]>
Commit | Line | Data |
---|---|---|
fe4fa4b8 DC |
1 | /* |
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | |
3 | * All Rights Reserved. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or | |
6 | * modify it under the terms of the GNU General Public License as | |
7 | * published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope that it would be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
17 | */ | |
18 | #include "xfs.h" | |
19 | #include "xfs_fs.h" | |
20 | #include "xfs_types.h" | |
21 | #include "xfs_bit.h" | |
22 | #include "xfs_log.h" | |
23 | #include "xfs_inum.h" | |
24 | #include "xfs_trans.h" | |
fd074841 | 25 | #include "xfs_trans_priv.h" |
fe4fa4b8 DC |
26 | #include "xfs_sb.h" |
27 | #include "xfs_ag.h" | |
fe4fa4b8 DC |
28 | #include "xfs_mount.h" |
29 | #include "xfs_bmap_btree.h" | |
fe4fa4b8 DC |
30 | #include "xfs_inode.h" |
31 | #include "xfs_dinode.h" | |
32 | #include "xfs_error.h" | |
fe4fa4b8 DC |
33 | #include "xfs_filestream.h" |
34 | #include "xfs_vnodeops.h" | |
fe4fa4b8 | 35 | #include "xfs_inode_item.h" |
7d095257 | 36 | #include "xfs_quota.h" |
0b1b213f | 37 | #include "xfs_trace.h" |
1a387d3b | 38 | #include "xfs_fsops.h" |
fe4fa4b8 | 39 | |
a167b17e DC |
40 | #include <linux/kthread.h> |
41 | #include <linux/freezer.h> | |
42 | ||
c6d09b66 DC |
43 | struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */ |
44 | ||
78ae5256 DC |
45 | /* |
46 | * The inode lookup is done in batches to keep the amount of lock traffic and | |
47 | * radix tree lookups to a minimum. The batch size is a trade off between | |
48 | * lookup reduction and stack usage. This is in the reclaim path, so we can't | |
49 | * be too greedy. | |
50 | */ | |
51 | #define XFS_LOOKUP_BATCH 32 | |
52 | ||
e13de955 DC |
53 | STATIC int |
54 | xfs_inode_ag_walk_grab( | |
55 | struct xfs_inode *ip) | |
56 | { | |
57 | struct inode *inode = VFS_I(ip); | |
58 | ||
1a3e8f3d DC |
59 | ASSERT(rcu_read_lock_held()); |
60 | ||
61 | /* | |
62 | * check for stale RCU freed inode | |
63 | * | |
64 | * If the inode has been reallocated, it doesn't matter if it's not in | |
65 | * the AG we are walking - we are walking for writeback, so if it | |
66 | * passes all the "valid inode" checks and is dirty, then we'll write | |
67 | * it back anyway. If it has been reallocated and still being | |
68 | * initialised, the XFS_INEW check below will catch it. | |
69 | */ | |
70 | spin_lock(&ip->i_flags_lock); | |
71 | if (!ip->i_ino) | |
72 | goto out_unlock_noent; | |
73 | ||
74 | /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | |
75 | if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) | |
76 | goto out_unlock_noent; | |
77 | spin_unlock(&ip->i_flags_lock); | |
78 | ||
e13de955 DC |
79 | /* nothing to sync during shutdown */ |
80 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | |
81 | return EFSCORRUPTED; | |
82 | ||
e13de955 DC |
83 | /* If we can't grab the inode, it must on it's way to reclaim. */ |
84 | if (!igrab(inode)) | |
85 | return ENOENT; | |
86 | ||
87 | if (is_bad_inode(inode)) { | |
88 | IRELE(ip); | |
89 | return ENOENT; | |
90 | } | |
91 | ||
92 | /* inode is valid */ | |
93 | return 0; | |
1a3e8f3d DC |
94 | |
95 | out_unlock_noent: | |
96 | spin_unlock(&ip->i_flags_lock); | |
97 | return ENOENT; | |
e13de955 DC |
98 | } |
99 | ||
75f3cb13 DC |
100 | STATIC int |
101 | xfs_inode_ag_walk( | |
102 | struct xfs_mount *mp, | |
5017e97d | 103 | struct xfs_perag *pag, |
75f3cb13 DC |
104 | int (*execute)(struct xfs_inode *ip, |
105 | struct xfs_perag *pag, int flags), | |
65d0f205 | 106 | int flags) |
75f3cb13 | 107 | { |
75f3cb13 DC |
108 | uint32_t first_index; |
109 | int last_error = 0; | |
110 | int skipped; | |
65d0f205 | 111 | int done; |
78ae5256 | 112 | int nr_found; |
75f3cb13 DC |
113 | |
114 | restart: | |
65d0f205 | 115 | done = 0; |
75f3cb13 DC |
116 | skipped = 0; |
117 | first_index = 0; | |
78ae5256 | 118 | nr_found = 0; |
75f3cb13 | 119 | do { |
78ae5256 | 120 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
75f3cb13 | 121 | int error = 0; |
78ae5256 | 122 | int i; |
75f3cb13 | 123 | |
1a3e8f3d | 124 | rcu_read_lock(); |
65d0f205 | 125 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, |
78ae5256 DC |
126 | (void **)batch, first_index, |
127 | XFS_LOOKUP_BATCH); | |
65d0f205 | 128 | if (!nr_found) { |
1a3e8f3d | 129 | rcu_read_unlock(); |
75f3cb13 | 130 | break; |
c8e20be0 | 131 | } |
75f3cb13 | 132 | |
65d0f205 | 133 | /* |
78ae5256 DC |
134 | * Grab the inodes before we drop the lock. if we found |
135 | * nothing, nr == 0 and the loop will be skipped. | |
65d0f205 | 136 | */ |
78ae5256 DC |
137 | for (i = 0; i < nr_found; i++) { |
138 | struct xfs_inode *ip = batch[i]; | |
139 | ||
140 | if (done || xfs_inode_ag_walk_grab(ip)) | |
141 | batch[i] = NULL; | |
142 | ||
143 | /* | |
1a3e8f3d DC |
144 | * Update the index for the next lookup. Catch |
145 | * overflows into the next AG range which can occur if | |
146 | * we have inodes in the last block of the AG and we | |
147 | * are currently pointing to the last inode. | |
148 | * | |
149 | * Because we may see inodes that are from the wrong AG | |
