]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
3 | * operating system. INET is implemented using the BSD Socket | |
4 | * interface as the means of communication with the user level. | |
5 | * | |
6 | * Implementation of the Transmission Control Protocol(TCP). | |
7 | * | |
8 | * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ | |
9 | * | |
02c30a84 | 10 | * Authors: Ross Biro |
1da177e4 LT |
11 | * Fred N. van Kempen, <[email protected]> |
12 | * Mark Evans, <[email protected]> | |
13 | * Corey Minyard <[email protected]> | |
14 | * Florian La Roche, <[email protected]> | |
15 | * Charles Hedrick, <[email protected]> | |
16 | * Linus Torvalds, <[email protected]> | |
17 | * Alan Cox, <[email protected]> | |
18 | * Matthew Dillon, <[email protected]> | |
19 | * Arnt Gulbrandsen, <[email protected]> | |
20 | * Jorge Cwik, <[email protected]> | |
21 | */ | |
22 | ||
23 | #include <linux/config.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/sysctl.h> | |
27 | #include <linux/workqueue.h> | |
28 | #include <net/tcp.h> | |
29 | #include <net/inet_common.h> | |
30 | #include <net/xfrm.h> | |
31 | ||
32 | #ifdef CONFIG_SYSCTL | |
33 | #define SYNC_INIT 0 /* let the user enable it */ | |
34 | #else | |
35 | #define SYNC_INIT 1 | |
36 | #endif | |
37 | ||
38 | int sysctl_tcp_tw_recycle; | |
39 | int sysctl_tcp_max_tw_buckets = NR_FILE*2; | |
40 | ||
41 | int sysctl_tcp_syncookies = SYNC_INIT; | |
42 | int sysctl_tcp_abort_on_overflow; | |
43 | ||
8feaf0c0 | 44 | static void tcp_tw_schedule(struct inet_timewait_sock *tw, int timeo); |
1da177e4 LT |
45 | |
46 | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | |
47 | { | |
48 | if (seq == s_win) | |
49 | return 1; | |
50 | if (after(end_seq, s_win) && before(seq, e_win)) | |
51 | return 1; | |
52 | return (seq == e_win && seq == end_seq); | |
53 | } | |
54 | ||
55 | /* New-style handling of TIME_WAIT sockets. */ | |
56 | ||
57 | int tcp_tw_count; | |
58 | ||
1da177e4 LT |
59 | /* |
60 | * * Main purpose of TIME-WAIT state is to close connection gracefully, | |
61 | * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | |
62 | * (and, probably, tail of data) and one or more our ACKs are lost. | |
63 | * * What is TIME-WAIT timeout? It is associated with maximal packet | |
64 | * lifetime in the internet, which results in wrong conclusion, that | |
65 | * it is set to catch "old duplicate segments" wandering out of their path. | |
66 | * It is not quite correct. This timeout is calculated so that it exceeds | |
67 | * maximal retransmission timeout enough to allow to lose one (or more) | |
68 | * segments sent by peer and our ACKs. This time may be calculated from RTO. | |
69 | * * When TIME-WAIT socket receives RST, it means that another end | |
70 | * finally closed and we are allowed to kill TIME-WAIT too. | |
71 | * * Second purpose of TIME-WAIT is catching old duplicate segments. | |
72 | * Well, certainly it is pure paranoia, but if we load TIME-WAIT | |
73 | * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | |
74 | * * If we invented some more clever way to catch duplicates | |
75 | * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | |
76 | * | |
77 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | |
78 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | |
79 | * from the very beginning. | |
80 | * | |
81 | * NOTE. With recycling (and later with fin-wait-2) TW bucket | |
82 | * is _not_ stateless. It means, that strictly speaking we must | |
83 | * spinlock it. I do not want! Well, probability of misbehaviour | |
84 | * is ridiculously low and, seems, we could use some mb() tricks | |
85 | * to avoid misread sequence numbers, states etc. --ANK | |
86 | */ | |
87 | enum tcp_tw_status | |
8feaf0c0 ACM |
88 | tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, |
89 | const struct tcphdr *th) | |
1da177e4 | 90 | { |
8feaf0c0 | 91 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); |
1da177e4 LT |
92 | struct tcp_options_received tmp_opt; |
93 | int paws_reject = 0; | |
94 | ||
95 | tmp_opt.saw_tstamp = 0; | |
8feaf0c0 | 96 | if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) { |
1da177e4 LT |
97 | tcp_parse_options(skb, &tmp_opt, 0); |
98 | ||
99 | if (tmp_opt.saw_tstamp) { | |
8feaf0c0 ACM |
100 | tmp_opt.ts_recent = tcptw->tw_ts_recent; |
101 | tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; | |
1da177e4 LT |
102 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); |
103 | } | |
104 | } | |
105 | ||
106 | if (tw->tw_substate == TCP_FIN_WAIT2) { | |
107 | /* Just repeat all the checks of tcp_rcv_state_process() */ | |
