]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
e905a9ed | 10 | * Jens Laas <[email protected]> Swedish University of |
19baf839 | 11 | * Agricultural Sciences. |
e905a9ed | 12 | * |
19baf839 RO |
13 | * Hans Liss <[email protected]> Uppsala Universitet |
14 | * | |
25985edc | 15 | * This work is based on the LPC-trie which is originally described in: |
e905a9ed | 16 | * |
19baf839 RO |
17 | * An experimental study of compression methods for dynamic tries |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
631dd1a8 | 19 | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
19baf839 RO |
20 | * |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
19baf839 RO |
25 | * |
26 | * Code from fib_hash has been reused which includes the following header: | |
27 | * | |
28 | * | |
29 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
30 | * operating system. INET is implemented using the BSD Socket | |
31 | * interface as the means of communication with the user level. | |
32 | * | |
33 | * IPv4 FIB: lookup engine and maintenance routines. | |
34 | * | |
35 | * | |
36 | * Authors: Alexey Kuznetsov, <[email protected]> | |
37 | * | |
38 | * This program is free software; you can redistribute it and/or | |
39 | * modify it under the terms of the GNU General Public License | |
40 | * as published by the Free Software Foundation; either version | |
41 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
42 | * |
43 | * Substantial contributions to this work comes from: | |
44 | * | |
45 | * David S. Miller, <[email protected]> | |
46 | * Stephen Hemminger <[email protected]> | |
47 | * Paul E. McKenney <[email protected]> | |
48 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
49 | */ |
50 | ||
80b71b80 | 51 | #define VERSION "0.409" |
19baf839 | 52 | |
19baf839 | 53 | #include <asm/uaccess.h> |
1977f032 | 54 | #include <linux/bitops.h> |
19baf839 RO |
55 | #include <linux/types.h> |
56 | #include <linux/kernel.h> | |
19baf839 RO |
57 | #include <linux/mm.h> |
58 | #include <linux/string.h> | |
59 | #include <linux/socket.h> | |
60 | #include <linux/sockios.h> | |
61 | #include <linux/errno.h> | |
62 | #include <linux/in.h> | |
63 | #include <linux/inet.h> | |
cd8787ab | 64 | #include <linux/inetdevice.h> |
19baf839 RO |
65 | #include <linux/netdevice.h> |
66 | #include <linux/if_arp.h> | |
67 | #include <linux/proc_fs.h> | |
2373ce1c | 68 | #include <linux/rcupdate.h> |
19baf839 RO |
69 | #include <linux/skbuff.h> |
70 | #include <linux/netlink.h> | |
71 | #include <linux/init.h> | |
72 | #include <linux/list.h> | |
5a0e3ad6 | 73 | #include <linux/slab.h> |
70c71606 | 74 | #include <linux/prefetch.h> |
bc3b2d7f | 75 | #include <linux/export.h> |
457c4cbc | 76 | #include <net/net_namespace.h> |
19baf839 RO |
77 | #include <net/ip.h> |
78 | #include <net/protocol.h> | |
79 | #include <net/route.h> | |
80 | #include <net/tcp.h> | |
81 | #include <net/sock.h> | |
82 | #include <net/ip_fib.h> | |
83 | #include "fib_lookup.h" | |
84 | ||
06ef921d | 85 | #define MAX_STAT_DEPTH 32 |
19baf839 | 86 | |
19baf839 | 87 | #define KEYLENGTH (8*sizeof(t_key)) |
19baf839 | 88 | |
19baf839 RO |
89 | typedef unsigned int t_key; |
90 | ||
91 | #define T_TNODE 0 | |
92 | #define T_LEAF 1 | |
93 | #define NODE_TYPE_MASK 0x1UL | |
2373ce1c RO |
94 | #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) |
95 | ||
91b9a277 OJ |
96 | #define IS_TNODE(n) (!(n->parent & T_LEAF)) |
97 | #define IS_LEAF(n) (n->parent & T_LEAF) | |
19baf839 | 98 | |
b299e4f0 | 99 | struct rt_trie_node { |
91b9a277 | 100 | unsigned long parent; |
8d965444 | 101 | t_key key; |
19baf839 RO |
102 | }; |
103 | ||
104 | struct leaf { | |
91b9a277 | 105 | unsigned long parent; |
8d965444 | 106 | t_key key; |
19baf839 | 107 | struct hlist_head list; |
2373ce1c | 108 | struct rcu_head rcu; |
19baf839 RO |
109 | }; |
110 | ||
111 | struct leaf_info { | |
112 | struct hlist_node hlist; | |
113 | int plen; | |
5c74501f | 114 | u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ |
19baf839 | 115 | struct list_head falh; |
5c74501f | 116 | struct rcu_head rcu; |
19baf839 RO |
117 | }; |
118 | ||
119 | struct tnode { | |
91b9a277 | 120 | unsigned long parent; |
8d965444 | 121 | t_key key; |
112d8cfc ED |
122 | unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
123 | unsigned char bits; /* 2log(KEYLENGTH) bits needed */ | |
8d965444 ED |
124 | unsigned int full_children; /* KEYLENGTH bits needed */ |
125 | unsigned int empty_children; /* KEYLENGTH bits needed */ | |
15be75cd SH |
126 | union { |
127 | struct rcu_head rcu; | |
128 | struct work_struct work; | |
e0f7cb8c | 129 | struct tnode *tnode_free; |
15be75cd | 130 | }; |
0a5c0475 | 131 | struct rt_trie_node __rcu *child[0]; |
19baf839 RO |
132 | }; |
133 | ||
134 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
135 | struct trie_use_stats { | |
136 | unsigned int gets; | |
137 | unsigned int backtrack; | |
138 | unsigned int semantic_match_passed; | |
139 | unsigned int semantic_match_miss; | |
140 | unsigned int null_node_hit; | |
2f36895a | 141 | unsigned int resize_node_skipped; |
19baf839 RO |
142 | }; |
143 | #endif | |
144 | ||
145 | struct trie_stat { | |
146 | unsigned int totdepth; | |
147 | unsigned int maxdepth; | |
148 | unsigned int tnodes; | |
149 | unsigned int leaves; | |
150 | unsigned int nullpointers; | |
93672292 | 151 | unsigned int prefixes; |
06ef921d | 152 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 153 | }; |
19baf839 RO |
154 | |
155 | struct trie { | |
0a5c0475 | 156 | struct rt_trie_node __rcu *trie; |
19baf839 RO |
157 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
158 | struct trie_use_stats stats; | |
159 | #endif | |
19baf839 RO |
160 | }; |
161 | ||
b299e4f0 DM |
162 | static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); |
163 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, | |
a07f5f50 | 164 | int wasfull); |
b299e4f0 | 165 | static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); |
2f80b3c8 RO |
166 | static struct tnode *inflate(struct trie *t, struct tnode *tn); |
167 | static struct tnode *halve(struct trie *t, struct tnode *tn); | |
e0f7cb8c JP |
168 | /* tnodes to free after resize(); protected by RTNL */ |
169 | static struct tnode *tnode_free_head; | |
c3059477 JP |
170 | static size_t tnode_free_size; |
171 | ||
172 | /* | |
173 | * synchronize_rcu after call_rcu for that many pages; it should be especially | |
174 | * useful before resizing the root node with PREEMPT_NONE configs; the value was | |
175 | * obtained experimentally, aiming to avoid visible slowdown. | |
176 | */ | |
177 | static const int sync_pages = 128; | |
19baf839 | 178 | |
e18b890b | 179 | static struct kmem_cache *fn_alias_kmem __read_mostly; |
bc3c8c1e | 180 | static struct kmem_cache *trie_leaf_kmem __read_mostly; |
19baf839 | 181 | |
0a5c0475 ED |
182 | /* |
183 | * caller must hold RTNL | |
184 | */ | |
185 | static inline struct tnode *node_parent(const struct rt_trie_node *node) | |
06801916 | 186 | { |
0a5c0475 ED |
187 | unsigned long parent; |
188 | ||
189 | parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); | |
190 | ||
191 | return (struct tnode *)(parent & ~NODE_TYPE_MASK); | |
b59cfbf7 ED |
192 | } |
193 | ||
0a5c0475 ED |
194 | /* |
195 | * caller must hold RCU read lock or RTNL | |
196 | */ | |
197 | static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) | |
b59cfbf7 | 198 | { |
0a5c0475 ED |
199 | unsigned long parent; |
200 | ||
201 | parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || | |
202 | lockdep_rtnl_is_held()); | |
06801916 | 203 | |
0a5c0475 | 204 | return (struct tnode *)(parent & ~NODE_TYPE_MASK); |
06801916 SH |
205 | } |
206 | ||
cf778b00 | 207 | /* Same as rcu_assign_pointer |
6440cc9e SH |
208 | * but that macro() assumes that value is a pointer. |
209 | */ | |
b299e4f0 | 210 | static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) |
06801916 | 211 | { |
6440cc9e SH |
212 | smp_wmb(); |
213 | node->parent = (unsigned long)ptr | NODE_TYPE(node); | |
06801916 | 214 | } |
2373ce1c | 215 | |
0a5c0475 ED |
216 | /* |
217 | * caller must hold RTNL | |
218 | */ | |
219 | static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) | |
b59cfbf7 ED |
220 | { |
221 | BUG_ON(i >= 1U << tn->bits); | |
2373ce1c | 222 | |
0a5c0475 | 223 | return rtnl_dereference(tn->child[i]); |
b59cfbf7 ED |
224 | } |
225 | ||
0a5c0475 ED |
226 | /* |
227 | * caller must hold RCU read lock or RTNL | |
228 | */ | |
229 | static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) | |
19baf839 | 230 | { |
0a5c0475 | 231 | BUG_ON(i >= 1U << tn->bits); |
19baf839 | 232 | |
0a5c0475 | 233 | return rcu_dereference_rtnl(tn->child[i]); |
19baf839 RO |
234 | } |
235 | ||
bb435b8d | 236 | static inline int tnode_child_length(const struct tnode *tn) |
19baf839 | 237 | { |
91b9a277 | 238 | return 1 << tn->bits; |
19baf839 RO |
239 | } |
240 | ||
3b004569 | 241 | static inline t_key mask_pfx(t_key k, unsigned int l) |
ab66b4a7 SH |
242 | { |
243 | return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); | |
244 | } | |
245 | ||
3b004569 | 246 | static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) |
19baf839 | 247 | { |
91b9a277 | 248 | if (offset < KEYLENGTH) |
19baf839 | 249 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); |
91b9a277 | 250 | else |
19baf839 RO |
251 | return 0; |
252 | } | |
253 | ||
254 | static inline int tkey_equals(t_key a, t_key b) | |
255 | { | |
c877efb2 | 256 | return a == b; |
19baf839 RO |
257 | } |
258 | ||
259 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | |
260 | { | |
c877efb2 SH |
261 | if (bits == 0 || offset >= KEYLENGTH) |
262 | return 1; | |
91b9a277 OJ |
263 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; |
264 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | |
c877efb2 | 265 | } |
19baf839 RO |
266 | |
267 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | |
268 | { | |
269 | t_key diff = a ^ b; | |
270 | int i = offset; | |
271 | ||
c877efb2 SH |
272 | if (!diff) |
273 | return 0; | |
274 | while ((diff << i) >> (KEYLENGTH-1) == 0) | |
19baf839 RO |
275 | i++; |
276 | return i; | |
277 | } | |
278 | ||
19baf839 | 279 | /* |
e905a9ed YH |
280 | To understand this stuff, an understanding of keys and all their bits is |
281 | necessary. Every node in the trie has a key associated with it, but not | |
19baf839 RO |
282 | all of the bits in that key are significant. |
283 | ||
284 | Consider a node 'n' and its parent 'tp'. | |
285 | ||
e905a9ed YH |
286 | If n is a leaf, every bit in its key is significant. Its presence is |
287 | necessitated by path compression, since during a tree traversal (when | |
288 | searching for a leaf - unless we are doing an insertion) we will completely | |
289 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
290 | a potentially successful search, that we have indeed been walking the | |
19baf839 RO |
291 | correct key path. |
292 | ||
e905a9ed YH |
293 | Note that we can never "miss" the correct key in the tree if present by |
294 | following the wrong path. Path compression ensures that segments of the key | |
295 | that are the same for all keys with a given prefix are skipped, but the | |
296 | skipped part *is* identical for each node in the subtrie below the skipped | |
297 | bit! trie_insert() in this implementation takes care of that - note the | |
19baf839 RO |
298 | call to tkey_sub_equals() in trie_insert(). |
299 | ||
e905a9ed | 300 | if n is an internal node - a 'tnode' here, the various parts of its key |
19baf839 RO |
301 | have many different meanings. |
302 | ||
e905a9ed | 303 | Example: |
19baf839 RO |
304 | _________________________________________________________________ |
305 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
306 | ----------------------------------------------------------------- | |
e905a9ed | 307 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
19baf839 RO |
308 | |
309 | _________________________________________________________________ | |
310 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
311 | ----------------------------------------------------------------- | |
312 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
313 | ||
314 | tp->pos = 7 | |
315 | tp->bits = 3 | |