150 | * due to RCU freeing and reallocation, only update the | |
151 | * index if it lies in this AG. It was a race that lead | |
152 | * us to see this inode, so another lookup from the | |
153 | * same index will not find it again. | |
78ae5256 | 154 | */ |
1a3e8f3d DC |
155 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) |
156 | continue; | |
78ae5256 DC |
157 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
158 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | |
159 | done = 1; | |
e13de955 | 160 | } |
78ae5256 DC |
161 | |
162 | /* unlock now we've grabbed the inodes. */ | |
1a3e8f3d | 163 | rcu_read_unlock(); |
e13de955 | 164 | |
78ae5256 DC |
165 | for (i = 0; i < nr_found; i++) { |
166 | if (!batch[i]) | |
167 | continue; | |
168 | error = execute(batch[i], pag, flags); | |
169 | IRELE(batch[i]); | |
170 | if (error == EAGAIN) { | |
171 | skipped++; | |
172 | continue; | |
173 | } | |
174 | if (error && last_error != EFSCORRUPTED) | |
175 | last_error = error; | |
75f3cb13 | 176 | } |
c8e20be0 DC |
177 | |
178 | /* bail out if the filesystem is corrupted. */ | |
75f3cb13 DC |
179 | if (error == EFSCORRUPTED) |
180 | break; | |
181 | ||
8daaa831 DC |
182 | cond_resched(); |
183 | ||
78ae5256 | 184 | } while (nr_found && !done); |
75f3cb13 DC |
185 | |
186 | if (skipped) { | |
187 | delay(1); | |
188 | goto restart; | |
189 | } | |
75f3cb13 DC |
190 | return last_error; |
191 | } | |
192 | ||
fe588ed3 | 193 | int |
75f3cb13 DC |
194 | xfs_inode_ag_iterator( |
195 | struct xfs_mount *mp, | |
196 | int (*execute)(struct xfs_inode *ip, | |
197 | struct xfs_perag *pag, int flags), | |
65d0f205 | 198 | int flags) |
75f3cb13 | 199 | { |
16fd5367 | 200 | struct xfs_perag *pag; |
75f3cb13 DC |
201 | int error = 0; |
202 | int last_error = 0; | |
203 | xfs_agnumber_t ag; | |
204 | ||
16fd5367 | 205 | ag = 0; |
65d0f205 DC |
206 | while ((pag = xfs_perag_get(mp, ag))) { |
207 | ag = pag->pag_agno + 1; | |
208 | error = xfs_inode_ag_walk(mp, pag, execute, flags); | |
5017e97d | 209 | xfs_perag_put(pag); |
75f3cb13 DC |
210 | if (error) { |
211 | last_error = error; | |
212 | if (error == EFSCORRUPTED) | |
213 | break; | |
214 | } | |
215 | } | |
216 | return XFS_ERROR(last_error); | |
217 | } | |
218 | ||
5a34d5cd DC |
219 | STATIC int |
220 | xfs_sync_inode_data( | |
221 | struct xfs_inode *ip, | |
75f3cb13 | 222 | struct xfs_perag *pag, |
5a34d5cd DC |
223 | int flags) |
224 | { | |
225 | struct inode *inode = VFS_I(ip); | |
226 | struct address_space *mapping = inode->i_mapping; | |
227 | int error = 0; | |
228 | ||
229 | if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | |
4a06fd26 | 230 | return 0; |
5a34d5cd DC |
231 | |
232 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { | |
233 | if (flags & SYNC_TRYLOCK) | |
4a06fd26 | 234 | return 0; |
5a34d5cd DC |
235 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
236 | } | |
237 | ||
238 | error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? | |
0cadda1c | 239 | 0 : XBF_ASYNC, FI_NONE); |
5a34d5cd | 240 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
5a34d5cd DC |
241 | return error; |
242 | } | |
243 | ||
845b6d0c CH |
244 | STATIC int |
245 | xfs_sync_inode_attr( | |
246 | struct xfs_inode *ip, | |
75f3cb13 | 247 | struct xfs_perag *pag, |
845b6d0c CH |
248 | int flags) |
249 | { | |
250 | int error = 0; | |
251 | ||
252 | xfs_ilock(ip, XFS_ILOCK_SHARED); | |
253 | if (xfs_inode_clean(ip)) | |
254 | goto out_unlock; | |
255 | if (!xfs_iflock_nowait(ip)) { | |
256 | if (!(flags & SYNC_WAIT)) | |
257 | goto out_unlock; | |
258 | xfs_iflock(ip); | |
259 | } | |
260 | ||
261 | if (xfs_inode_clean(ip)) { | |
262 | xfs_ifunlock(ip); | |
263 | goto out_unlock; | |
264 | } | |
265 | ||
c854363e | 266 | error = xfs_iflush(ip, flags); |
845b6d0c | 267 | |
ee58abdf DC |
268 | /* |
269 | * We don't want to try again on non-blocking flushes that can't run | |
270 | * again immediately. If an inode really must be written, then that's | |
271 | * what the SYNC_WAIT flag is for. | |
272 | */ | |
273 | if (error == EAGAIN) { | |
274 | ASSERT(!(flags & SYNC_WAIT)); | |
275 | error = 0; | |
276 | } | |
277 | ||
845b6d0c CH |
278 | out_unlock: |
279 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | |
280 | return error; | |
281 | } | |
282 | ||
075fe102 CH |
283 | /* |
284 | * Write out pagecache data for the whole filesystem. | |
285 | */ | |
64c86149 | 286 | STATIC int |
075fe102 CH |
287 | xfs_sync_data( |
288 | struct xfs_mount *mp, | |
289 | int flags) | |
683a8970 | 290 | { |
075fe102 | 291 | int error; |
fe4fa4b8 | 292 | |
b0710ccc | 293 | ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); |
fe4fa4b8 | 294 | |
65d0f205 | 295 | error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags); |
075fe102 CH |
296 | if (error) |
297 | return XFS_ERROR(error); | |
e9f1c6ee | 298 | |
a14a348b | 299 | xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); |
075fe102 CH |
300 | return 0; |
301 | } | |
e9f1c6ee | 302 | |
075fe102 CH |
303 | /* |
304 | * Write out inode metadata (attributes) for the whole filesystem. | |
305 | */ | |
64c86149 | 306 | STATIC int |
075fe102 CH |
307 | xfs_sync_attr( |
308 | struct xfs_mount *mp, | |
