]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/time.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | * | |
6 | * This file contains the interface functions for the various | |
7 | * time related system calls: time, stime, gettimeofday, settimeofday, | |
8 | * adjtime | |
9 | */ | |
10 | /* | |
11 | * Modification history kernel/time.c | |
6fa6c3b1 | 12 | * |
1da177e4 | 13 | * 1993-09-02 Philip Gladstone |
6fa6c3b1 | 14 | * Created file with time related functions from sched.c and adjtimex() |
1da177e4 LT |
15 | * 1993-10-08 Torsten Duwe |
16 | * adjtime interface update and CMOS clock write code | |
17 | * 1995-08-13 Torsten Duwe | |
18 | * kernel PLL updated to 1994-12-13 specs (rfc-1589) | |
19 | * 1999-01-16 Ulrich Windl | |
20 | * Introduced error checking for many cases in adjtimex(). | |
21 | * Updated NTP code according to technical memorandum Jan '96 | |
22 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
23 | * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | |
24 | * (Even though the technical memorandum forbids it) | |
25 | * 2004-07-14 Christoph Lameter | |
26 | * Added getnstimeofday to allow the posix timer functions to return | |
27 | * with nanosecond accuracy | |
28 | */ | |
29 | ||
30 | #include <linux/module.h> | |
31 | #include <linux/timex.h> | |
c59ede7b | 32 | #include <linux/capability.h> |
2c622148 | 33 | #include <linux/clocksource.h> |
1da177e4 | 34 | #include <linux/errno.h> |
1da177e4 LT |
35 | #include <linux/syscalls.h> |
36 | #include <linux/security.h> | |
37 | #include <linux/fs.h> | |
1da177e4 LT |
38 | |
39 | #include <asm/uaccess.h> | |
40 | #include <asm/unistd.h> | |
41 | ||
bdc80787 PA |
42 | #include "timeconst.h" |
43 | ||
6fa6c3b1 | 44 | /* |
1da177e4 LT |
45 | * The timezone where the local system is located. Used as a default by some |
46 | * programs who obtain this value by using gettimeofday. | |
47 | */ | |
48 | struct timezone sys_tz; | |
49 | ||
50 | EXPORT_SYMBOL(sys_tz); | |
51 | ||
52 | #ifdef __ARCH_WANT_SYS_TIME | |
53 | ||
54 | /* | |
55 | * sys_time() can be implemented in user-level using | |
56 | * sys_gettimeofday(). Is this for backwards compatibility? If so, | |
57 | * why not move it into the appropriate arch directory (for those | |
58 | * architectures that need it). | |
59 | */ | |
60 | asmlinkage long sys_time(time_t __user * tloc) | |
61 | { | |
f20bf612 | 62 | time_t i = get_seconds(); |
1da177e4 LT |
63 | |
64 | if (tloc) { | |
20082208 | 65 | if (put_user(i,tloc)) |
1da177e4 LT |
66 | i = -EFAULT; |
67 | } | |
68 | return i; | |
69 | } | |
70 | ||
71 | /* | |
72 | * sys_stime() can be implemented in user-level using | |
73 | * sys_settimeofday(). Is this for backwards compatibility? If so, | |
74 | * why not move it into the appropriate arch directory (for those | |
75 | * architectures that need it). | |
76 | */ | |
6fa6c3b1 | 77 | |
1da177e4 LT |
78 | asmlinkage long sys_stime(time_t __user *tptr) |
79 | { | |
80 | struct timespec tv; | |
81 | int err; | |
82 | ||
83 | if (get_user(tv.tv_sec, tptr)) | |
84 | return -EFAULT; | |
85 | ||
86 | tv.tv_nsec = 0; | |
87 | ||
88 | err = security_settime(&tv, NULL); | |
89 | if (err) | |
90 | return err; | |
91 | ||
92 | do_settimeofday(&tv); | |
93 | return 0; | |
94 | } | |
95 | ||
96 | #endif /* __ARCH_WANT_SYS_TIME */ | |
97 | ||
bdc80787 PA |
98 | asmlinkage long sys_gettimeofday(struct timeval __user *tv, |
99 | struct timezone __user *tz) | |
1da177e4 LT |
100 | { |
101 | if (likely(tv != NULL)) { | |
102 | struct timeval ktv; | |
