]> Git Repo - linux.git/blame - fs/btrfs/inode.c
Merge tag 'kvmarm-fixes-5.10-5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
f85781fb 33#include <linux/iomap.h>
92d32170 34#include <asm/unaligned.h>
602cbe91 35#include "misc.h"
39279cc3
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
39279cc3 40#include "print-tree.h"
e6dcd2dc 41#include "ordered-data.h"
95819c05 42#include "xattr.h"
e02119d5 43#include "tree-log.h"
4a54c8c1 44#include "volumes.h"
c8b97818 45#include "compression.h"
b4ce94de 46#include "locking.h"
dc89e982 47#include "free-space-cache.h"
581bb050 48#include "inode-map.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
86736342 51#include "delalloc-space.h"
aac0023c 52#include "block-group.h"
467dc47e 53#include "space-info.h"
39279cc3
CM
54
55struct btrfs_iget_args {
0202e83f 56 u64 ino;
39279cc3
CM
57 struct btrfs_root *root;
58};
59
f28a4928 60struct btrfs_dio_data {
f28a4928 61 u64 reserve;
f85781fb
GR
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
0eb79294 65 bool sync;
f28a4928
FM
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
70static const struct inode_operations btrfs_special_inode_operations;
71static const struct inode_operations btrfs_file_inode_operations;
7f09410b 72static const struct address_space_operations btrfs_aops;
828c0950 73static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
3acd4850 79struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 80
3972f260 81static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 82static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 83static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 84static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 85 struct page *locked_page,
74e9194a 86 u64 start, u64 end, int *page_started,
330a5827 87 unsigned long *nr_written, int unlock);
4b67c11d
NB
88static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
7b128766 93
b672b5c1 94static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98/*
99 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 100 * from the btrfs_run_delalloc_range() callback.
52427260
QW
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
d1051d6e 106 * extent (btrfs_finish_ordered_io()).
52427260 107 */
64e1db56 108static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
109 struct page *locked_page,
110 u64 offset, u64 bytes)
52427260 111{
63d71450
NA
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
63d71450
NA
117 struct page *page;
118
119 while (index <= end_index) {
64e1db56 120 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
d1051d6e
NB
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
64e1db56 138 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
139}
140
48a3b636 141static int btrfs_dirty_inode(struct inode *inode);
7b128766 142
f34f57a3 143static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
144 struct inode *inode, struct inode *dir,
145 const struct qstr *qstr)
0279b4cd
JO
146{
147 int err;
148
f34f57a3 149 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 150 if (!err)
2a7dba39 151 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
152 return err;
153}
154
c8b97818
CM
155/*
156 * this does all the hard work for inserting an inline extent into
157 * the btree. The caller should have done a btrfs_drop_extents so that
158 * no overlapping inline items exist in the btree
159 */
40f76580 160static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 161 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
162 struct btrfs_root *root, struct inode *inode,
163 u64 start, size_t size, size_t compressed_size,
fe3f566c 164 int compress_type,
c8b97818
CM
165 struct page **compressed_pages)
166{
c8b97818
CM
167 struct extent_buffer *leaf;
168 struct page *page = NULL;
169 char *kaddr;
170 unsigned long ptr;
171 struct btrfs_file_extent_item *ei;
c8b97818
CM
172 int ret;
173 size_t cur_size = size;
c8b97818 174 unsigned long offset;
c8b97818 175
982f1f5d
JJB
176 ASSERT((compressed_size > 0 && compressed_pages) ||
177 (compressed_size == 0 && !compressed_pages));
178
fe3f566c 179 if (compressed_size && compressed_pages)
c8b97818 180 cur_size = compressed_size;
c8b97818 181
1acae57b 182 inode_add_bytes(inode, size);
c8b97818 183
1acae57b
FDBM
184 if (!extent_inserted) {
185 struct btrfs_key key;
186 size_t datasize;
c8b97818 187
4a0cc7ca 188 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 189 key.offset = start;
962a298f 190 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 191
1acae57b
FDBM
192 datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 path->leave_spinning = 1;
194 ret = btrfs_insert_empty_item(trans, root, path, &key,
195 datasize);
79b4f4c6 196 if (ret)
1acae57b 197 goto fail;
c8b97818
CM
198 }
199 leaf = path->nodes[0];
200 ei = btrfs_item_ptr(leaf, path->slots[0],
201 struct btrfs_file_extent_item);
202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 btrfs_set_file_extent_encryption(leaf, ei, 0);
205 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 ptr = btrfs_file_extent_inline_start(ei);
208
261507a0 209 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
210 struct page *cpage;
211 int i = 0;
d397712b 212 while (compressed_size > 0) {
c8b97818 213 cpage = compressed_pages[i];
5b050f04 214 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 215 PAGE_SIZE);
c8b97818 216
7ac687d9 217 kaddr = kmap_atomic(cpage);
c8b97818 218 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 219 kunmap_atomic(kaddr);
c8b97818
CM
220
221 i++;
222 ptr += cur_size;
223 compressed_size -= cur_size;
224 }
225 btrfs_set_file_extent_compression(leaf, ei,
261507a0 226 compress_type);
c8b97818
CM
227 } else {
228 page = find_get_page(inode->i_mapping,
09cbfeaf 229 start >> PAGE_SHIFT);
c8b97818 230 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 231 kaddr = kmap_atomic(page);
7073017a 232 offset = offset_in_page(start);
c8b97818 233 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 234 kunmap_atomic(kaddr);
09cbfeaf 235 put_page(page);
c8b97818
CM
236 }
237 btrfs_mark_buffer_dirty(leaf);
1acae57b 238 btrfs_release_path(path);
c8b97818 239
9ddc959e
JB
240 /*
241 * We align size to sectorsize for inline extents just for simplicity
242 * sake.
243 */
244 size = ALIGN(size, root->fs_info->sectorsize);
245 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
246 if (ret)
247 goto fail;
248
c2167754
YZ
249 /*
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
253 *
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
257 */
c8b97818 258 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 259 ret = btrfs_update_inode(trans, root, inode);
c2167754 260
c8b97818 261fail:
79b4f4c6 262 return ret;
c8b97818
CM
263}
264
265
266/*
267 * conditionally insert an inline extent into the file. This
268 * does the checks required to make sure the data is small enough
269 * to fit as an inline extent.
270 */
a0349401 271static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
272 u64 end, size_t compressed_size,
273 int compress_type,
274 struct page **compressed_pages)
c8b97818 275{
a0349401 276 struct btrfs_root *root = inode->root;
0b246afa 277 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 278 struct btrfs_trans_handle *trans;
a0349401 279 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
280 u64 actual_end = min(end + 1, isize);
281 u64 inline_len = actual_end - start;
0b246afa 282 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
283 u64 data_len = inline_len;
284 int ret;
1acae57b
FDBM
285 struct btrfs_path *path;
286 int extent_inserted = 0;
287 u32 extent_item_size;
c8b97818
CM
288
289 if (compressed_size)
290 data_len = compressed_size;
291
292 if (start > 0 ||
0b246afa
JM
293 actual_end > fs_info->sectorsize ||
294 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 295 (!compressed_size &&
0b246afa 296 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 297 end + 1 < isize ||
0b246afa 298 data_len > fs_info->max_inline) {
c8b97818
CM
299 return 1;
300 }
301
1acae57b
FDBM
302 path = btrfs_alloc_path();
303 if (!path)
304 return -ENOMEM;
305
00361589 306 trans = btrfs_join_transaction(root);
1acae57b
FDBM
307 if (IS_ERR(trans)) {
308 btrfs_free_path(path);
00361589 309 return PTR_ERR(trans);
1acae57b 310 }
a0349401 311 trans->block_rsv = &inode->block_rsv;
00361589 312
1acae57b
FDBM
313 if (compressed_size && compressed_pages)
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 compressed_size);
316 else
317 extent_item_size = btrfs_file_extent_calc_inline_size(
318 inline_len);
319
a0349401
NB
320 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
321 NULL, 1, 1, extent_item_size,
322 &extent_inserted);
00361589 323 if (ret) {
66642832 324 btrfs_abort_transaction(trans, ret);
00361589
JB
325 goto out;
326 }
c8b97818
CM
327
328 if (isize > actual_end)
329 inline_len = min_t(u64, isize, actual_end);
1acae57b 330 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 331 root, &inode->vfs_inode, start,
c8b97818 332 inline_len, compressed_size,
fe3f566c 333 compress_type, compressed_pages);
2adcac1a 334 if (ret && ret != -ENOSPC) {
66642832 335 btrfs_abort_transaction(trans, ret);
00361589 336 goto out;
2adcac1a 337 } else if (ret == -ENOSPC) {
00361589
JB
338 ret = 1;
339 goto out;
79787eaa 340 }
2adcac1a 341
a0349401
NB
342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
343 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 344out:
94ed938a
QW
345 /*
346 * Don't forget to free the reserved space, as for inlined extent
347 * it won't count as data extent, free them directly here.
348 * And at reserve time, it's always aligned to page size, so
349 * just free one page here.
350 */
a0349401 351 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 352 btrfs_free_path(path);
3a45bb20 353 btrfs_end_transaction(trans);
00361589 354 return ret;
c8b97818
CM
355}
356
771ed689
CM
357struct async_extent {
358 u64 start;
359 u64 ram_size;
360 u64 compressed_size;
361 struct page **pages;
362 unsigned long nr_pages;
261507a0 363 int compress_type;
771ed689
CM
364 struct list_head list;
365};
366
97db1204 367struct async_chunk {
771ed689 368 struct inode *inode;
771ed689
CM
369 struct page *locked_page;
370 u64 start;
371 u64 end;
f82b7359 372 unsigned int write_flags;
771ed689 373 struct list_head extents;
ec39f769 374 struct cgroup_subsys_state *blkcg_css;
771ed689 375 struct btrfs_work work;
97db1204 376 atomic_t *pending;
771ed689
CM
377};
378
97db1204
NB
379struct async_cow {
380 /* Number of chunks in flight; must be first in the structure */
381 atomic_t num_chunks;
382 struct async_chunk chunks[];
771ed689
CM
383};
384
97db1204 385static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
386 u64 start, u64 ram_size,
387 u64 compressed_size,
388 struct page **pages,
261507a0
LZ
389 unsigned long nr_pages,
390 int compress_type)
771ed689
CM
391{
392 struct async_extent *async_extent;
393
394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 395 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
396 async_extent->start = start;
397 async_extent->ram_size = ram_size;
398 async_extent->compressed_size = compressed_size;
399 async_extent->pages = pages;
400 async_extent->nr_pages = nr_pages;
261507a0 401 async_extent->compress_type = compress_type;
771ed689
CM
402 list_add_tail(&async_extent->list, &cow->extents);
403 return 0;
404}
405
42c16da6
QW
406/*
407 * Check if the inode has flags compatible with compression
408 */
99c88dc7 409static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 410{
99c88dc7
NB
411 if (inode->flags & BTRFS_INODE_NODATACOW ||
412 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
413 return false;
414 return true;
415}
416
417/*
418 * Check if the inode needs to be submitted to compression, based on mount
419 * options, defragmentation, properties or heuristics.
420 */
808a1292
NB
421static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
422 u64 end)
f79707b0 423{
808a1292 424 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 425
808a1292 426 if (!inode_can_compress(inode)) {
42c16da6
QW
427 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
428 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 429 btrfs_ino(inode));
42c16da6
QW
430 return 0;
431 }
f79707b0 432 /* force compress */
0b246afa 433 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 434 return 1;
eec63c65 435 /* defrag ioctl */
808a1292 436 if (inode->defrag_compress)
eec63c65 437 return 1;
f79707b0 438 /* bad compression ratios */
808a1292 439 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 440 return 0;
0b246afa 441 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
442 inode->flags & BTRFS_INODE_COMPRESS ||
443 inode->prop_compress)
444 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
445 return 0;
446}
447
6158e1ce 448static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
449 u64 start, u64 end, u64 num_bytes, u64 small_write)
450{
451 /* If this is a small write inside eof, kick off a defrag */
452 if (num_bytes < small_write &&
6158e1ce 453 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
454 btrfs_add_inode_defrag(NULL, inode);
455}
456
d352ac68 457/*
771ed689
CM
458 * we create compressed extents in two phases. The first
459 * phase compresses a range of pages that have already been
460 * locked (both pages and state bits are locked).
c8b97818 461 *
771ed689
CM
462 * This is done inside an ordered work queue, and the compression
463 * is spread across many cpus. The actual IO submission is step
464 * two, and the ordered work queue takes care of making sure that
465 * happens in the same order things were put onto the queue by
466 * writepages and friends.
c8b97818 467 *
771ed689
CM
468 * If this code finds it can't get good compression, it puts an
469 * entry onto the work queue to write the uncompressed bytes. This
470 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
471 * are written in the same order that the flusher thread sent them
472 * down.
d352ac68 473 */
ac3e9933 474static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 475{
1368c6da 476 struct inode *inode = async_chunk->inode;
0b246afa 477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 478 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
479 u64 start = async_chunk->start;
480 u64 end = async_chunk->end;
c8b97818 481 u64 actual_end;
d98da499 482 u64 i_size;
e6dcd2dc 483 int ret = 0;
c8b97818
CM
484 struct page **pages = NULL;
485 unsigned long nr_pages;
c8b97818
CM
486 unsigned long total_compressed = 0;
487 unsigned long total_in = 0;
c8b97818
CM
488 int i;
489 int will_compress;
0b246afa 490 int compress_type = fs_info->compress_type;
ac3e9933 491 int compressed_extents = 0;
4adaa611 492 int redirty = 0;
b888db2b 493
6158e1ce
NB
494 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
495 SZ_16K);
4cb5300b 496
d98da499
JB
497 /*
498 * We need to save i_size before now because it could change in between
499 * us evaluating the size and assigning it. This is because we lock and
500 * unlock the page in truncate and fallocate, and then modify the i_size
501 * later on.