309 | int flags) | |
310 | { | |
311 | ASSERT((flags & ~SYNC_WAIT) == 0); | |
75f3cb13 | 312 | |
65d0f205 | 313 | return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags); |
fe4fa4b8 DC |
314 | } |
315 | ||
5d77c0dc | 316 | STATIC int |
2af75df7 | 317 | xfs_sync_fsdata( |
df308bcf | 318 | struct xfs_mount *mp) |
2af75df7 CH |
319 | { |
320 | struct xfs_buf *bp; | |
c2b006c1 | 321 | int error; |
2af75df7 CH |
322 | |
323 | /* | |
df308bcf CH |
324 | * If the buffer is pinned then push on the log so we won't get stuck |
325 | * waiting in the write for someone, maybe ourselves, to flush the log. | |
326 | * | |
327 | * Even though we just pushed the log above, we did not have the | |
328 | * superblock buffer locked at that point so it can become pinned in | |
329 | * between there and here. | |
2af75df7 | 330 | */ |
df308bcf | 331 | bp = xfs_getsb(mp, 0); |
811e64c7 | 332 | if (xfs_buf_ispinned(bp)) |
df308bcf | 333 | xfs_log_force(mp, 0); |
c2b006c1 CH |
334 | error = xfs_bwrite(bp); |
335 | xfs_buf_relse(bp); | |
336 | return error; | |
e9f1c6ee DC |
337 | } |
338 | ||
339 | /* | |
a4e4c4f4 DC |
340 | * When remounting a filesystem read-only or freezing the filesystem, we have |
341 | * two phases to execute. This first phase is syncing the data before we | |
342 | * quiesce the filesystem, and the second is flushing all the inodes out after | |
343 | * we've waited for all the transactions created by the first phase to | |
344 | * complete. The second phase ensures that the inodes are written to their | |
345 | * location on disk rather than just existing in transactions in the log. This | |
346 | * means after a quiesce there is no log replay required to write the inodes to | |
347 | * disk (this is the main difference between a sync and a quiesce). | |
348 | */ | |
349 | /* | |
350 | * First stage of freeze - no writers will make progress now we are here, | |
e9f1c6ee DC |
351 | * so we flush delwri and delalloc buffers here, then wait for all I/O to |
352 | * complete. Data is frozen at that point. Metadata is not frozen, | |
a4e4c4f4 DC |
353 | * transactions can still occur here so don't bother flushing the buftarg |
354 | * because it'll just get dirty again. | |
e9f1c6ee DC |
355 | */ |
356 | int | |
357 | xfs_quiesce_data( | |
358 | struct xfs_mount *mp) | |
359 | { | |
df308bcf | 360 | int error, error2 = 0; |
e9f1c6ee | 361 | |
34625c66 | 362 | /* force out the log */ |
33b8f7c2 CH |
363 | xfs_log_force(mp, XFS_LOG_SYNC); |
364 | ||
a4e4c4f4 | 365 | /* write superblock and hoover up shutdown errors */ |
df308bcf CH |
366 | error = xfs_sync_fsdata(mp); |
367 | ||
368 | /* make sure all delwri buffers are written out */ | |
369 | xfs_flush_buftarg(mp->m_ddev_targp, 1); | |
370 | ||
371 | /* mark the log as covered if needed */ | |
372 | if (xfs_log_need_covered(mp)) | |
c58efdb4 | 373 | error2 = xfs_fs_log_dummy(mp); |
e9f1c6ee | 374 | |
a4e4c4f4 | 375 | /* flush data-only devices */ |
e9f1c6ee | 376 | if (mp->m_rtdev_targp) |
a9add83e | 377 | xfs_flush_buftarg(mp->m_rtdev_targp, 1); |
e9f1c6ee | 378 | |
df308bcf | 379 | return error ? error : error2; |
2af75df7 CH |
380 | } |
381 | ||
76bf105c DC |
382 | STATIC void |
383 | xfs_quiesce_fs( | |
384 | struct xfs_mount *mp) | |
385 | { | |
386 | int count = 0, pincount; | |
387 | ||
c854363e | 388 | xfs_reclaim_inodes(mp, 0); |
76bf105c | 389 | xfs_flush_buftarg(mp->m_ddev_targp, 0); |
76bf105c DC |
390 | |
391 | /* | |
392 | * This loop must run at least twice. The first instance of the loop | |
393 | * will flush most meta data but that will generate more meta data | |
394 | * (typically directory updates). Which then must be flushed and | |
c854363e DC |
395 | * logged before we can write the unmount record. We also so sync |
396 | * reclaim of inodes to catch any that the above delwri flush skipped. | |
76bf105c DC |
397 | */ |
398 | do { | |
c854363e | 399 | xfs_reclaim_inodes(mp, SYNC_WAIT); |
075fe102 | 400 | xfs_sync_attr(mp, SYNC_WAIT); |
76bf105c DC |
401 | pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); |
402 | if (!pincount) { | |
403 | delay(50); | |
404 | count++; | |
405 | } | |
406 | } while (count < 2); | |
407 | } | |
408 | ||
409 | /* | |
410 | * Second stage of a quiesce. The data is already synced, now we have to take | |
411 | * care of the metadata. New transactions are already blocked, so we need to | |
25985edc | 412 | * wait for any remaining transactions to drain out before proceeding. |
76bf105c DC |
413 | */ |
414 | void | |
415 | xfs_quiesce_attr( | |
416 | struct xfs_mount *mp) | |
417 | { | |
418 | int error = 0; | |
419 | ||
420 | /* wait for all modifications to complete */ | |
421 | while (atomic_read(&mp->m_active_trans) > 0) | |
422 | delay(100); | |
423 | ||
424 | /* flush inodes and push all remaining buffers out to disk */ | |
425 | xfs_quiesce_fs(mp); | |
426 | ||
5e106572 FB |
427 | /* |
428 | * Just warn here till VFS can correctly support | |
429 | * read-only remount without racing. | |
430 | */ | |
431 | WARN_ON(atomic_read(&mp->m_active_trans) != 0); | |
76bf105c DC |
432 | |
433 | /* Push the superblock and write an unmount record */ | |