316 | n->pos = 15 | |
91b9a277 | 317 | n->bits = 4 |
19baf839 | 318 | |
e905a9ed YH |
319 | First, let's just ignore the bits that come before the parent tp, that is |
320 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | |
19baf839 RO |
321 | not use them for anything. |
322 | ||
323 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
e905a9ed | 324 | index into the parent's child array. That is, they will be used to find |
19baf839 RO |
325 | 'n' among tp's children. |
326 | ||
327 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | |
328 | for the node n. | |
329 | ||
e905a9ed | 330 | All the bits we have seen so far are significant to the node n. The rest |
19baf839 RO |
331 | of the bits are really not needed or indeed known in n->key. |
332 | ||
e905a9ed | 333 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into |
19baf839 | 334 | n's child array, and will of course be different for each child. |
e905a9ed | 335 | |
c877efb2 | 336 | |
19baf839 RO |
337 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown |
338 | at this point. | |
339 | ||
340 | */ | |
341 | ||
0c7770c7 | 342 | static inline void check_tnode(const struct tnode *tn) |
19baf839 | 343 | { |
0c7770c7 | 344 | WARN_ON(tn && tn->pos+tn->bits > 32); |
19baf839 RO |
345 | } |
346 | ||
f5026fab DL |
347 | static const int halve_threshold = 25; |
348 | static const int inflate_threshold = 50; | |
345aa031 | 349 | static const int halve_threshold_root = 15; |
80b71b80 | 350 | static const int inflate_threshold_root = 30; |
2373ce1c RO |
351 | |
352 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 353 | { |
2373ce1c RO |
354 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
355 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
356 | } |
357 | ||
2373ce1c | 358 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 359 | { |
2373ce1c RO |
360 | call_rcu(&fa->rcu, __alias_free_mem); |
361 | } | |
91b9a277 | 362 | |
2373ce1c RO |
363 | static void __leaf_free_rcu(struct rcu_head *head) |
364 | { | |
bc3c8c1e SH |
365 | struct leaf *l = container_of(head, struct leaf, rcu); |
366 | kmem_cache_free(trie_leaf_kmem, l); | |
2373ce1c | 367 | } |
91b9a277 | 368 | |
387a5487 SH |
369 | static inline void free_leaf(struct leaf *l) |
370 | { | |
371 | call_rcu_bh(&l->rcu, __leaf_free_rcu); | |
372 | } | |
373 | ||
2373ce1c | 374 | static inline void free_leaf_info(struct leaf_info *leaf) |
19baf839 | 375 | { |
bceb0f45 | 376 | kfree_rcu(leaf, rcu); |
19baf839 RO |
377 | } |
378 | ||
8d965444 | 379 | static struct tnode *tnode_alloc(size_t size) |
f0e36f8c | 380 | { |
2373ce1c | 381 | if (size <= PAGE_SIZE) |
8d965444 | 382 | return kzalloc(size, GFP_KERNEL); |
15be75cd | 383 | else |
7a1c8e5a | 384 | return vzalloc(size); |
15be75cd | 385 | } |
2373ce1c | 386 | |
15be75cd SH |
387 | static void __tnode_vfree(struct work_struct *arg) |
388 | { | |
389 | struct tnode *tn = container_of(arg, struct tnode, work); | |
390 | vfree(tn); | |
f0e36f8c PM |
391 | } |
392 | ||
2373ce1c | 393 | static void __tnode_free_rcu(struct rcu_head *head) |
f0e36f8c | 394 | { |
2373ce1c | 395 | struct tnode *tn = container_of(head, struct tnode, rcu); |
8d965444 | 396 | size_t size = sizeof(struct tnode) + |
b299e4f0 | 397 | (sizeof(struct rt_trie_node *) << tn->bits); |
f0e36f8c PM |
398 | |
399 | if (size <= PAGE_SIZE) | |
400 | kfree(tn); | |
15be75cd SH |
401 | else { |
402 | INIT_WORK(&tn->work, __tnode_vfree); | |
403 | schedule_work(&tn->work); | |
404 | } | |
f0e36f8c PM |
405 | } |
406 | ||
2373ce1c RO |
407 | static inline void tnode_free(struct tnode *tn) |
408 | { | |
387a5487 SH |
409 | if (IS_LEAF(tn)) |
410 | free_leaf((struct leaf *) tn); | |
411 | else | |
550e29bc | 412 | call_rcu(&tn->rcu, __tnode_free_rcu); |
2373ce1c RO |
413 | } |
414 | ||
e0f7cb8c JP |
415 | static void tnode_free_safe(struct tnode *tn) |
416 | { | |
417 | BUG_ON(IS_LEAF(tn)); | |
7b85576d JP |
418 | tn->tnode_free = tnode_free_head; |
419 | tnode_free_head = tn; | |
c3059477 | 420 | tnode_free_size += sizeof(struct tnode) + |
b299e4f0 | 421 | (sizeof(struct rt_trie_node *) << tn->bits); |
e0f7cb8c JP |
422 | } |
423 | ||
424 | static void tnode_free_flush(void) | |
425 | { | |
426 | struct tnode *tn; | |
427 | ||
428 | while ((tn = tnode_free_head)) { | |
429 | tnode_free_head = tn->tnode_free; | |
430 | tn->tnode_free = NULL; | |
431 | tnode_free(tn); | |
432 | } | |
c3059477 JP |
433 | |
434 | if (tnode_free_size >= PAGE_SIZE * sync_pages) { | |
435 | tnode_free_size = 0; | |
436 | synchronize_rcu(); | |
437 | } | |
e0f7cb8c JP |
438 | } |
439 | ||
2373ce1c RO |
440 | static struct leaf *leaf_new(void) |
441 | { | |
bc3c8c1e | 442 | struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
2373ce1c RO |
443 | if (l) { |
444 | l->parent = T_LEAF; | |
445 | INIT_HLIST_HEAD(&l->list); | |
446 | } | |
447 | return l; | |
448 | } | |
449 | ||
450 | static struct leaf_info *leaf_info_new(int plen) | |
451 | { | |
452 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | |
453 | if (li) { | |
454 | li->plen = plen; | |
5c74501f | 455 | li->mask_plen = ntohl(inet_make_mask(plen)); |
2373ce1c RO |
456 | INIT_LIST_HEAD(&li->falh); |
457 | } | |
458 | return li; | |
459 | } | |
460 | ||
a07f5f50 | 461 | static struct tnode *tnode_new(t_key key, int pos, int bits) |
19baf839 | 462 | { |
b299e4f0 | 463 | size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); |
f0e36f8c | 464 | struct tnode *tn = tnode_alloc(sz); |
19baf839 | 465 | |
91b9a277 | 466 | if (tn) { |
2373ce1c | 467 | tn->parent = T_TNODE; |
19baf839 RO |
468 | tn->pos = pos; |
469 | tn->bits = bits; | |
470 | tn->key = key; | |
471 | tn->full_children = 0; | |
472 | tn->empty_children = 1<<bits; | |
473 | } | |
c877efb2 | 474 | |
a034ee3c | 475 | pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), |
b299e4f0 | 476 | sizeof(struct rt_trie_node) << bits); |
19baf839 RO |
477 | return tn; |
478 | } | |
479 | ||
19baf839 RO |
480 | /* |
481 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | |
482 | * and no bits are skipped. See discussion in dyntree paper p. 6 | |
483 | */ | |
484 | ||
b299e4f0 | 485 | static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) |
19baf839 | 486 | { |
c877efb2 | 487 | if (n == NULL || IS_LEAF(n)) |
19baf839 RO |
488 | return 0; |
489 | ||
490 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | |
491 | } | |
492 | ||
a07f5f50 | 493 | static inline void put_child(struct trie *t, struct tnode *tn, int i, |
b299e4f0 | 494 | struct rt_trie_node *n) |
19baf839 RO |
495 | { |
496 | tnode_put_child_reorg(tn, i, n, -1); | |
497 | } | |
498 | ||
c877efb2 | 499 | /* |
19baf839 RO |
500 | * Add a child at position i overwriting the old value. |
501 | * Update the value of full_children and empty_children. | |
502 | */ | |
503 | ||
b299e4f0 | 504 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, |
a07f5f50 | 505 | int wasfull) |
19baf839 | 506 | { |
0a5c0475 | 507 | struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); |
19baf839 RO |
508 | int isfull; |
509 | ||
0c7770c7 SH |
510 | BUG_ON(i >= 1<<tn->bits); |
511 | ||
19baf839 RO |
512 | /* update emptyChildren */ |
513 | if (n == NULL && chi != NULL) | |
514 | tn->empty_children++; | |
515 | else if (n != NULL && chi == NULL) | |
516 | tn->empty_children--; | |
c877efb2 | 517 | |
19baf839 | 518 | /* update fullChildren */ |
91b9a277 | 519 | if (wasfull == -1) |
19baf839 RO |
520 | wasfull = tnode_full(tn, chi); |
521 | ||
522 | isfull = tnode_full(tn, n); | |
c877efb2 | 523 | if (wasfull && !isfull) |
19baf839 | 524 | tn->full_children--; |
c877efb2 | 525 | else if (!wasfull && isfull) |
19baf839 | 526 | tn->full_children++; |
91b9a277 | 527 | |
c877efb2 | 528 | if (n) |
06801916 | 529 | node_set_parent(n, tn); |
19baf839 | 530 | |
cf778b00 | 531 | rcu_assign_pointer(tn->child[i], n); |
19baf839 RO |
532 | } |
533 | ||
80b71b80 | 534 | #define MAX_WORK 10 |
b299e4f0 | 535 | static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) |
19baf839 RO |
536 | { |
537 | int i; | |
2f80b3c8 | 538 | struct tnode *old_tn; |
e6308be8 RO |
539 | int inflate_threshold_use; |
540 | int halve_threshold_use; | |
80b71b80 | 541 | int max_work; |
19baf839 | 542 | |
e905a9ed | 543 | if (!tn) |
19baf839 RO |
544 | return NULL; |
545 | ||
0c7770c7 SH |
546 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
547 | tn, inflate_threshold, halve_threshold); | |
19baf839 RO |
548 | |
549 | /* No children */ | |
550 | if (tn->empty_children == tnode_child_length(tn)) { | |
e0f7cb8c | 551 | tnode_free_safe(tn); |
19baf839 RO |
552 | return NULL; |
553 | } | |
554 | /* One child */ | |
555 | if (tn->empty_children == tnode_child_length(tn) - 1) | |
80b71b80 | 556 | goto one_child; |
c877efb2 | 557 | /* |
19baf839 RO |
558 | * Double as long as the resulting node has a number of |
559 | * nonempty nodes that are above the threshold. | |
560 | */ | |
561 | ||
562 | /* | |
c877efb2 SH |
563 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
564 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
19baf839 | 565 | * Telecommunications, page 6: |
c877efb2 | 566 | * "A node is doubled if the ratio of non-empty children to all |
19baf839 RO |
567 | * children in the *doubled* node is at least 'high'." |
568 | * | |
c877efb2 SH |
569 | * 'high' in this instance is the variable 'inflate_threshold'. It |
570 | * is expressed as a percentage, so we multiply it with | |
571 | * tnode_child_length() and instead of multiplying by 2 (since the | |
572 | * child array will be doubled by inflate()) and multiplying | |
573 | * the left-hand side by 100 (to handle the percentage thing) we | |
19baf839 | 574 | * multiply the left-hand side by 50. |
c877efb2 SH |
575 | * |
576 | * The left-hand side may look a bit weird: tnode_child_length(tn) | |
577 | * - tn->empty_children is of course the number of non-null children | |
578 | * in the current node. tn->full_children is the number of "full" | |
19baf839 | 579 | * children, that is non-null tnodes with a skip value of 0. |
c877efb2 | 580 | * All of those will be doubled in the resulting inflated tnode, so |
19baf839 | 581 | * we just count them one extra time here. |
c877efb2 | 582 | * |
19baf839 | 583 | * A clearer way to write this would be: |
c877efb2 | 584 | * |
19baf839 | 585 | * to_be_doubled = tn->full_children; |
c877efb2 | 586 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - |
19baf839 RO |
587 | * tn->full_children; |
588 | * | |
589 | * new_child_length = tnode_child_length(tn) * 2; | |
590 | * | |
c877efb2 | 591 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
19baf839 RO |
592 | * new_child_length; |
593 | * if (new_fill_factor >= inflate_threshold) | |
c877efb2 SH |
594 | * |
595 | * ...and so on, tho it would mess up the while () loop. | |
596 | * | |
19baf839 RO |
597 | * anyway, |
598 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
599 | * inflate_threshold | |
c877efb2 | 600 | * |
19baf839 RO |
601 | * avoid a division: |
602 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
603 | * inflate_threshold * new_child_length | |
c877efb2 | 604 | * |
19baf839 | 605 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
c877efb2 | 606 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 607 | * tn->full_children) >= inflate_threshold * new_child_length |
c877efb2 | 608 | * |
19baf839 | 609 | * expand new_child_length: |
c877efb2 | 610 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 611 | * tn->full_children) >= |
19baf839 | 612 | * inflate_threshold * tnode_child_length(tn) * 2 |
c877efb2 | 613 | * |
19baf839 | 614 | * shorten again: |
c877efb2 | 615 | * 50 * (tn->full_children + tnode_child_length(tn) - |
91b9a277 | 616 | * tn->empty_children) >= inflate_threshold * |
19baf839 | 617 | * tnode_child_length(tn) |
c877efb2 | 618 | * |
19baf839 RO |
619 | */ |
620 | ||
621 | check_tnode(tn); | |
c877efb2 | 622 | |
e6308be8 RO |
623 | /* Keep root node larger */ |
624 | ||
b299e4f0 | 625 | if (!node_parent((struct rt_trie_node *)tn)) { |
80b71b80 JL |
626 | inflate_threshold_use = inflate_threshold_root; |
627 | halve_threshold_use = halve_threshold_root; | |
a034ee3c | 628 | } else { |
e6308be8 | 629 | inflate_threshold_use = inflate_threshold; |
80b71b80 JL |