502 *
503 * The barriers are to emulate READ_ONCE, remove that once i_size_read
504 * does that for us.
505 */
506 barrier();
507 i_size = i_size_read(inode);
508 barrier();
509 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
510again:
511 will_compress = 0;
09cbfeaf 512 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
513 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
514 nr_pages = min_t(unsigned long, nr_pages,
515 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 516
f03d9301
CM
517 /*
518 * we don't want to send crud past the end of i_size through
519 * compression, that's just a waste of CPU time. So, if the
520 * end of the file is before the start of our current
521 * requested range of bytes, we bail out to the uncompressed
522 * cleanup code that can deal with all of this.
523 *
524 * It isn't really the fastest way to fix things, but this is a
525 * very uncommon corner.
526 */
527 if (actual_end <= start)
528 goto cleanup_and_bail_uncompressed;
529
c8b97818
CM
530 total_compressed = actual_end - start;
531
4bcbb332
SW
532 /*
533 * skip compression for a small file range(<=blocksize) that
01327610 534 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
535 */
536 if (total_compressed <= blocksize &&
537 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
538 goto cleanup_and_bail_uncompressed;
539
069eac78
DS
540 total_compressed = min_t(unsigned long, total_compressed,
541 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
542 total_in = 0;
543 ret = 0;
db94535d 544
771ed689
CM
545 /*
546 * we do compression for mount -o compress and when the
547 * inode has not been flagged as nocompress. This flag can
548 * change at any time if we discover bad compression ratios.
c8b97818 549 */
808a1292 550 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 551 WARN_ON(pages);
31e818fe 552 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
553 if (!pages) {
554 /* just bail out to the uncompressed code */
3527a018 555 nr_pages = 0;
560f7d75
LZ
556 goto cont;
557 }
c8b97818 558
eec63c65
DS
559 if (BTRFS_I(inode)->defrag_compress)
560 compress_type = BTRFS_I(inode)->defrag_compress;
561 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 562 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 563
4adaa611
CM
564 /*
565 * we need to call clear_page_dirty_for_io on each
566 * page in the range. Otherwise applications with the file
567 * mmap'd can wander in and change the page contents while
568 * we are compressing them.
569 *
570 * If the compression fails for any reason, we set the pages
571 * dirty again later on.
e9679de3
TT
572 *
573 * Note that the remaining part is redirtied, the start pointer
574 * has moved, the end is the original one.
4adaa611 575 */
e9679de3
TT
576 if (!redirty) {
577 extent_range_clear_dirty_for_io(inode, start, end);
578 redirty = 1;
579 }
f51d2b59
DS
580
581 /* Compression level is applied here and only here */
582 ret = btrfs_compress_pages(
583 compress_type | (fs_info->compress_level << 4),
261507a0 584 inode->i_mapping, start,
38c31464 585 pages,
4d3a800e 586 &nr_pages,
261507a0 587 &total_in,
e5d74902 588 &total_compressed);
c8b97818
CM
589
590 if (!ret) {
7073017a 591 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 592 struct page *page = pages[nr_pages - 1];
c8b97818
CM
593 char *kaddr;
594
595 /* zero the tail end of the last page, we might be
596 * sending it down to disk
597 */
598 if (offset) {
7ac687d9 599 kaddr = kmap_atomic(page);
c8b97818 600 memset(kaddr + offset, 0,
09cbfeaf 601 PAGE_SIZE - offset);
7ac687d9 602 kunmap_atomic(kaddr);
c8b97818
CM
603 }
604 will_compress = 1;
605 }
606 }
560f7d75 607cont:
c8b97818
CM
608 if (start == 0) {
609 /* lets try to make an inline extent */
6018ba0a 610 if (ret || total_in < actual_end) {
c8b97818 611 /* we didn't compress the entire range, try
771ed689 612 * to make an uncompressed inline extent.
c8b97818 613 */
a0349401
NB
614 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
615 0, BTRFS_COMPRESS_NONE,
616 NULL);
c8b97818 617 } else {
771ed689 618 /* try making a compressed inline extent */
a0349401 619 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
620 total_compressed,
621 compress_type, pages);
c8b97818 622 }
79787eaa 623 if (ret <= 0) {
151a41bc 624 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
625 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
626 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
627 unsigned long page_error_op;
628
e6eb4314 629 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 630
771ed689 631 /*
79787eaa
JM
632 * inline extent creation worked or returned error,
633 * we don't need to create any more async work items.
634 * Unlock and free up our temp pages.
8b62f87b
JB
635 *
636 * We use DO_ACCOUNTING here because we need the
637 * delalloc_release_metadata to be done _after_ we drop
638 * our outstanding extent for clearing delalloc for this
639 * range.
771ed689 640 */
ad7ff17b
NB
641 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
642 NULL,
74e9194a 643 clear_flags,
ba8b04c1 644 PAGE_UNLOCK |
c2790a2e
JB
645 PAGE_CLEAR_DIRTY |
646 PAGE_SET_WRITEBACK |
e6eb4314 647 page_error_op |
c2790a2e 648 PAGE_END_WRITEBACK);
cecc8d90 649
1e6e238c
QW
650 /*
651 * Ensure we only free the compressed pages if we have
652 * them allocated, as we can still reach here with
653 * inode_need_compress() == false.
654 */
655 if (pages) {
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
cecc8d90 661 }
cecc8d90 662 return 0;
c8b97818
CM
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
fda2832f 672 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
673
674 /*
675 * one last check to make sure the compression is really a
170607eb
TT
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
c8b97818 678 */
09cbfeaf 679 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 680 if (total_compressed + blocksize <= total_in) {
ac3e9933 681 compressed_extents++;
c8bb0c8b
AS
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
b5326271 688 add_async_extent(async_chunk, start, total_in,
4d3a800e 689 total_compressed, pages, nr_pages,
c8bb0c8b
AS
690 compress_type);
691
1170862d
TT
692 if (start + total_in < end) {
693 start += total_in;
c8bb0c8b
AS
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
ac3e9933 698 return compressed_extents;
c8b97818
CM
699 }
700 }
c8bb0c8b 701 if (pages) {
c8b97818
CM
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
4d3a800e 706 for (i = 0; i < nr_pages; i++) {
70b99e69 707 WARN_ON(pages[i]->mapping);
09cbfeaf 708 put_page(pages[i]);
c8b97818
CM
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
4d3a800e 713 nr_pages = 0;
c8b97818
CM
714
715 /* flag the file so we don't compress in the future */
0b246afa 716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 717 !(BTRFS_I(inode)->prop_compress)) {
a555f810 718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 719 }
c8b97818 720 }
f03d9301 721cleanup_and_bail_uncompressed:
c8bb0c8b
AS
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
1d53c9e6
CM
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 731 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 732 /* unlocked later on in the async handlers */
1d53c9e6 733 }
c8bb0c8b
AS
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
b5326271 737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 738 BTRFS_COMPRESS_NONE);
ac3e9933 739 compressed_extents++;
3b951516 740
ac3e9933 741 return compressed_extents;
771ed689 742}
771ed689 743
40ae837b
FM
744static void free_async_extent_pages(struct async_extent *async_extent)
745{
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 753 put_page(async_extent->pages[i]);
40ae837b
FM
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
771ed689
CM
758}
759
760/*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
b5326271 766static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 767{
a0ff10dc
NB
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
771ed689
CM
772 struct btrfs_key ins;
773 struct extent_map *em;
a0ff10dc
NB
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 776 int ret = 0;
771ed689 777
3e04e7f1 778again:
b5326271
NB
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
781 struct async_extent, list);
782 list_del(&async_extent->list);
c8b97818 783
f5a84ee3 784retry:
7447555f
NB
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
771ed689 792 /* allocate blocks */
a0ff10dc 793 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
330a5827 797 &page_started, &nr_written, 0);
771ed689 798
79787eaa
JM
799 /* JDM XXX */
800
771ed689
CM
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
f5a84ee3 807 if (!page_started && !ret)
a0ff10dc 808 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 809 async_extent->start,
d397712b 810 async_extent->start +
771ed689 811 async_extent->ram_size - 1,
771ed689 812 WB_SYNC_ALL);
1d53c9e6 813 else if (ret && async_chunk->locked_page)
b5326271 814 unlock_page(async_chunk->locked_page);
771ed689
CM
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
18513091 820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
821 async_extent->compressed_size,
822 async_extent->compressed_size,
e570fd27 823 0, alloc_hint, &ins, 1, 1);
f5a84ee3 824 if (ret) {
40ae837b 825 free_async_extent_pages(async_extent);
3e04e7f1 826
fdf8e2ea
JB
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
ce62003f
LB
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
a0ff10dc 838 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
79787eaa 843 goto retry;
fdf8e2ea 844 }
3e04e7f1 845 goto out_free;
f5a84ee3 846 }
c2167754
YZ
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
a0ff10dc 851 em = create_io_em(inode, async_extent->start,
6f9994db
LB
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
3e04e7f1 862 goto out_free_reserve;
6f9994db 863 free_extent_map(em);
3e04e7f1 864
a0ff10dc 865 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
d9f85963 872 if (ret) {
a0ff10dc 873 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
3e04e7f1 876 goto out_free_reserve;
d9f85963 877 }
0b246afa 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 879
771ed689
CM
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
a0ff10dc 883 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
884 async_extent->start +
885 async_extent->ram_size - 1,
151a41bc
JB
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 888 PAGE_SET_WRITEBACK);
a0ff10dc 889 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
f82b7359 893 async_extent->nr_pages,
ec39f769
CM
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
fce2a4e6
FM
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
a0ff10dc 900 p->mapping = inode->vfs_inode.i_mapping;
c629732d 901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 902
fce2a4e6 903 p->mapping = NULL;
a0ff10dc 904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
40ae837b 907 free_async_extent_pages(async_extent);
fce2a4e6 908 }
771ed689
CM
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
dec8f175 913 return;
3e04e7f1 914out_free_reserve:
0b246afa 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 917out_free:
a0ff10dc 918 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
919 async_extent->start +
920 async_extent->ram_size - 1,
c2790a2e 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 922 EXTENT_DELALLOC_NEW |
151a41bc
JB
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
40ae837b 927 free_async_extent_pages(async_extent);
79787eaa 928 kfree(async_extent);
3e04e7f1 929 goto again;
771ed689
CM
930}
931
43c69849 932static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
933 u64 num_bytes)
934{
43c69849 935 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962}
963
771ed689
CM
964/*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
6e26c442 977static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 978 struct page *locked_page,
74e9194a 979 u64 start, u64 end, int *page_started,
330a5827 980 unsigned long *nr_written, int unlock)
771ed689 981{
6e26c442
NB
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
a315e68f 987 u64 cur_alloc_size = 0;
432cd2a1 988 u64 min_alloc_size;
0b246afa 989 u64 blocksize = fs_info->sectorsize;
771ed689
CM
990 struct btrfs_key ins;
991 struct extent_map *em;
a315e68f
FM
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
771ed689
CM
995 int ret = 0;
996
6e26c442 997 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 998 WARN_ON_ONCE(1);
29bce2f3
JB
999 ret = -EINVAL;
1000 goto out_unlock;
02ecd2c2 1001 }
771ed689 1002
fda2832f 1003 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1004 num_bytes = max(blocksize, num_bytes);
566b1760 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1006
6e26c442 1007 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1008
771ed689
CM
1009 if (start == 0) {
1010 /* lets try to make an inline extent */
6e26c442 1011 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1012 BTRFS_COMPRESS_NONE, NULL);
771ed689 1013 if (ret == 0) {
8b62f87b
JB
1014 /*
1015 * We use DO_ACCOUNTING here because we need the
1016 * delalloc_release_metadata to be run _after_ we drop
1017 * our outstanding extent for clearing delalloc for this
1018 * range.
1019 */
6e26c442 1020 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1021 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
771ed689 1026 *nr_written = *nr_written +
09cbfeaf 1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1028 *page_started = 1;
771ed689 1029 goto out;
79787eaa 1030 } else if (ret < 0) {
79787eaa 1031 goto out_unlock;
771ed689
CM
1032 }
1033 }
1034
6e26c442
NB
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1037
432cd2a1
FM
1038 /*
1039 * Relocation relies on the relocated extents to have exactly the same
1040 * size as the original extents. Normally writeback for relocation data
1041 * extents follows a NOCOW path because relocation preallocates the
1042 * extents. However, due to an operation such as scrub turning a block
1043 * group to RO mode, it may fallback to COW mode, so we must make sure
1044 * an extent allocated during COW has exactly the requested size and can
1045 * not be split into smaller extents, otherwise relocation breaks and
1046 * fails during the stage where it updates the bytenr of file extent
1047 * items.
