]>
Commit | Line | Data |
---|---|---|
f6ac2354 CL |
1 | /* |
2 | * linux/mm/vmstat.c | |
3 | * | |
4 | * Manages VM statistics | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
2244b95a CL |
6 | * |
7 | * zoned VM statistics | |
8 | * Copyright (C) 2006 Silicon Graphics, Inc., | |
9 | * Christoph Lameter <[email protected]> | |
f6ac2354 | 10 | */ |
8f32f7e5 | 11 | #include <linux/fs.h> |
f6ac2354 | 12 | #include <linux/mm.h> |
4e950f6f | 13 | #include <linux/err.h> |
2244b95a | 14 | #include <linux/module.h> |
5a0e3ad6 | 15 | #include <linux/slab.h> |
df9ecaba | 16 | #include <linux/cpu.h> |
c748e134 | 17 | #include <linux/vmstat.h> |
e8edc6e0 | 18 | #include <linux/sched.h> |
f1a5ab12 | 19 | #include <linux/math64.h> |
79da826a | 20 | #include <linux/writeback.h> |
36deb0be | 21 | #include <linux/compaction.h> |
f6ac2354 | 22 | |
f8891e5e CL |
23 | #ifdef CONFIG_VM_EVENT_COUNTERS |
24 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | |
25 | EXPORT_PER_CPU_SYMBOL(vm_event_states); | |
26 | ||
31f961a8 | 27 | static void sum_vm_events(unsigned long *ret) |
f8891e5e | 28 | { |
9eccf2a8 | 29 | int cpu; |
f8891e5e CL |
30 | int i; |
31 | ||
32 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | |
33 | ||
31f961a8 | 34 | for_each_online_cpu(cpu) { |
f8891e5e CL |
35 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
36 | ||
f8891e5e CL |
37 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
38 | ret[i] += this->event[i]; | |
39 | } | |
40 | } | |
41 | ||
42 | /* | |
43 | * Accumulate the vm event counters across all CPUs. | |
44 | * The result is unavoidably approximate - it can change | |
45 | * during and after execution of this function. | |
46 | */ | |
47 | void all_vm_events(unsigned long *ret) | |
48 | { | |
b5be1132 | 49 | get_online_cpus(); |
31f961a8 | 50 | sum_vm_events(ret); |
b5be1132 | 51 | put_online_cpus(); |
f8891e5e | 52 | } |
32dd66fc | 53 | EXPORT_SYMBOL_GPL(all_vm_events); |
f8891e5e CL |
54 | |
55 | #ifdef CONFIG_HOTPLUG | |
56 | /* | |
57 | * Fold the foreign cpu events into our own. | |
58 | * | |
59 | * This is adding to the events on one processor | |
60 | * but keeps the global counts constant. | |
61 | */ | |
62 | void vm_events_fold_cpu(int cpu) | |
63 | { | |
64 | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); | |
65 | int i; | |
66 | ||
67 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | |
68 | count_vm_events(i, fold_state->event[i]); | |
69 | fold_state->event[i] = 0; | |
70 | } | |
71 | } | |
72 | #endif /* CONFIG_HOTPLUG */ | |
73 | ||
74 | #endif /* CONFIG_VM_EVENT_COUNTERS */ | |
75 | ||
2244b95a CL |
76 | /* |
77 | * Manage combined zone based / global counters | |
78 | * | |
79 | * vm_stat contains the global counters | |
80 | */ | |
81 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; | |
82 | EXPORT_SYMBOL(vm_stat); | |
83 | ||
84 | #ifdef CONFIG_SMP | |
85 | ||
88f5acf8 MG |
86 | static int calculate_pressure_threshold(struct zone *zone) |
87 | { | |
88 | int threshold; | |
89 | int watermark_distance; | |
90 | ||
91 | /* | |
92 | * As vmstats are not up to date, there is drift between the estimated | |
93 | * and real values. For high thresholds and a high number of CPUs, it | |
94 | * is possible for the min watermark to be breached while the estimated | |
95 | * value looks fine. The pressure threshold is a reduced value such | |
96 | * that even the maximum amount of drift will not accidentally breach | |
97 | * the min watermark | |
98 | */ | |
99 | watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); | |
100 | threshold = max(1, (int)(watermark_distance / num_online_cpus())); | |
101 | ||
102 | /* | |
103 | * Maximum threshold is 125 | |
104 | */ | |
105 | threshold = min(125, threshold); | |
106 | ||
107 | return threshold; | |
108 | } | |
109 | ||
df9ecaba CL |
110 | static int calculate_threshold(struct zone *zone) |
111 | { | |
112 | int threshold; | |
113 | int mem; /* memory in 128 MB units */ | |
114 | ||
115 | /* | |
116 | * The threshold scales with the number of processors and the amount | |
117 | * of memory per zone. More memory means that we can defer updates for | |
118 | * longer, more processors could lead to more contention. | |
119 | * fls() is used to have a cheap way of logarithmic scaling. | |
120 | * | |
121 | * Some sample thresholds: | |
122 | * | |
123 | * Threshold Processors (fls) Zonesize fls(mem+1) | |
124 | * ------------------------------------------------------------------ | |
125 | * 8 1 1 0.9-1 GB 4 | |
126 | * 16 2 2 0.9-1 GB 4 | |
127 | * 20 2 2 1-2 GB 5 | |
128 | * 24 2 2 2-4 GB 6 | |
129 | * 28 2 2 4-8 GB 7 | |
130 | * 32 2 2 8-16 GB 8 | |
131 | * 4 2 2 <128M 1 | |
132 | * 30 4 3 2-4 GB 5 | |
133 | * 48 4 3 8-16 GB 8 | |
134 | * 32 8 4 1-2 GB 4 | |
135 | * 32 8 4 0.9-1GB 4 | |
136 | * 10 16 5 <128M 1 | |
137 | * 40 16 5 900M 4 | |
138 | * 70 64 7 2-4 GB 5 | |
139 | * 84 64 7 4-8 GB 6 | |
140 | * 108 512 9 4-8 GB 6 | |
141 | * 125 1024 10 8-16 GB 8 | |
142 | * 125 1024 10 16-32 GB 9 | |
143 | */ | |
144 | ||
145 | mem = zone->present_pages >> (27 - PAGE_SHIFT); | |
146 | ||
147 | threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); | |
148 | ||
149 | /* | |
150 | * Maximum threshold is 125 | |
151 | */ | |
152 | threshold = min(125, threshold); | |
153 | ||
154 | return threshold; | |
155 | } | |
2244b95a CL |
156 | |
157 | /* | |
df9ecaba | 158 | * Refresh the thresholds for each zone. |
2244b95a | 159 | */ |
df9ecaba | 160 | static void refresh_zone_stat_thresholds(void) |
2244b95a | 161 | { |
df9ecaba CL |
162 | struct zone *zone; |
163 | int cpu; | |
164 | int threshold; | |
165 | ||
ee99c71c | 166 | for_each_populated_zone(zone) { |
aa454840 CL |
167 | unsigned long max_drift, tolerate_drift; |
168 | ||
df9ecaba CL |
169 | threshold = calculate_threshold(zone); |
170 | ||
171 | for_each_online_cpu(cpu) | |
99dcc3e5 CL |
172 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold |
173 | = threshold; | |
aa454840 CL |
174 | |
175 | /* | |
176 | * Only set percpu_drift_mark if there is a danger that | |