630 | halve_threshold_use = halve_threshold; |
631 | } | |
e6308be8 | 632 | |
80b71b80 JL |
633 | max_work = MAX_WORK; |
634 | while ((tn->full_children > 0 && max_work-- && | |
a07f5f50 SH |
635 | 50 * (tn->full_children + tnode_child_length(tn) |
636 | - tn->empty_children) | |
637 | >= inflate_threshold_use * tnode_child_length(tn))) { | |
19baf839 | 638 | |
2f80b3c8 RO |
639 | old_tn = tn; |
640 | tn = inflate(t, tn); | |
a07f5f50 | 641 | |
2f80b3c8 RO |
642 | if (IS_ERR(tn)) { |
643 | tn = old_tn; | |
2f36895a RO |
644 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
645 | t->stats.resize_node_skipped++; | |
646 | #endif | |
647 | break; | |
648 | } | |
19baf839 RO |
649 | } |
650 | ||
651 | check_tnode(tn); | |
652 | ||
80b71b80 | 653 | /* Return if at least one inflate is run */ |
a034ee3c | 654 | if (max_work != MAX_WORK) |
b299e4f0 | 655 | return (struct rt_trie_node *) tn; |
80b71b80 | 656 | |
19baf839 RO |
657 | /* |
658 | * Halve as long as the number of empty children in this | |
659 | * node is above threshold. | |
660 | */ | |
2f36895a | 661 | |
80b71b80 JL |
662 | max_work = MAX_WORK; |
663 | while (tn->bits > 1 && max_work-- && | |
19baf839 | 664 | 100 * (tnode_child_length(tn) - tn->empty_children) < |
e6308be8 | 665 | halve_threshold_use * tnode_child_length(tn)) { |
2f36895a | 666 | |
2f80b3c8 RO |
667 | old_tn = tn; |
668 | tn = halve(t, tn); | |
669 | if (IS_ERR(tn)) { | |
670 | tn = old_tn; | |
2f36895a RO |
671 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
672 | t->stats.resize_node_skipped++; | |
673 | #endif | |
674 | break; | |
675 | } | |
676 | } | |
19baf839 | 677 | |
c877efb2 | 678 | |
19baf839 | 679 | /* Only one child remains */ |
80b71b80 JL |
680 | if (tn->empty_children == tnode_child_length(tn) - 1) { |
681 | one_child: | |
19baf839 | 682 | for (i = 0; i < tnode_child_length(tn); i++) { |
b299e4f0 | 683 | struct rt_trie_node *n; |
19baf839 | 684 | |
0a5c0475 | 685 | n = rtnl_dereference(tn->child[i]); |
2373ce1c | 686 | if (!n) |
91b9a277 | 687 | continue; |
91b9a277 OJ |
688 | |
689 | /* compress one level */ | |
690 | ||
06801916 | 691 | node_set_parent(n, NULL); |
e0f7cb8c | 692 | tnode_free_safe(tn); |
91b9a277 | 693 | return n; |
19baf839 | 694 | } |
80b71b80 | 695 | } |
b299e4f0 | 696 | return (struct rt_trie_node *) tn; |
19baf839 RO |
697 | } |
698 | ||
0a5c0475 ED |
699 | |
700 | static void tnode_clean_free(struct tnode *tn) | |
701 | { | |
702 | int i; | |
703 | struct tnode *tofree; | |
704 | ||
705 | for (i = 0; i < tnode_child_length(tn); i++) { | |
706 | tofree = (struct tnode *)rtnl_dereference(tn->child[i]); | |
707 | if (tofree) | |
708 | tnode_free(tofree); | |
709 | } | |
710 | tnode_free(tn); | |
711 | } | |
712 | ||
2f80b3c8 | 713 | static struct tnode *inflate(struct trie *t, struct tnode *tn) |
19baf839 | 714 | { |
19baf839 RO |
715 | struct tnode *oldtnode = tn; |
716 | int olen = tnode_child_length(tn); | |
717 | int i; | |
718 | ||
0c7770c7 | 719 | pr_debug("In inflate\n"); |
19baf839 RO |
720 | |
721 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | |
722 | ||
0c7770c7 | 723 | if (!tn) |
2f80b3c8 | 724 | return ERR_PTR(-ENOMEM); |
2f36895a RO |
725 | |
726 | /* | |
c877efb2 SH |
727 | * Preallocate and store tnodes before the actual work so we |
728 | * don't get into an inconsistent state if memory allocation | |
729 | * fails. In case of failure we return the oldnode and inflate | |
2f36895a RO |
730 | * of tnode is ignored. |
731 | */ | |
91b9a277 OJ |
732 | |
733 | for (i = 0; i < olen; i++) { | |
a07f5f50 | 734 | struct tnode *inode; |
2f36895a | 735 | |
a07f5f50 | 736 | inode = (struct tnode *) tnode_get_child(oldtnode, i); |
2f36895a RO |
737 | if (inode && |
738 | IS_TNODE(inode) && | |
739 | inode->pos == oldtnode->pos + oldtnode->bits && | |
740 | inode->bits > 1) { | |
741 | struct tnode *left, *right; | |
ab66b4a7 | 742 | t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; |
c877efb2 | 743 | |
2f36895a RO |
744 | left = tnode_new(inode->key&(~m), inode->pos + 1, |
745 | inode->bits - 1); | |
2f80b3c8 RO |
746 | if (!left) |
747 | goto nomem; | |
91b9a277 | 748 | |
2f36895a RO |
749 | right = tnode_new(inode->key|m, inode->pos + 1, |
750 | inode->bits - 1); | |
751 | ||
e905a9ed | 752 | if (!right) { |
2f80b3c8 RO |
753 | tnode_free(left); |
754 | goto nomem; | |
e905a9ed | 755 | } |
2f36895a | 756 | |
b299e4f0 DM |
757 | put_child(t, tn, 2*i, (struct rt_trie_node *) left); |
758 | put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); | |
2f36895a RO |
759 | } |
760 | } | |
761 | ||
91b9a277 | 762 | for (i = 0; i < olen; i++) { |
c95aaf9a | 763 | struct tnode *inode; |
b299e4f0 | 764 | struct rt_trie_node *node = tnode_get_child(oldtnode, i); |
91b9a277 OJ |
765 | struct tnode *left, *right; |
766 | int size, j; | |
c877efb2 | 767 | |
19baf839 RO |
768 | /* An empty child */ |
769 | if (node == NULL) | |
770 | continue; | |
771 | ||
772 | /* A leaf or an internal node with skipped bits */ | |
773 | ||
c877efb2 | 774 | if (IS_LEAF(node) || ((struct tnode *) node)->pos > |
19baf839 | 775 | tn->pos + tn->bits - 1) { |
a07f5f50 SH |
776 | if (tkey_extract_bits(node->key, |
777 | oldtnode->pos + oldtnode->bits, | |
778 | 1) == 0) | |
19baf839 RO |
779 | put_child(t, tn, 2*i, node); |
780 | else | |
781 | put_child(t, tn, 2*i+1, node); | |
782 | continue; | |
783 | } | |
784 | ||
785 | /* An internal node with two children */ | |
786 | inode = (struct tnode *) node; | |
787 | ||
788 | if (inode->bits == 1) { | |
0a5c0475 ED |
789 | put_child(t, tn, 2*i, rtnl_dereference(inode->child[0])); |
790 | put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1])); | |
19baf839 | 791 | |
e0f7cb8c | 792 | tnode_free_safe(inode); |
91b9a277 | 793 | continue; |
19baf839 RO |
794 | } |
795 | ||
91b9a277 OJ |
796 | /* An internal node with more than two children */ |
797 | ||
798 | /* We will replace this node 'inode' with two new | |
799 | * ones, 'left' and 'right', each with half of the | |
800 | * original children. The two new nodes will have | |
801 | * a position one bit further down the key and this | |
802 | * means that the "significant" part of their keys | |
803 | * (see the discussion near the top of this file) | |
804 | * will differ by one bit, which will be "0" in | |
805 | * left's key and "1" in right's key. Since we are | |
806 | * moving the key position by one step, the bit that | |
807 | * we are moving away from - the bit at position | |
808 | * (inode->pos) - is the one that will differ between | |
809 | * left and right. So... we synthesize that bit in the | |
810 | * two new keys. | |
811 | * The mask 'm' below will be a single "one" bit at | |
812 | * the position (inode->pos) | |
813 | */ | |
19baf839 | 814 | |
91b9a277 OJ |
815 | /* Use the old key, but set the new significant |
816 | * bit to zero. | |
817 | */ | |
2f36895a | 818 | |
91b9a277 OJ |
819 | left = (struct tnode *) tnode_get_child(tn, 2*i); |
820 | put_child(t, tn, 2*i, NULL); | |
2f36895a | 821 | |
91b9a277 | 822 | BUG_ON(!left); |
2f36895a | 823 | |
91b9a277 OJ |
824 | right = (struct tnode *) tnode_get_child(tn, 2*i+1); |
825 | put_child(t, tn, 2*i+1, NULL); | |
19baf839 | 826 | |
91b9a277 | 827 | BUG_ON(!right); |
19baf839 | 828 | |
91b9a277 OJ |
829 | size = tnode_child_length(left); |
830 | for (j = 0; j < size; j++) { | |
0a5c0475 ED |
831 | put_child(t, left, j, rtnl_dereference(inode->child[j])); |
832 | put_child(t, right, j, rtnl_dereference(inode->child[j + size])); | |
19baf839 | 833 | } |
91b9a277 OJ |
834 | put_child(t, tn, 2*i, resize(t, left)); |
835 | put_child(t, tn, 2*i+1, resize(t, right)); | |
836 | ||
e0f7cb8c | 837 | tnode_free_safe(inode); |
19baf839 | 838 | } |
e0f7cb8c | 839 | tnode_free_safe(oldtnode); |
19baf839 | 840 | return tn; |
2f80b3c8 | 841 | nomem: |
0a5c0475 ED |
842 | tnode_clean_free(tn); |
843 | return ERR_PTR(-ENOMEM); | |
19baf839 RO |
844 | } |
845 | ||
2f80b3c8 | 846 | static struct tnode *halve(struct trie *t, struct tnode *tn) |
19baf839 RO |
847 | { |
848 | struct tnode *oldtnode = tn; | |
b299e4f0 | 849 | struct rt_trie_node *left, *right; |
19baf839 RO |
850 | int i; |
851 | int olen = tnode_child_length(tn); | |
852 | ||
0c7770c7 | 853 | pr_debug("In halve\n"); |
c877efb2 SH |
854 | |
855 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | |
19baf839 | 856 | |
2f80b3c8 RO |
857 | if (!tn) |
858 | return ERR_PTR(-ENOMEM); | |
2f36895a RO |
859 | |
860 | /* | |
c877efb2 SH |
861 | * Preallocate and store tnodes before the actual work so we |
862 | * don't get into an inconsistent state if memory allocation | |
863 | * fails. In case of failure we return the oldnode and halve | |
2f36895a RO |
864 | * of tnode is ignored. |
865 | */ | |
866 | ||
91b9a277 | 867 | for (i = 0; i < olen; i += 2) { |
2f36895a RO |
868 | left = tnode_get_child(oldtnode, i); |
869 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 870 | |
2f36895a | 871 | /* Two nonempty children */ |
0c7770c7 | 872 | if (left && right) { |
2f80b3c8 | 873 | struct tnode *newn; |
0c7770c7 | 874 | |
2f80b3c8 | 875 | newn = tnode_new(left->key, tn->pos + tn->bits, 1); |
0c7770c7 SH |
876 | |
877 | if (!newn) | |
2f80b3c8 | 878 | goto nomem; |
0c7770c7 | 879 | |
b299e4f0 | 880 | put_child(t, tn, i/2, (struct rt_trie_node *)newn); |
2f36895a | 881 | } |
2f36895a | 882 | |
2f36895a | 883 | } |
19baf839 | 884 | |
91b9a277 OJ |
885 | for (i = 0; i < olen; i += 2) { |
886 | struct tnode *newBinNode; | |
887 | ||
19baf839 RO |
888 | left = tnode_get_child(oldtnode, i); |
889 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 890 | |
19baf839 RO |
891 | /* At least one of the children is empty */ |
892 | if (left == NULL) { | |
893 | if (right == NULL) /* Both are empty */ | |
894 | continue; | |
895 | put_child(t, tn, i/2, right); | |
91b9a277 | 896 | continue; |
0c7770c7 | 897 | } |
91b9a277 OJ |
898 | |
899 | if (right == NULL) { | |
19baf839 | 900 | put_child(t, tn, i/2, left); |
91b9a277 OJ |
901 | continue; |
902 | } | |
c877efb2 | 903 | |
19baf839 | 904 | /* Two nonempty children */ |
91b9a277 OJ |
905 | newBinNode = (struct tnode *) tnode_get_child(tn, i/2); |
906 | put_child(t, tn, i/2, NULL); | |
91b9a277 OJ |
907 | put_child(t, newBinNode, 0, left); |
908 | put_child(t, newBinNode, 1, right); | |
909 | put_child(t, tn, i/2, resize(t, newBinNode)); | |
19baf839 | 910 | } |
e0f7cb8c | 911 | tnode_free_safe(oldtnode); |
19baf839 | 912 | return tn; |
2f80b3c8 | 913 | nomem: |
0a5c0475 ED |
914 | tnode_clean_free(tn); |
915 | return ERR_PTR(-ENOMEM); | |
19baf839 RO |
916 | } |
917 | ||
772cb712 | 918 | /* readside must use rcu_read_lock currently dump routines |
2373ce1c RO |
919 | via get_fa_head and dump */ |
920 | ||
772cb712 | 921 | static struct leaf_info *find_leaf_info(struct leaf *l, int plen) |
19baf839 | 922 | { |
772cb712 | 923 | struct hlist_head *head = &l->list; |
19baf839 RO |
924 | struct hlist_node *node; |
925 | struct leaf_info *li; | |
926 | ||
2373ce1c | 927 | hlist_for_each_entry_rcu(li, node, head, hlist) |
c877efb2 | 928 | if (li->plen == plen) |
19baf839 | 929 | return li; |
91b9a277 | 930 | |
19baf839 RO |
931 | return NULL; |
932 | } | |
933 | ||
a07f5f50 | 934 | static inline struct list_head *get_fa_head(struct leaf *l, int plen) |
19baf839 | 935 | { |
772cb712 | 936 | struct leaf_info *li = find_leaf_info(l, plen); |
c877efb2 | 937 | |
91b9a277 OJ |
938 | if (!li) |
939 | return NULL; | |
c877efb2 | 940 | |
91b9a277 | 941 | return &li->falh; |
19baf839 RO |
942 | } |
943 | ||
944 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | |
945 | { | |
e905a9ed YH |
946 | struct leaf_info *li = NULL, *last = NULL; |
947 | struct hlist_node *node; | |
948 | ||
949 | if (hlist_empty(head)) { | |
950 | hlist_add_head_rcu(&new->hlist, head); | |
951 | } else { | |
952 | hlist_for_each_entry(li, node, head, hlist) { | |
953 | if (new->plen > li->plen) | |
954 | break; | |
955 | ||
956 | last = li; | |
957 | } | |
958 | if (last) | |
959 | hlist_add_after_rcu(&last->hlist, &new->hlist); | |
960 | else | |
961 | hlist_add_before_rcu(&new->hlist, &li->hlist); | |
962 | } | |
19baf839 RO |
963 | } |
964 | ||
2373ce1c RO |
965 | /* rcu_read_lock needs to be hold by caller from readside */ |
966 | ||
19baf839 RO |
967 | static struct leaf * |