1048 */
1049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1050 min_alloc_size = num_bytes;
1051 else
1052 min_alloc_size = fs_info->sectorsize;
1053
3752d22f
AJ
1054 while (num_bytes > 0) {
1055 cur_alloc_size = num_bytes;
18513091 1056 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1057 min_alloc_size, 0, alloc_hint,
e570fd27 1058 &ins, 1, 1);
00361589 1059 if (ret < 0)
79787eaa 1060 goto out_unlock;
a315e68f
FM
1061 cur_alloc_size = ins.offset;
1062 extent_reserved = true;
d397712b 1063
771ed689 1064 ram_size = ins.offset;
6e26c442 1065 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1066 start, /* orig_start */
1067 ins.objectid, /* block_start */
1068 ins.offset, /* block_len */
1069 ins.offset, /* orig_block_len */
1070 ram_size, /* ram_bytes */
1071 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1072 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1073 if (IS_ERR(em)) {
1074 ret = PTR_ERR(em);
ace68bac 1075 goto out_reserve;
090a127a 1076 }
6f9994db 1077 free_extent_map(em);
e6dcd2dc 1078
6e26c442
NB
1079 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1080 ram_size, cur_alloc_size, 0);
ace68bac 1081 if (ret)
d9f85963 1082 goto out_drop_extent_cache;
c8b97818 1083
17d217fe
YZ
1084 if (root->root_key.objectid ==
1085 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1086 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1087 cur_alloc_size);
4dbd80fb
QW
1088 /*
1089 * Only drop cache here, and process as normal.
1090 *
1091 * We must not allow extent_clear_unlock_delalloc()
1092 * at out_unlock label to free meta of this ordered
1093 * extent, as its meta should be freed by
1094 * btrfs_finish_ordered_io().
1095 *
1096 * So we must continue until @start is increased to
1097 * skip current ordered extent.
1098 */
00361589 1099 if (ret)
6e26c442 1100 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1101 start + ram_size - 1, 0);
17d217fe
YZ
1102 }
1103
0b246afa 1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1105
c8b97818
CM
1106 /* we're not doing compressed IO, don't unlock the first
1107 * page (which the caller expects to stay locked), don't
1108 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1109 *
1110 * Do set the Private2 bit so we know this page was properly
1111 * setup for writepage
c8b97818 1112 */
a315e68f
FM
1113 page_ops = unlock ? PAGE_UNLOCK : 0;
1114 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1115
6e26c442 1116 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1117 locked_page,
c2790a2e 1118 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1119 page_ops);
3752d22f
AJ
1120 if (num_bytes < cur_alloc_size)
1121 num_bytes = 0;
4dbd80fb 1122 else
3752d22f 1123 num_bytes -= cur_alloc_size;
c59f8951
CM
1124 alloc_hint = ins.objectid + ins.offset;
1125 start += cur_alloc_size;
a315e68f 1126 extent_reserved = false;
4dbd80fb
QW
1127
1128 /*
1129 * btrfs_reloc_clone_csums() error, since start is increased
1130 * extent_clear_unlock_delalloc() at out_unlock label won't
1131 * free metadata of current ordered extent, we're OK to exit.
1132 */
1133 if (ret)
1134 goto out_unlock;
b888db2b 1135 }
79787eaa 1136out:
be20aa9d 1137 return ret;
b7d5b0a8 1138
d9f85963 1139out_drop_extent_cache:
6e26c442 1140 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1141out_reserve:
0b246afa 1142 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1143 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1144out_unlock:
a7e3b975
FM
1145 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1146 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1147 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1148 PAGE_END_WRITEBACK;
1149 /*
1150 * If we reserved an extent for our delalloc range (or a subrange) and
1151 * failed to create the respective ordered extent, then it means that
1152 * when we reserved the extent we decremented the extent's size from
1153 * the data space_info's bytes_may_use counter and incremented the
1154 * space_info's bytes_reserved counter by the same amount. We must make
1155 * sure extent_clear_unlock_delalloc() does not try to decrement again
1156 * the data space_info's bytes_may_use counter, therefore we do not pass
1157 * it the flag EXTENT_CLEAR_DATA_RESV.
1158 */
1159 if (extent_reserved) {
6e26c442 1160 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1161 start + cur_alloc_size - 1,
a315e68f
FM
1162 locked_page,
1163 clear_bits,
1164 page_ops);
1165 start += cur_alloc_size;
1166 if (start >= end)
1167 goto out;
1168 }
6e26c442 1169 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1170 clear_bits | EXTENT_CLEAR_DATA_RESV,
1171 page_ops);
79787eaa 1172 goto out;
771ed689 1173}
c8b97818 1174
771ed689
CM
1175/*
1176 * work queue call back to started compression on a file and pages
1177 */
1178static noinline void async_cow_start(struct btrfs_work *work)
1179{
b5326271 1180 struct async_chunk *async_chunk;
ac3e9933 1181 int compressed_extents;
771ed689 1182
b5326271 1183 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1184
ac3e9933
NB
1185 compressed_extents = compress_file_range(async_chunk);
1186 if (compressed_extents == 0) {
b5326271
NB
1187 btrfs_add_delayed_iput(async_chunk->inode);
1188 async_chunk->inode = NULL;
8180ef88 1189 }
771ed689
CM
1190}
1191
1192/*
1193 * work queue call back to submit previously compressed pages
1194 */
1195static noinline void async_cow_submit(struct btrfs_work *work)
1196{
c5a68aec
NB
1197 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1198 work);
1199 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1200 unsigned long nr_pages;
1201
b5326271 1202 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1203 PAGE_SHIFT;
771ed689 1204
093258e6 1205 /* atomic_sub_return implies a barrier */
0b246afa 1206 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1207 5 * SZ_1M)
1208 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1209
4546d178 1210 /*
b5326271 1211 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1212 * in which case we don't have anything to submit, yet we need to
1213 * always adjust ->async_delalloc_pages as its paired with the init
1214 * happening in cow_file_range_async
1215 */
b5326271
NB
1216 if (async_chunk->inode)
1217 submit_compressed_extents(async_chunk);
771ed689 1218}
c8b97818 1219
771ed689
CM
1220static noinline void async_cow_free(struct btrfs_work *work)
1221{
b5326271 1222 struct async_chunk *async_chunk;
97db1204 1223
b5326271
NB
1224 async_chunk = container_of(work, struct async_chunk, work);
1225 if (async_chunk->inode)
1226 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1227 if (async_chunk->blkcg_css)
1228 css_put(async_chunk->blkcg_css);
97db1204
NB
1229 /*
1230 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1231 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1232 */
b5326271 1233 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1234 kvfree(async_chunk->pending);
771ed689
CM
1235}
1236
751b6431 1237static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1238 struct writeback_control *wbc,
1239 struct page *locked_page,
771ed689 1240 u64 start, u64 end, int *page_started,
fac07d2b 1241 unsigned long *nr_written)
771ed689 1242{
751b6431 1243 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1244 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1245 struct async_cow *ctx;
1246 struct async_chunk *async_chunk;
771ed689
CM
1247 unsigned long nr_pages;
1248 u64 cur_end;
97db1204
NB
1249 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1250 int i;
1251 bool should_compress;
b1c16ac9 1252 unsigned nofs_flag;
fac07d2b 1253 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1254
751b6431 1255 unlock_extent(&inode->io_tree, start, end);
97db1204 1256
751b6431 1257 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1258 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1259 num_chunks = 1;
1260 should_compress = false;
1261 } else {
1262 should_compress = true;
1263 }
1264
b1c16ac9
NB
1265 nofs_flag = memalloc_nofs_save();
1266 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1267 memalloc_nofs_restore(nofs_flag);
1268
97db1204
NB
1269 if (!ctx) {
1270 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1271 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1272 EXTENT_DO_ACCOUNTING;
1273 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1274 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1275 PAGE_SET_ERROR;
1276
751b6431
NB
1277 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1278 clear_bits, page_ops);
97db1204
NB
1279 return -ENOMEM;
1280 }
1281
1282 async_chunk = ctx->chunks;
1283 atomic_set(&ctx->num_chunks, num_chunks);
1284
1285 for (i = 0; i < num_chunks; i++) {
1286 if (should_compress)
1287 cur_end = min(end, start + SZ_512K - 1);
1288 else
1289 cur_end = end;
771ed689 1290
bd4691a0
NB
1291 /*
1292 * igrab is called higher up in the call chain, take only the
1293 * lightweight reference for the callback lifetime
1294 */
751b6431 1295 ihold(&inode->vfs_inode);
97db1204 1296 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1297 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1298 async_chunk[i].start = start;
1299 async_chunk[i].end = cur_end;
97db1204
NB
1300 async_chunk[i].write_flags = write_flags;
1301 INIT_LIST_HEAD(&async_chunk[i].extents);
1302
1d53c9e6
CM
1303 /*
1304 * The locked_page comes all the way from writepage and its
1305 * the original page we were actually given. As we spread
1306 * this large delalloc region across multiple async_chunk
1307 * structs, only the first struct needs a pointer to locked_page
1308 *
1309 * This way we don't need racey decisions about who is supposed
1310 * to unlock it.
1311 */
1312 if (locked_page) {
ec39f769
CM
1313 /*
1314 * Depending on the compressibility, the pages might or
1315 * might not go through async. We want all of them to
1316 * be accounted against wbc once. Let's do it here
1317 * before the paths diverge. wbc accounting is used
1318 * only for foreign writeback detection and doesn't
1319 * need full accuracy. Just account the whole thing
1320 * against the first page.
1321 */
1322 wbc_account_cgroup_owner(wbc, locked_page,
1323 cur_end - start);
1d53c9e6
CM
1324 async_chunk[i].locked_page = locked_page;
1325 locked_page = NULL;
1326 } else {
1327 async_chunk[i].locked_page = NULL;
1328 }
1329
ec39f769
CM
1330 if (blkcg_css != blkcg_root_css) {
1331 css_get(blkcg_css);
1332 async_chunk[i].blkcg_css = blkcg_css;
1333 } else {
1334 async_chunk[i].blkcg_css = NULL;
1335 }
1336
a0cac0ec
OS
1337 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1338 async_cow_submit, async_cow_free);
771ed689 1339
97db1204 1340 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1341 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1342
97db1204 1343 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1344
771ed689
CM
1345 *nr_written += nr_pages;
1346 start = cur_end + 1;
1347 }
1348 *page_started = 1;
1349 return 0;
be20aa9d
CM
1350}
1351
2ff7e61e 1352static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1353 u64 bytenr, u64 num_bytes)
1354{
1355 int ret;
1356 struct btrfs_ordered_sum *sums;
1357 LIST_HEAD(list);
1358
0b246afa 1359 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1360 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1361 if (ret == 0 && list_empty(&list))
1362 return 0;
1363
1364 while (!list_empty(&list)) {
1365 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1366 list_del(&sums->list);
1367 kfree(sums);
1368 }
58113753
LB
1369 if (ret < 0)
1370 return ret;
17d217fe
YZ
1371 return 1;
1372}
1373
8ba96f3d 1374static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1375 const u64 start, const u64 end,
1376 int *page_started, unsigned long *nr_written)
1377{
8ba96f3d
NB
1378 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1379 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1380 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1381 const u64 range_bytes = end + 1 - start;
8ba96f3d 1382 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1383 u64 range_start = start;
1384 u64 count;
1385
1386 /*
1387 * If EXTENT_NORESERVE is set it means that when the buffered write was
1388 * made we had not enough available data space and therefore we did not
1389 * reserve data space for it, since we though we could do NOCOW for the
1390 * respective file range (either there is prealloc extent or the inode
1391 * has the NOCOW bit set).
1392 *
1393 * However when we need to fallback to COW mode (because for example the
1394 * block group for the corresponding extent was turned to RO mode by a
1395 * scrub or relocation) we need to do the following:
1396 *
1397 * 1) We increment the bytes_may_use counter of the data space info.
1398 * If COW succeeds, it allocates a new data extent and after doing
1399 * that it decrements the space info's bytes_may_use counter and
1400 * increments its bytes_reserved counter by the same amount (we do
1401 * this at btrfs_add_reserved_bytes()). So we need to increment the
1402 * bytes_may_use counter to compensate (when space is reserved at
1403 * buffered write time, the bytes_may_use counter is incremented);
1404 *
1405 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1406 * that if the COW path fails for any reason, it decrements (through
1407 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1408 * data space info, which we incremented in the step above.
2166e5ed
FM
1409 *
1410 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1411 * space cache inode or an inode of the data relocation tree, we must
1412 * also increment bytes_may_use of the data space_info for the same
1413 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1414 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1415 * group that contains that extent to RO mode and therefore force COW
1416 * when starting writeback.
467dc47e 1417 */
2166e5ed 1418 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1419 EXTENT_NORESERVE, 0);
6bd335b4
FM
1420 if (count > 0 || is_space_ino || is_reloc_ino) {
1421 u64 bytes = count;
8ba96f3d 1422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1423 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1424
6bd335b4
FM
1425 if (is_space_ino || is_reloc_ino)
1426 bytes = range_bytes;
1427
467dc47e 1428 spin_lock(&sinfo->lock);
2166e5ed 1429 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1430 spin_unlock(&sinfo->lock);
1431
2166e5ed
FM
1432 if (count > 0)
1433 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1434 0, 0, NULL);
467dc47e
FM
1435 }
1436
8ba96f3d
NB
1437 return cow_file_range(inode, locked_page, start, end, page_started,
1438 nr_written, 1);
467dc47e
FM
1439}
1440
d352ac68
CM
1441/*
1442 * when nowcow writeback call back. This checks for snapshots or COW copies
1443 * of the extents that exist in the file, and COWs the file as required.