adab0f67 | 434 | error = xfs_log_sbcount(mp); |
76bf105c | 435 | if (error) |
4f10700a | 436 | xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " |
76bf105c DC |
437 | "Frozen image may not be consistent."); |
438 | xfs_log_unmount_write(mp); | |
439 | xfs_unmountfs_writesb(mp); | |
440 | } | |
441 | ||
c6d09b66 DC |
442 | static void |
443 | xfs_syncd_queue_sync( | |
444 | struct xfs_mount *mp) | |
a167b17e | 445 | { |
c6d09b66 DC |
446 | queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work, |
447 | msecs_to_jiffies(xfs_syncd_centisecs * 10)); | |
a167b17e DC |
448 | } |
449 | ||
aacaa880 | 450 | /* |
df308bcf CH |
451 | * Every sync period we need to unpin all items, reclaim inodes and sync |
452 | * disk quotas. We might need to cover the log to indicate that the | |
1a387d3b | 453 | * filesystem is idle and not frozen. |
aacaa880 | 454 | */ |
a167b17e DC |
455 | STATIC void |
456 | xfs_sync_worker( | |
c6d09b66 | 457 | struct work_struct *work) |
a167b17e | 458 | { |
c6d09b66 DC |
459 | struct xfs_mount *mp = container_of(to_delayed_work(work), |
460 | struct xfs_mount, m_sync_work); | |
a167b17e DC |
461 | int error; |
462 | ||
aacaa880 | 463 | if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
aacaa880 | 464 | /* dgc: errors ignored here */ |
1a387d3b DC |
465 | if (mp->m_super->s_frozen == SB_UNFROZEN && |
466 | xfs_log_need_covered(mp)) | |
c58efdb4 DC |
467 | error = xfs_fs_log_dummy(mp); |
468 | else | |
469 | xfs_log_force(mp, 0); | |
fd074841 DC |
470 | |
471 | /* start pushing all the metadata that is currently dirty */ | |
472 | xfs_ail_push_all(mp->m_ail); | |
aacaa880 | 473 | } |
c6d09b66 DC |
474 | |
475 | /* queue us up again */ | |
476 | xfs_syncd_queue_sync(mp); | |
a167b17e DC |
477 | } |
478 | ||
a7b339f1 DC |
479 | /* |
480 | * Queue a new inode reclaim pass if there are reclaimable inodes and there | |
481 | * isn't a reclaim pass already in progress. By default it runs every 5s based | |
482 | * on the xfs syncd work default of 30s. Perhaps this should have it's own | |
483 | * tunable, but that can be done if this method proves to be ineffective or too | |
484 | * aggressive. | |
485 | */ | |
486 | static void | |
487 | xfs_syncd_queue_reclaim( | |
488 | struct xfs_mount *mp) | |
a167b17e | 489 | { |
a167b17e | 490 | |
a7b339f1 DC |
491 | /* |
492 | * We can have inodes enter reclaim after we've shut down the syncd | |
493 | * workqueue during unmount, so don't allow reclaim work to be queued | |
494 | * during unmount. | |
495 | */ | |
496 | if (!(mp->m_super->s_flags & MS_ACTIVE)) | |
497 | return; | |
a167b17e | 498 | |
a7b339f1 DC |
499 | rcu_read_lock(); |
500 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | |
501 | queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work, | |
502 | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | |
a167b17e | 503 | } |
a7b339f1 DC |
504 | rcu_read_unlock(); |
505 | } | |
a167b17e | 506 | |
a7b339f1 DC |
507 | /* |
508 | * This is a fast pass over the inode cache to try to get reclaim moving on as | |
509 | * many inodes as possible in a short period of time. It kicks itself every few | |
510 | * seconds, as well as being kicked by the inode cache shrinker when memory | |
511 | * goes low. It scans as quickly as possible avoiding locked inodes or those | |
512 | * already being flushed, and once done schedules a future pass. | |
513 | */ | |
514 | STATIC void | |
515 | xfs_reclaim_worker( | |
516 | struct work_struct *work) | |
517 | { | |
518 | struct xfs_mount *mp = container_of(to_delayed_work(work), | |
519 | struct xfs_mount, m_reclaim_work); | |
520 | ||
521 | xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | |
522 | xfs_syncd_queue_reclaim(mp); | |
523 | } | |
524 | ||
89e4cb55 DC |
525 | /* |
526 | * Flush delayed allocate data, attempting to free up reserved space | |
527 | * from existing allocations. At this point a new allocation attempt | |
528 | * has failed with ENOSPC and we are in the process of scratching our | |
529 | * heads, looking about for more room. | |
530 | * | |
531 | * Queue a new data flush if there isn't one already in progress and | |
532 | * wait for completion of the flush. This means that we only ever have one | |
533 | * inode flush in progress no matter how many ENOSPC events are occurring and | |
534 | * so will prevent the system from bogging down due to every concurrent | |
535 | * ENOSPC event scanning all the active inodes in the system for writeback. | |
536 | */ | |
537 | void | |
538 | xfs_flush_inodes( | |
539 | struct xfs_inode *ip) | |
540 | { | |
541 | struct xfs_mount *mp = ip->i_mount; | |
542 | ||
543 | queue_work(xfs_syncd_wq, &mp->m_flush_work); | |
544 | flush_work_sync(&mp->m_flush_work); | |
545 | } | |
546 | ||
547 | STATIC void | |
548 | xfs_flush_worker( | |
549 | struct work_struct *work) | |
550 | { | |
551 | struct xfs_mount *mp = container_of(work, | |
552 | struct xfs_mount, m_flush_work); | |
553 | ||
554 | xfs_sync_data(mp, SYNC_TRYLOCK); | |
555 | xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); | |
a167b17e DC |
556 | } |
557 | ||
558 | int | |
559 | xfs_syncd_init( | |
560 | struct xfs_mount *mp) | |
561 | { | |