177 | * NR_FREE_PAGES reports the low watermark is ok when in fact | |
178 | * the min watermark could be breached by an allocation | |
179 | */ | |
180 | tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); | |
181 | max_drift = num_online_cpus() * threshold; | |
182 | if (max_drift > tolerate_drift) | |
183 | zone->percpu_drift_mark = high_wmark_pages(zone) + | |
184 | max_drift; | |
df9ecaba | 185 | } |
2244b95a CL |
186 | } |
187 | ||
88f5acf8 MG |
188 | void reduce_pgdat_percpu_threshold(pg_data_t *pgdat) |
189 | { | |
190 | struct zone *zone; | |
191 | int cpu; | |
192 | int threshold; | |
193 | int i; | |
194 | ||
195 | get_online_cpus(); | |
196 | for (i = 0; i < pgdat->nr_zones; i++) { | |
197 | zone = &pgdat->node_zones[i]; | |
198 | if (!zone->percpu_drift_mark) | |
199 | continue; | |
200 | ||
201 | threshold = calculate_pressure_threshold(zone); | |
202 | for_each_online_cpu(cpu) | |
203 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold | |
204 | = threshold; | |
205 | } | |
206 | put_online_cpus(); | |
207 | } | |
208 | ||
209 | void restore_pgdat_percpu_threshold(pg_data_t *pgdat) | |
210 | { | |
211 | struct zone *zone; | |
212 | int cpu; | |
213 | int threshold; | |
214 | int i; | |
215 | ||
216 | get_online_cpus(); | |
217 | for (i = 0; i < pgdat->nr_zones; i++) { | |
218 | zone = &pgdat->node_zones[i]; | |
219 | if (!zone->percpu_drift_mark) | |
220 | continue; | |
221 | ||
222 | threshold = calculate_threshold(zone); | |
223 | for_each_online_cpu(cpu) | |
224 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold | |
225 | = threshold; | |
226 | } | |
227 | put_online_cpus(); | |
228 | } | |
229 | ||
2244b95a CL |
230 | /* |
231 | * For use when we know that interrupts are disabled. | |
232 | */ | |
233 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | |
234 | int delta) | |
235 | { | |
12938a92 CL |
236 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
237 | s8 __percpu *p = pcp->vm_stat_diff + item; | |
2244b95a | 238 | long x; |
12938a92 CL |
239 | long t; |
240 | ||
241 | x = delta + __this_cpu_read(*p); | |
2244b95a | 242 | |
12938a92 | 243 | t = __this_cpu_read(pcp->stat_threshold); |
2244b95a | 244 | |
12938a92 | 245 | if (unlikely(x > t || x < -t)) { |
2244b95a CL |
246 | zone_page_state_add(x, zone, item); |
247 | x = 0; | |
248 | } | |
12938a92 | 249 | __this_cpu_write(*p, x); |
2244b95a CL |
250 | } |
251 | EXPORT_SYMBOL(__mod_zone_page_state); | |
252 | ||
2244b95a CL |
253 | /* |
254 | * Optimized increment and decrement functions. | |
255 | * | |
256 | * These are only for a single page and therefore can take a struct page * | |
257 | * argument instead of struct zone *. This allows the inclusion of the code | |
258 | * generated for page_zone(page) into the optimized functions. | |
259 | * | |
260 | * No overflow check is necessary and therefore the differential can be | |
261 | * incremented or decremented in place which may allow the compilers to | |
262 | * generate better code. | |
2244b95a CL |
263 | * The increment or decrement is known and therefore one boundary check can |
264 | * be omitted. | |
265 | * | |
df9ecaba CL |
266 | * NOTE: These functions are very performance sensitive. Change only |
267 | * with care. | |
268 | * | |
2244b95a CL |
269 | * Some processors have inc/dec instructions that are atomic vs an interrupt. |
270 | * However, the code must first determine the differential location in a zone | |
271 | * based on the processor number and then inc/dec the counter. There is no | |
272 | * guarantee without disabling preemption that the processor will not change | |
273 | * in between and therefore the atomicity vs. interrupt cannot be exploited | |
274 | * in a useful way here. | |
275 | */ | |
c8785385 | 276 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) |
2244b95a | 277 | { |
12938a92 CL |
278 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
279 | s8 __percpu *p = pcp->vm_stat_diff + item; | |
280 | s8 v, t; | |
2244b95a | 281 | |
908ee0f1 | 282 | v = __this_cpu_inc_return(*p); |
12938a92 CL |
283 | t = __this_cpu_read(pcp->stat_threshold); |
284 | if (unlikely(v > t)) { | |
285 | s8 overstep = t >> 1; | |
df9ecaba | 286 | |
12938a92 CL |
287 | zone_page_state_add(v + overstep, zone, item); |
288 | __this_cpu_write(*p, -overstep); | |
2244b95a CL |
289 | } |
290 | } | |
ca889e6c CL |
291 | |
292 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) | |
293 | { | |
294 | __inc_zone_state(page_zone(page), item); | |
295 | } | |
2244b95a CL |
296 | EXPORT_SYMBOL(__inc_zone_page_state); |
297 | ||
c8785385 | 298 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) |
2244b95a | 299 | { |
12938a92 CL |
300 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
301 | s8 __percpu *p = pcp->vm_stat_diff + item; | |
302 | s8 v, t; | |
2244b95a | 303 | |
908ee0f1 | 304 | v = __this_cpu_dec_return(*p); |
12938a92 CL |
305 | t = __this_cpu_read(pcp->stat_threshold); |
306 | if (unlikely(v < - t)) { | |
307 | s8 overstep = t >> 1; | |
2244b95a | 308 | |
12938a92 CL |
309 | zone_page_state_add(v - overstep, zone, item); |
310 | __this_cpu_write(*p, overstep); | |
2244b95a CL |
311 | } |
312 | } | |
c8785385 CL |
313 | |
314 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) | |
315 | { | |
316 | __dec_zone_state(page_zone(page), item); | |
317 | } | |
2244b95a CL |
318 | EXPORT_SYMBOL(__dec_zone_page_state); |
319 | ||
7c839120 CL |
320 | #ifdef CONFIG_CMPXCHG_LOCAL |
321 | /* | |
322 | * If we have cmpxchg_local support then we do not need to incur the overhead | |
323 | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. | |
324 | * | |
325 | * mod_state() modifies the zone counter state through atomic per cpu | |
326 | * operations. | |
327 | * | |
328 | * Overstep mode specifies how overstep should handled: | |
329 | * 0 No overstepping | |
330 | * 1 Overstepping half of threshold | |
331 | * -1 Overstepping minus half of threshold | |
332 | */ | |
333 | static inline void mod_state(struct zone *zone, | |
334 | enum zone_stat_item item, int delta, int overstep_mode) | |