108 | ||
109 | /* Out of window, send ACK */ | |
110 | if (paws_reject || | |
111 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | |
8feaf0c0 ACM |
112 | tcptw->tw_rcv_nxt, |
113 | tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd)) | |
1da177e4 LT |
114 | return TCP_TW_ACK; |
115 | ||
116 | if (th->rst) | |
117 | goto kill; | |
118 | ||
8feaf0c0 | 119 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt)) |
1da177e4 LT |
120 | goto kill_with_rst; |
121 | ||
122 | /* Dup ACK? */ | |
8feaf0c0 | 123 | if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) || |
1da177e4 | 124 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { |
8feaf0c0 | 125 | inet_twsk_put(tw); |
1da177e4 LT |
126 | return TCP_TW_SUCCESS; |
127 | } | |
128 | ||
129 | /* New data or FIN. If new data arrive after half-duplex close, | |
130 | * reset. | |
131 | */ | |
132 | if (!th->fin || | |
8feaf0c0 | 133 | TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) { |
1da177e4 LT |
134 | kill_with_rst: |
135 | tcp_tw_deschedule(tw); | |
8feaf0c0 | 136 | inet_twsk_put(tw); |
1da177e4 LT |
137 | return TCP_TW_RST; |
138 | } | |
139 | ||
140 | /* FIN arrived, enter true time-wait state. */ | |
8feaf0c0 ACM |
141 | tw->tw_substate = TCP_TIME_WAIT; |
142 | tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; | |
1da177e4 | 143 | if (tmp_opt.saw_tstamp) { |
8feaf0c0 ACM |
144 | tcptw->tw_ts_recent_stamp = xtime.tv_sec; |
145 | tcptw->tw_ts_recent = tmp_opt.rcv_tsval; | |
1da177e4 LT |
146 | } |
147 | ||
148 | /* I am shamed, but failed to make it more elegant. | |
149 | * Yes, it is direct reference to IP, which is impossible | |
150 | * to generalize to IPv6. Taking into account that IPv6 | |
151 | * do not undertsnad recycling in any case, it not | |
152 | * a big problem in practice. --ANK */ | |
153 | if (tw->tw_family == AF_INET && | |
8feaf0c0 | 154 | sysctl_tcp_tw_recycle && tcptw->tw_ts_recent_stamp && |
1da177e4 LT |
155 | tcp_v4_tw_remember_stamp(tw)) |
156 | tcp_tw_schedule(tw, tw->tw_timeout); | |
157 | else | |
158 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | |
159 | return TCP_TW_ACK; | |
160 | } | |
161 | ||
162 | /* | |
163 | * Now real TIME-WAIT state. | |
164 | * | |
165 | * RFC 1122: | |
166 | * "When a connection is [...] on TIME-WAIT state [...] | |
167 | * [a TCP] MAY accept a new SYN from the remote TCP to | |
168 | * reopen the connection directly, if it: | |
169 | * | |
170 | * (1) assigns its initial sequence number for the new | |
171 | * connection to be larger than the largest sequence | |
172 | * number it used on the previous connection incarnation, | |
173 | * and | |
174 | * | |
175 | * (2) returns to TIME-WAIT state if the SYN turns out | |
176 | * to be an old duplicate". | |
177 | */ | |
178 | ||
179 | if (!paws_reject && | |
8feaf0c0 | 180 | (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt && |
1da177e4 LT |
181 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { |
182 | /* In window segment, it may be only reset or bare ack. */ | |
183 | ||
184 | if (th->rst) { | |
185 | /* This is TIME_WAIT assasination, in two flavors. | |
186 | * Oh well... nobody has a sufficient solution to this | |
187 | * protocol bug yet. | |
188 | */ | |
189 | if (sysctl_tcp_rfc1337 == 0) { | |
190 | kill: | |
191 | tcp_tw_deschedule(tw); | |
8feaf0c0 | 192 | inet_twsk_put(tw); |
1da177e4 LT |
193 | return TCP_TW_SUCCESS; |
194 | } | |
195 | } | |
196 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | |
197 | ||
198 | if (tmp_opt.saw_tstamp) { | |
8feaf0c0 ACM |
199 | tcptw->tw_ts_recent = tmp_opt.rcv_tsval; |
200 | tcptw->tw_ts_recent_stamp = xtime.tv_sec; | |
1da177e4 LT |
201 | } |
202 | ||
8feaf0c0 | 203 | inet_twsk_put(tw); |
1da177e4 LT |
204 | return TCP_TW_SUCCESS; |
205 | } | |
206 | ||
207 | /* Out of window segment. | |
208 | ||
209 | All the segments are ACKed immediately. | |
210 | ||
211 | The only exception is new SYN. We accept it, if it is | |
212 | not old duplicate and we are not in danger to be killed | |
213 | by delayed old duplicates. RFC check is that it has | |
214 | newer sequence number works at rates <40Mbit/sec. | |
215 | However, if paws works, it is reliable AND even more, | |
216 | we even may relax silly seq space cutoff. | |
217 | ||
218 | RED-PEN: we violate main RFC requirement, if this SYN will appear | |
219 | old duplicate (i.e. we receive RST in reply to SYN-ACK), | |
220 | we must return socket to time-wait state. It is not good, | |
221 | but not fatal yet. | |
222 | */ | |
223 | ||
224 | if (th->syn && !th->rst && !th->ack && !paws_reject && | |
8feaf0c0 ACM |