968 | fib_find_node(struct trie *t, u32 key) | |
969 | { | |
970 | int pos; | |
971 | struct tnode *tn; | |
b299e4f0 | 972 | struct rt_trie_node *n; |
19baf839 RO |
973 | |
974 | pos = 0; | |
a034ee3c | 975 | n = rcu_dereference_rtnl(t->trie); |
19baf839 RO |
976 | |
977 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
978 | tn = (struct tnode *) n; | |
91b9a277 | 979 | |
19baf839 | 980 | check_tnode(tn); |
91b9a277 | 981 | |
c877efb2 | 982 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
91b9a277 | 983 | pos = tn->pos + tn->bits; |
a07f5f50 SH |
984 | n = tnode_get_child_rcu(tn, |
985 | tkey_extract_bits(key, | |
986 | tn->pos, | |
987 | tn->bits)); | |
91b9a277 | 988 | } else |
19baf839 RO |
989 | break; |
990 | } | |
991 | /* Case we have found a leaf. Compare prefixes */ | |
992 | ||
91b9a277 OJ |
993 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) |
994 | return (struct leaf *)n; | |
995 | ||
19baf839 RO |
996 | return NULL; |
997 | } | |
998 | ||
7b85576d | 999 | static void trie_rebalance(struct trie *t, struct tnode *tn) |
19baf839 | 1000 | { |
19baf839 | 1001 | int wasfull; |
3ed18d76 | 1002 | t_key cindex, key; |
06801916 | 1003 | struct tnode *tp; |
19baf839 | 1004 | |
3ed18d76 RO |
1005 | key = tn->key; |
1006 | ||
b299e4f0 | 1007 | while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { |
19baf839 RO |
1008 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1009 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | |
a07f5f50 SH |
1010 | tn = (struct tnode *) resize(t, (struct tnode *)tn); |
1011 | ||
1012 | tnode_put_child_reorg((struct tnode *)tp, cindex, | |
b299e4f0 | 1013 | (struct rt_trie_node *)tn, wasfull); |
91b9a277 | 1014 | |
b299e4f0 | 1015 | tp = node_parent((struct rt_trie_node *) tn); |
008440e3 | 1016 | if (!tp) |
cf778b00 | 1017 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
008440e3 | 1018 | |
e0f7cb8c | 1019 | tnode_free_flush(); |
06801916 | 1020 | if (!tp) |
19baf839 | 1021 | break; |
06801916 | 1022 | tn = tp; |
19baf839 | 1023 | } |
06801916 | 1024 | |
19baf839 | 1025 | /* Handle last (top) tnode */ |
7b85576d | 1026 | if (IS_TNODE(tn)) |
a07f5f50 | 1027 | tn = (struct tnode *)resize(t, (struct tnode *)tn); |
19baf839 | 1028 | |
cf778b00 | 1029 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
7b85576d | 1030 | tnode_free_flush(); |
19baf839 RO |
1031 | } |
1032 | ||
2373ce1c RO |
1033 | /* only used from updater-side */ |
1034 | ||
fea86ad8 | 1035 | static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) |
19baf839 RO |
1036 | { |
1037 | int pos, newpos; | |
1038 | struct tnode *tp = NULL, *tn = NULL; | |
b299e4f0 | 1039 | struct rt_trie_node *n; |
19baf839 RO |
1040 | struct leaf *l; |
1041 | int missbit; | |
c877efb2 | 1042 | struct list_head *fa_head = NULL; |
19baf839 RO |
1043 | struct leaf_info *li; |
1044 | t_key cindex; | |
1045 | ||
1046 | pos = 0; | |
0a5c0475 | 1047 | n = rtnl_dereference(t->trie); |
19baf839 | 1048 | |
c877efb2 SH |
1049 | /* If we point to NULL, stop. Either the tree is empty and we should |
1050 | * just put a new leaf in if, or we have reached an empty child slot, | |
19baf839 | 1051 | * and we should just put our new leaf in that. |
c877efb2 SH |
1052 | * If we point to a T_TNODE, check if it matches our key. Note that |
1053 | * a T_TNODE might be skipping any number of bits - its 'pos' need | |
19baf839 RO |
1054 | * not be the parent's 'pos'+'bits'! |
1055 | * | |
c877efb2 | 1056 | * If it does match the current key, get pos/bits from it, extract |
19baf839 RO |
1057 | * the index from our key, push the T_TNODE and walk the tree. |
1058 | * | |
1059 | * If it doesn't, we have to replace it with a new T_TNODE. | |
1060 | * | |
c877efb2 SH |
1061 | * If we point to a T_LEAF, it might or might not have the same key |
1062 | * as we do. If it does, just change the value, update the T_LEAF's | |
1063 | * value, and return it. | |
19baf839 RO |
1064 | * If it doesn't, we need to replace it with a T_TNODE. |
1065 | */ | |
1066 | ||
1067 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
1068 | tn = (struct tnode *) n; | |
91b9a277 | 1069 | |
c877efb2 | 1070 | check_tnode(tn); |
91b9a277 | 1071 | |
c877efb2 | 1072 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
19baf839 | 1073 | tp = tn; |
91b9a277 | 1074 | pos = tn->pos + tn->bits; |
a07f5f50 SH |
1075 | n = tnode_get_child(tn, |
1076 | tkey_extract_bits(key, | |
1077 | tn->pos, | |
1078 | tn->bits)); | |
19baf839 | 1079 | |
06801916 | 1080 | BUG_ON(n && node_parent(n) != tn); |
91b9a277 | 1081 | } else |
19baf839 RO |
1082 | break; |
1083 | } | |
1084 | ||
1085 | /* | |
1086 | * n ----> NULL, LEAF or TNODE | |
1087 | * | |
c877efb2 | 1088 | * tp is n's (parent) ----> NULL or TNODE |
19baf839 RO |
1089 | */ |
1090 | ||
91b9a277 | 1091 | BUG_ON(tp && IS_LEAF(tp)); |
19baf839 RO |
1092 | |
1093 | /* Case 1: n is a leaf. Compare prefixes */ | |
1094 | ||
c877efb2 | 1095 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
c95aaf9a | 1096 | l = (struct leaf *) n; |
19baf839 | 1097 | li = leaf_info_new(plen); |
91b9a277 | 1098 | |
fea86ad8 SH |
1099 | if (!li) |
1100 | return NULL; | |
19baf839 RO |
1101 | |
1102 | fa_head = &li->falh; | |
1103 | insert_leaf_info(&l->list, li); | |
1104 | goto done; | |
1105 | } | |
19baf839 RO |
1106 | l = leaf_new(); |
1107 | ||
fea86ad8 SH |
1108 | if (!l) |
1109 | return NULL; | |
19baf839 RO |
1110 | |
1111 | l->key = key; | |
1112 | li = leaf_info_new(plen); | |
1113 | ||
c877efb2 | 1114 | if (!li) { |
387a5487 | 1115 | free_leaf(l); |
fea86ad8 | 1116 | return NULL; |
f835e471 | 1117 | } |
19baf839 RO |
1118 | |
1119 | fa_head = &li->falh; | |
1120 | insert_leaf_info(&l->list, li); | |
1121 | ||
19baf839 | 1122 | if (t->trie && n == NULL) { |
91b9a277 | 1123 | /* Case 2: n is NULL, and will just insert a new leaf */ |
19baf839 | 1124 | |
b299e4f0 | 1125 | node_set_parent((struct rt_trie_node *)l, tp); |
19baf839 | 1126 | |
91b9a277 | 1127 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
b299e4f0 | 1128 | put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l); |
91b9a277 OJ |
1129 | } else { |
1130 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | |
c877efb2 SH |
1131 | /* |
1132 | * Add a new tnode here | |
19baf839 RO |
1133 | * first tnode need some special handling |
1134 | */ | |
1135 | ||
1136 | if (tp) | |
91b9a277 | 1137 | pos = tp->pos+tp->bits; |
19baf839 | 1138 | else |
91b9a277 OJ |
1139 | pos = 0; |
1140 | ||
c877efb2 | 1141 | if (n) { |
19baf839 RO |
1142 | newpos = tkey_mismatch(key, pos, n->key); |
1143 | tn = tnode_new(n->key, newpos, 1); | |
91b9a277 | 1144 | } else { |
19baf839 | 1145 | newpos = 0; |
c877efb2 | 1146 | tn = tnode_new(key, newpos, 1); /* First tnode */ |
19baf839 | 1147 | } |
19baf839 | 1148 | |
c877efb2 | 1149 | if (!tn) { |
f835e471 | 1150 | free_leaf_info(li); |
387a5487 | 1151 | free_leaf(l); |
fea86ad8 | 1152 | return NULL; |
91b9a277 OJ |
1153 | } |
1154 | ||
b299e4f0 | 1155 | node_set_parent((struct rt_trie_node *)tn, tp); |
19baf839 | 1156 | |
91b9a277 | 1157 | missbit = tkey_extract_bits(key, newpos, 1); |
b299e4f0 | 1158 | put_child(t, tn, missbit, (struct rt_trie_node *)l); |
19baf839 RO |
1159 | put_child(t, tn, 1-missbit, n); |
1160 | ||
c877efb2 | 1161 | if (tp) { |
19baf839 | 1162 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
a07f5f50 | 1163 | put_child(t, (struct tnode *)tp, cindex, |
b299e4f0 | 1164 | (struct rt_trie_node *)tn); |
91b9a277 | 1165 | } else { |
cf778b00 | 1166 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
19baf839 RO |
1167 | tp = tn; |
1168 | } | |
1169 | } | |
91b9a277 OJ |
1170 | |
1171 | if (tp && tp->pos + tp->bits > 32) | |
058bd4d2 JP |
1172 | pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", |
1173 | tp, tp->pos, tp->bits, key, plen); | |
91b9a277 | 1174 | |
19baf839 | 1175 | /* Rebalance the trie */ |
2373ce1c | 1176 | |
7b85576d | 1177 | trie_rebalance(t, tp); |
f835e471 | 1178 | done: |
19baf839 RO |
1179 | return fa_head; |
1180 | } | |
1181 | ||
d562f1f8 RO |
1182 | /* |
1183 | * Caller must hold RTNL. | |
1184 | */ | |
16c6cf8b | 1185 | int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) |
19baf839 RO |
1186 | { |
1187 | struct trie *t = (struct trie *) tb->tb_data; | |
1188 | struct fib_alias *fa, *new_fa; | |
c877efb2 | 1189 | struct list_head *fa_head = NULL; |
19baf839 | 1190 | struct fib_info *fi; |
4e902c57 TG |
1191 | int plen = cfg->fc_dst_len; |
1192 | u8 tos = cfg->fc_tos; | |
19baf839 RO |
1193 | u32 key, mask; |
1194 | int err; | |
1195 | struct leaf *l; | |
1196 | ||
1197 | if (plen > 32) | |
1198 | return -EINVAL; | |
1199 | ||
4e902c57 | 1200 | key = ntohl(cfg->fc_dst); |
19baf839 | 1201 | |
2dfe55b4 | 1202 | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
19baf839 | 1203 | |
91b9a277 | 1204 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1205 | |
c877efb2 | 1206 | if (key & ~mask) |
19baf839 RO |
1207 | return -EINVAL; |
1208 | ||
1209 | key = key & mask; | |
1210 | ||
4e902c57 TG |
1211 | fi = fib_create_info(cfg); |
1212 | if (IS_ERR(fi)) { | |
1213 | err = PTR_ERR(fi); | |
19baf839 | 1214 | goto err; |
4e902c57 | 1215 | } |
19baf839 RO |
1216 | |
1217 | l = fib_find_node(t, key); | |
c877efb2 | 1218 | fa = NULL; |
19baf839 | 1219 | |
c877efb2 | 1220 | if (l) { |
19baf839 RO |
1221 | fa_head = get_fa_head(l, plen); |
1222 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | |
1223 | } | |
1224 | ||
1225 | /* Now fa, if non-NULL, points to the first fib alias | |
1226 | * with the same keys [prefix,tos,priority], if such key already | |
1227 | * exists or to the node before which we will insert new one. | |
1228 | * | |
1229 | * If fa is NULL, we will need to allocate a new one and | |
1230 | * insert to the head of f. | |
1231 | * | |
1232 | * If f is NULL, no fib node matched the destination key | |
1233 | * and we need to allocate a new one of those as well. | |
1234 | */ | |
1235 | ||
936f6f8e JA |
1236 | if (fa && fa->fa_tos == tos && |
1237 | fa->fa_info->fib_priority == fi->fib_priority) { | |
1238 | struct fib_alias *fa_first, *fa_match; | |
19baf839 RO |
1239 | |
1240 | err = -EEXIST; | |
4e902c57 | 1241 | if (cfg->fc_nlflags & NLM_F_EXCL) |
19baf839 RO |
1242 | goto out; |
1243 | ||
936f6f8e JA |
1244 | /* We have 2 goals: |
1245 | * 1. Find exact match for type, scope, fib_info to avoid | |
1246 | * duplicate routes | |
1247 | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | |
1248 | */ | |
1249 | fa_match = NULL; | |
1250 | fa_first = fa; | |
1251 | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); | |
1252 | list_for_each_entry_continue(fa, fa_head, fa_list) { | |
1253 | if (fa->fa_tos != tos) | |
1254 | break; | |
1255 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1256 | break; | |
1257 | if (fa->fa_type == cfg->fc_type && | |
936f6f8e JA |
1258 | fa->fa_info == fi) { |
1259 | fa_match = fa; | |
1260 | break; | |
1261 | } | |
1262 | } | |
1263 | ||
4e902c57 | 1264 | if (cfg->fc_nlflags & NLM_F_REPLACE) { |
19baf839 RO |
1265 | struct fib_info *fi_drop; |
1266 | u8 state; | |
1267 | ||
936f6f8e JA |
1268 | fa = fa_first; |
1269 | if (fa_match) { | |
1270 | if (fa == fa_match) | |
1271 | err = 0; | |
6725033f | 1272 | goto out; |
936f6f8e | 1273 | } |
2373ce1c | 1274 | err = -ENOBUFS; |
e94b1766 | 1275 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
2373ce1c RO |
1276 | if (new_fa == NULL) |
1277 | goto out; | |
19baf839 RO |
1278 | |
1279 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1280 | new_fa->fa_tos = fa->fa_tos; |
1281 | new_fa->fa_info = fi; | |
4e902c57 | 1282 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1283 | state = fa->fa_state; |
936f6f8e | 1284 | new_fa->fa_state = state & ~FA_S_ACCESSED; |
19baf839 | 1285 | |
2373ce1c RO |
1286 | list_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
1287 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1288 | |
1289 | fib_release_info(fi_drop); | |
1290 | if (state & FA_S_ACCESSED) | |
76e6ebfb | 1291 | rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); |
b8f55831 MK |
1292 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
1293 | tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); | |
19baf839 | 1294 | |
91b9a277 | 1295 | goto succeeded; |
19baf839 RO |