103 | do_gettimeofday(&ktv); | |
104 | if (copy_to_user(tv, &ktv, sizeof(ktv))) | |
105 | return -EFAULT; | |
106 | } | |
107 | if (unlikely(tz != NULL)) { | |
108 | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | |
109 | return -EFAULT; | |
110 | } | |
111 | return 0; | |
112 | } | |
113 | ||
114 | /* | |
115 | * Adjust the time obtained from the CMOS to be UTC time instead of | |
116 | * local time. | |
6fa6c3b1 | 117 | * |
1da177e4 LT |
118 | * This is ugly, but preferable to the alternatives. Otherwise we |
119 | * would either need to write a program to do it in /etc/rc (and risk | |
6fa6c3b1 | 120 | * confusion if the program gets run more than once; it would also be |
1da177e4 LT |
121 | * hard to make the program warp the clock precisely n hours) or |
122 | * compile in the timezone information into the kernel. Bad, bad.... | |
123 | * | |
bdc80787 | 124 | * - TYT, 1992-01-01 |
1da177e4 LT |
125 | * |
126 | * The best thing to do is to keep the CMOS clock in universal time (UTC) | |
127 | * as real UNIX machines always do it. This avoids all headaches about | |
128 | * daylight saving times and warping kernel clocks. | |
129 | */ | |
77933d72 | 130 | static inline void warp_clock(void) |
1da177e4 LT |
131 | { |
132 | write_seqlock_irq(&xtime_lock); | |
133 | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | |
134 | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | |
1001d0a9 | 135 | update_xtime_cache(0); |
1da177e4 LT |
136 | write_sequnlock_irq(&xtime_lock); |
137 | clock_was_set(); | |
138 | } | |
139 | ||
140 | /* | |
141 | * In case for some reason the CMOS clock has not already been running | |
142 | * in UTC, but in some local time: The first time we set the timezone, | |
143 | * we will warp the clock so that it is ticking UTC time instead of | |
144 | * local time. Presumably, if someone is setting the timezone then we | |
145 | * are running in an environment where the programs understand about | |
146 | * timezones. This should be done at boot time in the /etc/rc script, | |
147 | * as soon as possible, so that the clock can be set right. Otherwise, | |
148 | * various programs will get confused when the clock gets warped. | |
149 | */ | |
150 | ||
151 | int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) | |
152 | { | |
153 | static int firsttime = 1; | |
154 | int error = 0; | |
155 | ||
951069e3 | 156 | if (tv && !timespec_valid(tv)) |
718bcceb TG |
157 | return -EINVAL; |
158 | ||
1da177e4 LT |
159 | error = security_settime(tv, tz); |
160 | if (error) | |
161 | return error; | |
162 | ||
163 | if (tz) { | |
164 | /* SMP safe, global irq locking makes it work. */ | |
165 | sys_tz = *tz; | |
2c622148 | 166 | update_vsyscall_tz(); |
1da177e4 LT |
167 | if (firsttime) { |
168 | firsttime = 0; | |
169 | if (!tv) | |
170 | warp_clock(); | |
171 | } | |
172 | } | |
173 | if (tv) | |
174 | { | |
175 | /* SMP safe, again the code in arch/foo/time.c should | |
176 | * globally block out interrupts when it runs. | |
177 | */ | |
178 | return do_settimeofday(tv); | |
179 | } | |
180 | return 0; | |
181 | } | |
182 | ||
183 | asmlinkage long sys_settimeofday(struct timeval __user *tv, | |
184 | struct timezone __user *tz) | |
185 | { | |
186 | struct timeval user_tv; | |
187 | struct timespec new_ts; | |
188 | struct timezone new_tz; | |
189 | ||
190 | if (tv) { | |
191 | if (copy_from_user(&user_tv, tv, sizeof(*tv))) | |
192 | return -EFAULT; | |
193 | new_ts.tv_sec = user_tv.tv_sec; | |
194 | new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | |
195 | } | |
196 | if (tz) { | |
197 | if (copy_from_user(&new_tz, tz, sizeof(*tz))) | |
198 | return -EFAULT; | |
199 | } | |
200 | ||
201 | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | |
202 | } | |
203 | ||
1da177e4 LT |
204 | asmlinkage long sys_adjtimex(struct timex __user *txc_p) |
205 | { | |
206 | struct timex txc; /* Local copy of parameter */ | |
207 | int ret; | |
208 | ||
209 | /* Copy the user data space into the kernel copy | |
210 | * structure. But bear in mind that the structures | |
211 | * may change | |
212 | */ | |
213 | if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | |
214 | return -EFAULT; | |
215 | ret = do_adjtimex(&txc); | |
216 | return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | |
217 | } | |
218 | ||
1da177e4 LT |
219 | /** |
220 | * current_fs_time - Return FS time | |
221 | * @sb: Superblock. | |
222 | * | |
8ba8e95e | 223 | * Return the current time truncated to the time granularity supported by |
1da177e4 LT |
224 | * the fs. |
225 | */ | |
226 | struct timespec current_fs_time(struct super_block *sb) | |
227 | { | |
228 | struct timespec now = current_kernel_time(); | |
229 | return timespec_trunc(now, sb->s_time_gran); | |
230 | } | |
231 | EXPORT_SYMBOL(current_fs_time); | |
232 | ||
753e9c5c ED |
233 | /* |
234 | * Convert jiffies to milliseconds and back. | |
235 | * | |
236 | * Avoid unnecessary multiplications/divisions in the | |
237 | * two most common HZ cases: | |
238 | */ | |
239 | unsigned int inline jiffies_to_msecs(const unsigned long j) | |
240 | { | |
241 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | |
242 | return (MSEC_PER_SEC / HZ) * j; | |
243 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | |
244 | return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); | |
245 | #else | |
bdc80787 PA |
246 | # if BITS_PER_LONG == 32 |
247 | return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; | |
248 | # else | |
249 | return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; | |
250 | # endif | |
753e9c5c ED |
251 | #endif |
252 | } | |
253 | EXPORT_SYMBOL(jiffies_to_msecs); | |
254 | ||
255 | unsigned int inline jiffies_to_usecs(const unsigned long j) | |
256 | { | |
257 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | |
258 | return (USEC_PER_SEC / HZ) * j; | |
259 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | |
260 | return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); | |
261 | #else | |
bdc80787 PA |
262 | # if BITS_PER_LONG == 32 |
263 | return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; | |
264 | # else | |
265 | return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; | |
266 | # endif | |
753e9c5c ED |
267 | #endif |
268 | } | |
269 | EXPORT_SYMBOL(jiffies_to_usecs); | |
270 | ||
1da177e4 | 271 | /** |
8ba8e95e | 272 | * timespec_trunc - Truncate timespec to a granularity |
1da177e4 | 273 | * @t: Timespec |
8ba8e95e | 274 | * @gran: Granularity in ns. |
1da177e4 | 275 | * |
8ba8e95e | 276 | * Truncate a timespec to a granularity. gran must be smaller than a second. |
1da177e4 LT |
277 | * Always rounds down. |
278 | * | |
279 | * This function should be only used for timestamps returned by | |
280 | * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | |
3eb05676 | 281 | * it doesn't handle the better resolution of the latter. |
1da177e4 LT |
282 | */ |
283 | struct timespec timespec_trunc(struct timespec t, unsigned gran) | |
284 | { | |
285 | /* | |
286 | * Division is pretty slow so avoid it for common cases. | |
