static void profile_flip_buffers(void) | |
244 | { | |
245 | int i, j, cpu; | |
246 | ||
97d1f15b | 247 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
248 | j = per_cpu(cpu_profile_flip, get_cpu()); |
249 | put_cpu(); | |
15c8b6c1 | 250 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
251 | for_each_online_cpu(cpu) { |
252 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
253 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
254 | if (!hits[i].hits) { | |
255 | if (hits[i].pc) | |
256 | hits[i].pc = 0; | |
257 | continue; | |
258 | } | |
259 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
260 | hits[i].hits = hits[i].pc = 0; | |
261 | } | |
262 | } | |
97d1f15b | 263 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
264 | } |
265 | ||
266 | static void profile_discard_flip_buffers(void) | |
267 | { | |
268 | int i, cpu; | |
269 | ||
97d1f15b | 270 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
271 | i = per_cpu(cpu_profile_flip, get_cpu()); |
272 | put_cpu(); | |
15c8b6c1 | 273 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
274 | for_each_online_cpu(cpu) { |
275 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
276 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
277 | } | |
97d1f15b | 278 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
279 | } |
280 | ||
6f7bd76f | 281 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
282 | { |
283 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
284 | int i, j, cpu; | |
285 | struct profile_hit *hits; | |
286 | ||
1da177e4 LT |
287 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); |
288 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
289 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
290 | cpu = get_cpu(); | |
291 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
292 | if (!hits) { | |
293 | put_cpu(); | |
294 | return; | |
295 | } | |
ece8a684 IM |
296 | /* |
297 | * We buffer the global profiler buffer into a per-CPU | |
298 | * queue and thus reduce the number of global (and possibly | |
299 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
300 | */ | |
1da177e4 LT |
301 | local_irq_save(flags); |
302 | do { | |
303 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
304 | if (hits[i + j].pc == pc) { | |
ece8a684 | 305 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
306 | goto out; |
307 | } else if (!hits[i + j].hits) { | |
308 | hits[i + j].pc = pc; | |
ece8a684 | 309 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
310 | goto out; |
311 | } | |
312 | } | |
313 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
314 | } while (i != primary); | |
ece8a684 IM |
315 | |
316 | /* | |
317 | * Add the current hit(s) and flush the write-queue out | |
318 | * to the global buffer: | |
319 | */ | |
320 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
321 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
322 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
323 | hits[i].pc = hits[i].hits = 0; | |
324 | } | |
325 | out: | |
326 | local_irq_restore(flags); | |
327 | put_cpu(); | |
328 | } | |
329 | ||
0db0628d | 330 | static int profile_cpu_callback(struct notifier_block *info, |
1da177e4 LT |
331 | unsigned long action, void *__cpu) |
332 | { | |
333 | int node, cpu = (unsigned long)__cpu; | |
334 | struct page *page; | |
335 | ||
336 | switch (action) { | |
337 | case CPU_UP_PREPARE: | |
8bb78442 | 338 | case CPU_UP_PREPARE_FROZEN: |
3dd6b5fb | 339 | node = cpu_to_mem(cpu); |
1da177e4 LT |
340 | per_cpu(cpu_profile_flip, cpu) = 0; |
341 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | |
6484eb3e | 342 | page = alloc_pages_exact_node(node, |
4199cfa0 | 343 | GFP_KERNEL | __GFP_ZERO, |
fbd98167 | 344 | 0); |
1da177e4 | 345 | if (!page) |
80b5184c | 346 | return notifier_from_errno(-ENOMEM); |
1da177e4 LT |
347 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); |
348 | } | |
349 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | |
6484eb3e | 350 | page = alloc_pages_exact_node(node, |
4199cfa0 | 351 | GFP_KERNEL | __GFP_ZERO, |
fbd98167 | 352 | 0); |
1da177e4 LT |
353 | if (!page) |
354 | goto out_free; | |
355 | per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); | |
356 | } | |
357 | break; | |
1ad82fd5 | 358 | out_free: |
1da177e4 LT |
359 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
360 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
361 | __free_page(page); | |
80b5184c | 362 | return notifier_from_errno(-ENOMEM); |
1da177e4 | 363 | case CPU_ONLINE: |