1296 | } |
1297 | /* Error if we find a perfect match which | |
1298 | * uses the same scope, type, and nexthop | |
1299 | * information. | |
1300 | */ | |
936f6f8e JA |
1301 | if (fa_match) |
1302 | goto out; | |
a07f5f50 | 1303 | |
4e902c57 | 1304 | if (!(cfg->fc_nlflags & NLM_F_APPEND)) |
936f6f8e | 1305 | fa = fa_first; |
19baf839 RO |
1306 | } |
1307 | err = -ENOENT; | |
4e902c57 | 1308 | if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
19baf839 RO |
1309 | goto out; |
1310 | ||
1311 | err = -ENOBUFS; | |
e94b1766 | 1312 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
19baf839 RO |
1313 | if (new_fa == NULL) |
1314 | goto out; | |
1315 | ||
1316 | new_fa->fa_info = fi; | |
1317 | new_fa->fa_tos = tos; | |
4e902c57 | 1318 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1319 | new_fa->fa_state = 0; |
19baf839 RO |
1320 | /* |
1321 | * Insert new entry to the list. | |
1322 | */ | |
1323 | ||
c877efb2 | 1324 | if (!fa_head) { |
fea86ad8 SH |
1325 | fa_head = fib_insert_node(t, key, plen); |
1326 | if (unlikely(!fa_head)) { | |
1327 | err = -ENOMEM; | |
f835e471 | 1328 | goto out_free_new_fa; |
fea86ad8 | 1329 | } |
f835e471 | 1330 | } |
19baf839 | 1331 | |
21d8c49e DM |
1332 | if (!plen) |
1333 | tb->tb_num_default++; | |
1334 | ||
2373ce1c RO |
1335 | list_add_tail_rcu(&new_fa->fa_list, |
1336 | (fa ? &fa->fa_list : fa_head)); | |
19baf839 | 1337 | |
76e6ebfb | 1338 | rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); |
4e902c57 | 1339 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, |
b8f55831 | 1340 | &cfg->fc_nlinfo, 0); |
19baf839 RO |
1341 | succeeded: |
1342 | return 0; | |
f835e471 RO |
1343 | |
1344 | out_free_new_fa: | |
1345 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1346 | out: |
1347 | fib_release_info(fi); | |
91b9a277 | 1348 | err: |
19baf839 RO |
1349 | return err; |
1350 | } | |
1351 | ||
772cb712 | 1352 | /* should be called with rcu_read_lock */ |
5b470441 | 1353 | static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, |
22bd5b9b | 1354 | t_key key, const struct flowi4 *flp, |
ebc0ffae | 1355 | struct fib_result *res, int fib_flags) |
19baf839 | 1356 | { |
19baf839 RO |
1357 | struct leaf_info *li; |
1358 | struct hlist_head *hhead = &l->list; | |
1359 | struct hlist_node *node; | |
c877efb2 | 1360 | |
2373ce1c | 1361 | hlist_for_each_entry_rcu(li, node, hhead, hlist) { |
3be0686b | 1362 | struct fib_alias *fa; |
a07f5f50 | 1363 | |
5c74501f | 1364 | if (l->key != (key & li->mask_plen)) |
19baf839 RO |
1365 | continue; |
1366 | ||
3be0686b DM |
1367 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1368 | struct fib_info *fi = fa->fa_info; | |
1369 | int nhsel, err; | |
a07f5f50 | 1370 | |
22bd5b9b | 1371 | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
3be0686b | 1372 | continue; |
dccd9ecc DM |
1373 | if (fi->fib_dead) |
1374 | continue; | |
37e826c5 | 1375 | if (fa->fa_info->fib_scope < flp->flowi4_scope) |
3be0686b DM |
1376 | continue; |
1377 | fib_alias_accessed(fa); | |
1378 | err = fib_props[fa->fa_type].error; | |
1379 | if (err) { | |
19baf839 | 1380 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1fbc7843 | 1381 | t->stats.semantic_match_passed++; |
3be0686b | 1382 | #endif |
1fbc7843 | 1383 | return err; |
3be0686b DM |
1384 | } |
1385 | if (fi->fib_flags & RTNH_F_DEAD) | |
1386 | continue; | |
1387 | for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { | |
1388 | const struct fib_nh *nh = &fi->fib_nh[nhsel]; | |
1389 | ||
1390 | if (nh->nh_flags & RTNH_F_DEAD) | |
1391 | continue; | |
22bd5b9b | 1392 | if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) |
3be0686b DM |
1393 | continue; |
1394 | ||
1395 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1396 | t->stats.semantic_match_passed++; | |
1397 | #endif | |
5c74501f | 1398 | res->prefixlen = li->plen; |
3be0686b DM |
1399 | res->nh_sel = nhsel; |
1400 | res->type = fa->fa_type; | |
37e826c5 | 1401 | res->scope = fa->fa_info->fib_scope; |
3be0686b DM |
1402 | res->fi = fi; |
1403 | res->table = tb; | |
1404 | res->fa_head = &li->falh; | |
1405 | if (!(fib_flags & FIB_LOOKUP_NOREF)) | |
5c74501f | 1406 | atomic_inc(&fi->fib_clntref); |
3be0686b DM |
1407 | return 0; |
1408 | } | |
1409 | } | |
1410 | ||
1411 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1412 | t->stats.semantic_match_miss++; | |
19baf839 | 1413 | #endif |
19baf839 | 1414 | } |
a07f5f50 | 1415 | |
2e655571 | 1416 | return 1; |
19baf839 RO |
1417 | } |
1418 | ||
22bd5b9b | 1419 | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
ebc0ffae | 1420 | struct fib_result *res, int fib_flags) |
19baf839 RO |
1421 | { |
1422 | struct trie *t = (struct trie *) tb->tb_data; | |
2e655571 | 1423 | int ret; |
b299e4f0 | 1424 | struct rt_trie_node *n; |
19baf839 | 1425 | struct tnode *pn; |
3b004569 | 1426 | unsigned int pos, bits; |
22bd5b9b | 1427 | t_key key = ntohl(flp->daddr); |
3b004569 | 1428 | unsigned int chopped_off; |
19baf839 | 1429 | t_key cindex = 0; |
3b004569 | 1430 | unsigned int current_prefix_length = KEYLENGTH; |
91b9a277 | 1431 | struct tnode *cn; |
874ffa8f | 1432 | t_key pref_mismatch; |
91b9a277 | 1433 | |
2373ce1c | 1434 | rcu_read_lock(); |
91b9a277 | 1435 | |
2373ce1c | 1436 | n = rcu_dereference(t->trie); |
c877efb2 | 1437 | if (!n) |
19baf839 RO |
1438 | goto failed; |
1439 | ||
1440 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1441 | t->stats.gets++; | |
1442 | #endif | |
1443 | ||
1444 | /* Just a leaf? */ | |
1445 | if (IS_LEAF(n)) { | |
5b470441 | 1446 | ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); |
a07f5f50 | 1447 | goto found; |
19baf839 | 1448 | } |
a07f5f50 | 1449 | |
19baf839 RO |
1450 | pn = (struct tnode *) n; |
1451 | chopped_off = 0; | |
c877efb2 | 1452 | |
91b9a277 | 1453 | while (pn) { |
19baf839 RO |
1454 | pos = pn->pos; |
1455 | bits = pn->bits; | |
1456 | ||
c877efb2 | 1457 | if (!chopped_off) |
ab66b4a7 SH |
1458 | cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), |
1459 | pos, bits); | |
19baf839 | 1460 | |
b902e573 | 1461 | n = tnode_get_child_rcu(pn, cindex); |
19baf839 RO |
1462 | |
1463 | if (n == NULL) { | |
1464 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1465 | t->stats.null_node_hit++; | |
1466 | #endif | |
1467 | goto backtrace; | |
1468 | } | |
1469 | ||
91b9a277 | 1470 | if (IS_LEAF(n)) { |
5b470441 | 1471 | ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); |
2e655571 | 1472 | if (ret > 0) |
91b9a277 | 1473 | goto backtrace; |
a07f5f50 | 1474 | goto found; |
91b9a277 OJ |
1475 | } |
1476 | ||
91b9a277 | 1477 | cn = (struct tnode *)n; |
19baf839 | 1478 | |
91b9a277 OJ |
1479 | /* |
1480 | * It's a tnode, and we can do some extra checks here if we | |
1481 | * like, to avoid descending into a dead-end branch. | |
1482 | * This tnode is in the parent's child array at index | |
1483 | * key[p_pos..p_pos+p_bits] but potentially with some bits | |
1484 | * chopped off, so in reality the index may be just a | |
1485 | * subprefix, padded with zero at the end. | |
1486 | * We can also take a look at any skipped bits in this | |
1487 | * tnode - everything up to p_pos is supposed to be ok, | |
1488 | * and the non-chopped bits of the index (se previous | |
1489 | * paragraph) are also guaranteed ok, but the rest is | |
1490 | * considered unknown. | |
1491 | * | |
1492 | * The skipped bits are key[pos+bits..cn->pos]. | |
1493 | */ | |
19baf839 | 1494 | |
91b9a277 OJ |
1495 | /* If current_prefix_length < pos+bits, we are already doing |
1496 | * actual prefix matching, which means everything from | |
1497 | * pos+(bits-chopped_off) onward must be zero along some | |
1498 | * branch of this subtree - otherwise there is *no* valid | |
1499 | * prefix present. Here we can only check the skipped | |
1500 | * bits. Remember, since we have already indexed into the | |
1501 | * parent's child array, we know that the bits we chopped of | |
1502 | * *are* zero. | |
1503 | */ | |
19baf839 | 1504 | |
a07f5f50 SH |
1505 | /* NOTA BENE: Checking only skipped bits |
1506 | for the new node here */ | |
19baf839 | 1507 | |
91b9a277 OJ |
1508 | if (current_prefix_length < pos+bits) { |
1509 | if (tkey_extract_bits(cn->key, current_prefix_length, | |
a07f5f50 SH |
1510 | cn->pos - current_prefix_length) |
1511 | || !(cn->child[0])) | |
91b9a277 OJ |
1512 | goto backtrace; |
1513 | } | |
19baf839 | 1514 | |
91b9a277 OJ |
1515 | /* |
1516 | * If chopped_off=0, the index is fully validated and we | |
1517 | * only need to look at the skipped bits for this, the new, | |
1518 | * tnode. What we actually want to do is to find out if | |
1519 | * these skipped bits match our key perfectly, or if we will | |
1520 | * have to count on finding a matching prefix further down, | |
1521 | * because if we do, we would like to have some way of | |
1522 | * verifying the existence of such a prefix at this point. | |
1523 | */ | |
19baf839 | 1524 | |
91b9a277 OJ |
1525 | /* The only thing we can do at this point is to verify that |
1526 | * any such matching prefix can indeed be a prefix to our | |
1527 | * key, and if the bits in the node we are inspecting that | |
1528 | * do not match our key are not ZERO, this cannot be true. | |
1529 | * Thus, find out where there is a mismatch (before cn->pos) | |
1530 | * and verify that all the mismatching bits are zero in the | |
1531 | * new tnode's key. | |
1532 | */ | |
19baf839 | 1533 | |
a07f5f50 SH |
1534 | /* |
1535 | * Note: We aren't very concerned about the piece of | |
1536 | * the key that precede pn->pos+pn->bits, since these | |
1537 | * have already been checked. The bits after cn->pos | |
1538 | * aren't checked since these are by definition | |
1539 | * "unknown" at this point. Thus, what we want to see | |
1540 | * is if we are about to enter the "prefix matching" | |
1541 | * state, and in that case verify that the skipped | |
1542 | * bits that will prevail throughout this subtree are | |
1543 | * zero, as they have to be if we are to find a | |
1544 | * matching prefix. | |
91b9a277 OJ |
1545 | */ |
1546 | ||
874ffa8f | 1547 | pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); |
91b9a277 | 1548 | |
a07f5f50 SH |
1549 | /* |
1550 | * In short: If skipped bits in this node do not match | |
1551 | * the search key, enter the "prefix matching" | |
1552 | * state.directly. | |
91b9a277 OJ |
1553 | */ |
1554 | if (pref_mismatch) { | |
874ffa8f | 1555 | int mp = KEYLENGTH - fls(pref_mismatch); |
91b9a277 | 1556 | |
874ffa8f | 1557 | if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) |
91b9a277 OJ |
1558 | goto backtrace; |
1559 | ||
1560 | if (current_prefix_length >= cn->pos) | |
1561 | current_prefix_length = mp; | |
c877efb2 | 1562 | } |
a07f5f50 | 1563 | |
91b9a277 OJ |
1564 | pn = (struct tnode *)n; /* Descend */ |
1565 | chopped_off = 0; | |
1566 | continue; | |
1567 | ||
19baf839 RO |
1568 | backtrace: |
1569 | chopped_off++; | |
1570 | ||
1571 | /* As zero don't change the child key (cindex) */ | |
a07f5f50 SH |
1572 | while ((chopped_off <= pn->bits) |
1573 | && !(cindex & (1<<(chopped_off-1)))) | |
19baf839 | 1574 | chopped_off++; |
19baf839 RO |
1575 | |
1576 | /* Decrease current_... with bits chopped off */ | |
1577 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | |
a07f5f50 SH |
1578 | current_prefix_length = pn->pos + pn->bits |
1579 | - chopped_off; | |
91b9a277 | 1580 | |
19baf839 | 1581 | /* |
c877efb2 | 1582 | * Either we do the actual chop off according or if we have |
19baf839 RO |
1583 | * chopped off all bits in this tnode walk up to our parent. |
1584 | */ | |
1585 | ||
91b9a277 | 1586 | if (chopped_off <= pn->bits) { |
19baf839 | 1587 | cindex &= ~(1 << (chopped_off-1)); |
91b9a277 | 1588 | } else { |
b299e4f0 | 1589 | struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); |
06801916 | 1590 | if (!parent) |
19baf839 | 1591 | goto failed; |
91b9a277 | 1592 | |
19baf839 | 1593 | /* Get Child's index */ |
06801916 SH |
1594 | cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); |
1595 | pn = parent; | |
19baf839 RO |
1596 | chopped_off = 0; |
1597 | ||
1598 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1599 | t->stats.backtrack++; | |
1600 | #endif | |
1601 | goto backtrace; | |
c877efb2 | 1602 | } |
19baf839 RO |
1603 | } |