335 | { | |
336 | struct per_cpu_pageset __percpu *pcp = zone->pageset; | |
337 | s8 __percpu *p = pcp->vm_stat_diff + item; | |
338 | long o, n, t, z; | |
339 | ||
340 | do { | |
341 | z = 0; /* overflow to zone counters */ | |
342 | ||
343 | /* | |
344 | * The fetching of the stat_threshold is racy. We may apply | |
345 | * a counter threshold to the wrong the cpu if we get | |
346 | * rescheduled while executing here. However, the following | |
347 | * will apply the threshold again and therefore bring the | |
348 | * counter under the threshold. | |
349 | */ | |
350 | t = this_cpu_read(pcp->stat_threshold); | |
351 | ||
352 | o = this_cpu_read(*p); | |
353 | n = delta + o; | |
354 | ||
355 | if (n > t || n < -t) { | |
356 | int os = overstep_mode * (t >> 1) ; | |
357 | ||
358 | /* Overflow must be added to zone counters */ | |
359 | z = n + os; | |
360 | n = -os; | |
361 | } | |
362 | } while (this_cpu_cmpxchg(*p, o, n) != o); | |
363 | ||
364 | if (z) | |
365 | zone_page_state_add(z, zone, item); | |
366 | } | |
367 | ||
368 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | |
369 | int delta) | |
370 | { | |
371 | mod_state(zone, item, delta, 0); | |
372 | } | |
373 | EXPORT_SYMBOL(mod_zone_page_state); | |
374 | ||
375 | void inc_zone_state(struct zone *zone, enum zone_stat_item item) | |
376 | { | |
377 | mod_state(zone, item, 1, 1); | |
378 | } | |
379 | ||
380 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | |
381 | { | |
382 | mod_state(page_zone(page), item, 1, 1); | |
383 | } | |
384 | EXPORT_SYMBOL(inc_zone_page_state); | |
385 | ||
386 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | |
387 | { | |
388 | mod_state(page_zone(page), item, -1, -1); | |
389 | } | |
390 | EXPORT_SYMBOL(dec_zone_page_state); | |
391 | #else | |
392 | /* | |
393 | * Use interrupt disable to serialize counter updates | |
394 | */ | |
395 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | |
396 | int delta) | |
397 | { | |
398 | unsigned long flags; | |
399 | ||
400 | local_irq_save(flags); | |
401 | __mod_zone_page_state(zone, item, delta); | |
402 | local_irq_restore(flags); | |
403 | } | |
404 | EXPORT_SYMBOL(mod_zone_page_state); | |
405 | ||
ca889e6c CL |
406 | void inc_zone_state(struct zone *zone, enum zone_stat_item item) |
407 | { | |
408 | unsigned long flags; | |
409 | ||
410 | local_irq_save(flags); | |
411 | __inc_zone_state(zone, item); | |
412 | local_irq_restore(flags); | |
413 | } | |
414 | ||
2244b95a CL |
415 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
416 | { | |
417 | unsigned long flags; | |
418 | struct zone *zone; | |
2244b95a CL |
419 | |
420 | zone = page_zone(page); | |
421 | local_irq_save(flags); | |
ca889e6c | 422 | __inc_zone_state(zone, item); |
2244b95a CL |
423 | local_irq_restore(flags); |
424 | } | |
425 | EXPORT_SYMBOL(inc_zone_page_state); | |
426 | ||
427 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | |
428 | { | |
429 | unsigned long flags; | |
2244b95a | 430 | |
2244b95a | 431 | local_irq_save(flags); |
a302eb4e | 432 | __dec_zone_page_state(page, item); |
2244b95a CL |
433 | local_irq_restore(flags); |
434 | } | |
435 | EXPORT_SYMBOL(dec_zone_page_state); | |
7c839120 | 436 | #endif |
2244b95a CL |
437 | |
438 | /* | |
439 | * Update the zone counters for one cpu. | |
4037d452 | 440 | * |
a7f75e25 CL |
441 | * The cpu specified must be either the current cpu or a processor that |
442 | * is not online. If it is the current cpu then the execution thread must | |
443 | * be pinned to the current cpu. | |
444 | * | |
4037d452 CL |
445 | * Note that refresh_cpu_vm_stats strives to only access |
446 | * node local memory. The per cpu pagesets on remote zones are placed | |
447 | * in the memory local to the processor using that pageset. So the | |
448 | * loop over all zones will access a series of cachelines local to | |
449 | * the processor. | |
450 | * | |
451 | * The call to zone_page_state_add updates the cachelines with the | |
452 | * statistics in the remote zone struct as well as the global cachelines | |
453 | * with the global counters. These could cause remote node cache line | |
454 | * bouncing and will have to be only done when necessary. | |
2244b95a CL |
455 | */ |
456 | void refresh_cpu_vm_stats(int cpu) | |
457 | { | |
458 | struct zone *zone; | |
459 | int i; | |
a7f75e25 | 460 | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
2244b95a | 461 | |
ee99c71c | 462 | for_each_populated_zone(zone) { |
4037d452 | 463 | struct per_cpu_pageset *p; |
2244b95a | 464 | |
99dcc3e5 | 465 | p = per_cpu_ptr(zone->pageset, cpu); |
2244b95a CL |
466 | |
467 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | |
4037d452 | 468 | if (p->vm_stat_diff[i]) { |
a7f75e25 CL |
469 | unsigned long flags; |
470 | int v; | |
471 | ||
2244b95a | 472 | local_irq_save(flags); |
a7f75e25 | 473 | v = p->vm_stat_diff[i]; |
4037d452 | 474 | p->vm_stat_diff[i] = 0; |
a7f75e25 CL |
475 | local_irq_restore(flags); |
476 | atomic_long_add(v, &zone->vm_stat[i]); | |
477 | global_diff[i] += v; | |
4037d452 CL |
478 | #ifdef CONFIG_NUMA |
479 | /* 3 seconds idle till flush */ | |
480 | p->expire = 3; | |
481 | #endif | |
2244b95a | 482 | } |
468fd62e | 483 | cond_resched(); |
4037d452 CL |
484 | #ifdef CONFIG_NUMA |
485 | /* | |
486 | * Deal with draining the remote pageset of this | |
487 | * processor | |
488 | * | |
489 | * Check if there are pages remaining in this pageset | |
490 | * if not then there is nothing to expire. | |
491 | */ | |
3dfa5721 | 492 | if (!p->expire || !p->pcp.count) |
4037d452 CL |
493 | continue; |
494 | ||
495 | /* | |
496 | * We never drain zones local to this processor. | |
497 | */ | |
498 | if (zone_to_nid(zone) == numa_node_id()) { | |
499 | p->expire = 0; | |
500 | continue; | |
501 | } | |
502 | ||
503 | p->expire--; | |
504 | if (p->expire) | |
505 | continue; | |
506 | ||
3dfa5721 CL |
507 | if (p->pcp.count) |
508 | drain_zone_pages(zone, &p->pcp); | |
4037d452 | 509 | #endif |
2244b95a | 510 | } |
a7f75e25 CL |
511 | |