287 | * Currently current_kernel_time() never returns better than | |
288 | * jiffies resolution. Exploit that. | |
289 | */ | |
290 | if (gran <= jiffies_to_usecs(1) * 1000) { | |
291 | /* nothing */ | |
292 | } else if (gran == 1000000000) { | |
293 | t.tv_nsec = 0; | |
294 | } else { | |
295 | t.tv_nsec -= t.tv_nsec % gran; | |
296 | } | |
297 | return t; | |
298 | } | |
299 | EXPORT_SYMBOL(timespec_trunc); | |
300 | ||
cf3c769b | 301 | #ifndef CONFIG_GENERIC_TIME |
1da177e4 LT |
302 | /* |
303 | * Simulate gettimeofday using do_gettimeofday which only allows a timeval | |
304 | * and therefore only yields usec accuracy | |
305 | */ | |
306 | void getnstimeofday(struct timespec *tv) | |
307 | { | |
308 | struct timeval x; | |
309 | ||
310 | do_gettimeofday(&x); | |
311 | tv->tv_sec = x.tv_sec; | |
312 | tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; | |
313 | } | |
c6ecf7ed | 314 | EXPORT_SYMBOL_GPL(getnstimeofday); |
1da177e4 LT |
315 | #endif |
316 | ||
753be622 TG |
317 | /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. |
318 | * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | |
319 | * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | |
320 | * | |
321 | * [For the Julian calendar (which was used in Russia before 1917, | |
322 | * Britain & colonies before 1752, anywhere else before 1582, | |
323 | * and is still in use by some communities) leave out the | |
324 | * -year/100+year/400 terms, and add 10.] | |
325 | * | |
326 | * This algorithm was first published by Gauss (I think). | |
327 | * | |
328 | * WARNING: this function will overflow on 2106-02-07 06:28:16 on | |
3eb05676 | 329 | * machines where long is 32-bit! (However, as time_t is signed, we |
753be622 TG |
330 | * will already get problems at other places on 2038-01-19 03:14:08) |
331 | */ | |
332 | unsigned long | |
f4818900 IM |
333 | mktime(const unsigned int year0, const unsigned int mon0, |
334 | const unsigned int day, const unsigned int hour, | |
335 | const unsigned int min, const unsigned int sec) | |
753be622 | 336 | { |
f4818900 IM |
337 | unsigned int mon = mon0, year = year0; |
338 | ||
339 | /* 1..12 -> 11,12,1..10 */ | |
340 | if (0 >= (int) (mon -= 2)) { | |
341 | mon += 12; /* Puts Feb last since it has leap day */ | |
753be622 TG |
342 | year -= 1; |
343 | } | |
344 | ||
345 | return ((((unsigned long) | |
346 | (year/4 - year/100 + year/400 + 367*mon/12 + day) + | |
347 | year*365 - 719499 | |
348 | )*24 + hour /* now have hours */ | |
349 | )*60 + min /* now have minutes */ | |
350 | )*60 + sec; /* finally seconds */ | |
351 | } | |
352 | ||
199e7056 AM |
353 | EXPORT_SYMBOL(mktime); |
354 | ||
753be622 TG |
355 | /** |
356 | * set_normalized_timespec - set timespec sec and nsec parts and normalize | |
357 | * | |
358 | * @ts: pointer to timespec variable to be set | |
359 | * @sec: seconds to set | |
360 | * @nsec: nanoseconds to set | |
361 | * | |
362 | * Set seconds and nanoseconds field of a timespec variable and | |
363 | * normalize to the timespec storage format | |
364 | * | |
365 | * Note: The tv_nsec part is always in the range of | |
bdc80787 | 366 | * 0 <= tv_nsec < NSEC_PER_SEC |
753be622 TG |
367 | * For negative values only the tv_sec field is negative ! |
368 | */ | |
f4818900 | 369 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) |
753be622 TG |
370 | { |
371 | while (nsec >= NSEC_PER_SEC) { | |
372 | nsec -= NSEC_PER_SEC; | |
373 | ++sec; | |
374 | } | |
375 | while (nsec < 0) { | |
376 | nsec += NSEC_PER_SEC; | |
377 | --sec; | |
378 | } | |