1604 | failed: | |
c877efb2 | 1605 | ret = 1; |
19baf839 | 1606 | found: |
2373ce1c | 1607 | rcu_read_unlock(); |
19baf839 RO |
1608 | return ret; |
1609 | } | |
6fc01438 | 1610 | EXPORT_SYMBOL_GPL(fib_table_lookup); |
19baf839 | 1611 | |
9195bef7 SH |
1612 | /* |
1613 | * Remove the leaf and return parent. | |
1614 | */ | |
1615 | static void trie_leaf_remove(struct trie *t, struct leaf *l) | |
19baf839 | 1616 | { |
b299e4f0 | 1617 | struct tnode *tp = node_parent((struct rt_trie_node *) l); |
c877efb2 | 1618 | |
9195bef7 | 1619 | pr_debug("entering trie_leaf_remove(%p)\n", l); |
19baf839 | 1620 | |
c877efb2 | 1621 | if (tp) { |
9195bef7 | 1622 | t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); |
19baf839 | 1623 | put_child(t, (struct tnode *)tp, cindex, NULL); |
7b85576d | 1624 | trie_rebalance(t, tp); |
91b9a277 | 1625 | } else |
a9b3cd7f | 1626 | RCU_INIT_POINTER(t->trie, NULL); |
19baf839 | 1627 | |
387a5487 | 1628 | free_leaf(l); |
19baf839 RO |
1629 | } |
1630 | ||
d562f1f8 RO |
1631 | /* |
1632 | * Caller must hold RTNL. | |
1633 | */ | |
16c6cf8b | 1634 | int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) |
19baf839 RO |
1635 | { |
1636 | struct trie *t = (struct trie *) tb->tb_data; | |
1637 | u32 key, mask; | |
4e902c57 TG |
1638 | int plen = cfg->fc_dst_len; |
1639 | u8 tos = cfg->fc_tos; | |
19baf839 RO |
1640 | struct fib_alias *fa, *fa_to_delete; |
1641 | struct list_head *fa_head; | |
1642 | struct leaf *l; | |
91b9a277 OJ |
1643 | struct leaf_info *li; |
1644 | ||
c877efb2 | 1645 | if (plen > 32) |
19baf839 RO |
1646 | return -EINVAL; |
1647 | ||
4e902c57 | 1648 | key = ntohl(cfg->fc_dst); |
91b9a277 | 1649 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1650 | |
c877efb2 | 1651 | if (key & ~mask) |
19baf839 RO |
1652 | return -EINVAL; |
1653 | ||
1654 | key = key & mask; | |
1655 | l = fib_find_node(t, key); | |
1656 | ||
c877efb2 | 1657 | if (!l) |
19baf839 RO |
1658 | return -ESRCH; |
1659 | ||
1660 | fa_head = get_fa_head(l, plen); | |
1661 | fa = fib_find_alias(fa_head, tos, 0); | |
1662 | ||
1663 | if (!fa) | |
1664 | return -ESRCH; | |
1665 | ||
0c7770c7 | 1666 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1667 | |
1668 | fa_to_delete = NULL; | |
936f6f8e JA |
1669 | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); |
1670 | list_for_each_entry_continue(fa, fa_head, fa_list) { | |
19baf839 RO |
1671 | struct fib_info *fi = fa->fa_info; |
1672 | ||
1673 | if (fa->fa_tos != tos) | |
1674 | break; | |
1675 | ||
4e902c57 TG |
1676 | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
1677 | (cfg->fc_scope == RT_SCOPE_NOWHERE || | |
37e826c5 | 1678 | fa->fa_info->fib_scope == cfg->fc_scope) && |
74cb3c10 JA |
1679 | (!cfg->fc_prefsrc || |
1680 | fi->fib_prefsrc == cfg->fc_prefsrc) && | |
4e902c57 TG |
1681 | (!cfg->fc_protocol || |
1682 | fi->fib_protocol == cfg->fc_protocol) && | |
1683 | fib_nh_match(cfg, fi) == 0) { | |
19baf839 RO |
1684 | fa_to_delete = fa; |
1685 | break; | |
1686 | } | |
1687 | } | |
1688 | ||
91b9a277 OJ |
1689 | if (!fa_to_delete) |
1690 | return -ESRCH; | |
19baf839 | 1691 | |
91b9a277 | 1692 | fa = fa_to_delete; |
4e902c57 | 1693 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, |
b8f55831 | 1694 | &cfg->fc_nlinfo, 0); |
91b9a277 OJ |
1695 | |
1696 | l = fib_find_node(t, key); | |
772cb712 | 1697 | li = find_leaf_info(l, plen); |
19baf839 | 1698 | |
2373ce1c | 1699 | list_del_rcu(&fa->fa_list); |
19baf839 | 1700 | |
21d8c49e DM |
1701 | if (!plen) |
1702 | tb->tb_num_default--; | |
1703 | ||
91b9a277 | 1704 | if (list_empty(fa_head)) { |
2373ce1c | 1705 | hlist_del_rcu(&li->hlist); |
91b9a277 | 1706 | free_leaf_info(li); |
2373ce1c | 1707 | } |
19baf839 | 1708 | |
91b9a277 | 1709 | if (hlist_empty(&l->list)) |
9195bef7 | 1710 | trie_leaf_remove(t, l); |
19baf839 | 1711 | |
91b9a277 | 1712 | if (fa->fa_state & FA_S_ACCESSED) |
76e6ebfb | 1713 | rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); |
19baf839 | 1714 | |
2373ce1c RO |
1715 | fib_release_info(fa->fa_info); |
1716 | alias_free_mem_rcu(fa); | |
91b9a277 | 1717 | return 0; |
19baf839 RO |
1718 | } |
1719 | ||
ef3660ce | 1720 | static int trie_flush_list(struct list_head *head) |
19baf839 RO |
1721 | { |
1722 | struct fib_alias *fa, *fa_node; | |
1723 | int found = 0; | |
1724 | ||
1725 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | |
1726 | struct fib_info *fi = fa->fa_info; | |
19baf839 | 1727 | |
2373ce1c RO |
1728 | if (fi && (fi->fib_flags & RTNH_F_DEAD)) { |
1729 | list_del_rcu(&fa->fa_list); | |
1730 | fib_release_info(fa->fa_info); | |
1731 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1732 | found++; |
1733 | } | |
1734 | } | |
1735 | return found; | |
1736 | } | |
1737 | ||
ef3660ce | 1738 | static int trie_flush_leaf(struct leaf *l) |
19baf839 RO |
1739 | { |
1740 | int found = 0; | |
1741 | struct hlist_head *lih = &l->list; | |
1742 | struct hlist_node *node, *tmp; | |
1743 | struct leaf_info *li = NULL; | |
1744 | ||
1745 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | |
ef3660ce | 1746 | found += trie_flush_list(&li->falh); |
19baf839 RO |
1747 | |
1748 | if (list_empty(&li->falh)) { | |
2373ce1c | 1749 | hlist_del_rcu(&li->hlist); |
19baf839 RO |
1750 | free_leaf_info(li); |
1751 | } | |
1752 | } | |
1753 | return found; | |
1754 | } | |
1755 | ||
82cfbb00 SH |
1756 | /* |
1757 | * Scan for the next right leaf starting at node p->child[idx] | |
1758 | * Since we have back pointer, no recursion necessary. | |
1759 | */ | |
b299e4f0 | 1760 | static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) |
19baf839 | 1761 | { |
82cfbb00 SH |
1762 | do { |
1763 | t_key idx; | |
c877efb2 | 1764 | |
c877efb2 | 1765 | if (c) |
82cfbb00 | 1766 | idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; |
c877efb2 | 1767 | else |
82cfbb00 | 1768 | idx = 0; |
2373ce1c | 1769 | |
82cfbb00 SH |
1770 | while (idx < 1u << p->bits) { |
1771 | c = tnode_get_child_rcu(p, idx++); | |
2373ce1c | 1772 | if (!c) |
91b9a277 OJ |
1773 | continue; |
1774 | ||
82cfbb00 | 1775 | if (IS_LEAF(c)) { |
0a5c0475 | 1776 | prefetch(rcu_dereference_rtnl(p->child[idx])); |
82cfbb00 | 1777 | return (struct leaf *) c; |
19baf839 | 1778 | } |
82cfbb00 SH |
1779 | |
1780 | /* Rescan start scanning in new node */ | |
1781 | p = (struct tnode *) c; | |
1782 | idx = 0; | |
19baf839 | 1783 | } |
82cfbb00 SH |
1784 | |
1785 | /* Node empty, walk back up to parent */ | |
b299e4f0 | 1786 | c = (struct rt_trie_node *) p; |
a034ee3c | 1787 | } while ((p = node_parent_rcu(c)) != NULL); |
82cfbb00 SH |
1788 | |
1789 | return NULL; /* Root of trie */ | |
1790 | } | |
1791 | ||
82cfbb00 SH |
1792 | static struct leaf *trie_firstleaf(struct trie *t) |
1793 | { | |
a034ee3c | 1794 | struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); |
82cfbb00 SH |
1795 | |
1796 | if (!n) | |
1797 | return NULL; | |
1798 | ||
1799 | if (IS_LEAF(n)) /* trie is just a leaf */ | |
1800 | return (struct leaf *) n; | |
1801 | ||
1802 | return leaf_walk_rcu(n, NULL); | |
1803 | } | |
1804 | ||
1805 | static struct leaf *trie_nextleaf(struct leaf *l) | |
1806 | { | |
b299e4f0 | 1807 | struct rt_trie_node *c = (struct rt_trie_node *) l; |
b902e573 | 1808 | struct tnode *p = node_parent_rcu(c); |
82cfbb00 SH |
1809 | |
1810 | if (!p) | |
1811 | return NULL; /* trie with just one leaf */ | |
1812 | ||
1813 | return leaf_walk_rcu(p, c); | |
19baf839 RO |
1814 | } |
1815 | ||
71d67e66 SH |
1816 | static struct leaf *trie_leafindex(struct trie *t, int index) |
1817 | { | |
1818 | struct leaf *l = trie_firstleaf(t); | |
1819 | ||
ec28cf73 | 1820 | while (l && index-- > 0) |
71d67e66 | 1821 | l = trie_nextleaf(l); |
ec28cf73 | 1822 | |
71d67e66 SH |
1823 | return l; |
1824 | } | |
1825 | ||
1826 | ||
d562f1f8 RO |
1827 | /* |
1828 | * Caller must hold RTNL. | |
1829 | */ | |
16c6cf8b | 1830 | int fib_table_flush(struct fib_table *tb) |
19baf839 RO |
1831 | { |
1832 | struct trie *t = (struct trie *) tb->tb_data; | |
9195bef7 | 1833 | struct leaf *l, *ll = NULL; |
82cfbb00 | 1834 | int found = 0; |
19baf839 | 1835 | |
82cfbb00 | 1836 | for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { |
ef3660ce | 1837 | found += trie_flush_leaf(l); |
19baf839 RO |
1838 | |
1839 | if (ll && hlist_empty(&ll->list)) | |
9195bef7 | 1840 | trie_leaf_remove(t, ll); |
19baf839 RO |
1841 | ll = l; |
1842 | } | |
1843 | ||
1844 | if (ll && hlist_empty(&ll->list)) | |
9195bef7 | 1845 | trie_leaf_remove(t, ll); |
19baf839 | 1846 | |
0c7770c7 | 1847 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1848 | return found; |
1849 | } | |
1850 | ||
4aa2c466 PE |
1851 | void fib_free_table(struct fib_table *tb) |
1852 | { | |
1853 | kfree(tb); | |
1854 | } | |
1855 | ||
a07f5f50 SH |
1856 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, |
1857 | struct fib_table *tb, | |
19baf839 RO |
1858 | struct sk_buff *skb, struct netlink_callback *cb) |
1859 | { | |
1860 | int i, s_i; | |
1861 | struct fib_alias *fa; | |
32ab5f80 | 1862 | __be32 xkey = htonl(key); |
19baf839 | 1863 | |
71d67e66 | 1864 | s_i = cb->args[5]; |
19baf839 RO |
1865 | i = 0; |
1866 | ||
2373ce1c RO |
1867 | /* rcu_read_lock is hold by caller */ |
1868 | ||
1869 | list_for_each_entry_rcu(fa, fah, fa_list) { | |
19baf839 RO |
1870 | if (i < s_i) { |
1871 | i++; | |
1872 | continue; | |
1873 | } | |
19baf839 RO |
1874 | |
1875 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, | |
1876 | cb->nlh->nlmsg_seq, | |
1877 | RTM_NEWROUTE, | |
1878 | tb->tb_id, | |
1879 | fa->fa_type, | |
be403ea1 | 1880 | xkey, |
19baf839 RO |
1881 | plen, |
1882 | fa->fa_tos, | |
64347f78 | 1883 | fa->fa_info, NLM_F_MULTI) < 0) { |
71d67e66 | 1884 | cb->args[5] = i; |
19baf839 | 1885 | return -1; |
91b9a277 | 1886 | } |
19baf839 RO |
1887 | i++; |
1888 | } | |
71d67e66 | 1889 | cb->args[5] = i; |
19baf839 RO |
1890 | return skb->len; |
1891 | } | |
1892 | ||
a88ee229 SH |
1893 | static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, |
1894 | struct sk_buff *skb, struct netlink_callback *cb) | |
19baf839 | 1895 | { |
a88ee229 SH |
1896 | struct leaf_info *li; |
1897 | struct hlist_node *node; | |
1898 | int i, s_i; | |
19baf839 | 1899 | |
71d67e66 | 1900 | s_i = cb->args[4]; |
a88ee229 | 1901 | i = 0; |
19baf839 | 1902 | |
a88ee229 SH |
1903 | /* rcu_read_lock is hold by caller */ |
1904 | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | |
1905 | if (i < s_i) { | |
1906 | i++; | |
19baf839 | 1907 | continue; |
a88ee229 | 1908 | } |
91b9a277 | 1909 | |
a88ee229 | 1910 | if (i > s_i) |
71d67e66 | 1911 | cb->args[5] = 0; |
19baf839 | 1912 | |
a88ee229 | 1913 | if (list_empty(&li->falh)) |
19baf839 RO |
1914 | continue; |
1915 | ||
a88ee229 | 1916 | if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { |
71d67e66 | 1917 | cb->args[4] = i; |
19baf839 RO |
1918 | return -1; |
1919 | } | |
a88ee229 | 1920 | i++; |
19baf839 | 1921 | } |
a88ee229 | 1922 | |
71d67e66 | 1923 | cb->args[4] = i; |
19baf839 RO |
1924 | return skb->len; |
1925 | } | |
1926 | ||
16c6cf8b SH |
1927 | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
1928 | struct netlink_callback *cb) | |
19baf839 | 1929 | { |
a88ee229 | 1930 | struct leaf *l; |
19baf839 | 1931 | struct trie *t = (struct trie *) tb->tb_data; |
d5ce8a0e | 1932 | t_key key = cb->args[2]; |
71d67e66 | 1933 | int count = cb->args[3]; |
19baf839 | 1934 | |
2373ce1c | 1935 | rcu_read_lock(); |
d5ce8a0e SH |
1936 | /* Dump starting at last key. |
1937 | * Note: 0.0.0.0/0 (ie default) is first key. | |
1938 | */ | |
71d67e66 | 1939 | if (count == 0) |
d5ce8a0e SH |
1940 | l = trie_firstleaf(t); |
1941 | else { | |
71d67e66 SH |
1942 | /* Normally, continue from last key, but if that is missing |
1943 | * fallback to using slow rescan | |
1944 | */ | |
d5ce8a0e | 1945 | l = fib_find_node(t, key); |
71d67e66 SH |
1946 | if (!l) |
1947 | l = trie_leafindex(t, count); | |
d5ce8a0e | 1948 | } |
a88ee229 | 1949 | |
d5ce8a0e SH |
1950 | while (l) { |
1951 | cb->args[2] = l->key; | |
a88ee229 | 1952 | if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { |
71d67e66 | 1953 | cb->args[3] = count; |
a88ee229 | 1954 | rcu_read_unlock(); |
a88ee229 | 1955 | return -1; |
19baf839 | 1956 | } |
d5ce8a0e | 1957 | |
71d67e66 | 1958 | ++count; |
d5ce8a0e | 1959 | l = trie_nextleaf(l); |