512 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | |
513 | if (global_diff[i]) | |
514 | atomic_long_add(global_diff[i], &vm_stat[i]); | |
2244b95a CL |
515 | } |
516 | ||
2244b95a CL |
517 | #endif |
518 | ||
ca889e6c CL |
519 | #ifdef CONFIG_NUMA |
520 | /* | |
521 | * zonelist = the list of zones passed to the allocator | |
522 | * z = the zone from which the allocation occurred. | |
523 | * | |
524 | * Must be called with interrupts disabled. | |
525 | */ | |
18ea7e71 | 526 | void zone_statistics(struct zone *preferred_zone, struct zone *z) |
ca889e6c | 527 | { |
18ea7e71 | 528 | if (z->zone_pgdat == preferred_zone->zone_pgdat) { |
ca889e6c CL |
529 | __inc_zone_state(z, NUMA_HIT); |
530 | } else { | |
531 | __inc_zone_state(z, NUMA_MISS); | |
18ea7e71 | 532 | __inc_zone_state(preferred_zone, NUMA_FOREIGN); |
ca889e6c | 533 | } |
5d292343 | 534 | if (z->node == numa_node_id()) |
ca889e6c CL |
535 | __inc_zone_state(z, NUMA_LOCAL); |
536 | else | |
537 | __inc_zone_state(z, NUMA_OTHER); | |
538 | } | |
539 | #endif | |
540 | ||
d7a5752c | 541 | #ifdef CONFIG_COMPACTION |
36deb0be | 542 | |
d7a5752c MG |
543 | struct contig_page_info { |
544 | unsigned long free_pages; | |
545 | unsigned long free_blocks_total; | |
546 | unsigned long free_blocks_suitable; | |
547 | }; | |
548 | ||
549 | /* | |
550 | * Calculate the number of free pages in a zone, how many contiguous | |
551 | * pages are free and how many are large enough to satisfy an allocation of | |
552 | * the target size. Note that this function makes no attempt to estimate | |
553 | * how many suitable free blocks there *might* be if MOVABLE pages were | |
554 | * migrated. Calculating that is possible, but expensive and can be | |
555 | * figured out from userspace | |
556 | */ | |
557 | static void fill_contig_page_info(struct zone *zone, | |
558 | unsigned int suitable_order, | |
559 | struct contig_page_info *info) | |
560 | { | |
561 | unsigned int order; | |
562 | ||
563 | info->free_pages = 0; | |
564 | info->free_blocks_total = 0; | |
565 | info->free_blocks_suitable = 0; | |
566 | ||
567 | for (order = 0; order < MAX_ORDER; order++) { | |
568 | unsigned long blocks; | |
569 | ||
570 | /* Count number of free blocks */ | |
571 | blocks = zone->free_area[order].nr_free; | |
572 | info->free_blocks_total += blocks; | |
573 | ||
574 | /* Count free base pages */ | |
575 | info->free_pages += blocks << order; | |
576 | ||
577 | /* Count the suitable free blocks */ | |
578 | if (order >= suitable_order) | |
579 | info->free_blocks_suitable += blocks << | |
580 | (order - suitable_order); | |
581 | } | |
582 | } | |
f1a5ab12 MG |
583 | |
584 | /* | |
585 | * A fragmentation index only makes sense if an allocation of a requested | |
586 | * size would fail. If that is true, the fragmentation index indicates | |
587 | * whether external fragmentation or a lack of memory was the problem. | |
588 | * The value can be used to determine if page reclaim or compaction | |
589 | * should be used | |
590 | */ | |
56de7263 | 591 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) |
f1a5ab12 MG |
592 | { |
593 | unsigned long requested = 1UL << order; | |
594 | ||
595 | if (!info->free_blocks_total) | |
596 | return 0; | |
597 | ||
598 | /* Fragmentation index only makes sense when a request would fail */ | |
599 | if (info->free_blocks_suitable) | |
600 | return -1000; | |
601 | ||
602 | /* | |
603 | * Index is between 0 and 1 so return within 3 decimal places | |
604 | * | |
605 | * 0 => allocation would fail due to lack of memory | |
606 | * 1 => allocation would fail due to fragmentation | |
607 | */ | |
608 | return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); | |
609 | } | |
56de7263 MG |
610 | |
611 | /* Same as __fragmentation index but allocs contig_page_info on stack */ | |
612 | int fragmentation_index(struct zone *zone, unsigned int order) | |
613 | { | |
614 | struct contig_page_info info; | |
615 | ||
616 | fill_contig_page_info(zone, order, &info); | |
617 | return __fragmentation_index(order, &info); | |
618 | } | |
d7a5752c MG |
619 | #endif |
620 | ||
621 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) | |
8f32f7e5 | 622 | #include <linux/proc_fs.h> |
f6ac2354 CL |
623 | #include <linux/seq_file.h> |
624 | ||
467c996c MG |
625 | static char * const migratetype_names[MIGRATE_TYPES] = { |
626 | "Unmovable", | |
627 | "Reclaimable", | |
628 | "Movable", | |
629 | "Reserve", | |
91446b06 | 630 | "Isolate", |
467c996c MG |
631 | }; |
632 | ||
f6ac2354 CL |
633 | static void *frag_start(struct seq_file *m, loff_t *pos) |
634 | { | |
635 | pg_data_t *pgdat; | |
636 | loff_t node = *pos; | |
637 | for (pgdat = first_online_pgdat(); | |
638 | pgdat && node; | |
639 | pgdat = next_online_pgdat(pgdat)) | |
640 | --node; | |
641 | ||
642 | return pgdat; | |
643 | } | |
644 | ||
645 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | |
646 | { | |
647 | pg_data_t *pgdat = (pg_data_t *)arg; | |
648 | ||
649 | (*pos)++; | |
650 | return next_online_pgdat(pgdat); | |
651 | } | |
652 | ||
653 | static void frag_stop(struct seq_file *m, void *arg) | |
654 | { | |
655 | } | |
656 | ||
467c996c MG |
657 | /* Walk all the zones in a node and print using a callback */ |
658 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, | |
659 | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) | |
f6ac2354 | 660 | { |
f6ac2354 CL |
661 | struct zone *zone; |
662 | struct zone *node_zones = pgdat->node_zones; | |
663 | unsigned long flags; | |
f6ac2354 CL |
664 | |
665 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | |
666 | if (!populated_zone(zone)) | |
667 | continue; | |
668 | ||
669 | spin_lock_irqsave(&zone->lock, flags); | |
467c996c | 670 | print(m, pgdat, zone); |
f6ac2354 | 671 | spin_unlock_irqrestore(&zone->lock, flags); |
467c996c MG |
672 | } |
673 | } | |
d7a5752c | 674 | #endif |
467c996c | 675 | |
d7a5752c | 676 | #ifdef CONFIG_PROC_FS |
467c996c MG |
677 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, |
678 | struct zone *zone) | |
679 | { | |