225 | (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) || |
226 | (tmp_opt.saw_tstamp && | |
227 | (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { | |
228 | u32 isn = tcptw->tw_snd_nxt + 65535 + 2; | |
1da177e4 LT |
229 | if (isn == 0) |
230 | isn++; | |
231 | TCP_SKB_CB(skb)->when = isn; | |
232 | return TCP_TW_SYN; | |
233 | } | |
234 | ||
235 | if (paws_reject) | |
236 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | |
237 | ||
238 | if(!th->rst) { | |
239 | /* In this case we must reset the TIMEWAIT timer. | |
240 | * | |
241 | * If it is ACKless SYN it may be both old duplicate | |
242 | * and new good SYN with random sequence number <rcv_nxt. | |
243 | * Do not reschedule in the last case. | |
244 | */ | |
245 | if (paws_reject || th->ack) | |
246 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | |
247 | ||
248 | /* Send ACK. Note, we do not put the bucket, | |
249 | * it will be released by caller. | |
250 | */ | |
251 | return TCP_TW_ACK; | |
252 | } | |
8feaf0c0 | 253 | inet_twsk_put(tw); |
1da177e4 LT |
254 | return TCP_TW_SUCCESS; |
255 | } | |
256 | ||
1da177e4 LT |
257 | /* |
258 | * Move a socket to time-wait or dead fin-wait-2 state. | |
259 | */ | |
260 | void tcp_time_wait(struct sock *sk, int state, int timeo) | |
261 | { | |
8feaf0c0 ACM |
262 | struct inet_timewait_sock *tw = NULL; |
263 | const struct tcp_sock *tp = tcp_sk(sk); | |
1da177e4 LT |
264 | int recycle_ok = 0; |
265 | ||
266 | if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) | |
267 | recycle_ok = tp->af_specific->remember_stamp(sk); | |
268 | ||
269 | if (tcp_tw_count < sysctl_tcp_max_tw_buckets) | |
c676270b | 270 | tw = inet_twsk_alloc(sk, state); |
1da177e4 | 271 | |
8feaf0c0 ACM |
272 | if (tw != NULL) { |
273 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | |
8feaf0c0 ACM |
274 | const int rto = (tp->rto << 2) - (tp->rto >> 1); |
275 | ||
1da177e4 | 276 | tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; |
8feaf0c0 ACM |
277 | tcptw->tw_rcv_nxt = tp->rcv_nxt; |
278 | tcptw->tw_snd_nxt = tp->snd_nxt; | |
279 | tcptw->tw_rcv_wnd = tcp_receive_window(tp); | |
280 | tcptw->tw_ts_recent = tp->rx_opt.ts_recent; | |
281 | tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; | |
1da177e4 LT |
282 | |
283 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | |
284 | if (tw->tw_family == PF_INET6) { | |
285 | struct ipv6_pinfo *np = inet6_sk(sk); | |
8feaf0c0 | 286 | struct tcp6_timewait_sock *tcp6tw = tcp6_twsk((struct sock *)tw); |
1da177e4 | 287 | |
8feaf0c0 ACM |
288 | ipv6_addr_copy(&tcp6tw->tw_v6_daddr, &np->daddr); |
289 | ipv6_addr_copy(&tcp6tw->tw_v6_rcv_saddr, &np->rcv_saddr); | |
290 | tw->tw_ipv6only = np->ipv6only; | |
c676270b | 291 | } |
1da177e4 LT |
292 | #endif |
293 | /* Linkage updates. */ | |
e48c414e | 294 | __inet_twsk_hashdance(tw, sk, &tcp_hashinfo); |
1da177e4 LT |
295 | |
296 | /* Get the TIME_WAIT timeout firing. */ | |
297 | if (timeo < rto) | |
298 | timeo = rto; | |
299 | ||
300 | if (recycle_ok) { | |
301 | tw->tw_timeout = rto; | |
302 | } else { | |
303 | tw->tw_timeout = TCP_TIMEWAIT_LEN; | |
304 | if (state == TCP_TIME_WAIT) | |
305 | timeo = TCP_TIMEWAIT_LEN; | |
306 | } | |
307 | ||
308 | tcp_tw_schedule(tw, timeo); | |
8feaf0c0 | 309 | inet_twsk_put(tw); |
1da177e4 LT |
310 | } else { |
311 | /* Sorry, if we're out of memory, just CLOSE this | |
312 | * socket up. We've got bigger problems than | |
313 | * non-graceful socket closings. | |
314 | */ | |
315 | if (net_ratelimit()) | |
316 | printk(KERN_INFO "TCP: time wait bucket table overflow\n"); | |
317 | } | |
318 | ||
319 | tcp_update_metrics(sk); | |
320 | tcp_done(sk); | |
321 | } | |
322 | ||
323 | /* Kill off TIME_WAIT sockets once their lifetime has expired. */ | |
324 | static int tcp_tw_death_row_slot; | |
325 | ||
326 | static void tcp_twkill(unsigned long); | |
327 | ||
328 | /* TIME_WAIT reaping mechanism. */ | |
329 | #define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */ | |
330 | #define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) | |
331 | ||
332 | #define TCP_TWKILL_QUOTA 100 | |
333 | ||
334 | static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; | |
335 | static DEFINE_SPINLOCK(tw_death_lock); | |
336 | static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); | |
337 | static void twkill_work(void *); | |
338 | static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); | |
339 | static u32 twkill_thread_slots; | |
340 | ||
341 | /* Returns non-zero if quota exceeded. */ | |
342 | static int tcp_do_twkill_work(int slot, unsigned int quota) | |