89e4cb55 | 562 | INIT_WORK(&mp->m_flush_work, xfs_flush_worker); |
c6d09b66 | 563 | INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker); |
a7b339f1 DC |
564 | INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); |
565 | ||
c6d09b66 | 566 | xfs_syncd_queue_sync(mp); |
a7b339f1 | 567 | xfs_syncd_queue_reclaim(mp); |
c6d09b66 | 568 | |
a167b17e DC |
569 | return 0; |
570 | } | |
571 | ||
572 | void | |
573 | xfs_syncd_stop( | |
574 | struct xfs_mount *mp) | |
575 | { | |
c6d09b66 | 576 | cancel_delayed_work_sync(&mp->m_sync_work); |
a7b339f1 | 577 | cancel_delayed_work_sync(&mp->m_reclaim_work); |
89e4cb55 | 578 | cancel_work_sync(&mp->m_flush_work); |
a167b17e DC |
579 | } |
580 | ||
bc990f5c CH |
581 | void |
582 | __xfs_inode_set_reclaim_tag( | |
583 | struct xfs_perag *pag, | |
584 | struct xfs_inode *ip) | |
585 | { | |
586 | radix_tree_tag_set(&pag->pag_ici_root, | |
587 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | |
588 | XFS_ICI_RECLAIM_TAG); | |
16fd5367 DC |
589 | |
590 | if (!pag->pag_ici_reclaimable) { | |
591 | /* propagate the reclaim tag up into the perag radix tree */ | |
592 | spin_lock(&ip->i_mount->m_perag_lock); | |
593 | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | |
594 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | |
595 | XFS_ICI_RECLAIM_TAG); | |
596 | spin_unlock(&ip->i_mount->m_perag_lock); | |
a7b339f1 DC |
597 | |
598 | /* schedule periodic background inode reclaim */ | |
599 | xfs_syncd_queue_reclaim(ip->i_mount); | |
600 | ||
16fd5367 DC |
601 | trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, |
602 | -1, _RET_IP_); | |
603 | } | |
9bf729c0 | 604 | pag->pag_ici_reclaimable++; |
bc990f5c CH |
605 | } |
606 | ||
11654513 DC |
607 | /* |
608 | * We set the inode flag atomically with the radix tree tag. | |
609 | * Once we get tag lookups on the radix tree, this inode flag | |
610 | * can go away. | |
611 | */ | |
396beb85 DC |
612 | void |
613 | xfs_inode_set_reclaim_tag( | |
614 | xfs_inode_t *ip) | |
615 | { | |
5017e97d DC |
616 | struct xfs_mount *mp = ip->i_mount; |
617 | struct xfs_perag *pag; | |
396beb85 | 618 | |
5017e97d | 619 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
1a427ab0 | 620 | spin_lock(&pag->pag_ici_lock); |
396beb85 | 621 | spin_lock(&ip->i_flags_lock); |
bc990f5c | 622 | __xfs_inode_set_reclaim_tag(pag, ip); |
11654513 | 623 | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); |
396beb85 | 624 | spin_unlock(&ip->i_flags_lock); |
1a427ab0 | 625 | spin_unlock(&pag->pag_ici_lock); |
5017e97d | 626 | xfs_perag_put(pag); |
396beb85 DC |
627 | } |
628 | ||
081003ff JW |
629 | STATIC void |
630 | __xfs_inode_clear_reclaim( | |
396beb85 DC |
631 | xfs_perag_t *pag, |
632 | xfs_inode_t *ip) | |
633 | { | |
9bf729c0 | 634 | pag->pag_ici_reclaimable--; |
16fd5367 DC |
635 | if (!pag->pag_ici_reclaimable) { |
636 | /* clear the reclaim tag from the perag radix tree */ | |
637 | spin_lock(&ip->i_mount->m_perag_lock); | |
638 | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | |
639 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | |
640 | XFS_ICI_RECLAIM_TAG); | |
641 | spin_unlock(&ip->i_mount->m_perag_lock); | |
642 | trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, | |
643 | -1, _RET_IP_); | |
644 | } | |
396beb85 DC |
645 | } |
646 | ||
081003ff JW |
647 | void |
648 | __xfs_inode_clear_reclaim_tag( | |
649 | xfs_mount_t *mp, | |
650 | xfs_perag_t *pag, | |
651 | xfs_inode_t *ip) | |
652 | { | |
653 | radix_tree_tag_clear(&pag->pag_ici_root, | |
654 | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | |
655 | __xfs_inode_clear_reclaim(pag, ip); | |
656 | } | |
657 | ||
e3a20c0b DC |
658 | /* |
659 | * Grab the inode for reclaim exclusively. | |
660 | * Return 0 if we grabbed it, non-zero otherwise. | |
661 | */ | |
662 | STATIC int | |
663 | xfs_reclaim_inode_grab( | |
664 | struct xfs_inode *ip, | |
665 | int flags) | |
666 | { | |
1a3e8f3d DC |
667 | ASSERT(rcu_read_lock_held()); |
668 | ||
669 | /* quick check for stale RCU freed inode */ | |
670 | if (!ip->i_ino) | |
671 | return 1; | |
e3a20c0b DC |
672 | |
673 | /* | |
474fce06 CH |
674 | * If we are asked for non-blocking operation, do unlocked checks to |
675 | * see if the inode already is being flushed or in reclaim to avoid | |
676 | * lock traffic. | |
e3a20c0b DC |
677 | */ |
678 | if ((flags & SYNC_TRYLOCK) && | |
474fce06 | 679 | __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) |
e3a20c0b | 680 | return 1; |
e3a20c0b DC |
681 | |
682 | /* | |
683 | * The radix tree lock here protects a thread in xfs_iget from racing | |
684 | * with us starting reclaim on the inode. Once we have the | |
685 | * XFS_IRECLAIM flag set it will not touch us. | |
1a3e8f3d DC |
686 | * |
687 | * Due to RCU lookup, we may find inodes that have been freed and only | |
688 | * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that | |
689 | * aren't candidates for reclaim at all, so we must check the | |
690 | * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | |
e3a20c0b DC |
691 | */ |
692 | spin_lock(&ip->i_flags_lock); | |
1a3e8f3d DC |
693 | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || |
694 | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | |
695 | /* not a reclaim candidate. */ | |
e3a20c0b DC |
696 | spin_unlock(&ip->i_flags_lock); |
697 | return 1; | |
698 | } | |
699 | __xfs_iflags_set(ip, XFS_IRECLAIM); | |
700 | spin_unlock(&ip->i_flags_lock); | |
701 | return 0; | |
702 | } | |
703 | ||
777df5af DC |
704 | /* |
705 | * Inodes in different states need to be treated differently, and the return | |
706 | * value of xfs_iflush is not sufficient to get this right. The following table | |
707 | * lists the inode states and the reclaim actions necessary for non-blocking | |
708 | * reclaim: | |
709 | * | |
710 | * | |
711 | * inode state iflush ret required action | |
712 | * --------------- ---------- --------------- | |
713 | * bad - reclaim | |
714 | * shutdown EIO unpin and reclaim | |
715 | * clean, unpinned 0 reclaim | |
716 | * stale, unpinned 0 reclaim | |
c854363e DC |
717 | * clean, pinned(*) 0 requeue |
718 | * stale, pinned EAGAIN requeue | |
719 | * dirty, delwri ok 0 requeue | |
720 | * dirty, delwri blocked EAGAIN requeue | |
721 | * dirty, sync flush 0 reclaim | |
777df5af DC |
722 | * |
723 | * (*) dgc: I don't think the clean, pinned state is possible but it gets | |
724 | * handled anyway given the order of checks implemented. | |
725 | * | |
c854363e DC |
726 | * As can be seen from the table, the return value of xfs_iflush() is not |
727 | * sufficient to correctly decide the reclaim action here. The checks in | |
728 | * xfs_iflush() might look like duplicates, but they are not. | |
729 | * | |
730 | * Also, because we get the flush lock first, we know that any inode that has | |
731 | * been flushed delwri has had the flush completed by the time we check that | |
732 | * the inode is clean. The clean inode check needs to be done before flushing | |
733 | * the inode delwri otherwise we would loop forever requeuing clean inodes as | |
734 | * we cannot tell apart a successful delwri flush and a clean inode from the | |
735 | * return value of xfs_iflush(). | |
736 | * | |
737 | * Note that because the inode is flushed delayed write by background | |
738 | * writeback, the flush lock may already be held here and waiting on it can | |
739 | * result in very long latencies. Hence for sync reclaims, where we wait on the | |
740 | * flush lock, the caller should push out delayed write inodes first before | |
741 | * trying to reclaim them to minimise the amount of time spent waiting. For | |
742 | * background relaim, we just requeue the inode for the next pass. | |
743 | * | |
777df5af DC |
744 | * Hence the order of actions after gaining the locks should be: |
745 | * bad => reclaim | |
746 | * shutdown => unpin and reclaim | |
c854363e DC |
747 | * pinned, delwri => requeue |
748 | * pinned, sync => unpin | |
777df5af DC |
749 | * stale => reclaim |
750 | * clean => reclaim | |
c854363e DC |
751 | * dirty, delwri => flush and requeue |
752 | * dirty, sync => flush, wait and reclaim | |
777df5af | 753 | */ |
75f3cb13 | 754 | STATIC int |
c8e20be0 | 755 | xfs_reclaim_inode( |
75f3cb13 DC |
756 | struct xfs_inode *ip, |
757 | struct xfs_perag *pag, | |
c8e20be0 | 758 | int sync_mode) |
fce08f2f | 759 | { |
1bfd8d04 | 760 | int error; |
777df5af | 761 | |
1bfd8d04 DC |
762 | restart: |
763 | error = 0; | |
c8e20be0 | 764 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
c854363e DC |
765 | if (!xfs_iflock_nowait(ip)) { |
766 | if (!(sync_mode & SYNC_WAIT)) | |
767 | goto out; | |
4dd2cb4a CH |
768 | |
769 | /* | |
770 | * If we only have a single dirty inode in a cluster there is | |
771 | * a fair chance that the AIL push may have pushed it into | |
772 | * the buffer, but xfsbufd won't touch it until 30 seconds | |
773 | * from now, and thus we will lock up here. | |
774 | * | |
775 | * Promote the inode buffer to the front of the delwri list | |
776 | * and wake up xfsbufd now. | |
777 | */ | |
778 | xfs_promote_inode(ip); | |
c854363e DC |
779 | xfs_iflock(ip); |
780 | } | |
7a3be02b | 781 | |
777df5af DC |
782 | if (is_bad_inode(VFS_I(ip))) |
783 | goto reclaim; | |
784 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | |
785 | xfs_iunpin_wait(ip); | |
786 | goto reclaim; | |
787 | } | |
c854363e DC |
788 | if (xfs_ipincount(ip)) { |
789 | if (!(sync_mode & SYNC_WAIT)) { | |
790 | xfs_ifunlock(ip); | |
791 | goto out; | |
792 | } | |
777df5af | 793 | xfs_iunpin_wait(ip); |
c854363e | 794 | } |
777df5af DC |
795 | if (xfs_iflags_test(ip, XFS_ISTALE)) |
796 | goto reclaim; | |
797 | if (xfs_inode_clean(ip)) | |
798 | goto reclaim; | |
799 | ||
1bfd8d04 DC |
800 | /* |
801 | * Now we have an inode that needs flushing. | |
802 | * | |
803 | * We do a nonblocking flush here even if we are doing a SYNC_WAIT | |
804 | * reclaim as we can deadlock with inode cluster removal. | |
805 | * xfs_ifree_cluster() can lock the inode buffer before it locks the | |
806 | * ip->i_lock, and we are doing the exact opposite here. As a result, | |
807 | * doing a blocking xfs_itobp() to get the cluster buffer will result | |
808 | * in an ABBA deadlock with xfs_ifree_cluster(). | |
809 | * | |
810 | * As xfs_ifree_cluser() must gather all inodes that are active in the | |