680 | int order; | |
681 | ||
682 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | |
683 | for (order = 0; order < MAX_ORDER; ++order) | |
684 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | |
685 | seq_putc(m, '\n'); | |
686 | } | |
687 | ||
688 | /* | |
689 | * This walks the free areas for each zone. | |
690 | */ | |
691 | static int frag_show(struct seq_file *m, void *arg) | |
692 | { | |
693 | pg_data_t *pgdat = (pg_data_t *)arg; | |
694 | walk_zones_in_node(m, pgdat, frag_show_print); | |
695 | return 0; | |
696 | } | |
697 | ||
698 | static void pagetypeinfo_showfree_print(struct seq_file *m, | |
699 | pg_data_t *pgdat, struct zone *zone) | |
700 | { | |
701 | int order, mtype; | |
702 | ||
703 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { | |
704 | seq_printf(m, "Node %4d, zone %8s, type %12s ", | |
705 | pgdat->node_id, | |
706 | zone->name, | |
707 | migratetype_names[mtype]); | |
708 | for (order = 0; order < MAX_ORDER; ++order) { | |
709 | unsigned long freecount = 0; | |
710 | struct free_area *area; | |
711 | struct list_head *curr; | |
712 | ||
713 | area = &(zone->free_area[order]); | |
714 | ||
715 | list_for_each(curr, &area->free_list[mtype]) | |
716 | freecount++; | |
717 | seq_printf(m, "%6lu ", freecount); | |
718 | } | |
f6ac2354 CL |
719 | seq_putc(m, '\n'); |
720 | } | |
467c996c MG |
721 | } |
722 | ||
723 | /* Print out the free pages at each order for each migatetype */ | |
724 | static int pagetypeinfo_showfree(struct seq_file *m, void *arg) | |
725 | { | |
726 | int order; | |
727 | pg_data_t *pgdat = (pg_data_t *)arg; | |
728 | ||
729 | /* Print header */ | |
730 | seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); | |
731 | for (order = 0; order < MAX_ORDER; ++order) | |
732 | seq_printf(m, "%6d ", order); | |
733 | seq_putc(m, '\n'); | |
734 | ||
735 | walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); | |
736 | ||
737 | return 0; | |
738 | } | |
739 | ||
740 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, | |
741 | pg_data_t *pgdat, struct zone *zone) | |
742 | { | |
743 | int mtype; | |
744 | unsigned long pfn; | |
745 | unsigned long start_pfn = zone->zone_start_pfn; | |
746 | unsigned long end_pfn = start_pfn + zone->spanned_pages; | |
747 | unsigned long count[MIGRATE_TYPES] = { 0, }; | |
748 | ||
749 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | |
750 | struct page *page; | |
751 | ||
752 | if (!pfn_valid(pfn)) | |
753 | continue; | |
754 | ||
755 | page = pfn_to_page(pfn); | |
eb33575c MG |
756 | |
757 | /* Watch for unexpected holes punched in the memmap */ | |
758 | if (!memmap_valid_within(pfn, page, zone)) | |
e80d6a24 | 759 | continue; |
eb33575c | 760 | |
467c996c MG |
761 | mtype = get_pageblock_migratetype(page); |
762 | ||
e80d6a24 MG |
763 | if (mtype < MIGRATE_TYPES) |
764 | count[mtype]++; | |
467c996c MG |
765 | } |
766 | ||
767 | /* Print counts */ | |
768 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | |
769 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | |
770 | seq_printf(m, "%12lu ", count[mtype]); | |
771 | seq_putc(m, '\n'); | |
772 | } | |
773 | ||
774 | /* Print out the free pages at each order for each migratetype */ | |
775 | static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) | |
776 | { | |
777 | int mtype; | |
778 | pg_data_t *pgdat = (pg_data_t *)arg; | |
779 | ||
780 | seq_printf(m, "\n%-23s", "Number of blocks type "); | |
781 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | |
782 | seq_printf(m, "%12s ", migratetype_names[mtype]); | |
783 | seq_putc(m, '\n'); | |
784 | walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); | |
785 | ||
786 | return 0; | |
787 | } | |
788 | ||
789 | /* | |
790 | * This prints out statistics in relation to grouping pages by mobility. | |
791 | * It is expensive to collect so do not constantly read the file. | |
792 | */ | |
793 | static int pagetypeinfo_show(struct seq_file *m, void *arg) | |
794 | { | |
795 | pg_data_t *pgdat = (pg_data_t *)arg; | |
796 | ||
41b25a37 KM |
797 | /* check memoryless node */ |
798 | if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) | |
799 | return 0; | |
800 | ||
467c996c MG |
801 | seq_printf(m, "Page block order: %d\n", pageblock_order); |
802 | seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); | |
803 | seq_putc(m, '\n'); | |
804 | pagetypeinfo_showfree(m, pgdat); | |
805 | pagetypeinfo_showblockcount(m, pgdat); | |
806 | ||
f6ac2354 CL |
807 | return 0; |
808 | } | |
809 | ||
8f32f7e5 | 810 | static const struct seq_operations fragmentation_op = { |
f6ac2354 CL |
811 | .start = frag_start, |
812 | .next = frag_next, | |
813 | .stop = frag_stop, | |
814 | .show = frag_show, | |
815 | }; | |
816 | ||
8f32f7e5 AD |
817 | static int fragmentation_open(struct inode *inode, struct file *file) |
818 | { | |
819 | return seq_open(file, &fragmentation_op); | |
820 | } | |
821 | ||
822 | static const struct file_operations fragmentation_file_operations = { | |
823 | .open = fragmentation_open, | |
824 | .read = seq_read, | |
825 | .llseek = seq_lseek, | |
826 | .release = seq_release, | |
827 | }; | |
828 | ||
74e2e8e8 | 829 | static const struct seq_operations pagetypeinfo_op = { |
467c996c MG |
830 | .start = frag_start, |
831 | .next = frag_next, | |
832 | .stop = frag_stop, | |
833 | .show = pagetypeinfo_show, | |
834 | }; | |
835 | ||
74e2e8e8 AD |
836 | static int pagetypeinfo_open(struct inode *inode, struct file *file) |
837 | { | |
838 | return seq_open(file, &pagetypeinfo_op); | |
839 | } | |
840 | ||
841 | static const struct file_operations pagetypeinfo_file_ops = { | |
842 | .open = pagetypeinfo_open, | |
843 | .read = seq_read, | |
844 | .llseek = seq_lseek, | |
845 | .release = seq_release, | |
846 | }; | |
847 | ||
4b51d669 CL |
848 | #ifdef CONFIG_ZONE_DMA |
849 | #define TEXT_FOR_DMA(xx) xx "_dma", | |
850 | #else | |
851 | #define TEXT_FOR_DMA(xx) | |
852 | #endif | |
853 | ||
27bf71c2 CL |
854 | #ifdef CONFIG_ZONE_DMA32 |
855 | #define TEXT_FOR_DMA32(xx) xx "_dma32", | |
856 | #else | |