1444 *
1445 * If no cow copies or snapshots exist, we write directly to the existing
1446 * blocks on disk
1447 */
968322c8 1448static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1449 struct page *locked_page,
3e024846
NB
1450 const u64 start, const u64 end,
1451 int *page_started, int force,
1452 unsigned long *nr_written)
be20aa9d 1453{
968322c8
NB
1454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1455 struct btrfs_root *root = inode->root;
be20aa9d 1456 struct btrfs_path *path;
3e024846
NB
1457 u64 cow_start = (u64)-1;
1458 u64 cur_offset = start;
8ecebf4d 1459 int ret;
3e024846 1460 bool check_prev = true;
968322c8
NB
1461 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1462 u64 ino = btrfs_ino(inode);
762bf098
NB
1463 bool nocow = false;
1464 u64 disk_bytenr = 0;
be20aa9d
CM
1465
1466 path = btrfs_alloc_path();
17ca04af 1467 if (!path) {
968322c8 1468 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1469 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1470 EXTENT_DO_ACCOUNTING |
1471 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1472 PAGE_CLEAR_DIRTY |
1473 PAGE_SET_WRITEBACK |
1474 PAGE_END_WRITEBACK);
d8926bb3 1475 return -ENOMEM;
17ca04af 1476 }
82d5902d 1477
80ff3856 1478 while (1) {
3e024846
NB
1479 struct btrfs_key found_key;
1480 struct btrfs_file_extent_item *fi;
1481 struct extent_buffer *leaf;
1482 u64 extent_end;
1483 u64 extent_offset;
3e024846
NB
1484 u64 num_bytes = 0;
1485 u64 disk_num_bytes;
3e024846
NB
1486 u64 ram_bytes;
1487 int extent_type;
762bf098
NB
1488
1489 nocow = false;
3e024846 1490
e4c3b2dc 1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1492 cur_offset, 0);
d788a349 1493 if (ret < 0)
79787eaa 1494 goto error;
a6bd9cd1
NB
1495
1496 /*
1497 * If there is no extent for our range when doing the initial
1498 * search, then go back to the previous slot as it will be the
1499 * one containing the search offset
1500 */
80ff3856
YZ
1501 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 leaf = path->nodes[0];
1503 btrfs_item_key_to_cpu(leaf, &found_key,
1504 path->slots[0] - 1);
33345d01 1505 if (found_key.objectid == ino &&
80ff3856
YZ
1506 found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 path->slots[0]--;
1508 }
3e024846 1509 check_prev = false;
80ff3856 1510next_slot:
a6bd9cd1 1511 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1512 leaf = path->nodes[0];
1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 ret = btrfs_next_leaf(root, path);
e8916699
LB
1515 if (ret < 0) {
1516 if (cow_start != (u64)-1)
1517 cur_offset = cow_start;
79787eaa 1518 goto error;
e8916699 1519 }
80ff3856
YZ
1520 if (ret > 0)
1521 break;
1522 leaf = path->nodes[0];
1523 }
be20aa9d 1524
80ff3856
YZ
1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526
a6bd9cd1 1527 /* Didn't find anything for our INO */
1d512cb7
FM
1528 if (found_key.objectid > ino)
1529 break;
a6bd9cd1
NB
1530 /*
1531 * Keep searching until we find an EXTENT_ITEM or there are no
1532 * more extents for this inode
1533 */
1d512cb7
FM
1534 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 path->slots[0]++;
1537 goto next_slot;
1538 }
a6bd9cd1
NB
1539
1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1542 found_key.offset > end)
1543 break;
1544
a6bd9cd1
NB
1545 /*
1546 * If the found extent starts after requested offset, then
1547 * adjust extent_end to be right before this extent begins
1548 */
80ff3856
YZ
1549 if (found_key.offset > cur_offset) {
1550 extent_end = found_key.offset;
e9061e21 1551 extent_type = 0;
80ff3856
YZ
1552 goto out_check;
1553 }
1554
a6bd9cd1
NB
1555 /*
1556 * Found extent which begins before our range and potentially
1557 * intersect it
1558 */
80ff3856
YZ
1559 fi = btrfs_item_ptr(leaf, path->slots[0],
1560 struct btrfs_file_extent_item);
1561 extent_type = btrfs_file_extent_type(leaf, fi);
1562
cc95bef6 1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1564 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1567 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1568 extent_end = found_key.offset +
1569 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1570 disk_num_bytes =
1571 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1572 /*
de7999af
FM
1573 * If the extent we got ends before our current offset,
1574 * skip to the next extent.
a6bd9cd1 1575 */
de7999af 1576 if (extent_end <= cur_offset) {
80ff3856
YZ
1577 path->slots[0]++;
1578 goto next_slot;
1579 }
a6bd9cd1 1580 /* Skip holes */
17d217fe
YZ
1581 if (disk_bytenr == 0)
1582 goto out_check;
a6bd9cd1 1583 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1584 if (btrfs_file_extent_compression(leaf, fi) ||
1585 btrfs_file_extent_encryption(leaf, fi) ||
1586 btrfs_file_extent_other_encoding(leaf, fi))
1587 goto out_check;
78d4295b 1588 /*
a6bd9cd1
NB
1589 * If extent is created before the last volume's snapshot
1590 * this implies the extent is shared, hence we can't do
1591 * nocow. This is the same check as in
1592 * btrfs_cross_ref_exist but without calling
1593 * btrfs_search_slot.
78d4295b 1594 */
3e024846 1595 if (!freespace_inode &&
27a7ff55 1596 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1597 btrfs_root_last_snapshot(&root->root_item))
1598 goto out_check;
d899e052
YZ
1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 goto out_check;
a6bd9cd1 1601 /* If extent is RO, we must COW it */
2ff7e61e 1602 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1603 goto out_check;
58113753
LB
1604 ret = btrfs_cross_ref_exist(root, ino,
1605 found_key.offset -
a84d5d42 1606 extent_offset, disk_bytenr, false);
58113753
LB
1607 if (ret) {
1608 /*
1609 * ret could be -EIO if the above fails to read
1610 * metadata.
1611 */
1612 if (ret < 0) {
1613 if (cow_start != (u64)-1)
1614 cur_offset = cow_start;
1615 goto error;
1616 }
1617
3e024846 1618 WARN_ON_ONCE(freespace_inode);
17d217fe 1619 goto out_check;
58113753 1620 }
5d4f98a2 1621 disk_bytenr += extent_offset;
17d217fe
YZ
1622 disk_bytenr += cur_offset - found_key.offset;
1623 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1624 /*
a6bd9cd1
NB
1625 * If there are pending snapshots for this root, we
1626 * fall into common COW way
e9894fd3 1627 */
3e024846 1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1629 goto out_check;
17d217fe
YZ
1630 /*
1631 * force cow if csum exists in the range.
1632 * this ensure that csum for a given extent are
1633 * either valid or do not exist.
1634 */
58113753
LB
1635 ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 num_bytes);
1637 if (ret) {
58113753
LB
1638 /*
1639 * ret could be -EIO if the above fails to read
1640 * metadata.
1641 */
1642 if (ret < 0) {
1643 if (cow_start != (u64)-1)
1644 cur_offset = cow_start;
1645 goto error;
1646 }
3e024846 1647 WARN_ON_ONCE(freespace_inode);
17d217fe 1648 goto out_check;
91e1f56a 1649 }
8ecebf4d 1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1651 goto out_check;
3e024846 1652 nocow = true;
80ff3856 1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1654 extent_end = found_key.offset + ram_bytes;
1655 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1656 /* Skip extents outside of our requested range */
1657 if (extent_end <= start) {
1658 path->slots[0]++;
1659 goto next_slot;
1660 }
80ff3856 1661 } else {
e8e21007 1662 /* If this triggers then we have a memory corruption */
290342f6 1663 BUG();
80ff3856
YZ
1664 }
1665out_check:
a6bd9cd1
NB
1666 /*
1667 * If nocow is false then record the beginning of the range
1668 * that needs to be COWed
1669 */
80ff3856
YZ
1670 if (!nocow) {
1671 if (cow_start == (u64)-1)
1672 cow_start = cur_offset;
1673 cur_offset = extent_end;
1674 if (cur_offset > end)
1675 break;
1676 path->slots[0]++;
1677 goto next_slot;
7ea394f1
YZ
1678 }
1679
b3b4aa74 1680 btrfs_release_path(path);
a6bd9cd1
NB
1681
1682 /*
1683 * COW range from cow_start to found_key.offset - 1. As the key
1684 * will contain the beginning of the first extent that can be
1685 * NOCOW, following one which needs to be COW'ed
1686 */
80ff3856 1687 if (cow_start != (u64)-1) {
968322c8 1688 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1689 cow_start, found_key.offset - 1,
467dc47e 1690 page_started, nr_written);
230ed397 1691 if (ret)
79787eaa 1692 goto error;
80ff3856 1693 cow_start = (u64)-1;
7ea394f1 1694 }
80ff3856 1695
d899e052 1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1697 u64 orig_start = found_key.offset - extent_offset;
3e024846 1698 struct extent_map *em;
6f9994db 1699
968322c8 1700 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1701 orig_start,
1702 disk_bytenr, /* block_start */
1703 num_bytes, /* block_len */
1704 disk_num_bytes, /* orig_block_len */
1705 ram_bytes, BTRFS_COMPRESS_NONE,
1706 BTRFS_ORDERED_PREALLOC);
1707 if (IS_ERR(em)) {
6f9994db
LB
1708 ret = PTR_ERR(em);
1709 goto error;
d899e052 1710 }
6f9994db 1711 free_extent_map(em);
968322c8 1712 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1713 disk_bytenr, num_bytes,
1714 num_bytes,
1715 BTRFS_ORDERED_PREALLOC);
762bf098 1716 if (ret) {
968322c8 1717 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1718 cur_offset + num_bytes - 1,
1719 0);
1720 goto error;
1721 }
d899e052 1722 } else {
968322c8 1723 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1724 disk_bytenr, num_bytes,
1725 num_bytes,
1726 BTRFS_ORDERED_NOCOW);
762bf098
NB
1727 if (ret)
1728 goto error;
d899e052 1729 }
80ff3856 1730
f78c436c 1731 if (nocow)
0b246afa 1732 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1733 nocow = false;
771ed689 1734
efa56464 1735 if (root->root_key.objectid ==
4dbd80fb
QW
1736 BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 /*
1738 * Error handled later, as we must prevent
1739 * extent_clear_unlock_delalloc() in error handler
1740 * from freeing metadata of created ordered extent.
1741 */
968322c8 1742 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1743 num_bytes);
efa56464 1744
968322c8 1745 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1746 cur_offset + num_bytes - 1,
c2790a2e 1747 locked_page, EXTENT_LOCKED |
18513091
WX
1748 EXTENT_DELALLOC |
1749 EXTENT_CLEAR_DATA_RESV,
1750 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1751
80ff3856 1752 cur_offset = extent_end;
4dbd80fb
QW
1753
1754 /*
1755 * btrfs_reloc_clone_csums() error, now we're OK to call error
1756 * handler, as metadata for created ordered extent will only
1757 * be freed by btrfs_finish_ordered_io().
1758 */
1759 if (ret)
1760 goto error;
80ff3856
YZ
1761 if (cur_offset > end)
1762 break;
be20aa9d 1763 }
b3b4aa74 1764 btrfs_release_path(path);
80ff3856 1765
506481b2 1766 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1767 cow_start = cur_offset;
17ca04af 1768
80ff3856 1769 if (cow_start != (u64)-1) {
506481b2 1770 cur_offset = end;
968322c8
NB
1771 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1772 page_started, nr_written);
d788a349 1773 if (ret)
79787eaa 1774 goto error;
80ff3856
YZ
1775 }
1776
79787eaa 1777error:
762bf098
NB
1778 if (nocow)
1779 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1780
17ca04af 1781 if (ret && cur_offset < end)
968322c8 1782 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1783 locked_page, EXTENT_LOCKED |
151a41bc
JB
1784 EXTENT_DELALLOC | EXTENT_DEFRAG |
1785 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1786 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1787 PAGE_SET_WRITEBACK |
1788 PAGE_END_WRITEBACK);
7ea394f1 1789 btrfs_free_path(path);
79787eaa 1790 return ret;
be20aa9d
CM
1791}
1792
0c494225 1793static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1794{
1795
0c494225
NB
1796 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1797 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1798 return 0;
1799
1800 /*
1801 * @defrag_bytes is a hint value, no spinlock held here,
1802 * if is not zero, it means the file is defragging.
1803 * Force cow if given extent needs to be defragged.