811 | * cache to mark them stale, if we hit this case we don't actually want | |
812 | * to do IO here - we want the inode marked stale so we can simply | |
813 | * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush, | |
814 | * just unlock the inode, back off and try again. Hopefully the next | |
815 | * pass through will see the stale flag set on the inode. | |
816 | */ | |
817 | error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode); | |
c854363e | 818 | if (sync_mode & SYNC_WAIT) { |
1bfd8d04 DC |
819 | if (error == EAGAIN) { |
820 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
821 | /* backoff longer than in xfs_ifree_cluster */ | |
822 | delay(2); | |
823 | goto restart; | |
824 | } | |
c854363e DC |
825 | xfs_iflock(ip); |
826 | goto reclaim; | |
c8e20be0 DC |
827 | } |
828 | ||
c854363e DC |
829 | /* |
830 | * When we have to flush an inode but don't have SYNC_WAIT set, we | |
831 | * flush the inode out using a delwri buffer and wait for the next | |
832 | * call into reclaim to find it in a clean state instead of waiting for | |
833 | * it now. We also don't return errors here - if the error is transient | |
834 | * then the next reclaim pass will flush the inode, and if the error | |
f1d486a3 | 835 | * is permanent then the next sync reclaim will reclaim the inode and |
c854363e DC |
836 | * pass on the error. |
837 | */ | |
f1d486a3 | 838 | if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
4f10700a | 839 | xfs_warn(ip->i_mount, |
c854363e DC |
840 | "inode 0x%llx background reclaim flush failed with %d", |
841 | (long long)ip->i_ino, error); | |
842 | } | |
843 | out: | |
844 | xfs_iflags_clear(ip, XFS_IRECLAIM); | |
845 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
846 | /* | |
847 | * We could return EAGAIN here to make reclaim rescan the inode tree in | |
848 | * a short while. However, this just burns CPU time scanning the tree | |
849 | * waiting for IO to complete and xfssyncd never goes back to the idle | |
850 | * state. Instead, return 0 to let the next scheduled background reclaim | |
851 | * attempt to reclaim the inode again. | |
852 | */ | |
853 | return 0; | |
854 | ||
777df5af DC |
855 | reclaim: |
856 | xfs_ifunlock(ip); | |
c8e20be0 | 857 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
2f11feab DC |
858 | |
859 | XFS_STATS_INC(xs_ig_reclaims); | |
860 | /* | |
861 | * Remove the inode from the per-AG radix tree. | |
862 | * | |
863 | * Because radix_tree_delete won't complain even if the item was never | |
864 | * added to the tree assert that it's been there before to catch | |
865 | * problems with the inode life time early on. | |
866 | */ | |
1a427ab0 | 867 | spin_lock(&pag->pag_ici_lock); |
2f11feab DC |
868 | if (!radix_tree_delete(&pag->pag_ici_root, |
869 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) | |
870 | ASSERT(0); | |
081003ff | 871 | __xfs_inode_clear_reclaim(pag, ip); |
1a427ab0 | 872 | spin_unlock(&pag->pag_ici_lock); |
2f11feab DC |
873 | |
874 | /* | |
875 | * Here we do an (almost) spurious inode lock in order to coordinate | |
876 | * with inode cache radix tree lookups. This is because the lookup | |
877 | * can reference the inodes in the cache without taking references. | |
878 | * | |
879 | * We make that OK here by ensuring that we wait until the inode is | |
ad637a10 | 880 | * unlocked after the lookup before we go ahead and free it. |
2f11feab | 881 | */ |
ad637a10 | 882 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
2f11feab | 883 | xfs_qm_dqdetach(ip); |
ad637a10 | 884 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
2f11feab DC |
885 | |
886 | xfs_inode_free(ip); | |
c854363e | 887 | |
ad637a10 | 888 | return error; |
7a3be02b DC |
889 | } |
890 | ||
65d0f205 DC |
891 | /* |
892 | * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | |
893 | * corrupted, we still want to try to reclaim all the inodes. If we don't, | |
894 | * then a shut down during filesystem unmount reclaim walk leak all the | |
895 | * unreclaimed inodes. | |
896 | */ | |
897 | int | |
898 | xfs_reclaim_inodes_ag( | |
899 | struct xfs_mount *mp, | |
900 | int flags, | |
901 | int *nr_to_scan) | |
902 | { | |
903 | struct xfs_perag *pag; | |
904 | int error = 0; | |
905 | int last_error = 0; | |
906 | xfs_agnumber_t ag; | |
69b491c2 DC |
907 | int trylock = flags & SYNC_TRYLOCK; |
908 | int skipped; | |
65d0f205 | 909 | |
69b491c2 | 910 | restart: |
65d0f205 | 911 | ag = 0; |
69b491c2 | 912 | skipped = 0; |
65d0f205 DC |
913 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { |
914 | unsigned long first_index = 0; | |
915 | int done = 0; | |
e3a20c0b | 916 | int nr_found = 0; |
65d0f205 DC |
917 | |
918 | ag = pag->pag_agno + 1; | |
919 | ||
69b491c2 DC |
920 | if (trylock) { |
921 | if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | |
922 | skipped++; | |
f83282a8 | 923 | xfs_perag_put(pag); |
69b491c2 DC |
924 | continue; |
925 | } | |
926 | first_index = pag->pag_ici_reclaim_cursor; | |
927 | } else | |
928 | mutex_lock(&pag->pag_ici_reclaim_lock); | |
929 | ||
65d0f205 | 930 | do { |
e3a20c0b DC |
931 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