857 | #define TEXT_FOR_DMA32(xx) | |
858 | #endif | |
859 | ||
860 | #ifdef CONFIG_HIGHMEM | |
861 | #define TEXT_FOR_HIGHMEM(xx) xx "_high", | |
862 | #else | |
863 | #define TEXT_FOR_HIGHMEM(xx) | |
864 | #endif | |
865 | ||
4b51d669 | 866 | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ |
2a1e274a | 867 | TEXT_FOR_HIGHMEM(xx) xx "_movable", |
27bf71c2 | 868 | |
15ad7cdc | 869 | static const char * const vmstat_text[] = { |
2244b95a | 870 | /* Zoned VM counters */ |
d23ad423 | 871 | "nr_free_pages", |
4f98a2fe RR |
872 | "nr_inactive_anon", |
873 | "nr_active_anon", | |
874 | "nr_inactive_file", | |
875 | "nr_active_file", | |
7b854121 | 876 | "nr_unevictable", |
5344b7e6 | 877 | "nr_mlock", |
f3dbd344 | 878 | "nr_anon_pages", |
65ba55f5 | 879 | "nr_mapped", |
347ce434 | 880 | "nr_file_pages", |
51ed4491 CL |
881 | "nr_dirty", |
882 | "nr_writeback", | |
972d1a7b CL |
883 | "nr_slab_reclaimable", |
884 | "nr_slab_unreclaimable", | |
df849a15 | 885 | "nr_page_table_pages", |
c6a7f572 | 886 | "nr_kernel_stack", |
f6ac2354 | 887 | "nr_unstable", |
d2c5e30c | 888 | "nr_bounce", |
e129b5c2 | 889 | "nr_vmscan_write", |
fc3ba692 | 890 | "nr_writeback_temp", |
a731286d KM |
891 | "nr_isolated_anon", |
892 | "nr_isolated_file", | |
4b02108a | 893 | "nr_shmem", |
ea941f0e MR |
894 | "nr_dirtied", |
895 | "nr_written", | |
896 | ||
ca889e6c CL |
897 | #ifdef CONFIG_NUMA |
898 | "numa_hit", | |
899 | "numa_miss", | |
900 | "numa_foreign", | |
901 | "numa_interleave", | |
902 | "numa_local", | |
903 | "numa_other", | |
904 | #endif | |
e172662d WF |
905 | "nr_dirty_threshold", |
906 | "nr_dirty_background_threshold", | |
ca889e6c | 907 | |
f8891e5e | 908 | #ifdef CONFIG_VM_EVENT_COUNTERS |
f6ac2354 CL |
909 | "pgpgin", |
910 | "pgpgout", | |
911 | "pswpin", | |
912 | "pswpout", | |
913 | ||
27bf71c2 | 914 | TEXTS_FOR_ZONES("pgalloc") |
f6ac2354 CL |
915 | |
916 | "pgfree", | |
917 | "pgactivate", | |
918 | "pgdeactivate", | |
919 | ||
920 | "pgfault", | |
921 | "pgmajfault", | |
922 | ||
27bf71c2 CL |
923 | TEXTS_FOR_ZONES("pgrefill") |
924 | TEXTS_FOR_ZONES("pgsteal") | |
925 | TEXTS_FOR_ZONES("pgscan_kswapd") | |
926 | TEXTS_FOR_ZONES("pgscan_direct") | |
f6ac2354 | 927 | |
24cf7251 MG |
928 | #ifdef CONFIG_NUMA |
929 | "zone_reclaim_failed", | |
930 | #endif | |
f6ac2354 CL |
931 | "pginodesteal", |
932 | "slabs_scanned", | |
933 | "kswapd_steal", | |
934 | "kswapd_inodesteal", | |
bb3ab596 KM |
935 | "kswapd_low_wmark_hit_quickly", |
936 | "kswapd_high_wmark_hit_quickly", | |
937 | "kswapd_skip_congestion_wait", | |
f6ac2354 CL |
938 | "pageoutrun", |
939 | "allocstall", | |
940 | ||
941 | "pgrotated", | |
748446bb MG |
942 | |
943 | #ifdef CONFIG_COMPACTION | |
944 | "compact_blocks_moved", | |
945 | "compact_pages_moved", | |
946 | "compact_pagemigrate_failed", | |
56de7263 MG |
947 | "compact_stall", |
948 | "compact_fail", | |
949 | "compact_success", | |
748446bb MG |
950 | #endif |
951 | ||
3b116300 AL |
952 | #ifdef CONFIG_HUGETLB_PAGE |
953 | "htlb_buddy_alloc_success", | |
954 | "htlb_buddy_alloc_fail", | |
955 | #endif | |
bbfd28ee LS |
956 | "unevictable_pgs_culled", |
957 | "unevictable_pgs_scanned", | |
958 | "unevictable_pgs_rescued", | |
5344b7e6 NP |
959 | "unevictable_pgs_mlocked", |
960 | "unevictable_pgs_munlocked", | |
961 | "unevictable_pgs_cleared", | |
962 | "unevictable_pgs_stranded", | |
985737cf | 963 | "unevictable_pgs_mlockfreed", |
bbfd28ee | 964 | #endif |
f6ac2354 CL |
965 | }; |
966 | ||
467c996c MG |
967 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |
968 | struct zone *zone) | |
f6ac2354 | 969 | { |
467c996c MG |
970 | int i; |
971 | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); | |
972 | seq_printf(m, | |
973 | "\n pages free %lu" | |
974 | "\n min %lu" | |
975 | "\n low %lu" | |
976 | "\n high %lu" | |
08d9ae7c | 977 | "\n scanned %lu" |
467c996c MG |
978 | "\n spanned %lu" |
979 | "\n present %lu", | |
88f5acf8 | 980 | zone_page_state(zone, NR_FREE_PAGES), |
41858966 MG |
981 | min_wmark_pages(zone), |
982 | low_wmark_pages(zone), | |
983 | high_wmark_pages(zone), | |
467c996c | 984 | zone->pages_scanned, |
467c996c MG |
985 | zone->spanned_pages, |
986 | zone->present_pages); | |
987 | ||
988 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | |
989 | seq_printf(m, "\n %-12s %lu", vmstat_text[i], | |
990 | zone_page_state(zone, i)); | |
991 | ||
992 | seq_printf(m, | |
993 | "\n protection: (%lu", | |
994 | zone->lowmem_reserve[0]); | |
995 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) | |
996 | seq_printf(m, ", %lu", zone->lowmem_reserve[i]); | |
997 | seq_printf(m, | |
998 | ")" | |
999 | "\n pagesets"); | |
1000 | for_each_online_cpu(i) { | |
1001 | struct per_cpu_pageset *pageset; | |
467c996c | 1002 | |
99dcc3e5 | 1003 | pageset = per_cpu_ptr(zone->pageset, i); |
3dfa5721 CL |
1004 | seq_printf(m, |
1005 | "\n cpu: %i" | |
1006 | "\n count: %i" | |
1007 | "\n high: %i" | |
1008 | "\n batch: %i", | |
1009 | i, | |
1010 | pageset->pcp.count, | |
1011 | pageset->pcp.high, | |
1012 | pageset->pcp.batch); | |
df9ecaba | 1013 | #ifdef CONFIG_SMP |
467c996c MG |
1014 | seq_printf(m, "\n vm stats threshold: %d", |
1015 | pageset->stat_threshold); | |
df9ecaba | 1016 | #endif |
f6ac2354 | 1017 | } |
467c996c MG |
1018 | seq_printf(m, |
1019 | "\n all_unreclaimable: %u" | |
556adecb RR |
1020 | "\n start_pfn: %lu" |
1021 | "\n inactive_ratio: %u", | |
93e4a89a | 1022 | zone->all_unreclaimable, |
556adecb RR |
1023 | zone->zone_start_pfn, |
1024 | zone->inactive_ratio); | |
467c996c MG |
1025 | seq_putc(m, '\n'); |
1026 | } | |
1027 | ||
1028 | /* | |
1029 | * Output information about zones in @pgdat. | |
1030 | */ | |
1031 | static int zoneinfo_show(struct seq_file *m, void *arg) | |
1032 | { | |
1033 | pg_data_t *pgdat = (pg_data_t *)arg; | |
1034 | walk_zones_in_node(m, pgdat, zoneinfo_show_print); | |
f6ac2354 CL |
1035 | return 0; |
1036 | } | |
1037 | ||
5c9fe628 | 1038 | static const struct seq_operations zoneinfo_op = { |
f6ac2354 CL |
1039 | .start = frag_start, /* iterate over all zones. The same as in |