1804 */
0c494225
NB
1805 if (inode->defrag_bytes &&
1806 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1807 return 1;
1808
1809 return 0;
1810}
1811
d352ac68 1812/*
5eaad97a
NB
1813 * Function to process delayed allocation (create CoW) for ranges which are
1814 * being touched for the first time.
d352ac68 1815 */
98456b9c 1816int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1817 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1818 struct writeback_control *wbc)
be20aa9d 1819{
be20aa9d 1820 int ret;
98456b9c 1821 int force_cow = need_force_cow(inode, start, end);
a2135011 1822
98456b9c
NB
1823 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1824 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1825 page_started, 1, nr_written);
98456b9c
NB
1826 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1827 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1828 page_started, 0, nr_written);
98456b9c
NB
1829 } else if (!inode_can_compress(inode) ||
1830 !inode_need_compress(inode, start, end)) {
1831 ret = cow_file_range(inode, locked_page, start, end,
1832 page_started, nr_written, 1);
7ddf5a42 1833 } else {
98456b9c
NB
1834 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1835 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1836 page_started, nr_written);
7ddf5a42 1837 }
52427260 1838 if (ret)
98456b9c 1839 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1840 end - start + 1);
b888db2b
CM
1841 return ret;
1842}
1843
abbb55f4
NB
1844void btrfs_split_delalloc_extent(struct inode *inode,
1845 struct extent_state *orig, u64 split)
9ed74f2d 1846{
dcab6a3b
JB
1847 u64 size;
1848
0ca1f7ce 1849 /* not delalloc, ignore it */
9ed74f2d 1850 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1851 return;
9ed74f2d 1852
dcab6a3b
JB
1853 size = orig->end - orig->start + 1;
1854 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1855 u32 num_extents;
dcab6a3b
JB
1856 u64 new_size;
1857
1858 /*
5c848198 1859 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1860 * applies here, just in reverse.
dcab6a3b
JB
1861 */
1862 new_size = orig->end - split + 1;
823bb20a 1863 num_extents = count_max_extents(new_size);
ba117213 1864 new_size = split - orig->start;
823bb20a
DS
1865 num_extents += count_max_extents(new_size);
1866 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1867 return;
1868 }
1869
9e0baf60 1870 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1871 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1872 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1873}
1874
1875/*
5c848198
NB
1876 * Handle merged delayed allocation extents so we can keep track of new extents
1877 * that are just merged onto old extents, such as when we are doing sequential
1878 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1879 */
5c848198
NB
1880void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1881 struct extent_state *other)
9ed74f2d 1882{
dcab6a3b 1883 u64 new_size, old_size;
823bb20a 1884 u32 num_extents;
dcab6a3b 1885
9ed74f2d
JB
1886 /* not delalloc, ignore it */
1887 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1888 return;
9ed74f2d 1889
8461a3de
JB
1890 if (new->start > other->start)
1891 new_size = new->end - other->start + 1;
1892 else
1893 new_size = other->end - new->start + 1;
dcab6a3b
JB
1894
1895 /* we're not bigger than the max, unreserve the space and go */
1896 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1897 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1898 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1899 spin_unlock(&BTRFS_I(inode)->lock);
1900 return;
1901 }
1902
1903 /*
ba117213
JB
1904 * We have to add up either side to figure out how many extents were
1905 * accounted for before we merged into one big extent. If the number of
1906 * extents we accounted for is <= the amount we need for the new range
1907 * then we can return, otherwise drop. Think of it like this
1908 *
1909 * [ 4k][MAX_SIZE]
1910 *
1911 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1912 * need 2 outstanding extents, on one side we have 1 and the other side
1913 * we have 1 so they are == and we can return. But in this case
1914 *
1915 * [MAX_SIZE+4k][MAX_SIZE+4k]
1916 *
1917 * Each range on their own accounts for 2 extents, but merged together
1918 * they are only 3 extents worth of accounting, so we need to drop in
1919 * this case.
dcab6a3b 1920 */
ba117213 1921 old_size = other->end - other->start + 1;
823bb20a 1922 num_extents = count_max_extents(old_size);
ba117213 1923 old_size = new->end - new->start + 1;
823bb20a
DS
1924 num_extents += count_max_extents(old_size);
1925 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1926 return;
1927
9e0baf60 1928 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1929 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1930 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1931}
1932
eb73c1b7
MX
1933static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1934 struct inode *inode)
1935{
0b246afa
JM
1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1937
eb73c1b7
MX
1938 spin_lock(&root->delalloc_lock);
1939 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1940 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1941 &root->delalloc_inodes);
1942 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1943 &BTRFS_I(inode)->runtime_flags);
1944 root->nr_delalloc_inodes++;
1945 if (root->nr_delalloc_inodes == 1) {
0b246afa 1946 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1947 BUG_ON(!list_empty(&root->delalloc_root));
1948 list_add_tail(&root->delalloc_root,
0b246afa
JM
1949 &fs_info->delalloc_roots);
1950 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1951 }
1952 }
1953 spin_unlock(&root->delalloc_lock);
1954}
1955
2b877331
NB
1956
1957void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 struct btrfs_inode *inode)
eb73c1b7 1959{
3ffbd68c 1960 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1961
9e3e97f4
NB
1962 if (!list_empty(&inode->delalloc_inodes)) {
1963 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1964 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1965 &inode->runtime_flags);
eb73c1b7
MX
1966 root->nr_delalloc_inodes--;
1967 if (!root->nr_delalloc_inodes) {
7c8a0d36 1968 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1969 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1970 BUG_ON(list_empty(&root->delalloc_root));
1971 list_del_init(&root->delalloc_root);
0b246afa 1972 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1973 }
1974 }
2b877331
NB
1975}
1976
1977static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1978 struct btrfs_inode *inode)
1979{
1980 spin_lock(&root->delalloc_lock);
1981 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1982 spin_unlock(&root->delalloc_lock);
1983}
1984
d352ac68 1985/*
e06a1fc9
NB
1986 * Properly track delayed allocation bytes in the inode and to maintain the
1987 * list of inodes that have pending delalloc work to be done.
d352ac68 1988 */
e06a1fc9
NB
1989void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1990 unsigned *bits)
291d673e 1991{
0b246afa
JM
1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993
47059d93
WS
1994 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1995 WARN_ON(1);
75eff68e
CM
1996 /*
1997 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1998 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1999 * bit, which is only set or cleared with irqs on
2000 */
0ca1f7ce 2001 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2002 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2003 u64 len = state->end + 1 - state->start;
8b62f87b 2004 u32 num_extents = count_max_extents(len);
70ddc553 2005 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2006
8b62f87b
JB
2007 spin_lock(&BTRFS_I(inode)->lock);
2008 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2009 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2010
6a3891c5 2011 /* For sanity tests */
0b246afa 2012 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2013 return;
2014
104b4e51
NB
2015 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2016 fs_info->delalloc_batch);
df0af1a5 2017 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2018 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2019 if (*bits & EXTENT_DEFRAG)
2020 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2021 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2022 &BTRFS_I(inode)->runtime_flags))
2023 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2024 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2025 }
a7e3b975
FM
2026
2027 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2028 (*bits & EXTENT_DELALLOC_NEW)) {
2029 spin_lock(&BTRFS_I(inode)->lock);
2030 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2031 state->start;
2032 spin_unlock(&BTRFS_I(inode)->lock);
2033 }
291d673e
CM
2034}
2035
d352ac68 2036/*
a36bb5f9
NB
2037 * Once a range is no longer delalloc this function ensures that proper
2038 * accounting happens.
d352ac68 2039 */
a36bb5f9
NB
2040void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2041 struct extent_state *state, unsigned *bits)
291d673e 2042{
a36bb5f9
NB
2043 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2044 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2045 u64 len = state->end + 1 - state->start;
823bb20a 2046 u32 num_extents = count_max_extents(len);
47059d93 2047
4a4b964f
FM
2048 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2049 spin_lock(&inode->lock);
6fc0ef68 2050 inode->defrag_bytes -= len;
4a4b964f
FM
2051 spin_unlock(&inode->lock);
2052 }
47059d93 2053
75eff68e
CM
2054 /*
2055 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2056 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2057 * bit, which is only set or cleared with irqs on
2058 */
0ca1f7ce 2059 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2060 struct btrfs_root *root = inode->root;
83eea1f1 2061 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2062
8b62f87b
JB
2063 spin_lock(&inode->lock);
2064 btrfs_mod_outstanding_extents(inode, -num_extents);
2065 spin_unlock(&inode->lock);
0ca1f7ce 2066
b6d08f06
JB
2067 /*
2068 * We don't reserve metadata space for space cache inodes so we
52042d8e 2069 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2070 * error.
2071 */
a315e68f 2072 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2073 root != fs_info->tree_root)
43b18595 2074 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2075
6a3891c5 2076 /* For sanity tests. */
0b246afa 2077 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2078 return;
2079
a315e68f
FM
2080 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2081 do_list && !(state->state & EXTENT_NORESERVE) &&
2082 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2083 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2084
104b4e51
NB
2085 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2086 fs_info->delalloc_batch);
6fc0ef68
NB
2087 spin_lock(&inode->lock);
2088 inode->delalloc_bytes -= len;
2089 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2090 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2091 &inode->runtime_flags))
eb73c1b7 2092 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2093 spin_unlock(&inode->lock);
291d673e 2094 }
a7e3b975
FM
2095
2096 if ((state->state & EXTENT_DELALLOC_NEW) &&
2097 (*bits & EXTENT_DELALLOC_NEW)) {
2098 spin_lock(&inode->lock);
2099 ASSERT(inode->new_delalloc_bytes >= len);
2100 inode->new_delalloc_bytes -= len;
2101 spin_unlock(&inode->lock);
2102 }
291d673e
CM
2103}
2104
d352ac68 2105/*
da12fe54
NB
2106 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2107 * in a chunk's stripe. This function ensures that bios do not span a
2108 * stripe/chunk
6f034ece 2109 *
da12fe54
NB
2110 * @page - The page we are about to add to the bio
2111 * @size - size we want to add to the bio
2112 * @bio - bio we want to ensure is smaller than a stripe
2113 * @bio_flags - flags of the bio
2114 *
2115 * return 1 if page cannot be added to the bio
2116 * return 0 if page can be added to the bio
6f034ece 2117 * return error otherwise
d352ac68 2118 */
da12fe54
NB
2119int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2120 unsigned long bio_flags)
239b14b3 2121{
0b246afa
JM
2122 struct inode *inode = page->mapping->host;
2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2124 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2125 u64 length = 0;
2126 u64 map_length;
239b14b3 2127 int ret;
89b798ad 2128 struct btrfs_io_geometry geom;
239b14b3 2129
771ed689
CM
2130 if (bio_flags & EXTENT_BIO_COMPRESSED)
2131 return 0;
2132
4f024f37 2133 length = bio->bi_iter.bi_size;
239b14b3 2134 map_length = length;
89b798ad
NB
2135 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2136 &geom);
6f034ece
LB
2137 if (ret < 0)
2138 return ret;
89b798ad
NB
2139
2140 if (geom.len < length + size)
239b14b3 2141 return 1;
3444a972 2142 return 0;
239b14b3
CM
2143}
2144
d352ac68
CM
2145/*
2146 * in order to insert checksums into the metadata in large chunks,
2147 * we wait until bio submission time. All the pages in the bio are
2148 * checksummed and sums are attached onto the ordered extent record.
2149 *
2150 * At IO completion time the cums attached on the ordered extent record
2151 * are inserted into the btree
2152 */
d0ee3934 2153static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2154 u64 bio_offset)
065631f6 2155{
c6100a4b 2156 struct inode *inode = private_data;
e015640f 2157
c965d640 2158 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
4a69a410 2159}
e015640f 2160
d352ac68 2161/*
cad321ad 2162 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2163 * on write, or reading the csums from the tree before a read.
2164 *
2165 * Rules about async/sync submit,
2166 * a) read: sync submit
2167 *
2168 * b) write without checksum: sync submit
2169 *
2170 * c) write with checksum:
2171 * c-1) if bio is issued by fsync: sync submit
2172 * (sync_writers != 0)
2173 *
2174 * c-2) if root is reloc root: sync submit
2175 * (only in case of buffered IO)
2176 *
2177 * c-3) otherwise: async submit
d352ac68 2178 */
908930f3
NB
2179blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2180 int mirror_num, unsigned long bio_flags)
50489a57 2181
44b8bd7e 2182{
0b246afa 2183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2184 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2185 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2186 blk_status_t ret = 0;
19b9bdb0 2187 int skip_sum;
b812ce28 2188 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2189
6cbff00f 2190 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2191
70ddc553 2192 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2193 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2194
37226b21 2195 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2196 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2197 if (ret)
61891923 2198 goto out;
5fd02043 2199
d20f7043 2200 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2201 ret = btrfs_submit_compressed_read(inode, bio,
2202 mirror_num,
2203 bio_flags);
2204 goto out;
c2db1073 2205 } else if (!skip_sum) {
db72e47f 2206 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2207 if (ret)
61891923 2208 goto out;
c2db1073 2209 }
4d1b5fb4 2210 goto mapit;
b812ce28 2211 } else if (async && !skip_sum) {
17d217fe
YZ
2212 /* csum items have already been cloned */
2213 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2214 goto mapit;
19b9bdb0 2215 /* we're doing a write, do the async checksumming */
c6100a4b 2216 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2217 0, inode, btrfs_submit_bio_start);
61891923 2218 goto out;
b812ce28 2219 } else if (!skip_sum) {
bd242a08 2220 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2221 if (ret)
2222 goto out;
19b9bdb0
CM
2223 }
2224
0b86a832 2225mapit:
08635bae 2226 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2227
2228out:
4e4cbee9
CH
2229 if (ret) {
2230 bio->bi_status = ret;
4246a0b6
CH
2231 bio_endio(bio);
2232 }
61891923 2233 return ret;
065631f6 2234}
6885f308 2235
d352ac68
CM
2236/*
2237 * given a list of ordered sums record them in the inode. This happens
2238 * at IO completion time based on sums calculated at bio submission time.
2239 */
510f85ed
NB
2240static int add_pending_csums(struct btrfs_trans_handle *trans,
2241 struct list_head *list)
e6dcd2dc 2242{
e6dcd2dc 2243 struct btrfs_ordered_sum *sum;
ac01f26a 2244 int ret;
e6dcd2dc 2245
c6e30871 2246 list_for_each_entry(sum, list, list) {
7c2871a2 2247 trans->adding_csums = true;
510f85ed 2248 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
7c2871a2 2249 trans->adding_csums = false;
ac01f26a
NB
2250 if (ret)
2251 return ret;
e6dcd2dc
CM
2252 }
2253 return 0;
2254}
2255
c2566f22 2256int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2257 unsigned int extra_bits,
330a5827 2258 struct extent_state **cached_state)
ea8c2819 2259{
fdb1e121 2260 WARN_ON(PAGE_ALIGNED(end));
c2566f22
NB
2261 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2262 cached_state);
ea8c2819
CM
2263}
2264
d352ac68 2265/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2266struct btrfs_writepage_fixup {
2267 struct page *page;
f4b1363c 2268 struct inode *inode;
247e743c
CM
2269 struct btrfs_work work;
2270};
2271
b2950863 2272static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2273{
2274 struct btrfs_writepage_fixup *fixup;
2275 struct btrfs_ordered_extent *ordered;
2ac55d41 2276 struct extent_state *cached_state = NULL;
364ecf36 2277 struct extent_changeset *data_reserved = NULL;
247e743c 2278 struct page *page;
65d87f79 2279 struct btrfs_inode *inode;
247e743c
CM
2280 u64 page_start;
2281 u64 page_end;
25f3c502 2282 int ret = 0;
f4b1363c 2283 bool free_delalloc_space = true;
247e743c
CM
2284
2285 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2286 page = fixup->page;
65d87f79 2287 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2288 page_start = page_offset(page);
2289 page_end = page_offset(page) + PAGE_SIZE - 1;
2290
2291 /*
2292 * This is similar to page_mkwrite, we need to reserve the space before
2293 * we take the page lock.