379 | ts->tv_sec = sec; | |
380 | ts->tv_nsec = nsec; | |
381 | } | |
7c3f944e | 382 | EXPORT_SYMBOL(set_normalized_timespec); |
753be622 | 383 | |
f8f46da3 TG |
384 | /** |
385 | * ns_to_timespec - Convert nanoseconds to timespec | |
386 | * @nsec: the nanoseconds value to be converted | |
387 | * | |
388 | * Returns the timespec representation of the nsec parameter. | |
389 | */ | |
df869b63 | 390 | struct timespec ns_to_timespec(const s64 nsec) |
f8f46da3 TG |
391 | { |
392 | struct timespec ts; | |
393 | ||
88fc3897 GA |
394 | if (!nsec) |
395 | return (struct timespec) {0, 0}; | |
396 | ||
397 | ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec); | |
398 | if (unlikely(nsec < 0)) | |
399 | set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec); | |
f8f46da3 TG |
400 | |
401 | return ts; | |
402 | } | |
85795d64 | 403 | EXPORT_SYMBOL(ns_to_timespec); |
f8f46da3 TG |
404 | |
405 | /** | |
406 | * ns_to_timeval - Convert nanoseconds to timeval | |
407 | * @nsec: the nanoseconds value to be converted | |
408 | * | |
409 | * Returns the timeval representation of the nsec parameter. | |
410 | */ | |
df869b63 | 411 | struct timeval ns_to_timeval(const s64 nsec) |
f8f46da3 TG |
412 | { |
413 | struct timespec ts = ns_to_timespec(nsec); | |
414 | struct timeval tv; | |
415 | ||
416 | tv.tv_sec = ts.tv_sec; | |
417 | tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | |
418 | ||
419 | return tv; | |
420 | } | |
b7aa0bf7 | 421 | EXPORT_SYMBOL(ns_to_timeval); |
f8f46da3 | 422 | |
41cf5445 IM |
423 | /* |
424 | * When we convert to jiffies then we interpret incoming values | |
425 | * the following way: | |
426 | * | |
427 | * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) | |
428 | * | |
429 | * - 'too large' values [that would result in larger than | |
430 | * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. | |
431 | * | |
432 | * - all other values are converted to jiffies by either multiplying | |
433 | * the input value by a factor or dividing it with a factor | |
434 | * | |
435 | * We must also be careful about 32-bit overflows. | |
436 | */ | |
8b9365d7 IM |
437 | unsigned long msecs_to_jiffies(const unsigned int m) |
438 | { | |
41cf5445 IM |
439 | /* |
440 | * Negative value, means infinite timeout: | |
441 | */ | |
442 | if ((int)m < 0) | |
8b9365d7 | 443 | return MAX_JIFFY_OFFSET; |
41cf5445 | 444 | |
8b9365d7 | 445 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) |
41cf5445 IM |
446 | /* |
447 | * HZ is equal to or smaller than 1000, and 1000 is a nice | |
448 | * round multiple of HZ, divide with the factor between them, | |
449 | * but round upwards: | |
450 | */ | |
8b9365d7 IM |
451 | return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); |
452 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | |
41cf5445 IM |
453 | /* |
454 | * HZ is larger than 1000, and HZ is a nice round multiple of | |
455 | * 1000 - simply multiply with the factor between them. | |
456 | * | |
457 | * But first make sure the multiplication result cannot | |
458 | * overflow: | |
459 | */ | |
460 | if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | |
461 | return MAX_JIFFY_OFFSET; | |
462 | ||
8b9365d7 IM |
463 | return m * (HZ / MSEC_PER_SEC); |
464 | #else | |
41cf5445 IM |
465 | /* |
466 | * Generic case - multiply, round and divide. But first | |
467 | * check that if we are doing a net multiplication, that | |
bdc80787 | 468 | * we wouldn't overflow: |
41cf5445 IM |
469 | */ |
470 | if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | |
471 | return MAX_JIFFY_OFFSET; | |
472 | ||
bdc80787 PA |
473 | return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) |
474 | >> MSEC_TO_HZ_SHR32; | |
8b9365d7 IM |
475 | #endif |
476 | } | |
477 | EXPORT_SYMBOL(msecs_to_jiffies); | |
478 | ||
479 | unsigned long usecs_to_jiffies(const unsigned int u) | |
480 | { | |
481 | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | |
482 | return MAX_JIFFY_OFFSET; | |
483 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | |
484 | return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); | |
485 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | |
486 | return u * (HZ / USEC_PER_SEC); | |
487 | #else | |
bdc80787 PA |
488 | return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) |
489 | >> USEC_TO_HZ_SHR32; | |
8b9365d7 IM |
490 | #endif |
491 | } | |
492 | EXPORT_SYMBOL(usecs_to_jiffies); | |
493 | ||
494 | /* | |
495 | * The TICK_NSEC - 1 rounds up the value to the next resolution. Note | |
496 | * that a remainder subtract here would not do the right thing as the | |
497 | * resolution values don't fall on second boundries. I.e. the line: | |
498 | * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | |
499 | * | |
500 | * Rather, we just shift the bits off the right. | |
501 | * | |
502 | * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | |
503 | * value to a scaled second value. | |
504 | */ | |
505 | unsigned long | |
506 | timespec_to_jiffies(const struct timespec *value) | |
507 | { | |
508 | unsigned long sec = value->tv_sec; | |
509 | long nsec = value->tv_nsec + TICK_NSEC - 1; | |
510 | ||
511 | if (sec >= MAX_SEC_IN_JIFFIES){ | |
512 | sec = MAX_SEC_IN_JIFFIES; | |
513 | nsec = 0; | |
514 | } | |
515 | return (((u64)sec * SEC_CONVERSION) + | |
516 | (((u64)nsec * NSEC_CONVERSION) >> | |
517 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | |
518 | ||
519 | } | |
520 | EXPORT_SYMBOL(timespec_to_jiffies); | |
521 | ||
522 | void | |
523 | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | |
524 | { | |
525 | /* | |
526 | * Convert jiffies to nanoseconds and separate with | |
527 | * one divide. | |
528 | */ | |
529 | u64 nsec = (u64)jiffies * TICK_NSEC; | |
530 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); | |
531 | } | |
532 | EXPORT_SYMBOL(jiffies_to_timespec); | |
533 | ||
534 | /* Same for "timeval" | |
535 | * | |
536 | * Well, almost. The problem here is that the real system resolution is | |
537 | * in nanoseconds and the value being converted is in micro seconds. | |
538 | * Also for some machines (those that use HZ = 1024, in-particular), | |
539 | * there is a LARGE error in the tick size in microseconds. | |
540 | ||
541 | * The solution we use is to do the rounding AFTER we convert the | |
542 | * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. | |
543 | * Instruction wise, this should cost only an additional add with carry | |
544 | * instruction above the way it was done above. | |
545 | */ | |
546 | unsigned long | |
547 | timeval_to_jiffies(const struct timeval *value) | |
548 | { | |
549 | unsigned long sec = value->tv_sec; | |
550 | long usec = value->tv_usec; | |
551 | ||
552 | if (sec >= MAX_SEC_IN_JIFFIES){ | |
553 | sec = MAX_SEC_IN_JIFFIES; | |
554 | usec = 0; | |
555 | } | |
556 | return (((u64)sec * SEC_CONVERSION) + | |
557 | (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | |
558 | (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | |
559 | } | |
456a09dc | 560 | EXPORT_SYMBOL(timeval_to_jiffies); |
8b9365d7 IM |
561 | |