1040 | * fragmentation. */ | |
1041 | .next = frag_next, | |
1042 | .stop = frag_stop, | |
1043 | .show = zoneinfo_show, | |
1044 | }; | |
1045 | ||
5c9fe628 AD |
1046 | static int zoneinfo_open(struct inode *inode, struct file *file) |
1047 | { | |
1048 | return seq_open(file, &zoneinfo_op); | |
1049 | } | |
1050 | ||
1051 | static const struct file_operations proc_zoneinfo_file_operations = { | |
1052 | .open = zoneinfo_open, | |
1053 | .read = seq_read, | |
1054 | .llseek = seq_lseek, | |
1055 | .release = seq_release, | |
1056 | }; | |
1057 | ||
79da826a MR |
1058 | enum writeback_stat_item { |
1059 | NR_DIRTY_THRESHOLD, | |
1060 | NR_DIRTY_BG_THRESHOLD, | |
1061 | NR_VM_WRITEBACK_STAT_ITEMS, | |
1062 | }; | |
1063 | ||
f6ac2354 CL |
1064 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
1065 | { | |
2244b95a | 1066 | unsigned long *v; |
79da826a | 1067 | int i, stat_items_size; |
f6ac2354 CL |
1068 | |
1069 | if (*pos >= ARRAY_SIZE(vmstat_text)) | |
1070 | return NULL; | |
79da826a MR |
1071 | stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + |
1072 | NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); | |
f6ac2354 | 1073 | |
f8891e5e | 1074 | #ifdef CONFIG_VM_EVENT_COUNTERS |
79da826a | 1075 | stat_items_size += sizeof(struct vm_event_state); |
f8891e5e | 1076 | #endif |
79da826a MR |
1077 | |
1078 | v = kmalloc(stat_items_size, GFP_KERNEL); | |
2244b95a CL |
1079 | m->private = v; |
1080 | if (!v) | |
f6ac2354 | 1081 | return ERR_PTR(-ENOMEM); |
2244b95a CL |
1082 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
1083 | v[i] = global_page_state(i); | |
79da826a MR |
1084 | v += NR_VM_ZONE_STAT_ITEMS; |
1085 | ||
1086 | global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, | |
1087 | v + NR_DIRTY_THRESHOLD); | |
1088 | v += NR_VM_WRITEBACK_STAT_ITEMS; | |
1089 | ||
f8891e5e | 1090 | #ifdef CONFIG_VM_EVENT_COUNTERS |
79da826a MR |
1091 | all_vm_events(v); |
1092 | v[PGPGIN] /= 2; /* sectors -> kbytes */ | |
1093 | v[PGPGOUT] /= 2; | |
f8891e5e | 1094 | #endif |
ff8b16d7 | 1095 | return (unsigned long *)m->private + *pos; |
f6ac2354 CL |
1096 | } |
1097 | ||
1098 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | |
1099 | { | |
1100 | (*pos)++; | |
1101 | if (*pos >= ARRAY_SIZE(vmstat_text)) | |
1102 | return NULL; | |
1103 | return (unsigned long *)m->private + *pos; | |
1104 | } | |
1105 | ||
1106 | static int vmstat_show(struct seq_file *m, void *arg) | |
1107 | { | |
1108 | unsigned long *l = arg; | |
1109 | unsigned long off = l - (unsigned long *)m->private; | |
1110 | ||
1111 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | |
1112 | return 0; | |
1113 | } | |
1114 | ||
1115 | static void vmstat_stop(struct seq_file *m, void *arg) | |
1116 | { | |
1117 | kfree(m->private); | |
1118 | m->private = NULL; | |
1119 | } | |
1120 | ||
b6aa44ab | 1121 | static const struct seq_operations vmstat_op = { |
f6ac2354 CL |
1122 | .start = vmstat_start, |
1123 | .next = vmstat_next, | |
1124 | .stop = vmstat_stop, | |
1125 | .show = vmstat_show, | |
1126 | }; | |
1127 | ||
b6aa44ab AD |
1128 | static int vmstat_open(struct inode *inode, struct file *file) |
1129 | { | |
1130 | return seq_open(file, &vmstat_op); | |
1131 | } | |
1132 | ||
1133 | static const struct file_operations proc_vmstat_file_operations = { | |
1134 | .open = vmstat_open, | |
1135 | .read = seq_read, | |
1136 | .llseek = seq_lseek, | |
1137 | .release = seq_release, | |
1138 | }; | |
f6ac2354 CL |
1139 | #endif /* CONFIG_PROC_FS */ |
1140 | ||
df9ecaba | 1141 | #ifdef CONFIG_SMP |
d1187ed2 | 1142 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); |
77461ab3 | 1143 | int sysctl_stat_interval __read_mostly = HZ; |
d1187ed2 CL |
1144 | |
1145 | static void vmstat_update(struct work_struct *w) | |
1146 | { | |
1147 | refresh_cpu_vm_stats(smp_processor_id()); | |
77461ab3 | 1148 | schedule_delayed_work(&__get_cpu_var(vmstat_work), |
98f4ebb2 | 1149 | round_jiffies_relative(sysctl_stat_interval)); |
d1187ed2 CL |
1150 | } |
1151 | ||
42614fcd | 1152 | static void __cpuinit start_cpu_timer(int cpu) |
d1187ed2 | 1153 | { |
1871e52c | 1154 | struct delayed_work *work = &per_cpu(vmstat_work, cpu); |
d1187ed2 | 1155 | |
1871e52c TH |
1156 | INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); |
1157 | schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); | |
d1187ed2 CL |
1158 | } |
1159 | ||
df9ecaba CL |
1160 | /* |
1161 | * Use the cpu notifier to insure that the thresholds are recalculated | |
1162 | * when necessary. | |
1163 | */ | |
1164 | static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, | |
1165 | unsigned long action, | |
1166 | void *hcpu) | |
1167 | { | |
d1187ed2 CL |
1168 | long cpu = (long)hcpu; |
1169 | ||
df9ecaba | 1170 | switch (action) { |
d1187ed2 CL |
1171 | case CPU_ONLINE: |
1172 | case CPU_ONLINE_FROZEN: | |
5ee28a44 | 1173 | refresh_zone_stat_thresholds(); |
d1187ed2 | 1174 | start_cpu_timer(cpu); |
ad596925 | 1175 | node_set_state(cpu_to_node(cpu), N_CPU); |
d1187ed2 CL |
1176 | break; |
1177 | case CPU_DOWN_PREPARE: | |
1178 | case CPU_DOWN_PREPARE_FROZEN: | |
afe2c511 | 1179 | cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); |
d1187ed2 CL |
1180 | per_cpu(vmstat_work, cpu).work.func = NULL; |
1181 | break; | |
1182 | case CPU_DOWN_FAILED: | |
1183 | case CPU_DOWN_FAILED_FROZEN: | |
1184 | start_cpu_timer(cpu); | |
1185 | break; | |
ce421c79 | 1186 | case CPU_DEAD: |
8bb78442 | 1187 | case CPU_DEAD_FROZEN: |
ce421c79 AW |
1188 | refresh_zone_stat_thresholds(); |
1189 | break; | |
1190 | default: | |
1191 | break; | |
df9ecaba CL |
1192 | } |
1193 | return NOTIFY_OK; | |
1194 | } | |
1195 | ||
1196 | static struct notifier_block __cpuinitdata vmstat_notifier = | |
1197 | { &vmstat_cpuup_callback, NULL, 0 }; | |
8f32f7e5 | 1198 | #endif |
df9ecaba | 1199 | |
e2fc88d0 | 1200 | static int __init setup_vmstat(void) |
df9ecaba | 1201 | { |
8f32f7e5 | 1202 | #ifdef CONFIG_SMP |
d1187ed2 CL |
1203 | int cpu; |
1204 | ||
df9ecaba CL |
1205 | refresh_zone_stat_thresholds(); |