343 | { | |
8feaf0c0 | 344 | struct inet_timewait_sock *tw; |
1da177e4 LT |
345 | struct hlist_node *node; |
346 | unsigned int killed; | |
347 | int ret; | |
348 | ||
349 | /* NOTE: compare this to previous version where lock | |
350 | * was released after detaching chain. It was racy, | |
351 | * because tw buckets are scheduled in not serialized context | |
352 | * in 2.3 (with netfilter), and with softnet it is common, because | |
353 | * soft irqs are not sequenced. | |
354 | */ | |
355 | killed = 0; | |
356 | ret = 0; | |
357 | rescan: | |
8feaf0c0 ACM |
358 | inet_twsk_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { |
359 | __inet_twsk_del_dead_node(tw); | |
1da177e4 | 360 | spin_unlock(&tw_death_lock); |
e48c414e | 361 | __inet_twsk_kill(tw, &tcp_hashinfo); |
8feaf0c0 | 362 | inet_twsk_put(tw); |
1da177e4 LT |
363 | killed++; |
364 | spin_lock(&tw_death_lock); | |
365 | if (killed > quota) { | |
366 | ret = 1; | |
367 | break; | |
368 | } | |
369 | ||
370 | /* While we dropped tw_death_lock, another cpu may have | |
371 | * killed off the next TW bucket in the list, therefore | |
372 | * do a fresh re-read of the hlist head node with the | |
373 | * lock reacquired. We still use the hlist traversal | |
374 | * macro in order to get the prefetches. | |
375 | */ | |
376 | goto rescan; | |
377 | } | |
378 | ||
379 | tcp_tw_count -= killed; | |
380 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); | |
381 | ||
382 | return ret; | |
383 | } | |
384 | ||
385 | static void tcp_twkill(unsigned long dummy) | |
386 | { | |
387 | int need_timer, ret; | |
388 | ||
389 | spin_lock(&tw_death_lock); | |
390 | ||
391 | if (tcp_tw_count == 0) | |
392 | goto out; | |
393 | ||
394 | need_timer = 0; | |
395 | ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); | |
396 | if (ret) { | |
397 | twkill_thread_slots |= (1 << tcp_tw_death_row_slot); | |
398 | mb(); | |
399 | schedule_work(&tcp_twkill_work); | |
400 | need_timer = 1; | |
401 | } else { | |
402 | /* We purged the entire slot, anything left? */ | |
403 | if (tcp_tw_count) | |
404 | need_timer = 1; | |
405 | } | |
406 | tcp_tw_death_row_slot = | |
407 | ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); | |
408 | if (need_timer) | |
409 | mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); | |
410 | out: | |
411 | spin_unlock(&tw_death_lock); | |
412 | } | |
413 | ||
414 | extern void twkill_slots_invalid(void); | |
415 | ||
416 | static void twkill_work(void *dummy) | |
417 | { | |
418 | int i; | |
419 | ||
420 | if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) | |
421 | twkill_slots_invalid(); | |
422 | ||
423 | while (twkill_thread_slots) { | |
424 | spin_lock_bh(&tw_death_lock); | |
425 | for (i = 0; i < TCP_TWKILL_SLOTS; i++) { | |
426 | if (!(twkill_thread_slots & (1 << i))) | |
427 | continue; | |
428 | ||
429 | while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { | |
430 | if (need_resched()) { | |
431 | spin_unlock_bh(&tw_death_lock); | |
432 | schedule(); | |
433 | spin_lock_bh(&tw_death_lock); | |
434 | } | |
435 | } | |
436 | ||
437 | twkill_thread_slots &= ~(1 << i); | |
438 | } | |
439 | spin_unlock_bh(&tw_death_lock); | |
440 | } | |
441 | } | |
442 | ||
443 | /* These are always called from BH context. See callers in | |
444 | * tcp_input.c to verify this. | |
445 | */ | |
446 | ||
447 | /* This is for handling early-kills of TIME_WAIT sockets. */ | |
8feaf0c0 | 448 | void tcp_tw_deschedule(struct inet_timewait_sock *tw) |
1da177e4 LT |
449 | { |
450 | spin_lock(&tw_death_lock); | |
8feaf0c0 ACM |
451 | if (inet_twsk_del_dead_node(tw)) { |
452 | inet_twsk_put(tw); | |
1da177e4 LT |
453 | if (--tcp_tw_count == 0) |
454 | del_timer(&tcp_tw_timer); | |
455 | } | |
456 | spin_unlock(&tw_death_lock); | |
e48c414e | 457 | __inet_twsk_kill(tw, &tcp_hashinfo); |
1da177e4 LT |
458 | } |
459 | ||
460 | /* Short-time timewait calendar */ | |
461 | ||
462 | static int tcp_twcal_hand = -1; | |
463 | static int tcp_twcal_jiffie; | |
464 | static void tcp_twcal_tick(unsigned long); | |
465 | static struct timer_list tcp_twcal_timer = | |
466 | TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); | |
467 | static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; | |
468 | ||
8feaf0c0 | 469 | static void tcp_tw_schedule(struct inet_timewait_sock *tw, const int timeo) |
1da177e4 LT |
470 | { |
471 | struct hlist_head *list; | |
472 | int slot; | |
473 | ||
474 | /* timeout := RTO * 3.5 | |
475 | * | |
476 | * 3.5 = 1+2+0.5 to wait for two retransmits. | |
477 | * | |
478 | * RATIONALE: if FIN arrived and we entered TIME-WAIT state, | |