932 | int i; | |
65d0f205 | 933 | |
1a3e8f3d | 934 | rcu_read_lock(); |
e3a20c0b DC |
935 | nr_found = radix_tree_gang_lookup_tag( |
936 | &pag->pag_ici_root, | |
937 | (void **)batch, first_index, | |
938 | XFS_LOOKUP_BATCH, | |
65d0f205 DC |
939 | XFS_ICI_RECLAIM_TAG); |
940 | if (!nr_found) { | |
b2232219 | 941 | done = 1; |
1a3e8f3d | 942 | rcu_read_unlock(); |
65d0f205 DC |
943 | break; |
944 | } | |
945 | ||
946 | /* | |
e3a20c0b DC |
947 | * Grab the inodes before we drop the lock. if we found |
948 | * nothing, nr == 0 and the loop will be skipped. | |
65d0f205 | 949 | */ |
e3a20c0b DC |
950 | for (i = 0; i < nr_found; i++) { |
951 | struct xfs_inode *ip = batch[i]; | |
952 | ||
953 | if (done || xfs_reclaim_inode_grab(ip, flags)) | |
954 | batch[i] = NULL; | |
955 | ||
956 | /* | |
957 | * Update the index for the next lookup. Catch | |
958 | * overflows into the next AG range which can | |
959 | * occur if we have inodes in the last block of | |
960 | * the AG and we are currently pointing to the | |
961 | * last inode. | |
1a3e8f3d DC |
962 | * |
963 | * Because we may see inodes that are from the | |
964 | * wrong AG due to RCU freeing and | |
965 | * reallocation, only update the index if it | |
966 | * lies in this AG. It was a race that lead us | |
967 | * to see this inode, so another lookup from | |
968 | * the same index will not find it again. | |
e3a20c0b | 969 | */ |
1a3e8f3d DC |
970 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != |
971 | pag->pag_agno) | |
972 | continue; | |
e3a20c0b DC |
973 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
974 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | |
975 | done = 1; | |
976 | } | |
65d0f205 | 977 | |
e3a20c0b | 978 | /* unlock now we've grabbed the inodes. */ |
1a3e8f3d | 979 | rcu_read_unlock(); |
e3a20c0b DC |
980 | |
981 | for (i = 0; i < nr_found; i++) { | |
982 | if (!batch[i]) | |
983 | continue; | |
984 | error = xfs_reclaim_inode(batch[i], pag, flags); | |
985 | if (error && last_error != EFSCORRUPTED) | |
986 | last_error = error; | |
987 | } | |
988 | ||
989 | *nr_to_scan -= XFS_LOOKUP_BATCH; | |
65d0f205 | 990 | |
8daaa831 DC |
991 | cond_resched(); |
992 | ||
e3a20c0b | 993 | } while (nr_found && !done && *nr_to_scan > 0); |
65d0f205 | 994 | |
69b491c2 DC |
995 | if (trylock && !done) |
996 | pag->pag_ici_reclaim_cursor = first_index; | |
997 | else | |
998 | pag->pag_ici_reclaim_cursor = 0; | |
999 | mutex_unlock(&pag->pag_ici_reclaim_lock); | |
65d0f205 DC |
1000 | xfs_perag_put(pag); |
1001 | } | |
69b491c2 DC |
1002 | |
1003 | /* | |
1004 | * if we skipped any AG, and we still have scan count remaining, do | |
1005 | * another pass this time using blocking reclaim semantics (i.e | |
1006 | * waiting on the reclaim locks and ignoring the reclaim cursors). This | |
1007 | * ensure that when we get more reclaimers than AGs we block rather | |
1008 | * than spin trying to execute reclaim. | |
1009 | */ | |
8daaa831 | 1010 | if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { |
69b491c2 DC |
1011 | trylock = 0; |
1012 | goto restart; | |
1013 | } | |
65d0f205 DC |
1014 | return XFS_ERROR(last_error); |
1015 | } | |
1016 | ||
7a3be02b DC |
1017 | int |
1018 | xfs_reclaim_inodes( | |
1019 | xfs_mount_t *mp, | |
7a3be02b DC |
1020 | int mode) |
1021 | { | |
65d0f205 DC |
1022 | int nr_to_scan = INT_MAX; |
1023 | ||
1024 | return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | |
9bf729c0 DC |
1025 | } |
1026 | ||
1027 | /* | |
8daaa831 | 1028 | * Scan a certain number of inodes for reclaim. |
a7b339f1 DC |
1029 | * |
1030 | * When called we make sure that there is a background (fast) inode reclaim in | |
8daaa831 | 1031 | * progress, while we will throttle the speed of reclaim via doing synchronous |
a7b339f1 DC |
1032 | * reclaim of inodes. That means if we come across dirty inodes, we wait for |
1033 | * them to be cleaned, which we hope will not be very long due to the | |
1034 | * background walker having already kicked the IO off on those dirty inodes. | |
9bf729c0 | 1035 | */ |
8daaa831 DC |
1036 | void |
1037 | xfs_reclaim_inodes_nr( | |
1038 | struct xfs_mount *mp, | |
1039 | int nr_to_scan) | |
9bf729c0 | 1040 | { |
8daaa831 DC |
1041 | /* kick background reclaimer and push the AIL */ |
1042 | xfs_syncd_queue_reclaim(mp); | |
1043 | xfs_ail_push_all(mp->m_ail); | |
a7b339f1 | 1044 | |
8daaa831 DC |
1045 | xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); |
1046 | } | |
9bf729c0 | 1047 | |
8daaa831 DC |
1048 | /* |
1049 | * Return the number of reclaimable inodes in the filesystem for | |
1050 | * the shrinker to determine how much to reclaim. | |
1051 | */ | |
1052 | int | |
1053 | xfs_reclaim_inodes_count( | |
1054 | struct xfs_mount *mp) | |
1055 | { | |
1056 | struct xfs_perag *pag; | |
1057 | xfs_agnumber_t ag = 0; | |
1058 | int reclaimable = 0; | |
9bf729c0 | 1059 | |
65d0f205 DC |
1060 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { |
1061 | ag = pag->pag_agno + 1; | |
70e60ce7 DC |
1062 | reclaimable += pag->pag_ici_reclaimable; |
1063 | xfs_perag_put(pag); | |
9bf729c0 | 1064 | } |
9bf729c0 DC |
1065 | return reclaimable; |
1066 | } | |
1067 |