562 | void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | |
563 | { | |
564 | /* | |
565 | * Convert jiffies to nanoseconds and separate with | |
566 | * one divide. | |
567 | */ | |
568 | u64 nsec = (u64)jiffies * TICK_NSEC; | |
569 | long tv_usec; | |
570 | ||
571 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); | |
572 | tv_usec /= NSEC_PER_USEC; | |
573 | value->tv_usec = tv_usec; | |
574 | } | |
456a09dc | 575 | EXPORT_SYMBOL(jiffies_to_timeval); |
8b9365d7 IM |
576 | |
577 | /* | |
578 | * Convert jiffies/jiffies_64 to clock_t and back. | |
579 | */ | |
580 | clock_t jiffies_to_clock_t(long x) | |
581 | { | |
582 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | |
6ffc787a DF |
583 | # if HZ < USER_HZ |
584 | return x * (USER_HZ / HZ); | |
585 | # else | |
8b9365d7 | 586 | return x / (HZ / USER_HZ); |
6ffc787a | 587 | # endif |
8b9365d7 IM |
588 | #else |
589 | u64 tmp = (u64)x * TICK_NSEC; | |
590 | do_div(tmp, (NSEC_PER_SEC / USER_HZ)); | |
591 | return (long)tmp; | |
592 | #endif | |
593 | } | |
594 | EXPORT_SYMBOL(jiffies_to_clock_t); | |
595 | ||
596 | unsigned long clock_t_to_jiffies(unsigned long x) | |
597 | { | |
598 | #if (HZ % USER_HZ)==0 | |
599 | if (x >= ~0UL / (HZ / USER_HZ)) | |
600 | return ~0UL; | |
601 | return x * (HZ / USER_HZ); | |
602 | #else | |
603 | u64 jif; | |
604 | ||
605 | /* Don't worry about loss of precision here .. */ | |
606 | if (x >= ~0UL / HZ * USER_HZ) | |
607 | return ~0UL; | |
608 | ||
609 | /* .. but do try to contain it here */ | |
610 | jif = x * (u64) HZ; | |
611 | do_div(jif, USER_HZ); | |
612 | return jif; | |
613 | #endif | |
614 | } | |
615 | EXPORT_SYMBOL(clock_t_to_jiffies); | |
616 | ||
617 | u64 jiffies_64_to_clock_t(u64 x) | |
618 | { | |
619 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | |
6ffc787a DF |
620 | # if HZ < USER_HZ |
621 | x *= USER_HZ; | |
622 | do_div(x, HZ); | |
ec03d707 | 623 | # elif HZ > USER_HZ |
8b9365d7 | 624 | do_div(x, HZ / USER_HZ); |
ec03d707 AM |
625 | # else |
626 | /* Nothing to do */ | |
6ffc787a | 627 | # endif |
8b9365d7 IM |
628 | #else |
629 | /* | |
630 | * There are better ways that don't overflow early, | |
631 | * but even this doesn't overflow in hundreds of years | |
632 | * in 64 bits, so.. | |
633 | */ | |
634 | x *= TICK_NSEC; | |
635 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | |
636 | #endif | |
637 | return x; | |
638 | } | |
8b9365d7 IM |
639 | EXPORT_SYMBOL(jiffies_64_to_clock_t); |
640 | ||
641 | u64 nsec_to_clock_t(u64 x) | |
642 | { | |
643 | #if (NSEC_PER_SEC % USER_HZ) == 0 | |
644 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | |
645 | #elif (USER_HZ % 512) == 0 | |
646 | x *= USER_HZ/512; | |
647 | do_div(x, (NSEC_PER_SEC / 512)); | |
648 | #else | |
649 | /* | |
650 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | |
651 | * overflow after 64.99 years. | |
652 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | |
653 | */ | |
654 | x *= 9; | |
655 | do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) / | |
656 | USER_HZ)); | |
657 | #endif | |
658 | return x; | |
659 | } | |
660 | ||
1da177e4 LT |
661 | #if (BITS_PER_LONG < 64) |
662 | u64 get_jiffies_64(void) | |
663 | { | |
664 | unsigned long seq; | |
665 | u64 ret; | |
666 | ||
667 | do { | |
668 | seq = read_seqbegin(&xtime_lock); | |
669 | ret = jiffies_64; | |
670 | } while (read_seqretry(&xtime_lock, seq)); | |
671 | return ret; | |
672 | } | |
1da177e4 LT |
673 | EXPORT_SYMBOL(get_jiffies_64); |
674 | #endif | |
675 | ||
676 | EXPORT_SYMBOL(jiffies); |