1206 | register_cpu_notifier(&vmstat_notifier); | |
d1187ed2 CL |
1207 | |
1208 | for_each_online_cpu(cpu) | |
1209 | start_cpu_timer(cpu); | |
8f32f7e5 AD |
1210 | #endif |
1211 | #ifdef CONFIG_PROC_FS | |
1212 | proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); | |
74e2e8e8 | 1213 | proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); |
b6aa44ab | 1214 | proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); |
5c9fe628 | 1215 | proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); |
8f32f7e5 | 1216 | #endif |
df9ecaba CL |
1217 | return 0; |
1218 | } | |
1219 | module_init(setup_vmstat) | |
d7a5752c MG |
1220 | |
1221 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) | |
1222 | #include <linux/debugfs.h> | |
1223 | ||
1224 | static struct dentry *extfrag_debug_root; | |
1225 | ||
1226 | /* | |
1227 | * Return an index indicating how much of the available free memory is | |
1228 | * unusable for an allocation of the requested size. | |
1229 | */ | |
1230 | static int unusable_free_index(unsigned int order, | |
1231 | struct contig_page_info *info) | |
1232 | { | |
1233 | /* No free memory is interpreted as all free memory is unusable */ | |
1234 | if (info->free_pages == 0) | |
1235 | return 1000; | |
1236 | ||
1237 | /* | |
1238 | * Index should be a value between 0 and 1. Return a value to 3 | |
1239 | * decimal places. | |
1240 | * | |
1241 | * 0 => no fragmentation | |
1242 | * 1 => high fragmentation | |
1243 | */ | |
1244 | return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); | |
1245 | ||
1246 | } | |
1247 | ||
1248 | static void unusable_show_print(struct seq_file *m, | |
1249 | pg_data_t *pgdat, struct zone *zone) | |
1250 | { | |
1251 | unsigned int order; | |
1252 | int index; | |
1253 | struct contig_page_info info; | |
1254 | ||
1255 | seq_printf(m, "Node %d, zone %8s ", | |
1256 | pgdat->node_id, | |
1257 | zone->name); | |
1258 | for (order = 0; order < MAX_ORDER; ++order) { | |
1259 | fill_contig_page_info(zone, order, &info); | |
1260 | index = unusable_free_index(order, &info); | |
1261 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | |
1262 | } | |
1263 | ||
1264 | seq_putc(m, '\n'); | |
1265 | } | |
1266 | ||
1267 | /* | |
1268 | * Display unusable free space index | |
1269 | * | |
1270 | * The unusable free space index measures how much of the available free | |
1271 | * memory cannot be used to satisfy an allocation of a given size and is a | |
1272 | * value between 0 and 1. The higher the value, the more of free memory is | |
1273 | * unusable and by implication, the worse the external fragmentation is. This | |
1274 | * can be expressed as a percentage by multiplying by 100. | |
1275 | */ | |
1276 | static int unusable_show(struct seq_file *m, void *arg) | |
1277 | { | |
1278 | pg_data_t *pgdat = (pg_data_t *)arg; | |
1279 | ||
1280 | /* check memoryless node */ | |
1281 | if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) | |
1282 | return 0; | |
1283 | ||
1284 | walk_zones_in_node(m, pgdat, unusable_show_print); | |
1285 | ||
1286 | return 0; | |
1287 | } | |
1288 | ||
1289 | static const struct seq_operations unusable_op = { | |
1290 | .start = frag_start, | |
1291 | .next = frag_next, | |
1292 | .stop = frag_stop, | |
1293 | .show = unusable_show, | |
1294 | }; | |
1295 | ||
1296 | static int unusable_open(struct inode *inode, struct file *file) | |
1297 | { | |
1298 | return seq_open(file, &unusable_op); | |
1299 | } | |
1300 | ||
1301 | static const struct file_operations unusable_file_ops = { | |
1302 | .open = unusable_open, | |
1303 | .read = seq_read, | |
1304 | .llseek = seq_lseek, | |
1305 | .release = seq_release, | |
1306 | }; | |
1307 | ||
f1a5ab12 MG |
1308 | static void extfrag_show_print(struct seq_file *m, |
1309 | pg_data_t *pgdat, struct zone *zone) | |
1310 | { | |
1311 | unsigned int order; | |
1312 | int index; | |
1313 | ||
1314 | /* Alloc on stack as interrupts are disabled for zone walk */ | |
1315 | struct contig_page_info info; | |
1316 | ||
1317 | seq_printf(m, "Node %d, zone %8s ", | |
1318 | pgdat->node_id, | |
1319 | zone->name); | |
1320 | for (order = 0; order < MAX_ORDER; ++order) { | |
1321 | fill_contig_page_info(zone, order, &info); | |
56de7263 | 1322 | index = __fragmentation_index(order, &info); |
f1a5ab12 MG |
1323 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); |
1324 | } | |
1325 | ||
1326 | seq_putc(m, '\n'); | |
1327 | } | |
1328 | ||
1329 | /* | |
1330 | * Display fragmentation index for orders that allocations would fail for | |
1331 | */ | |
1332 | static int extfrag_show(struct seq_file *m, void *arg) | |
1333 | { | |
1334 | pg_data_t *pgdat = (pg_data_t *)arg; | |
1335 | ||
1336 | walk_zones_in_node(m, pgdat, extfrag_show_print); | |
1337 | ||
1338 | return 0; | |
1339 | } | |
1340 | ||
1341 | static const struct seq_operations extfrag_op = { | |
1342 | .start = frag_start, | |
1343 | .next = frag_next, | |
1344 | .stop = frag_stop, | |
1345 | .show = extfrag_show, | |
1346 | }; | |
1347 | ||
1348 | static int extfrag_open(struct inode *inode, struct file *file) | |
1349 | { | |
1350 | return seq_open(file, &extfrag_op); | |
1351 | } | |
1352 | ||
1353 | static const struct file_operations extfrag_file_ops = { | |
1354 | .open = extfrag_open, | |
1355 | .read = seq_read, | |
1356 | .llseek = seq_lseek, | |
1357 | .release = seq_release, | |
1358 | }; | |
1359 | ||
d7a5752c MG |
1360 | static int __init extfrag_debug_init(void) |
1361 | { | |
1362 | extfrag_debug_root = debugfs_create_dir("extfrag", NULL); | |
1363 | if (!extfrag_debug_root) | |
1364 | return -ENOMEM; | |
1365 | ||
1366 | if (!debugfs_create_file("unusable_index", 0444, | |
1367 | extfrag_debug_root, NULL, &unusable_file_ops)) | |
1368 | return -ENOMEM; | |
1369 | ||
f1a5ab12 MG |
1370 | if (!debugfs_create_file("extfrag_index", 0444, |
1371 | extfrag_debug_root, NULL, &extfrag_file_ops)) | |
1372 | return -ENOMEM; | |
1373 | ||
d7a5752c MG |
1374 | return 0; |
1375 | } | |
1376 | ||
1377 | module_init(extfrag_debug_init); | |
1378 | #endif |