2294 */
65d87f79
NB
2295 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2296 PAGE_SIZE);
4a096752 2297again:
247e743c 2298 lock_page(page);
25f3c502
CM
2299
2300 /*
2301 * Before we queued this fixup, we took a reference on the page.
2302 * page->mapping may go NULL, but it shouldn't be moved to a different
2303 * address space.
2304 */
f4b1363c
JB
2305 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2306 /*
2307 * Unfortunately this is a little tricky, either
2308 *
2309 * 1) We got here and our page had already been dealt with and
2310 * we reserved our space, thus ret == 0, so we need to just
2311 * drop our space reservation and bail. This can happen the
2312 * first time we come into the fixup worker, or could happen
2313 * while waiting for the ordered extent.
2314 * 2) Our page was already dealt with, but we happened to get an
2315 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2316 * this case we obviously don't have anything to release, but
2317 * because the page was already dealt with we don't want to
2318 * mark the page with an error, so make sure we're resetting
2319 * ret to 0. This is why we have this check _before_ the ret
2320 * check, because we do not want to have a surprise ENOSPC
2321 * when the page was already properly dealt with.
2322 */
2323 if (!ret) {
65d87f79
NB
2324 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2325 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2326 page_start, PAGE_SIZE,
2327 true);
2328 }
2329 ret = 0;
247e743c 2330 goto out_page;
f4b1363c 2331 }
247e743c 2332
25f3c502 2333 /*
f4b1363c
JB
2334 * We can't mess with the page state unless it is locked, so now that
2335 * it is locked bail if we failed to make our space reservation.
25f3c502 2336 */
f4b1363c
JB
2337 if (ret)
2338 goto out_page;
247e743c 2339
65d87f79 2340 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2341
2342 /* already ordered? We're done */
8b62b72b 2343 if (PagePrivate2(page))
f4b1363c 2344 goto out_reserved;
4a096752 2345
65d87f79 2346 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2347 if (ordered) {
65d87f79
NB
2348 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2349 &cached_state);
4a096752 2350 unlock_page(page);
c0a43603 2351 btrfs_start_ordered_extent(ordered, 1);
87826df0 2352 btrfs_put_ordered_extent(ordered);
4a096752
CM
2353 goto again;
2354 }
247e743c 2355
65d87f79 2356 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2357 &cached_state);
25f3c502 2358 if (ret)
53687007 2359 goto out_reserved;
f3038ee3 2360
25f3c502
CM
2361 /*
2362 * Everything went as planned, we're now the owner of a dirty page with
2363 * delayed allocation bits set and space reserved for our COW
2364 * destination.
2365 *
2366 * The page was dirty when we started, nothing should have cleaned it.
2367 */
2368 BUG_ON(!PageDirty(page));
f4b1363c 2369 free_delalloc_space = false;
53687007 2370out_reserved:
65d87f79 2371 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2372 if (free_delalloc_space)
65d87f79
NB
2373 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2374 PAGE_SIZE, true);
2375 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2376 &cached_state);
247e743c 2377out_page:
25f3c502
CM
2378 if (ret) {
2379 /*
2380 * We hit ENOSPC or other errors. Update the mapping and page
2381 * to reflect the errors and clean the page.
2382 */
2383 mapping_set_error(page->mapping, ret);
2384 end_extent_writepage(page, ret, page_start, page_end);
2385 clear_page_dirty_for_io(page);
2386 SetPageError(page);
2387 }
2388 ClearPageChecked(page);
247e743c 2389 unlock_page(page);
09cbfeaf 2390 put_page(page);
b897abec 2391 kfree(fixup);
364ecf36 2392 extent_changeset_free(data_reserved);
f4b1363c
JB
2393 /*
2394 * As a precaution, do a delayed iput in case it would be the last iput
2395 * that could need flushing space. Recursing back to fixup worker would
2396 * deadlock.
2397 */
65d87f79 2398 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2399}
2400
2401/*
2402 * There are a few paths in the higher layers of the kernel that directly
2403 * set the page dirty bit without asking the filesystem if it is a
2404 * good idea. This causes problems because we want to make sure COW
2405 * properly happens and the data=ordered rules are followed.
2406 *
c8b97818 2407 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2408 * hasn't been properly setup for IO. We kick off an async process
2409 * to fix it up. The async helper will wait for ordered extents, set
2410 * the delalloc bit and make it safe to write the page.
2411 */
d75855b4 2412int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2413{
2414 struct inode *inode = page->mapping->host;
0b246afa 2415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2416 struct btrfs_writepage_fixup *fixup;
247e743c 2417
8b62b72b
CM
2418 /* this page is properly in the ordered list */
2419 if (TestClearPagePrivate2(page))
247e743c
CM
2420 return 0;
2421
25f3c502
CM
2422 /*
2423 * PageChecked is set below when we create a fixup worker for this page,
2424 * don't try to create another one if we're already PageChecked()
2425 *
2426 * The extent_io writepage code will redirty the page if we send back
2427 * EAGAIN.
2428 */
247e743c
CM
2429 if (PageChecked(page))
2430 return -EAGAIN;
2431
2432 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2433 if (!fixup)
2434 return -EAGAIN;
f421950f 2435
f4b1363c
JB
2436 /*
2437 * We are already holding a reference to this inode from
2438 * write_cache_pages. We need to hold it because the space reservation
2439 * takes place outside of the page lock, and we can't trust
2440 * page->mapping outside of the page lock.
2441 */
2442 ihold(inode);
247e743c 2443 SetPageChecked(page);
09cbfeaf 2444 get_page(page);
a0cac0ec 2445 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2446 fixup->page = page;
f4b1363c 2447 fixup->inode = inode;
0b246afa 2448 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2449
2450 return -EAGAIN;
247e743c
CM
2451}
2452
d899e052 2453static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2454 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2455 struct btrfs_file_extent_item *stack_fi,
2456 u64 qgroup_reserved)
d899e052 2457{
c553f94d 2458 struct btrfs_root *root = inode->root;
d899e052
YZ
2459 struct btrfs_path *path;
2460 struct extent_buffer *leaf;
2461 struct btrfs_key ins;
203f44c5
QW
2462 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2463 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2464 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2465 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2466 int extent_inserted = 0;
d899e052
YZ
2467 int ret;
2468
2469 path = btrfs_alloc_path();
d8926bb3
MF
2470 if (!path)
2471 return -ENOMEM;
d899e052 2472
a1ed835e
CM
2473 /*
2474 * we may be replacing one extent in the tree with another.
2475 * The new extent is pinned in the extent map, and we don't want
2476 * to drop it from the cache until it is completely in the btree.
2477 *
2478 * So, tell btrfs_drop_extents to leave this extent in the cache.
2479 * the caller is expected to unpin it and allow it to be merged
2480 * with the others.
2481 */
c553f94d 2482 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2483 file_pos + num_bytes, NULL, 0,
203f44c5 2484 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2485 if (ret)
2486 goto out;
d899e052 2487
1acae57b 2488 if (!extent_inserted) {
c553f94d 2489 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2490 ins.offset = file_pos;
2491 ins.type = BTRFS_EXTENT_DATA_KEY;
2492
2493 path->leave_spinning = 1;
2494 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2495 sizeof(*stack_fi));
1acae57b
FDBM
2496 if (ret)
2497 goto out;
2498 }
d899e052 2499 leaf = path->nodes[0];
203f44c5
QW
2500 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2501 write_extent_buffer(leaf, stack_fi,
2502 btrfs_item_ptr_offset(leaf, path->slots[0]),
2503 sizeof(struct btrfs_file_extent_item));
b9473439 2504
d899e052 2505 btrfs_mark_buffer_dirty(leaf);
ce195332 2506 btrfs_release_path(path);
d899e052 2507
c553f94d 2508 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2509
2510 ins.objectid = disk_bytenr;
2511 ins.offset = disk_num_bytes;
2512 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2513
c553f94d 2514 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2515 if (ret)
2516 goto out;
2517
c553f94d 2518 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2519 file_pos, qgroup_reserved, &ins);
79787eaa 2520out:
d899e052 2521 btrfs_free_path(path);
b9473439 2522
79787eaa 2523 return ret;
d899e052
YZ
2524}
2525
2ff7e61e 2526static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2527 u64 start, u64 len)
2528{
32da5386 2529 struct btrfs_block_group *cache;
e570fd27 2530
0b246afa 2531 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2532 ASSERT(cache);
2533
2534 spin_lock(&cache->lock);
2535 cache->delalloc_bytes -= len;
2536 spin_unlock(&cache->lock);
2537
2538 btrfs_put_block_group(cache);
2539}
2540
203f44c5 2541static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
2542 struct btrfs_ordered_extent *oe)
2543{
2544 struct btrfs_file_extent_item stack_fi;
2545 u64 logical_len;
2546
2547 memset(&stack_fi, 0, sizeof(stack_fi));
2548 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2549 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2550 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2551 oe->disk_num_bytes);
2552 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2553 logical_len = oe->truncated_len;
2554 else
2555 logical_len = oe->num_bytes;
2556 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2557 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2558 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2559 /* Encryption and other encoding is reserved and all 0 */
2560
3c38c877
NB
2561 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2562 oe->file_offset, &stack_fi,
2563 oe->qgroup_rsv);
203f44c5
QW
2564}
2565
2566/*
2567 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2568 * an ordered extent if the range of bytes in the file it covers are
2569 * fully written.
2570 */
5fd02043 2571static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2572{
5fd02043 2573 struct inode *inode = ordered_extent->inode;
0b246afa 2574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2575 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2576 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2577 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2578 struct extent_state *cached_state = NULL;
bffe633e 2579 u64 start, end;
261507a0 2580 int compress_type = 0;
77cef2ec 2581 int ret = 0;
bffe633e 2582 u64 logical_len = ordered_extent->num_bytes;
8d510121 2583 bool freespace_inode;
77cef2ec 2584 bool truncated = false;
a7e3b975
FM
2585 bool range_locked = false;
2586 bool clear_new_delalloc_bytes = false;
49940bdd 2587 bool clear_reserved_extent = true;
313facc5 2588 unsigned int clear_bits;
a7e3b975 2589
bffe633e
OS
2590 start = ordered_extent->file_offset;
2591 end = start + ordered_extent->num_bytes - 1;
2592
a7e3b975
FM
2593 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2594 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2595 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2596 clear_new_delalloc_bytes = true;
e6dcd2dc 2597
8d510121 2598 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2599
5fd02043
JB
2600 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2601 ret = -EIO;
2602 goto out;
2603 }
2604
bffe633e 2605 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2606
77cef2ec
JB
2607 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2608 truncated = true;
2609 logical_len = ordered_extent->truncated_len;
2610 /* Truncated the entire extent, don't bother adding */
2611 if (!logical_len)
2612 goto out;
2613 }
2614
c2167754 2615 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2616 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2617
d923afe9 2618 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2619 if (freespace_inode)
2620 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2621 else
2622 trans = btrfs_join_transaction(root);
2623 if (IS_ERR(trans)) {
2624 ret = PTR_ERR(trans);
2625 trans = NULL;
2626 goto out;
c2167754 2627 }
69fe2d75 2628 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2629 ret = btrfs_update_inode_fallback(trans, root, inode);
2630 if (ret) /* -ENOMEM or corruption */
66642832 2631 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2632 goto out;
2633 }
e6dcd2dc 2634
a7e3b975 2635 range_locked = true;
bffe633e 2636 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2637
8d510121
NB
2638 if (freespace_inode)
2639 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2640 else
7a7eaa40 2641 trans = btrfs_join_transaction(root);
79787eaa
JM
2642 if (IS_ERR(trans)) {
2643 ret = PTR_ERR(trans);
2644 trans = NULL;
a7e3b975 2645 goto out;
79787eaa 2646 }
a79b7d4b 2647
69fe2d75 2648 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2649
c8b97818 2650 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2651 compress_type = ordered_extent->compress_type;
d899e052 2652 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2653 BUG_ON(compress_type);
7a6d7067 2654 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2655 ordered_extent->file_offset,
2656 ordered_extent->file_offset +
77cef2ec 2657 logical_len);
d899e052 2658 } else {
0b246afa 2659 BUG_ON(root == fs_info->tree_root);
3c38c877 2660 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
2661 if (!ret) {
2662 clear_reserved_extent = false;
2ff7e61e 2663 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2664 ordered_extent->disk_bytenr,
2665 ordered_extent->disk_num_bytes);
49940bdd 2666 }
d899e052 2667 }
5dc562c5 2668 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2669 ordered_extent->file_offset,
2670 ordered_extent->num_bytes, trans->transid);
79787eaa 2671 if (ret < 0) {
66642832 2672 btrfs_abort_transaction(trans, ret);
a7e3b975 2673 goto out;
79787eaa 2674 }
2ac55d41 2675
510f85ed 2676 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
2677 if (ret) {
2678 btrfs_abort_transaction(trans, ret);
2679 goto out;
2680 }
e6dcd2dc 2681
d923afe9 2682 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2683 ret = btrfs_update_inode_fallback(trans, root, inode);
2684 if (ret) { /* -ENOMEM or corruption */
66642832 2685 btrfs_abort_transaction(trans, ret);
a7e3b975 2686 goto out;
1ef30be1
JB
2687 }
2688 ret = 0;
c2167754 2689out:
313facc5
OS
2690 clear_bits = EXTENT_DEFRAG;
2691 if (range_locked)
2692 clear_bits |= EXTENT_LOCKED;
2693 if (clear_new_delalloc_bytes)
2694 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2695 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2696 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2697 &cached_state);
a7e3b975 2698
a698d075 2699 if (trans)
3a45bb20 2700 btrfs_end_transaction(trans);
0cb59c99 2701
77cef2ec 2702 if (ret || truncated) {
bffe633e 2703 u64 unwritten_start = start;
77cef2ec
JB
2704
2705 if (truncated)
bffe633e
OS
2706 unwritten_start += logical_len;
2707 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2708
2709 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2710 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2711
0bec9ef5
JB
2712 /*
2713 * If the ordered extent had an IOERR or something else went
2714 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2715 * back to the allocator. We only free the extent in the
2716 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2717 *
2718 * If we made it past insert_reserved_file_extent before we
2719 * errored out then we don't need to do this as the accounting
2720 * has already been done.