479 | * our ACK acking that FIN can be lost. If N subsequent retransmitted | |
480 | * FINs (or previous seqments) are lost (probability of such event | |
481 | * is p^(N+1), where p is probability to lose single packet and | |
482 | * time to detect the loss is about RTO*(2^N - 1) with exponential | |
483 | * backoff). Normal timewait length is calculated so, that we | |
484 | * waited at least for one retransmitted FIN (maximal RTO is 120sec). | |
485 | * [ BTW Linux. following BSD, violates this requirement waiting | |
486 | * only for 60sec, we should wait at least for 240 secs. | |
487 | * Well, 240 consumes too much of resources 8) | |
488 | * ] | |
489 | * This interval is not reduced to catch old duplicate and | |
490 | * responces to our wandering segments living for two MSLs. | |
491 | * However, if we use PAWS to detect | |
492 | * old duplicates, we can reduce the interval to bounds required | |
493 | * by RTO, rather than MSL. So, if peer understands PAWS, we | |
494 | * kill tw bucket after 3.5*RTO (it is important that this number | |
495 | * is greater than TS tick!) and detect old duplicates with help | |
496 | * of PAWS. | |
497 | */ | |
498 | slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; | |
499 | ||
500 | spin_lock(&tw_death_lock); | |
501 | ||
502 | /* Unlink it, if it was scheduled */ | |
8feaf0c0 | 503 | if (inet_twsk_del_dead_node(tw)) |
1da177e4 LT |
504 | tcp_tw_count--; |
505 | else | |
506 | atomic_inc(&tw->tw_refcnt); | |
507 | ||
508 | if (slot >= TCP_TW_RECYCLE_SLOTS) { | |
509 | /* Schedule to slow timer */ | |
510 | if (timeo >= TCP_TIMEWAIT_LEN) { | |
511 | slot = TCP_TWKILL_SLOTS-1; | |
512 | } else { | |
513 | slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; | |
514 | if (slot >= TCP_TWKILL_SLOTS) | |
515 | slot = TCP_TWKILL_SLOTS-1; | |
516 | } | |
517 | tw->tw_ttd = jiffies + timeo; | |
518 | slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); | |
519 | list = &tcp_tw_death_row[slot]; | |
520 | } else { | |
521 | tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); | |
522 | ||
523 | if (tcp_twcal_hand < 0) { | |
524 | tcp_twcal_hand = 0; | |
525 | tcp_twcal_jiffie = jiffies; | |
526 | tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); | |
527 | add_timer(&tcp_twcal_timer); | |
528 | } else { | |
529 | if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) | |
530 | mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); | |
531 | slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); | |
532 | } | |
533 | list = &tcp_twcal_row[slot]; | |
534 | } | |
535 | ||
536 | hlist_add_head(&tw->tw_death_node, list); | |
537 | ||
538 | if (tcp_tw_count++ == 0) | |
539 | mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); | |
540 | spin_unlock(&tw_death_lock); | |
541 | } | |
542 | ||
543 | void tcp_twcal_tick(unsigned long dummy) | |
544 | { | |
545 | int n, slot; | |
546 | unsigned long j; | |
547 | unsigned long now = jiffies; | |
548 | int killed = 0; | |
549 | int adv = 0; | |
550 | ||
551 | spin_lock(&tw_death_lock); | |
552 | if (tcp_twcal_hand < 0) | |
553 | goto out; | |
554 | ||
555 | slot = tcp_twcal_hand; | |
556 | j = tcp_twcal_jiffie; | |
557 | ||
558 | for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { | |
559 | if (time_before_eq(j, now)) { | |
560 | struct hlist_node *node, *safe; | |
8feaf0c0 | 561 | struct inet_timewait_sock *tw; |
1da177e4 | 562 | |
8feaf0c0 ACM |
563 | inet_twsk_for_each_inmate_safe(tw, node, safe, |
564 | &tcp_twcal_row[slot]) { | |
565 | __inet_twsk_del_dead_node(tw); | |
e48c414e | 566 | __inet_twsk_kill(tw, &tcp_hashinfo); |
8feaf0c0 | 567 | inet_twsk_put(tw); |
1da177e4 LT |
568 | killed++; |
569 | } | |
570 | } else { | |
571 | if (!adv) { | |
572 | adv = 1; | |
573 | tcp_twcal_jiffie = j; | |
574 | tcp_twcal_hand = slot; | |
575 | } | |
576 | ||
577 | if (!hlist_empty(&tcp_twcal_row[slot])) { | |
578 | mod_timer(&tcp_twcal_timer, j); | |
579 | goto out; | |
580 | } | |
581 | } | |
582 | j += (1<<TCP_TW_RECYCLE_TICK); | |
583 | slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); | |
584 | } | |
585 | tcp_twcal_hand = -1; | |
586 | ||
587 | out: | |
588 | if ((tcp_tw_count -= killed) == 0) | |
589 | del_timer(&tcp_tw_timer); | |
590 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); | |
591 | spin_unlock(&tw_death_lock); | |
592 | } | |
593 | ||
594 | /* This is not only more efficient than what we used to do, it eliminates | |
595 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | |
596 | * | |
597 | * Actually, we could lots of memory writes here. tp of listening | |