71d67e66 SH |
1960 | memset(&cb->args[4], 0, |
1961 | sizeof(cb->args) - 4*sizeof(cb->args[0])); | |
19baf839 | 1962 | } |
71d67e66 | 1963 | cb->args[3] = count; |
2373ce1c | 1964 | rcu_read_unlock(); |
a88ee229 | 1965 | |
19baf839 | 1966 | return skb->len; |
19baf839 RO |
1967 | } |
1968 | ||
5348ba85 | 1969 | void __init fib_trie_init(void) |
7f9b8052 | 1970 | { |
a07f5f50 SH |
1971 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
1972 | sizeof(struct fib_alias), | |
bc3c8c1e SH |
1973 | 0, SLAB_PANIC, NULL); |
1974 | ||
1975 | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | |
1976 | max(sizeof(struct leaf), | |
1977 | sizeof(struct leaf_info)), | |
1978 | 0, SLAB_PANIC, NULL); | |
7f9b8052 | 1979 | } |
19baf839 | 1980 | |
7f9b8052 | 1981 | |
5348ba85 | 1982 | struct fib_table *fib_trie_table(u32 id) |
19baf839 RO |
1983 | { |
1984 | struct fib_table *tb; | |
1985 | struct trie *t; | |
1986 | ||
19baf839 RO |
1987 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), |
1988 | GFP_KERNEL); | |
1989 | if (tb == NULL) | |
1990 | return NULL; | |
1991 | ||
1992 | tb->tb_id = id; | |
971b893e | 1993 | tb->tb_default = -1; |
21d8c49e | 1994 | tb->tb_num_default = 0; |
19baf839 RO |
1995 | |
1996 | t = (struct trie *) tb->tb_data; | |
c28a1cf4 | 1997 | memset(t, 0, sizeof(*t)); |
19baf839 | 1998 | |
19baf839 RO |
1999 | return tb; |
2000 | } | |
2001 | ||
cb7b593c SH |
2002 | #ifdef CONFIG_PROC_FS |
2003 | /* Depth first Trie walk iterator */ | |
2004 | struct fib_trie_iter { | |
1c340b2f | 2005 | struct seq_net_private p; |
3d3b2d25 | 2006 | struct fib_table *tb; |
cb7b593c | 2007 | struct tnode *tnode; |
a034ee3c ED |
2008 | unsigned int index; |
2009 | unsigned int depth; | |
cb7b593c | 2010 | }; |
19baf839 | 2011 | |
b299e4f0 | 2012 | static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 2013 | { |
cb7b593c | 2014 | struct tnode *tn = iter->tnode; |
a034ee3c | 2015 | unsigned int cindex = iter->index; |
cb7b593c | 2016 | struct tnode *p; |
19baf839 | 2017 | |
6640e697 EB |
2018 | /* A single entry routing table */ |
2019 | if (!tn) | |
2020 | return NULL; | |
2021 | ||
cb7b593c SH |
2022 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2023 | iter->tnode, iter->index, iter->depth); | |
2024 | rescan: | |
2025 | while (cindex < (1<<tn->bits)) { | |
b299e4f0 | 2026 | struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); |
19baf839 | 2027 | |
cb7b593c SH |
2028 | if (n) { |
2029 | if (IS_LEAF(n)) { | |
2030 | iter->tnode = tn; | |
2031 | iter->index = cindex + 1; | |
2032 | } else { | |
2033 | /* push down one level */ | |
2034 | iter->tnode = (struct tnode *) n; | |
2035 | iter->index = 0; | |
2036 | ++iter->depth; | |
2037 | } | |
2038 | return n; | |
2039 | } | |
19baf839 | 2040 | |
cb7b593c SH |
2041 | ++cindex; |
2042 | } | |
91b9a277 | 2043 | |
cb7b593c | 2044 | /* Current node exhausted, pop back up */ |
b299e4f0 | 2045 | p = node_parent_rcu((struct rt_trie_node *)tn); |
cb7b593c SH |
2046 | if (p) { |
2047 | cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; | |
2048 | tn = p; | |
2049 | --iter->depth; | |
2050 | goto rescan; | |
19baf839 | 2051 | } |
cb7b593c SH |
2052 | |
2053 | /* got root? */ | |
2054 | return NULL; | |
19baf839 RO |
2055 | } |
2056 | ||
b299e4f0 | 2057 | static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, |
cb7b593c | 2058 | struct trie *t) |
19baf839 | 2059 | { |
b299e4f0 | 2060 | struct rt_trie_node *n; |
5ddf0eb2 | 2061 | |
132adf54 | 2062 | if (!t) |
5ddf0eb2 RO |
2063 | return NULL; |
2064 | ||
2065 | n = rcu_dereference(t->trie); | |
3d3b2d25 | 2066 | if (!n) |
5ddf0eb2 | 2067 | return NULL; |
19baf839 | 2068 | |
3d3b2d25 SH |
2069 | if (IS_TNODE(n)) { |
2070 | iter->tnode = (struct tnode *) n; | |
2071 | iter->index = 0; | |
2072 | iter->depth = 1; | |
2073 | } else { | |
2074 | iter->tnode = NULL; | |
2075 | iter->index = 0; | |
2076 | iter->depth = 0; | |
91b9a277 | 2077 | } |
3d3b2d25 SH |
2078 | |
2079 | return n; | |
cb7b593c | 2080 | } |
91b9a277 | 2081 | |
cb7b593c SH |
2082 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2083 | { | |
b299e4f0 | 2084 | struct rt_trie_node *n; |
cb7b593c | 2085 | struct fib_trie_iter iter; |
91b9a277 | 2086 | |
cb7b593c | 2087 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2088 | |
cb7b593c | 2089 | rcu_read_lock(); |
3d3b2d25 | 2090 | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
cb7b593c | 2091 | if (IS_LEAF(n)) { |
93672292 SH |
2092 | struct leaf *l = (struct leaf *)n; |
2093 | struct leaf_info *li; | |
2094 | struct hlist_node *tmp; | |
2095 | ||
cb7b593c SH |
2096 | s->leaves++; |
2097 | s->totdepth += iter.depth; | |
2098 | if (iter.depth > s->maxdepth) | |
2099 | s->maxdepth = iter.depth; | |
93672292 SH |
2100 | |
2101 | hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) | |
2102 | ++s->prefixes; | |
cb7b593c SH |
2103 | } else { |
2104 | const struct tnode *tn = (const struct tnode *) n; | |
2105 | int i; | |
2106 | ||
2107 | s->tnodes++; | |
132adf54 | 2108 | if (tn->bits < MAX_STAT_DEPTH) |
06ef921d RO |
2109 | s->nodesizes[tn->bits]++; |
2110 | ||
cb7b593c SH |
2111 | for (i = 0; i < (1<<tn->bits); i++) |
2112 | if (!tn->child[i]) | |
2113 | s->nullpointers++; | |
19baf839 | 2114 | } |
19baf839 | 2115 | } |
2373ce1c | 2116 | rcu_read_unlock(); |
19baf839 RO |
2117 | } |
2118 | ||
cb7b593c SH |
2119 | /* |
2120 | * This outputs /proc/net/fib_triestats | |
2121 | */ | |
2122 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2123 | { |
a034ee3c | 2124 | unsigned int i, max, pointers, bytes, avdepth; |
c877efb2 | 2125 | |
cb7b593c SH |
2126 | if (stat->leaves) |
2127 | avdepth = stat->totdepth*100 / stat->leaves; | |
2128 | else | |
2129 | avdepth = 0; | |
91b9a277 | 2130 | |
a07f5f50 SH |
2131 | seq_printf(seq, "\tAver depth: %u.%02d\n", |
2132 | avdepth / 100, avdepth % 100); | |
cb7b593c | 2133 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
91b9a277 | 2134 | |
cb7b593c | 2135 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
cb7b593c | 2136 | bytes = sizeof(struct leaf) * stat->leaves; |
93672292 SH |
2137 | |
2138 | seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); | |
2139 | bytes += sizeof(struct leaf_info) * stat->prefixes; | |
2140 | ||
187b5188 | 2141 | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
cb7b593c | 2142 | bytes += sizeof(struct tnode) * stat->tnodes; |
19baf839 | 2143 | |
06ef921d RO |
2144 | max = MAX_STAT_DEPTH; |
2145 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2146 | max--; |
19baf839 | 2147 | |
cb7b593c SH |
2148 | pointers = 0; |
2149 | for (i = 1; i <= max; i++) | |
2150 | if (stat->nodesizes[i] != 0) { | |
187b5188 | 2151 | seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
cb7b593c SH |
2152 | pointers += (1<<i) * stat->nodesizes[i]; |
2153 | } | |
2154 | seq_putc(seq, '\n'); | |
187b5188 | 2155 | seq_printf(seq, "\tPointers: %u\n", pointers); |
2373ce1c | 2156 | |
b299e4f0 | 2157 | bytes += sizeof(struct rt_trie_node *) * pointers; |
187b5188 SH |
2158 | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
2159 | seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); | |
66a2f7fd | 2160 | } |
2373ce1c | 2161 | |
cb7b593c | 2162 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
66a2f7fd SH |
2163 | static void trie_show_usage(struct seq_file *seq, |
2164 | const struct trie_use_stats *stats) | |
2165 | { | |
2166 | seq_printf(seq, "\nCounters:\n---------\n"); | |
a07f5f50 SH |
2167 | seq_printf(seq, "gets = %u\n", stats->gets); |
2168 | seq_printf(seq, "backtracks = %u\n", stats->backtrack); | |
2169 | seq_printf(seq, "semantic match passed = %u\n", | |
2170 | stats->semantic_match_passed); | |
2171 | seq_printf(seq, "semantic match miss = %u\n", | |
2172 | stats->semantic_match_miss); | |
2173 | seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); | |
2174 | seq_printf(seq, "skipped node resize = %u\n\n", | |
2175 | stats->resize_node_skipped); | |
cb7b593c | 2176 | } |
66a2f7fd SH |
2177 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
2178 | ||
3d3b2d25 | 2179 | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
d717a9a6 | 2180 | { |
3d3b2d25 SH |
2181 | if (tb->tb_id == RT_TABLE_LOCAL) |
2182 | seq_puts(seq, "Local:\n"); | |
2183 | else if (tb->tb_id == RT_TABLE_MAIN) | |
2184 | seq_puts(seq, "Main:\n"); | |
2185 | else | |
2186 | seq_printf(seq, "Id %d:\n", tb->tb_id); | |
d717a9a6 | 2187 | } |
19baf839 | 2188 | |
3d3b2d25 | 2189 | |
cb7b593c SH |
2190 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2191 | { | |
1c340b2f | 2192 | struct net *net = (struct net *)seq->private; |
3d3b2d25 | 2193 | unsigned int h; |
877a9bff | 2194 | |
d717a9a6 | 2195 | seq_printf(seq, |
a07f5f50 SH |
2196 | "Basic info: size of leaf:" |
2197 | " %Zd bytes, size of tnode: %Zd bytes.\n", | |
d717a9a6 SH |
2198 | sizeof(struct leaf), sizeof(struct tnode)); |
2199 | ||
3d3b2d25 SH |
2200 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2201 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
2202 | struct hlist_node *node; | |
2203 | struct fib_table *tb; | |
2204 | ||
2205 | hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { | |
2206 | struct trie *t = (struct trie *) tb->tb_data; | |
2207 | struct trie_stat stat; | |
877a9bff | 2208 | |
3d3b2d25 SH |
2209 | if (!t) |
2210 | continue; | |
2211 | ||
2212 | fib_table_print(seq, tb); | |
2213 | ||
2214 | trie_collect_stats(t, &stat); | |
2215 | trie_show_stats(seq, &stat); | |
2216 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
2217 | trie_show_usage(seq, &t->stats); | |
2218 | #endif | |
2219 | } | |
2220 | } | |
19baf839 | 2221 | |
cb7b593c | 2222 | return 0; |
19baf839 RO |
2223 | } |
2224 | ||
cb7b593c | 2225 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2226 | { |
de05c557 | 2227 | return single_open_net(inode, file, fib_triestat_seq_show); |
1c340b2f DL |
2228 | } |
2229 | ||
9a32144e | 2230 | static const struct file_operations fib_triestat_fops = { |
cb7b593c SH |
2231 | .owner = THIS_MODULE, |
2232 | .open = fib_triestat_seq_open, | |
2233 | .read = seq_read, | |
2234 | .llseek = seq_lseek, | |
b6fcbdb4 | 2235 | .release = single_release_net, |
cb7b593c SH |
2236 | }; |
2237 | ||
b299e4f0 | 2238 | static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
19baf839 | 2239 | { |
1218854a YH |
2240 | struct fib_trie_iter *iter = seq->private; |
2241 | struct net *net = seq_file_net(seq); | |
cb7b593c | 2242 | loff_t idx = 0; |
3d3b2d25 | 2243 | unsigned int h; |
cb7b593c | 2244 | |
3d3b2d25 SH |
2245 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2246 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
2247 | struct hlist_node *node; | |
2248 | struct fib_table *tb; | |
cb7b593c | 2249 | |
3d3b2d25 | 2250 | hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { |
b299e4f0 | 2251 | struct rt_trie_node *n; |
3d3b2d25 SH |
2252 | |
2253 | for (n = fib_trie_get_first(iter, | |
2254 | (struct trie *) tb->tb_data); | |
2255 | n; n = fib_trie_get_next(iter)) | |
2256 | if (pos == idx++) { | |
2257 | iter->tb = tb; | |
2258 | return n; | |
2259 | } | |
2260 | } | |
cb7b593c | 2261 | } |
3d3b2d25 | 2262 | |
19baf839 RO |
2263 | return NULL; |
2264 | } | |
2265 | ||
cb7b593c | 2266 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
c95aaf9a | 2267 | __acquires(RCU) |
19baf839 | 2268 | { |
cb7b593c | 2269 | rcu_read_lock(); |
1218854a | 2270 | return fib_trie_get_idx(seq, *pos); |
19baf839 RO |
2271 | } |
2272 | ||
cb7b593c | 2273 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2274 | { |
cb7b593c | 2275 | struct fib_trie_iter *iter = seq->private; |
1218854a | 2276 | struct net *net = seq_file_net(seq); |
3d3b2d25 SH |
2277 | struct fib_table *tb = iter->tb; |
2278 | struct hlist_node *tb_node; | |
2279 | unsigned int h; | |
b299e4f0 | 2280 | struct rt_trie_node *n; |
cb7b593c | 2281 | |
19baf839 | 2282 | ++*pos; |
3d3b2d25 SH |
2283 | /* next node in same table */ |
2284 | n = fib_trie_get_next(iter); | |
2285 | if (n) | |
2286 | return n; | |
19baf839 | 2287 | |
3d3b2d25 SH |
2288 | /* walk rest of this hash chain */ |
2289 | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | |
0a5c0475 | 2290 | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
3d3b2d25 SH |