8bb78442 | 364 | case CPU_ONLINE_FROZEN: |
c309b917 RR |
365 | if (prof_cpu_mask != NULL) |
366 | cpumask_set_cpu(cpu, prof_cpu_mask); | |
1da177e4 LT |
367 | break; |
368 | case CPU_UP_CANCELED: | |
8bb78442 | 369 | case CPU_UP_CANCELED_FROZEN: |
1da177e4 | 370 | case CPU_DEAD: |
8bb78442 | 371 | case CPU_DEAD_FROZEN: |
c309b917 RR |
372 | if (prof_cpu_mask != NULL) |
373 | cpumask_clear_cpu(cpu, prof_cpu_mask); | |
1da177e4 LT |
374 | if (per_cpu(cpu_profile_hits, cpu)[0]) { |
375 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
376 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
377 | __free_page(page); | |
378 | } | |
379 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
380 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
381 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
382 | __free_page(page); | |
383 | } | |
384 | break; | |
385 | } | |
386 | return NOTIFY_OK; | |
387 | } | |
1da177e4 LT |
388 | #else /* !CONFIG_SMP */ |
389 | #define profile_flip_buffers() do { } while (0) | |
390 | #define profile_discard_flip_buffers() do { } while (0) | |
02316067 | 391 | #define profile_cpu_callback NULL |
1da177e4 | 392 | |
6f7bd76f | 393 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
394 | { |
395 | unsigned long pc; | |
1da177e4 | 396 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
ece8a684 | 397 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
398 | } |
399 | #endif /* !CONFIG_SMP */ | |
6f7bd76f RM |
400 | |
401 | void profile_hits(int type, void *__pc, unsigned int nr_hits) | |
402 | { | |
403 | if (prof_on != type || !prof_buffer) | |
404 | return; | |
405 | do_profile_hits(type, __pc, nr_hits); | |
406 | } | |
bbe1a59b AM |
407 | EXPORT_SYMBOL_GPL(profile_hits); |
408 | ||
7d12e780 | 409 | void profile_tick(int type) |
1da177e4 | 410 | { |
7d12e780 DH |
411 | struct pt_regs *regs = get_irq_regs(); |
412 | ||
c309b917 RR |
413 | if (!user_mode(regs) && prof_cpu_mask != NULL && |
414 | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) | |
1da177e4 LT |
415 | profile_hit(type, (void *)profile_pc(regs)); |
416 | } | |
417 | ||
418 | #ifdef CONFIG_PROC_FS | |
419 | #include <linux/proc_fs.h> | |
583a22e7 | 420 | #include <linux/seq_file.h> |
1da177e4 | 421 | #include <asm/uaccess.h> |
1da177e4 | 422 | |
583a22e7 | 423 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
1da177e4 | 424 | { |
ccbd59c1 | 425 | seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); |
583a22e7 AD |
426 | return 0; |
427 | } | |
428 | ||
429 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) | |
430 | { | |
431 | return single_open(file, prof_cpu_mask_proc_show, NULL); | |
1da177e4 LT |
432 | } |
433 | ||
583a22e7 AD |
434 | static ssize_t prof_cpu_mask_proc_write(struct file *file, |
435 | const char __user *buffer, size_t count, loff_t *pos) | |
1da177e4 | 436 | { |
c309b917 | 437 | cpumask_var_t new_value; |
583a22e7 | 438 | int err; |
1da177e4 | 439 | |
c309b917 RR |
440 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
441 | return -ENOMEM; | |
1da177e4 | 442 | |
c309b917 RR |
443 | err = cpumask_parse_user(buffer, count, new_value); |
444 | if (!err) { | |
583a22e7 AD |
445 | cpumask_copy(prof_cpu_mask, new_value); |
446 | err = count; | |
c309b917 RR |
447 | } |
448 | free_cpumask_var(new_value); | |
449 | return err; | |
1da177e4 LT |
450 | } |
451 | ||
583a22e7 AD |
452 | static const struct file_operations prof_cpu_mask_proc_fops = { |
453 | .open = prof_cpu_mask_proc_open, | |
454 | .read = seq_read, | |
455 | .llseek = seq_lseek, | |
456 | .release = single_release, | |
457 | .write = prof_cpu_mask_proc_write, | |
458 | }; | |
459 | ||
fbd387ae | 460 | void create_prof_cpu_mask(void) |
1da177e4 | 461 | { |
1da177e4 | 462 | /* create /proc/irq/prof_cpu_mask */ |
fbd387ae | 463 | proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops); |
1da177e4 LT |
464 | } |
465 | ||
466 | /* | |
467 | * This function accesses profiling information. The returned data is | |
468 | * binary: the sampling step and the actual contents of the profile | |
469 | * buffer. Use of the program readprofile is recommended in order to | |
470 | * get meaningful info out of these data. | |
471 | */ | |
472 | static ssize_t | |
473 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
474 | { | |
475 | unsigned long p = *ppos; | |
476 | ssize_t read; | |
1ad82fd5 | 477 | char *pnt; |
1da177e4 LT |
478 | unsigned int sample_step = 1 << prof_shift; |
479 | ||
480 | profile_flip_buffers(); | |
481 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