0bec9ef5 2721 */
77cef2ec 2722 if ((ret || !logical_len) &&
49940bdd 2723 clear_reserved_extent &&
77cef2ec 2724 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2725 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2726 /*
2727 * Discard the range before returning it back to the
2728 * free space pool
2729 */
46b27f50 2730 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2731 btrfs_discard_extent(fs_info,
bffe633e
OS
2732 ordered_extent->disk_bytenr,
2733 ordered_extent->disk_num_bytes,
2734 NULL);
2ff7e61e 2735 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2736 ordered_extent->disk_bytenr,
2737 ordered_extent->disk_num_bytes, 1);
4eaaec24 2738 }
0bec9ef5
JB
2739 }
2740
5fd02043 2741 /*
8bad3c02
LB
2742 * This needs to be done to make sure anybody waiting knows we are done
2743 * updating everything for this ordered extent.
5fd02043 2744 */
71fe0a55 2745 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
5fd02043 2746
e6dcd2dc
CM
2747 /* once for us */
2748 btrfs_put_ordered_extent(ordered_extent);
2749 /* once for the tree */
2750 btrfs_put_ordered_extent(ordered_extent);
2751
5fd02043
JB
2752 return ret;
2753}
2754
2755static void finish_ordered_fn(struct btrfs_work *work)
2756{
2757 struct btrfs_ordered_extent *ordered_extent;
2758 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2759 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2760}
2761
c629732d
NB
2762void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2763 u64 end, int uptodate)
211f90e6 2764{
3347c48f
NB
2765 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2766 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5fd02043 2767 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2768 struct btrfs_workqueue *wq;
5fd02043 2769
1abe9b8a 2770 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2771
8b62b72b 2772 ClearPagePrivate2(page);
3347c48f
NB
2773 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2774 end - start + 1, uptodate))
c3988d63 2775 return;
5fd02043 2776
3347c48f 2777 if (btrfs_is_free_space_inode(inode))
0b246afa 2778 wq = fs_info->endio_freespace_worker;
a0cac0ec 2779 else
0b246afa 2780 wq = fs_info->endio_write_workers;
5fd02043 2781
a0cac0ec 2782 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2783 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2784}
2785
47df7765
OS
2786static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2787 int icsum, struct page *page, int pgoff, u64 start,
2788 size_t len)
dc380aea 2789{
d5178578
JT
2790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2791 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2792 char *kaddr;
d5178578
JT
2793 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2794 u8 *csum_expected;
2795 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2796
d5178578 2797 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2798
2799 kaddr = kmap_atomic(page);
d5178578
JT
2800 shash->tfm = fs_info->csum_shash;
2801
fd08001f 2802 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2803
2804 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2805 goto zeroit;
2806
2807 kunmap_atomic(kaddr);
2808 return 0;
2809zeroit:
ea41d6b2
JT
2810 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2811 io_bio->mirror_num);
814723e0
NB
2812 if (io_bio->device)
2813 btrfs_dev_stat_inc_and_print(io_bio->device,
2814 BTRFS_DEV_STAT_CORRUPTION_ERRS);
dc380aea
MX
2815 memset(kaddr + pgoff, 1, len);
2816 flush_dcache_page(page);
2817 kunmap_atomic(kaddr);
dc380aea
MX
2818 return -EIO;
2819}
2820
d352ac68
CM
2821/*
2822 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2823 * if there's a match, we allow the bio to finish. If not, the code in
2824 * extent_io.c will try to find good copies for us.
d352ac68 2825 */
9a446d6a
NB
2826int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2827 struct page *page, u64 start, u64 end, int mirror)
07157aac 2828{
4eee4fa4 2829 size_t offset = start - page_offset(page);
07157aac 2830 struct inode *inode = page->mapping->host;
d1310b2e 2831 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2832 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2833
d20f7043
CM
2834 if (PageChecked(page)) {
2835 ClearPageChecked(page);
dc380aea 2836 return 0;
d20f7043 2837 }
6cbff00f
CH
2838
2839 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2840 return 0;
17d217fe
YZ
2841
2842 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2843 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2844 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2845 return 0;
17d217fe 2846 }
d20f7043 2847
facc8a22 2848 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2849 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2850 (size_t)(end - start + 1));
07157aac 2851}
b888db2b 2852
c1c3fac2
NB
2853/*
2854 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2855 *
2856 * @inode: The inode we want to perform iput on
2857 *
2858 * This function uses the generic vfs_inode::i_count to track whether we should
2859 * just decrement it (in case it's > 1) or if this is the last iput then link
2860 * the inode to the delayed iput machinery. Delayed iputs are processed at
2861 * transaction commit time/superblock commit/cleaner kthread.
2862 */
24bbcf04
YZ
2863void btrfs_add_delayed_iput(struct inode *inode)
2864{
0b246afa 2865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2866 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2867
2868 if (atomic_add_unless(&inode->i_count, -1, 1))
2869 return;
2870
034f784d 2871 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2872 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2873 ASSERT(list_empty(&binode->delayed_iput));
2874 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2875 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2876 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2877 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2878}
2879
63611e73
JB
2880static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2881 struct btrfs_inode *inode)
2882{
2883 list_del_init(&inode->delayed_iput);
2884 spin_unlock(&fs_info->delayed_iput_lock);
2885 iput(&inode->vfs_inode);
2886 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2887 wake_up(&fs_info->delayed_iputs_wait);
2888 spin_lock(&fs_info->delayed_iput_lock);
2889}
2890
2891static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2892 struct btrfs_inode *inode)
2893{
2894 if (!list_empty(&inode->delayed_iput)) {
2895 spin_lock(&fs_info->delayed_iput_lock);
2896 if (!list_empty(&inode->delayed_iput))
2897 run_delayed_iput_locked(fs_info, inode);
2898 spin_unlock(&fs_info->delayed_iput_lock);
2899 }
2900}
2901
2ff7e61e 2902void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2903{
24bbcf04 2904
24bbcf04 2905 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2906 while (!list_empty(&fs_info->delayed_iputs)) {
2907 struct btrfs_inode *inode;
2908
2909 inode = list_first_entry(&fs_info->delayed_iputs,
2910 struct btrfs_inode, delayed_iput);
63611e73 2911 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2912 }
8089fe62 2913 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2914}
2915
034f784d
JB
2916/**
2917 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2918 * @fs_info - the fs_info for this fs
2919 * @return - EINTR if we were killed, 0 if nothing's pending
2920 *
2921 * This will wait on any delayed iputs that are currently running with KILLABLE
2922 * set. Once they are all done running we will return, unless we are killed in
2923 * which case we return EINTR. This helps in user operations like fallocate etc
2924 * that might get blocked on the iputs.
2925 */
2926int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2927{
2928 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2929 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2930 if (ret)
2931 return -EINTR;
2932 return 0;
2933}
2934
7b128766 2935/*
f7e9e8fc
OS
2936 * This creates an orphan entry for the given inode in case something goes wrong
2937 * in the middle of an unlink.
7b128766 2938 */
73f2e545 2939int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2940 struct btrfs_inode *inode)
7b128766 2941{
d68fc57b 2942 int ret;
7b128766 2943
27919067
OS
2944 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2945 if (ret && ret != -EEXIST) {
2946 btrfs_abort_transaction(trans, ret);
2947 return ret;
d68fc57b
YZ
2948 }
2949
d68fc57b 2950 return 0;
7b128766
JB
2951}
2952
2953/*
f7e9e8fc
OS
2954 * We have done the delete so we can go ahead and remove the orphan item for
2955 * this particular inode.
7b128766 2956 */
48a3b636 2957static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2958 struct btrfs_inode *inode)
7b128766 2959{
27919067 2960 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2961}
2962
2963/*
2964 * this cleans up any orphans that may be left on the list from the last use
2965 * of this root.
2966 */
66b4ffd1 2967int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2968{
0b246afa 2969 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2970 struct btrfs_path *path;
2971 struct extent_buffer *leaf;
7b128766
JB
2972 struct btrfs_key key, found_key;
2973 struct btrfs_trans_handle *trans;
2974 struct inode *inode;
8f6d7f4f 2975 u64 last_objectid = 0;
f7e9e8fc 2976 int ret = 0, nr_unlink = 0;
7b128766 2977
d68fc57b 2978 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2979 return 0;
c71bf099
YZ
2980
2981 path = btrfs_alloc_path();
66b4ffd1
JB
2982 if (!path) {
2983 ret = -ENOMEM;
2984 goto out;
2985 }
e4058b54 2986 path->reada = READA_BACK;
7b128766
JB
2987
2988 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 2989 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
2990 key.offset = (u64)-1;
2991
7b128766
JB
2992 while (1) {
2993 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2994 if (ret < 0)
2995 goto out;
7b128766
JB
2996
2997 /*
2998 * if ret == 0 means we found what we were searching for, which
25985edc 2999 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3000 * find the key and see if we have stuff that matches
3001 */
3002 if (ret > 0) {
66b4ffd1 3003 ret = 0;
7b128766
JB
3004 if (path->slots[0] == 0)
3005 break;
3006 path->slots[0]--;
3007 }
3008
3009 /* pull out the item */
3010 leaf = path->nodes[0];
7b128766
JB
3011 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3012
3013 /* make sure the item matches what we want */
3014 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3015 break;
962a298f 3016 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3017 break;
3018
3019 /* release the path since we're done with it */
b3b4aa74 3020 btrfs_release_path(path);
7b128766
JB
3021
3022 /*
3023 * this is where we are basically btrfs_lookup, without the
3024 * crossing root thing. we store the inode number in the
3025 * offset of the orphan item.
3026 */
8f6d7f4f
JB
3027
3028 if (found_key.offset == last_objectid) {
0b246afa
JM
3029 btrfs_err(fs_info,
3030 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3031 ret = -EINVAL;
3032 goto out;
3033 }
3034
3035 last_objectid = found_key.offset;
3036
5d4f98a2
YZ
3037 found_key.objectid = found_key.offset;
3038 found_key.type = BTRFS_INODE_ITEM_KEY;
3039 found_key.offset = 0;
0202e83f 3040 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3041 ret = PTR_ERR_OR_ZERO(inode);
67710892 3042 if (ret && ret != -ENOENT)
66b4ffd1 3043 goto out;
7b128766 3044
0b246afa 3045 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0 3046 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3047 int is_dead_root = 0;
3048
3049 /*
3050 * this is an orphan in the tree root. Currently these
3051 * could come from 2 sources:
3052 * a) a snapshot deletion in progress
3053 * b) a free space cache inode
3054 * We need to distinguish those two, as the snapshot
3055 * orphan must not get deleted.
3056 * find_dead_roots already ran before us, so if this
3057 * is a snapshot deletion, we should find the root
a619b3c7 3058 * in the fs_roots radix tree.
f8e9e0b0 3059 */
a619b3c7
RK
3060
3061 spin_lock(&fs_info->fs_roots_radix_lock);
3062 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3063 (unsigned long)found_key.objectid);
3064 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3065 is_dead_root = 1;
3066 spin_unlock(&fs_info->fs_roots_radix_lock);
3067
f8e9e0b0
AJ
3068 if (is_dead_root) {
3069 /* prevent this orphan from being found again */
3070 key.offset = found_key.objectid - 1;
3071 continue;
3072 }
f7e9e8fc 3073
f8e9e0b0 3074 }
f7e9e8fc 3075
7b128766 3076 /*
f7e9e8fc
OS
3077 * If we have an inode with links, there are a couple of
3078 * possibilities. Old kernels (before v3.12) used to create an
3079 * orphan item for truncate indicating that there were possibly
3080 * extent items past i_size that needed to be deleted. In v3.12,
3081 * truncate was changed to update i_size in sync with the extent
3082 * items, but the (useless) orphan item was still created. Since
3083 * v4.18, we don't create the orphan item for truncate at all.
3084 *
3085 * So, this item could mean that we need to do a truncate, but
3086 * only if this filesystem was last used on a pre-v3.12 kernel
3087 * and was not cleanly unmounted. The odds of that are quite
3088 * slim, and it's a pain to do the truncate now, so just delete
3089 * the orphan item.
3090 *
3091 * It's also possible that this orphan item was supposed to be
3092 * deleted but wasn't. The inode number may have been reused,
3093 * but either way, we can delete the orphan item.