2291 | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
2292 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2293 | if (n) | |
2294 | goto found; | |
2295 | } | |
19baf839 | 2296 | |
3d3b2d25 SH |
2297 | /* new hash chain */ |
2298 | while (++h < FIB_TABLE_HASHSZ) { | |
2299 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
2300 | hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { | |
2301 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2302 | if (n) | |
2303 | goto found; | |
2304 | } | |
2305 | } | |
cb7b593c | 2306 | return NULL; |
3d3b2d25 SH |
2307 | |
2308 | found: | |
2309 | iter->tb = tb; | |
2310 | return n; | |
cb7b593c | 2311 | } |
19baf839 | 2312 | |
cb7b593c | 2313 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
c95aaf9a | 2314 | __releases(RCU) |
19baf839 | 2315 | { |
cb7b593c SH |
2316 | rcu_read_unlock(); |
2317 | } | |
91b9a277 | 2318 | |
cb7b593c SH |
2319 | static void seq_indent(struct seq_file *seq, int n) |
2320 | { | |
a034ee3c ED |
2321 | while (n-- > 0) |
2322 | seq_puts(seq, " "); | |
cb7b593c | 2323 | } |
19baf839 | 2324 | |
28d36e37 | 2325 | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
cb7b593c | 2326 | { |
132adf54 | 2327 | switch (s) { |
cb7b593c SH |
2328 | case RT_SCOPE_UNIVERSE: return "universe"; |
2329 | case RT_SCOPE_SITE: return "site"; | |
2330 | case RT_SCOPE_LINK: return "link"; | |
2331 | case RT_SCOPE_HOST: return "host"; | |
2332 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2333 | default: | |
28d36e37 | 2334 | snprintf(buf, len, "scope=%d", s); |
cb7b593c SH |
2335 | return buf; |
2336 | } | |
2337 | } | |
19baf839 | 2338 | |
36cbd3dc | 2339 | static const char *const rtn_type_names[__RTN_MAX] = { |
cb7b593c SH |
2340 | [RTN_UNSPEC] = "UNSPEC", |
2341 | [RTN_UNICAST] = "UNICAST", | |
2342 | [RTN_LOCAL] = "LOCAL", | |
2343 | [RTN_BROADCAST] = "BROADCAST", | |
2344 | [RTN_ANYCAST] = "ANYCAST", | |
2345 | [RTN_MULTICAST] = "MULTICAST", | |
2346 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2347 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2348 | [RTN_PROHIBIT] = "PROHIBIT", | |
2349 | [RTN_THROW] = "THROW", | |
2350 | [RTN_NAT] = "NAT", | |
2351 | [RTN_XRESOLVE] = "XRESOLVE", | |
2352 | }; | |
19baf839 | 2353 | |
a034ee3c | 2354 | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
cb7b593c | 2355 | { |
cb7b593c SH |
2356 | if (t < __RTN_MAX && rtn_type_names[t]) |
2357 | return rtn_type_names[t]; | |
28d36e37 | 2358 | snprintf(buf, len, "type %u", t); |
cb7b593c | 2359 | return buf; |
19baf839 RO |
2360 | } |
2361 | ||
cb7b593c SH |
2362 | /* Pretty print the trie */ |
2363 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2364 | { |
cb7b593c | 2365 | const struct fib_trie_iter *iter = seq->private; |
b299e4f0 | 2366 | struct rt_trie_node *n = v; |
c877efb2 | 2367 | |
3d3b2d25 SH |
2368 | if (!node_parent_rcu(n)) |
2369 | fib_table_print(seq, iter->tb); | |
095b8501 | 2370 | |
cb7b593c SH |
2371 | if (IS_TNODE(n)) { |
2372 | struct tnode *tn = (struct tnode *) n; | |
ab66b4a7 | 2373 | __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); |
91b9a277 | 2374 | |
1d25cd6c | 2375 | seq_indent(seq, iter->depth-1); |
673d57e7 HH |
2376 | seq_printf(seq, " +-- %pI4/%d %d %d %d\n", |
2377 | &prf, tn->pos, tn->bits, tn->full_children, | |
1d25cd6c | 2378 | tn->empty_children); |
e905a9ed | 2379 | |
cb7b593c SH |
2380 | } else { |
2381 | struct leaf *l = (struct leaf *) n; | |
1328042e SH |
2382 | struct leaf_info *li; |
2383 | struct hlist_node *node; | |
32ab5f80 | 2384 | __be32 val = htonl(l->key); |
cb7b593c SH |
2385 | |
2386 | seq_indent(seq, iter->depth); | |
673d57e7 | 2387 | seq_printf(seq, " |-- %pI4\n", &val); |
1328042e SH |
2388 | |
2389 | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | |
2390 | struct fib_alias *fa; | |
2391 | ||
2392 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | |
2393 | char buf1[32], buf2[32]; | |
2394 | ||
2395 | seq_indent(seq, iter->depth+1); | |
2396 | seq_printf(seq, " /%d %s %s", li->plen, | |
2397 | rtn_scope(buf1, sizeof(buf1), | |
37e826c5 | 2398 | fa->fa_info->fib_scope), |
1328042e SH |
2399 | rtn_type(buf2, sizeof(buf2), |
2400 | fa->fa_type)); | |
2401 | if (fa->fa_tos) | |
b9c4d82a | 2402 | seq_printf(seq, " tos=%d", fa->fa_tos); |
1328042e | 2403 | seq_putc(seq, '\n'); |
cb7b593c SH |
2404 | } |
2405 | } | |
19baf839 | 2406 | } |
cb7b593c | 2407 | |
19baf839 RO |
2408 | return 0; |
2409 | } | |
2410 | ||
f690808e | 2411 | static const struct seq_operations fib_trie_seq_ops = { |
cb7b593c SH |
2412 | .start = fib_trie_seq_start, |
2413 | .next = fib_trie_seq_next, | |
2414 | .stop = fib_trie_seq_stop, | |
2415 | .show = fib_trie_seq_show, | |
19baf839 RO |
2416 | }; |
2417 | ||
cb7b593c | 2418 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2419 | { |
1c340b2f DL |
2420 | return seq_open_net(inode, file, &fib_trie_seq_ops, |
2421 | sizeof(struct fib_trie_iter)); | |
19baf839 RO |
2422 | } |
2423 | ||
9a32144e | 2424 | static const struct file_operations fib_trie_fops = { |
cb7b593c SH |
2425 | .owner = THIS_MODULE, |
2426 | .open = fib_trie_seq_open, | |
2427 | .read = seq_read, | |
2428 | .llseek = seq_lseek, | |
1c340b2f | 2429 | .release = seq_release_net, |
19baf839 RO |
2430 | }; |
2431 | ||
8315f5d8 SH |
2432 | struct fib_route_iter { |
2433 | struct seq_net_private p; | |
2434 | struct trie *main_trie; | |
2435 | loff_t pos; | |
2436 | t_key key; | |
2437 | }; | |
2438 | ||
2439 | static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) | |
2440 | { | |
2441 | struct leaf *l = NULL; | |
2442 | struct trie *t = iter->main_trie; | |
2443 | ||
2444 | /* use cache location of last found key */ | |
2445 | if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) | |
2446 | pos -= iter->pos; | |
2447 | else { | |
2448 | iter->pos = 0; | |
2449 | l = trie_firstleaf(t); | |
2450 | } | |
2451 | ||
2452 | while (l && pos-- > 0) { | |
2453 | iter->pos++; | |
2454 | l = trie_nextleaf(l); | |
2455 | } | |
2456 | ||
2457 | if (l) | |
2458 | iter->key = pos; /* remember it */ | |
2459 | else | |
2460 | iter->pos = 0; /* forget it */ | |
2461 | ||
2462 | return l; | |
2463 | } | |
2464 | ||
2465 | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | |
2466 | __acquires(RCU) | |
2467 | { | |
2468 | struct fib_route_iter *iter = seq->private; | |
2469 | struct fib_table *tb; | |
2470 | ||
2471 | rcu_read_lock(); | |
1218854a | 2472 | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
8315f5d8 SH |
2473 | if (!tb) |
2474 | return NULL; | |
2475 | ||
2476 | iter->main_trie = (struct trie *) tb->tb_data; | |
2477 | if (*pos == 0) | |
2478 | return SEQ_START_TOKEN; | |
2479 | else | |
2480 | return fib_route_get_idx(iter, *pos - 1); | |
2481 | } | |
2482 | ||
2483 | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
2484 | { | |
2485 | struct fib_route_iter *iter = seq->private; | |
2486 | struct leaf *l = v; | |
2487 | ||
2488 | ++*pos; | |
2489 | if (v == SEQ_START_TOKEN) { | |
2490 | iter->pos = 0; | |
2491 | l = trie_firstleaf(iter->main_trie); | |
2492 | } else { | |
2493 | iter->pos++; | |
2494 | l = trie_nextleaf(l); | |
2495 | } | |
2496 | ||
2497 | if (l) | |
2498 | iter->key = l->key; | |
2499 | else | |
2500 | iter->pos = 0; | |
2501 | return l; | |
2502 | } | |
2503 | ||
2504 | static void fib_route_seq_stop(struct seq_file *seq, void *v) | |
2505 | __releases(RCU) | |
2506 | { | |
2507 | rcu_read_unlock(); | |
2508 | } | |
2509 | ||
a034ee3c | 2510 | static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) |
19baf839 | 2511 | { |
a034ee3c | 2512 | unsigned int flags = 0; |
19baf839 | 2513 | |
a034ee3c ED |
2514 | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
2515 | flags = RTF_REJECT; | |
cb7b593c SH |
2516 | if (fi && fi->fib_nh->nh_gw) |
2517 | flags |= RTF_GATEWAY; | |
32ab5f80 | 2518 | if (mask == htonl(0xFFFFFFFF)) |
cb7b593c SH |
2519 | flags |= RTF_HOST; |
2520 | flags |= RTF_UP; | |
2521 | return flags; | |
19baf839 RO |
2522 | } |
2523 | ||
cb7b593c SH |
2524 | /* |
2525 | * This outputs /proc/net/route. | |
2526 | * The format of the file is not supposed to be changed | |
a034ee3c | 2527 | * and needs to be same as fib_hash output to avoid breaking |
cb7b593c SH |
2528 | * legacy utilities |
2529 | */ | |
2530 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2531 | { |
cb7b593c | 2532 | struct leaf *l = v; |
1328042e SH |
2533 | struct leaf_info *li; |
2534 | struct hlist_node *node; | |
19baf839 | 2535 | |
cb7b593c SH |
2536 | if (v == SEQ_START_TOKEN) { |
2537 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2538 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2539 | "\tWindow\tIRTT"); | |
2540 | return 0; | |
2541 | } | |
19baf839 | 2542 | |
1328042e | 2543 | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { |
cb7b593c | 2544 | struct fib_alias *fa; |
32ab5f80 | 2545 | __be32 mask, prefix; |
91b9a277 | 2546 | |
cb7b593c SH |
2547 | mask = inet_make_mask(li->plen); |
2548 | prefix = htonl(l->key); | |
19baf839 | 2549 | |
cb7b593c | 2550 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1371e37d | 2551 | const struct fib_info *fi = fa->fa_info; |
a034ee3c | 2552 | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); |
5e659e4c | 2553 | int len; |
19baf839 | 2554 | |
cb7b593c SH |
2555 | if (fa->fa_type == RTN_BROADCAST |
2556 | || fa->fa_type == RTN_MULTICAST) | |
2557 | continue; | |
19baf839 | 2558 | |
cb7b593c | 2559 | if (fi) |
5e659e4c PE |
2560 | seq_printf(seq, |
2561 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2562 | "%d\t%08X\t%d\t%u\t%u%n", | |
cb7b593c SH |
2563 | fi->fib_dev ? fi->fib_dev->name : "*", |
2564 | prefix, | |
2565 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2566 | fi->fib_priority, | |
2567 | mask, | |
a07f5f50 SH |
2568 | (fi->fib_advmss ? |
2569 | fi->fib_advmss + 40 : 0), | |
cb7b593c | 2570 | fi->fib_window, |
5e659e4c | 2571 | fi->fib_rtt >> 3, &len); |
cb7b593c | 2572 | else |
5e659e4c PE |
2573 | seq_printf(seq, |
2574 | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2575 | "%d\t%08X\t%d\t%u\t%u%n", | |
cb7b593c | 2576 | prefix, 0, flags, 0, 0, 0, |
5e659e4c | 2577 | mask, 0, 0, 0, &len); |
19baf839 | 2578 | |
5e659e4c | 2579 | seq_printf(seq, "%*s\n", 127 - len, ""); |
cb7b593c | 2580 | } |
19baf839 RO |
2581 | } |
2582 | ||
2583 | return 0; | |
2584 | } | |
2585 | ||
f690808e | 2586 | static const struct seq_operations fib_route_seq_ops = { |
8315f5d8 SH |
2587 | .start = fib_route_seq_start, |
2588 | .next = fib_route_seq_next, | |
2589 | .stop = fib_route_seq_stop, | |
cb7b593c | 2590 | .show = fib_route_seq_show, |
19baf839 RO |
2591 | }; |
2592 | ||
cb7b593c | 2593 | static int fib_route_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2594 | { |
1c340b2f | 2595 | return seq_open_net(inode, file, &fib_route_seq_ops, |
8315f5d8 | 2596 | sizeof(struct fib_route_iter)); |
19baf839 RO |
2597 | } |
2598 | ||
9a32144e | 2599 | static const struct file_operations fib_route_fops = { |
cb7b593c SH |
2600 | .owner = THIS_MODULE, |
2601 | .open = fib_route_seq_open, | |
2602 | .read = seq_read, | |
2603 | .llseek = seq_lseek, | |
1c340b2f | 2604 | .release = seq_release_net, |
19baf839 RO |
2605 | }; |
2606 | ||
61a02653 | 2607 | int __net_init fib_proc_init(struct net *net) |
19baf839 | 2608 | { |
61a02653 | 2609 | if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) |
cb7b593c SH |
2610 | goto out1; |
2611 | ||
61a02653 DL |
2612 | if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, |
2613 | &fib_triestat_fops)) | |
cb7b593c SH |
2614 | goto out2; |
2615 | ||
61a02653 | 2616 | if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) |
cb7b593c SH |
2617 | goto out3; |
2618 | ||
19baf839 | 2619 | return 0; |
cb7b593c SH |
2620 | |
2621 | out3: | |
61a02653 | 2622 | proc_net_remove(net, "fib_triestat"); |
cb7b593c | 2623 | out2: |
61a02653 | 2624 | proc_net_remove(net, "fib_trie"); |
cb7b593c SH |
2625 | out1: |
2626 | return -ENOMEM; | |
19baf839 RO |
2627 | } |
2628 | ||
61a02653 | 2629 | void __net_exit fib_proc_exit(struct net *net) |
19baf839 | 2630 | { |
61a02653 DL |
2631 | proc_net_remove(net, "fib_trie"); |
2632 | proc_net_remove(net, "fib_triestat"); | |
2633 | proc_net_remove(net, "route"); | |
19baf839 RO |
2634 | } |
2635 | ||
2636 | #endif /* CONFIG_PROC_FS */ |