598 | * socket contains all necessary default parameters. | |
599 | */ | |
60236fdd | 600 | struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb) |
1da177e4 | 601 | { |
87d11ceb | 602 | struct sock *newsk = sk_clone(sk, GFP_ATOMIC); |
1da177e4 | 603 | |
87d11ceb | 604 | if (newsk != NULL) { |
2e6599cb ACM |
605 | struct inet_request_sock *ireq = inet_rsk(req); |
606 | struct tcp_request_sock *treq = tcp_rsk(req); | |
a55ebcc4 | 607 | struct inet_sock *newinet = inet_sk(newsk); |
1da177e4 | 608 | struct tcp_sock *newtp; |
1da177e4 | 609 | |
1da177e4 | 610 | newsk->sk_state = TCP_SYN_RECV; |
a55ebcc4 | 611 | newinet->bind_hash = NULL; |
1da177e4 LT |
612 | |
613 | /* Clone the TCP header template */ | |
a55ebcc4 | 614 | newinet->dport = ireq->rmt_port; |
1da177e4 LT |
615 | newsk->sk_write_space = sk_stream_write_space; |
616 | ||
1da177e4 LT |
617 | /* Now setup tcp_sock */ |
618 | newtp = tcp_sk(newsk); | |
619 | newtp->pred_flags = 0; | |
2e6599cb | 620 | newtp->rcv_nxt = treq->rcv_isn + 1; |
87d11ceb | 621 | newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1; |
1da177e4 LT |
622 | |
623 | tcp_prequeue_init(newtp); | |
624 | ||
2e6599cb | 625 | tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn); |
1da177e4 LT |
626 | |
627 | newtp->retransmits = 0; | |
628 | newtp->backoff = 0; | |
629 | newtp->srtt = 0; | |
630 | newtp->mdev = TCP_TIMEOUT_INIT; | |
631 | newtp->rto = TCP_TIMEOUT_INIT; | |
632 | ||
633 | newtp->packets_out = 0; | |
634 | newtp->left_out = 0; | |
635 | newtp->retrans_out = 0; | |
636 | newtp->sacked_out = 0; | |
637 | newtp->fackets_out = 0; | |
638 | newtp->snd_ssthresh = 0x7fffffff; | |
639 | ||
640 | /* So many TCP implementations out there (incorrectly) count the | |
641 | * initial SYN frame in their delayed-ACK and congestion control | |
642 | * algorithms that we must have the following bandaid to talk | |
643 | * efficiently to them. -DaveM | |
644 | */ | |
645 | newtp->snd_cwnd = 2; | |
646 | newtp->snd_cwnd_cnt = 0; | |
647 | ||
648 | newtp->frto_counter = 0; | |
649 | newtp->frto_highmark = 0; | |
650 | ||
317a76f9 SH |
651 | newtp->ca_ops = &tcp_reno; |
652 | ||
1da177e4 LT |
653 | tcp_set_ca_state(newtp, TCP_CA_Open); |
654 | tcp_init_xmit_timers(newsk); | |
655 | skb_queue_head_init(&newtp->out_of_order_queue); | |
2e6599cb ACM |
656 | newtp->rcv_wup = treq->rcv_isn + 1; |
657 | newtp->write_seq = treq->snt_isn + 1; | |
1da177e4 | 658 | newtp->pushed_seq = newtp->write_seq; |
2e6599cb | 659 | newtp->copied_seq = treq->rcv_isn + 1; |
1da177e4 LT |
660 | |
661 | newtp->rx_opt.saw_tstamp = 0; | |
662 | ||
663 | newtp->rx_opt.dsack = 0; | |
664 | newtp->rx_opt.eff_sacks = 0; | |
665 | ||
666 | newtp->probes_out = 0; | |
667 | newtp->rx_opt.num_sacks = 0; | |
668 | newtp->urg_data = 0; | |
0e87506f ACM |
669 | /* Deinitialize accept_queue to trap illegal accesses. */ |
670 | memset(&newtp->accept_queue, 0, sizeof(newtp->accept_queue)); | |
1da177e4 | 671 | |
1da177e4 LT |
672 | if (sock_flag(newsk, SOCK_KEEPOPEN)) |
673 | tcp_reset_keepalive_timer(newsk, | |
674 | keepalive_time_when(newtp)); | |
1da177e4 | 675 | |
2e6599cb ACM |
676 | newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; |
677 | if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) { | |
1da177e4 LT |
678 | if (sysctl_tcp_fack) |
679 | newtp->rx_opt.sack_ok |= 2; | |
680 | } | |
681 | newtp->window_clamp = req->window_clamp; | |
682 | newtp->rcv_ssthresh = req->rcv_wnd; | |
683 | newtp->rcv_wnd = req->rcv_wnd; | |
2e6599cb | 684 | newtp->rx_opt.wscale_ok = ireq->wscale_ok; |
1da177e4 | 685 | if (newtp->rx_opt.wscale_ok) { |
2e6599cb ACM |
686 | newtp->rx_opt.snd_wscale = ireq->snd_wscale; |
687 | newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; | |
1da177e4 LT |
688 | } else { |
689 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | |
690 | newtp->window_clamp = min(newtp->window_clamp, 65535U); | |
691 | } | |
692 | newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; | |
693 | newtp->max_window = newtp->snd_wnd; | |
694 | ||
695 | if (newtp->rx_opt.tstamp_ok) { | |
696 | newtp->rx_opt.ts_recent = req->ts_recent; | |
697 | newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; | |
698 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | |
699 | } else { | |
700 | newtp->rx_opt.ts_recent_stamp = 0; | |
701 | newtp->tcp_header_len = sizeof(struct tcphdr); | |
702 | } | |
703 | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) | |
704 | newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; | |
705 | newtp->rx_opt.mss_clamp = req->mss; | |
706 | TCP_ECN_openreq_child(newtp, req); | |