482 | return 0; | |
483 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
484 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
485 | read = 0; | |
486 | ||
487 | while (p < sizeof(unsigned int) && count > 0) { | |
1ad82fd5 | 488 | if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c | 489 | return -EFAULT; |
1da177e4 LT |
490 | buf++; p++; count--; read++; |
491 | } | |
492 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
1ad82fd5 | 493 | if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4 LT |
494 | return -EFAULT; |
495 | read += count; | |
496 | *ppos += read; | |
497 | return read; | |
498 | } | |
499 | ||
500 | /* | |
501 | * Writing to /proc/profile resets the counters | |
502 | * | |
503 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
504 | * interrupt frequency, on architectures that support this. | |
505 | */ | |
506 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
507 | size_t count, loff_t *ppos) | |
508 | { | |
509 | #ifdef CONFIG_SMP | |
1ad82fd5 | 510 | extern int setup_profiling_timer(unsigned int multiplier); |
1da177e4 LT |
511 | |
512 | if (count == sizeof(int)) { | |
513 | unsigned int multiplier; | |
514 | ||
515 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
516 | return -EFAULT; | |
517 | ||
518 | if (setup_profiling_timer(multiplier)) | |
519 | return -EINVAL; | |
520 | } | |
521 | #endif | |
522 | profile_discard_flip_buffers(); | |
523 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
524 | return count; | |
525 | } | |
526 | ||
15ad7cdc | 527 | static const struct file_operations proc_profile_operations = { |
1da177e4 LT |
528 | .read = read_profile, |
529 | .write = write_profile, | |
6038f373 | 530 | .llseek = default_llseek, |
1da177e4 LT |
531 | }; |
532 | ||
533 | #ifdef CONFIG_SMP | |
60a51513 | 534 | static void profile_nop(void *unused) |
1da177e4 LT |
535 | { |
536 | } | |
537 | ||
22b8ce94 | 538 | static int create_hash_tables(void) |
1da177e4 LT |
539 | { |
540 | int cpu; | |
541 | ||
542 | for_each_online_cpu(cpu) { | |
3dd6b5fb | 543 | int node = cpu_to_mem(cpu); |
1da177e4 LT |
544 | struct page *page; |
545 | ||
6484eb3e | 546 | page = alloc_pages_exact_node(node, |
e97ca8e5 | 547 | GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE, |
fbd98167 | 548 | 0); |
1da177e4 LT |
549 | if (!page) |
550 | goto out_cleanup; | |
551 | per_cpu(cpu_profile_hits, cpu)[1] | |
552 | = (struct profile_hit *)page_address(page); | |
6484eb3e | 553 | page = alloc_pages_exact_node(node, |
e97ca8e5 | 554 | GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE, |
fbd98167 | 555 | 0); |
1da177e4 LT |
556 | if (!page) |
557 | goto out_cleanup; | |
558 | per_cpu(cpu_profile_hits, cpu)[0] | |
559 | = (struct profile_hit *)page_address(page); | |
560 | } | |
561 | return 0; | |
562 | out_cleanup: | |
563 | prof_on = 0; | |
d59dd462 | 564 | smp_mb(); |
15c8b6c1 | 565 | on_each_cpu(profile_nop, NULL, 1); |
1da177e4 LT |
566 | for_each_online_cpu(cpu) { |
567 | struct page *page; | |
568 | ||
569 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | |
570 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
571 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
572 | __free_page(page); | |
573 | } | |
574 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
575 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
576 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
577 | __free_page(page); | |
578 | } | |
579 | } | |
580 | return -1; | |
581 | } | |
582 | #else | |
583 | #define create_hash_tables() ({ 0; }) | |
584 | #endif | |
585 | ||
84196414 | 586 | int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ |
1da177e4 LT |
587 | { |
588 | struct proc_dir_entry *entry; | |
c270a817 | 589 | int err = 0; |
1da177e4 LT |
590 | |
591 | if (!prof_on) | |
592 | return 0; | |
c270a817 SB |
593 | |
594 | cpu_notifier_register_begin(); | |
595 | ||
596 | if (create_hash_tables()) { | |
597 | err = -ENOMEM; | |
598 | goto out; | |
599 | } | |
600 | ||
c33fff0a DL |
601 | entry = proc_create("profile", S_IWUSR | S_IRUGO, |
602 | NULL, &proc_profile_operations); | |
1ad82fd5 | 603 | if (!entry) |
c270a817 | 604 | goto out; |
271a15ea | 605 | proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); |
c270a817 SB |
606 | __hotcpu_notifier(profile_cpu_callback, 0); |
607 | ||
608 | out: | |
609 | cpu_notifier_register_done(); | |
610 | return err; | |
1da177e4 | 611 | } |
c96d6660 | 612 | subsys_initcall(create_proc_profile); |
1da177e4 | 613 | #endif /* CONFIG_PROC_FS */ |