707 | if (newtp->ecn_flags&TCP_ECN_OK) | |
708 | sock_set_flag(newsk, SOCK_NO_LARGESEND); | |
709 | ||
1da177e4 LT |
710 | TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); |
711 | } | |
712 | return newsk; | |
713 | } | |
714 | ||
715 | /* | |
716 | * Process an incoming packet for SYN_RECV sockets represented | |
60236fdd | 717 | * as a request_sock. |
1da177e4 LT |
718 | */ |
719 | ||
720 | struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, | |
60236fdd ACM |
721 | struct request_sock *req, |
722 | struct request_sock **prev) | |
1da177e4 LT |
723 | { |
724 | struct tcphdr *th = skb->h.th; | |
725 | struct tcp_sock *tp = tcp_sk(sk); | |
726 | u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | |
727 | int paws_reject = 0; | |
728 | struct tcp_options_received tmp_opt; | |
729 | struct sock *child; | |
730 | ||
731 | tmp_opt.saw_tstamp = 0; | |
732 | if (th->doff > (sizeof(struct tcphdr)>>2)) { | |
733 | tcp_parse_options(skb, &tmp_opt, 0); | |
734 | ||
735 | if (tmp_opt.saw_tstamp) { | |
736 | tmp_opt.ts_recent = req->ts_recent; | |
737 | /* We do not store true stamp, but it is not required, | |
738 | * it can be estimated (approximately) | |
739 | * from another data. | |
740 | */ | |
741 | tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); | |
742 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | |
743 | } | |
744 | } | |
745 | ||
746 | /* Check for pure retransmitted SYN. */ | |
2e6599cb | 747 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && |
1da177e4 LT |
748 | flg == TCP_FLAG_SYN && |
749 | !paws_reject) { | |
750 | /* | |
751 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | |
752 | * this case on figure 6 and figure 8, but formal | |
753 | * protocol description says NOTHING. | |
754 | * To be more exact, it says that we should send ACK, | |
755 | * because this segment (at least, if it has no data) | |
756 | * is out of window. | |
757 | * | |
758 | * CONCLUSION: RFC793 (even with RFC1122) DOES NOT | |
759 | * describe SYN-RECV state. All the description | |
760 | * is wrong, we cannot believe to it and should | |
761 | * rely only on common sense and implementation | |
762 | * experience. | |
763 | * | |
764 | * Enforce "SYN-ACK" according to figure 8, figure 6 | |
765 | * of RFC793, fixed by RFC1122. | |
766 | */ | |
60236fdd | 767 | req->rsk_ops->rtx_syn_ack(sk, req, NULL); |
1da177e4 LT |
768 | return NULL; |
769 | } | |
770 | ||
771 | /* Further reproduces section "SEGMENT ARRIVES" | |
772 | for state SYN-RECEIVED of RFC793. | |
773 | It is broken, however, it does not work only | |
774 | when SYNs are crossed. | |
775 | ||
776 | You would think that SYN crossing is impossible here, since | |
777 | we should have a SYN_SENT socket (from connect()) on our end, | |
778 | but this is not true if the crossed SYNs were sent to both | |
779 | ends by a malicious third party. We must defend against this, | |
780 | and to do that we first verify the ACK (as per RFC793, page | |
781 | 36) and reset if it is invalid. Is this a true full defense? | |
782 | To convince ourselves, let us consider a way in which the ACK | |
783 | test can still pass in this 'malicious crossed SYNs' case. | |
784 | Malicious sender sends identical SYNs (and thus identical sequence | |
785 | numbers) to both A and B: | |
786 | ||
787 | A: gets SYN, seq=7 | |
788 | B: gets SYN, seq=7 | |
789 | ||
790 | By our good fortune, both A and B select the same initial | |
791 | send sequence number of seven :-) | |
792 | ||
793 | A: sends SYN|ACK, seq=7, ack_seq=8 | |
794 | B: sends SYN|ACK, seq=7, ack_seq=8 | |
795 | ||
796 | So we are now A eating this SYN|ACK, ACK test passes. So | |
797 | does sequence test, SYN is truncated, and thus we consider | |
798 | it a bare ACK. | |
799 | ||
800 | If tp->defer_accept, we silently drop this bare ACK. Otherwise, | |
801 | we create an established connection. Both ends (listening sockets) | |
802 | accept the new incoming connection and try to talk to each other. 8-) | |
803 | ||
804 | Note: This case is both harmless, and rare. Possibility is about the | |
805 | same as us discovering intelligent life on another plant tomorrow. | |
806 | ||
807 | But generally, we should (RFC lies!) to accept ACK | |
808 | from SYNACK both here and in tcp_rcv_state_process(). | |
809 | tcp_rcv_state_process() does not, hence, we do not too. | |
810 | ||
811 | Note that the case is absolutely generic: | |
812 | we cannot optimize anything here without | |
813 | violating protocol. All the checks must be made | |
814 | before attempt to create socket. | |
815 | */ | |
816 | ||
817 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | |
818 | * and the incoming segment acknowledges something not yet | |
819 | * sent (the segment carries an unaccaptable ACK) ... | |
820 | * a reset is sent." | |
821 | * | |
822 | * Invalid ACK: reset will be sent by listening socket | |
823 | */ | |
824 | if ((flg & TCP_FLAG_ACK) && | |
2e6599cb | 825 | (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1)) |
1da177e4 LT |
826 | return sk; |
827 | ||
828 | /* Also, it would be not so bad idea to check rcv_tsecr, which | |
829 | * is essentially ACK extension and too early or too late values | |
830 | * should cause reset in unsynchronized states. | |
831 | */ | |
832 | ||
833 | /* RFC793: "first check sequence number". */ | |
834 | ||
835 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | |
2e6599cb | 836 | tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) { |
1da177e4 LT |
837 | /* Out of window: send ACK and drop. */ |
838 | if (!(flg & TCP_FLAG_RST)) | |
60236fdd | 839 | req->rsk_ops->send_ack(skb, req); |
1da177e4 LT |
840 | if (paws_reject) |
841 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | |
842 | return NULL; | |
843 | } | |
844 | ||
845 | /* In sequence, PAWS is OK. */ | |
846 | ||
2e6599cb | 847 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1)) |
1da177e4 LT |
848 | req->ts_recent = tmp_opt.rcv_tsval; |
849 | ||
2e6599cb | 850 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { |
1da177e4 | 851 | /* Truncate SYN, it is out of window starting |
2e6599cb | 852 | at tcp_rsk(req)->rcv_isn + 1. */ |
1da177e4 LT |
853 | flg &= ~TCP_FLAG_SYN; |
854 | } | |
855 | ||
856 | /* RFC793: "second check the RST bit" and | |
857 | * "fourth, check the SYN bit" | |
858 | */ | |
859 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) | |
860 | goto embryonic_reset; | |
861 | ||
862 | /* ACK sequence verified above, just make sure ACK is | |
863 | * set. If ACK not set, just silently drop the packet. | |
864 | */ | |
865 | if (!(flg & TCP_FLAG_ACK)) | |
866 | return NULL; | |
867 | ||
868 | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ | |
2e6599cb ACM |
869 | if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { |
870 | inet_rsk(req)->acked = 1; | |
1da177e4 LT |
871 | return NULL; |
872 | } | |
873 | ||
874 | /* OK, ACK is valid, create big socket and | |
875 | * feed this segment to it. It will repeat all | |
876 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | |
877 | * ESTABLISHED STATE. If it will be dropped after | |
878 | * socket is created, wait for troubles. | |
879 | */ | |
880 | child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); | |
881 | if (child == NULL) | |
882 | goto listen_overflow; | |
883 | ||
884 | tcp_synq_unlink(tp, req, prev); | |
885 | tcp_synq_removed(sk, req); | |
886 | ||
887 | tcp_acceptq_queue(sk, req, child); | |
888 | return child; | |
889 | ||
890 | listen_overflow: | |
891 | if (!sysctl_tcp_abort_on_overflow) { | |
2e6599cb | 892 | inet_rsk(req)->acked = 1; |
1da177e4 LT |
893 | return NULL; |
894 | } | |
895 | ||
896 | embryonic_reset: | |
897 | NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); | |
898 | if (!(flg & TCP_FLAG_RST)) | |
60236fdd | 899 | req->rsk_ops->send_reset(skb); |
1da177e4 LT |
900 | |
901 | tcp_synq_drop(sk, req, prev); | |
902 | return NULL; | |
903 | } | |
904 | ||
905 | /* | |
906 | * Queue segment on the new socket if the new socket is active, | |
907 | * otherwise we just shortcircuit this and continue with | |
908 | * the new socket. | |
909 | */ | |
910 | ||
911 | int tcp_child_process(struct sock *parent, struct sock *child, | |
912 | struct sk_buff *skb) | |
913 | { | |
914 | int ret = 0; | |
915 | int state = child->sk_state; | |
916 | ||
917 | if (!sock_owned_by_user(child)) { | |
918 | ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); | |
919 | ||
920 | /* Wakeup parent, send SIGIO */ | |
921 | if (state == TCP_SYN_RECV && child->sk_state != state) | |
922 | parent->sk_data_ready(parent, 0); | |
923 | } else { | |
924 | /* Alas, it is possible again, because we do lookup | |
925 | * in main socket hash table and lock on listening | |
926 | * socket does not protect us more. | |
927 | */ | |
928 | sk_add_backlog(child, skb); | |
929 | } | |
930 | ||
931 | bh_unlock_sock(child); | |
932 | sock_put(child); | |
933 | return ret; | |
934 | } | |
935 | ||
936 | EXPORT_SYMBOL(tcp_check_req); | |
937 | EXPORT_SYMBOL(tcp_child_process); | |
938 | EXPORT_SYMBOL(tcp_create_openreq_child); | |
939 | EXPORT_SYMBOL(tcp_timewait_state_process); | |
940 | EXPORT_SYMBOL(tcp_tw_deschedule); |