7b128766 3094 */
f7e9e8fc
OS
3095 if (ret == -ENOENT || inode->i_nlink) {
3096 if (!ret)
3097 iput(inode);
a8c9e576 3098 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3099 if (IS_ERR(trans)) {
3100 ret = PTR_ERR(trans);
3101 goto out;
3102 }
0b246afa
JM
3103 btrfs_debug(fs_info, "auto deleting %Lu",
3104 found_key.objectid);
a8c9e576
JB
3105 ret = btrfs_del_orphan_item(trans, root,
3106 found_key.objectid);
3a45bb20 3107 btrfs_end_transaction(trans);
4ef31a45
JB
3108 if (ret)
3109 goto out;
7b128766
JB
3110 continue;
3111 }
3112
f7e9e8fc 3113 nr_unlink++;
7b128766
JB
3114
3115 /* this will do delete_inode and everything for us */
3116 iput(inode);
3117 }
3254c876
MX
3118 /* release the path since we're done with it */
3119 btrfs_release_path(path);
3120
d68fc57b
YZ
3121 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3122
a575ceeb 3123 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3124 trans = btrfs_join_transaction(root);
66b4ffd1 3125 if (!IS_ERR(trans))
3a45bb20 3126 btrfs_end_transaction(trans);
d68fc57b 3127 }
7b128766
JB
3128
3129 if (nr_unlink)
0b246afa 3130 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3131
3132out:
3133 if (ret)
0b246afa 3134 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3135 btrfs_free_path(path);
3136 return ret;
7b128766
JB
3137}
3138
46a53cca
CM
3139/*
3140 * very simple check to peek ahead in the leaf looking for xattrs. If we
3141 * don't find any xattrs, we know there can't be any acls.
3142 *
3143 * slot is the slot the inode is in, objectid is the objectid of the inode
3144 */
3145static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3146 int slot, u64 objectid,
3147 int *first_xattr_slot)
46a53cca
CM
3148{
3149 u32 nritems = btrfs_header_nritems(leaf);
3150 struct btrfs_key found_key;
f23b5a59
JB
3151 static u64 xattr_access = 0;
3152 static u64 xattr_default = 0;
46a53cca
CM
3153 int scanned = 0;
3154
f23b5a59 3155 if (!xattr_access) {
97d79299
AG
3156 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3157 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3158 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3159 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3160 }
3161
46a53cca 3162 slot++;
63541927 3163 *first_xattr_slot = -1;
46a53cca
CM
3164 while (slot < nritems) {
3165 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3166
3167 /* we found a different objectid, there must not be acls */
3168 if (found_key.objectid != objectid)
3169 return 0;
3170
3171 /* we found an xattr, assume we've got an acl */
f23b5a59 3172 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3173 if (*first_xattr_slot == -1)
3174 *first_xattr_slot = slot;
f23b5a59
JB
3175 if (found_key.offset == xattr_access ||
3176 found_key.offset == xattr_default)
3177 return 1;
3178 }
46a53cca
CM
3179
3180 /*
3181 * we found a key greater than an xattr key, there can't
3182 * be any acls later on
3183 */
3184 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3185 return 0;
3186
3187 slot++;
3188 scanned++;
3189
3190 /*
3191 * it goes inode, inode backrefs, xattrs, extents,
3192 * so if there are a ton of hard links to an inode there can
3193 * be a lot of backrefs. Don't waste time searching too hard,
3194 * this is just an optimization
3195 */
3196 if (scanned >= 8)
3197 break;
3198 }
3199 /* we hit the end of the leaf before we found an xattr or
3200 * something larger than an xattr. We have to assume the inode
3201 * has acls
3202 */
63541927
FDBM
3203 if (*first_xattr_slot == -1)
3204 *first_xattr_slot = slot;
46a53cca
CM
3205 return 1;
3206}
3207
d352ac68
CM
3208/*
3209 * read an inode from the btree into the in-memory inode
3210 */
4222ea71
FM
3211static int btrfs_read_locked_inode(struct inode *inode,
3212 struct btrfs_path *in_path)
39279cc3 3213{
0b246afa 3214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3215 struct btrfs_path *path = in_path;
5f39d397 3216 struct extent_buffer *leaf;
39279cc3
CM
3217 struct btrfs_inode_item *inode_item;
3218 struct btrfs_root *root = BTRFS_I(inode)->root;
3219 struct btrfs_key location;
67de1176 3220 unsigned long ptr;
46a53cca 3221 int maybe_acls;
618e21d5 3222 u32 rdev;
39279cc3 3223 int ret;
2f7e33d4 3224 bool filled = false;
63541927 3225 int first_xattr_slot;
2f7e33d4
MX
3226
3227 ret = btrfs_fill_inode(inode, &rdev);
3228 if (!ret)
3229 filled = true;
39279cc3 3230
4222ea71
FM
3231 if (!path) {
3232 path = btrfs_alloc_path();
3233 if (!path)
3234 return -ENOMEM;
3235 }
1748f843 3236
39279cc3 3237 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3238
39279cc3 3239 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3240 if (ret) {
4222ea71
FM
3241 if (path != in_path)
3242 btrfs_free_path(path);
f5b3a417 3243 return ret;
67710892 3244 }
39279cc3 3245
5f39d397 3246 leaf = path->nodes[0];
2f7e33d4
MX
3247
3248 if (filled)
67de1176 3249 goto cache_index;
2f7e33d4 3250
5f39d397
CM
3251 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3252 struct btrfs_inode_item);
5f39d397 3253 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3254 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3255 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3256 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3257 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3258 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3259 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3260
a937b979
DS
3261 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3262 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3263
a937b979
DS
3264 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3265 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3266
a937b979
DS
3267 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3268 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3269
9cc97d64 3270 BTRFS_I(inode)->i_otime.tv_sec =
3271 btrfs_timespec_sec(leaf, &inode_item->otime);
3272 BTRFS_I(inode)->i_otime.tv_nsec =
3273 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3274
a76a3cd4 3275 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3276 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3277 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3278
c7f88c4e
JL
3279 inode_set_iversion_queried(inode,
3280 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3281 inode->i_generation = BTRFS_I(inode)->generation;
3282 inode->i_rdev = 0;
3283 rdev = btrfs_inode_rdev(leaf, inode_item);
3284
3285 BTRFS_I(inode)->index_cnt = (u64)-1;
3286 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3287
3288cache_index:
5dc562c5
JB
3289 /*
3290 * If we were modified in the current generation and evicted from memory
3291 * and then re-read we need to do a full sync since we don't have any
3292 * idea about which extents were modified before we were evicted from
3293 * cache.
6e17d30b
YD
3294 *
3295 * This is required for both inode re-read from disk and delayed inode
3296 * in delayed_nodes_tree.
5dc562c5 3297 */
0b246afa 3298 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3300 &BTRFS_I(inode)->runtime_flags);
3301
bde6c242
FM
3302 /*
3303 * We don't persist the id of the transaction where an unlink operation
3304 * against the inode was last made. So here we assume the inode might
3305 * have been evicted, and therefore the exact value of last_unlink_trans
3306 * lost, and set it to last_trans to avoid metadata inconsistencies
3307 * between the inode and its parent if the inode is fsync'ed and the log
3308 * replayed. For example, in the scenario:
3309 *
3310 * touch mydir/foo
3311 * ln mydir/foo mydir/bar
3312 * sync
3313 * unlink mydir/bar
3314 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3315 * xfs_io -c fsync mydir/foo
3316 * <power failure>
3317 * mount fs, triggers fsync log replay
3318 *
3319 * We must make sure that when we fsync our inode foo we also log its
3320 * parent inode, otherwise after log replay the parent still has the
3321 * dentry with the "bar" name but our inode foo has a link count of 1
3322 * and doesn't have an inode ref with the name "bar" anymore.
3323 *
3324 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3325 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3326 * transaction commits on fsync if our inode is a directory, or if our
3327 * inode is not a directory, logging its parent unnecessarily.
3328 */
3329 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3330
3ebac17c
FM
3331 /*
3332 * Same logic as for last_unlink_trans. We don't persist the generation
3333 * of the last transaction where this inode was used for a reflink
3334 * operation, so after eviction and reloading the inode we must be
3335 * pessimistic and assume the last transaction that modified the inode.
3336 */
3337 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3338
67de1176
MX
3339 path->slots[0]++;
3340 if (inode->i_nlink != 1 ||
3341 path->slots[0] >= btrfs_header_nritems(leaf))
3342 goto cache_acl;
3343
3344 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3345 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3346 goto cache_acl;
3347
3348 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3349 if (location.type == BTRFS_INODE_REF_KEY) {
3350 struct btrfs_inode_ref *ref;
3351
3352 ref = (struct btrfs_inode_ref *)ptr;
3353 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3354 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3355 struct btrfs_inode_extref *extref;
3356
3357 extref = (struct btrfs_inode_extref *)ptr;
3358 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3359 extref);
3360 }
2f7e33d4 3361cache_acl:
46a53cca
CM
3362 /*
3363 * try to precache a NULL acl entry for files that don't have
3364 * any xattrs or acls
3365 */
33345d01 3366 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3367 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3368 if (first_xattr_slot != -1) {
3369 path->slots[0] = first_xattr_slot;
3370 ret = btrfs_load_inode_props(inode, path);
3371 if (ret)
0b246afa 3372 btrfs_err(fs_info,
351fd353 3373 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3374 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3375 root->root_key.objectid, ret);
3376 }
4222ea71
FM
3377 if (path != in_path)
3378 btrfs_free_path(path);
63541927 3379
72c04902
AV
3380 if (!maybe_acls)
3381 cache_no_acl(inode);
46a53cca 3382
39279cc3 3383 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3384 case S_IFREG:
3385 inode->i_mapping->a_ops = &btrfs_aops;
3386 inode->i_fop = &btrfs_file_operations;
3387 inode->i_op = &btrfs_file_inode_operations;
3388 break;
3389 case S_IFDIR:
3390 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3391 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3392 break;
3393 case S_IFLNK:
3394 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3395 inode_nohighmem(inode);
4779cc04 3396 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3397 break;
618e21d5 3398 default:
0279b4cd 3399 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3400 init_special_inode(inode, inode->i_mode, rdev);
3401 break;
39279cc3 3402 }
6cbff00f 3403
7b6a221e 3404 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3405 return 0;
39279cc3
CM
3406}
3407
d352ac68
CM
3408/*
3409 * given a leaf and an inode, copy the inode fields into the leaf
3410 */
e02119d5
CM
3411static void fill_inode_item(struct btrfs_trans_handle *trans,
3412 struct extent_buffer *leaf,
5f39d397 3413 struct btrfs_inode_item *item,
39279cc3
CM
3414 struct inode *inode)
3415{
51fab693
LB
3416 struct btrfs_map_token token;
3417
c82f823c 3418 btrfs_init_map_token(&token, leaf);
5f39d397 3419
cc4c13d5
DS
3420 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3421 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3422 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3423 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3424 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3425
3426 btrfs_set_token_timespec_sec(&token, &item->atime,
3427 inode->i_atime.tv_sec);
3428 btrfs_set_token_timespec_nsec(&token, &item->atime,
3429 inode->i_atime.tv_nsec);
3430
3431 btrfs_set_token_timespec_sec(&token, &item->mtime,
3432 inode->i_mtime.tv_sec);
3433 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3434 inode->i_mtime.tv_nsec);
3435
3436 btrfs_set_token_timespec_sec(&token, &item->ctime,
3437 inode->i_ctime.tv_sec);
3438 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3439 inode->i_ctime.tv_nsec);
3440
3441 btrfs_set_token_timespec_sec(&token, &item->otime,
3442 BTRFS_I(inode)->i_otime.tv_sec);
3443 btrfs_set_token_timespec_nsec(&token, &item->otime,
3444 BTRFS_I(inode)->i_otime.tv_nsec);
3445
3446 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3447 btrfs_set_token_inode_generation(&token, item,
3448 BTRFS_I(inode)->generation);
3449 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3450 btrfs_set_token_inode_transid(&token, item, trans->transid);
3451 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3452 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3453 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3454}
3455
d352ac68
CM
3456/*
3457 * copy everything in the in-memory inode into the btree.
3458 */
2115133f 3459static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3460 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3461{
3462 struct btrfs_inode_item *inode_item;
3463 struct btrfs_path *path;
5f39d397 3464 struct extent_buffer *leaf;
39279cc3
CM
3465 int ret;
3466
3467 path = btrfs_alloc_path();
16cdcec7
MX
3468 if (!path)
3469 return -ENOMEM;
3470
b9473439 3471 path->leave_spinning = 1;
16cdcec7
MX
3472 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3473 1);
39279cc3
CM
3474 if (ret) {
3475 if (ret > 0)
3476 ret = -ENOENT;
3477 goto failed;
3478 }
3479
5f39d397
CM
3480 leaf = path->nodes[0];
3481 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3482 struct btrfs_inode_item);
39279cc3 3483
e02119d5 3484 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3485 btrfs_mark_buffer_dirty(leaf);
d9094414 3486 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
39279cc3
CM
3487 ret = 0;
3488failed:
39279cc3
CM
3489 btrfs_free_path(path);
3490 return ret;
3491}
3492
2115133f
CM
3493/*
3494 * copy everything in the in-memory inode into the btree.
3495 */
3496noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3497 struct btrfs_root *root, struct inode *inode)
3498{
0b246afa 3499 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3500 int ret;
3501
3502 /*
3503 * If the inode is a free space inode, we can deadlock during commit
3504 * if we put it into the delayed code.
3505 *
3506 * The data relocation inode should also be directly updated
3507 * without delay
3508 */
70ddc553 3509 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3510 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3511 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3512 btrfs_update_root_times(trans, root);
3513
2115133f
CM
3514 ret = btrfs_delayed_update_inode(trans, root, inode);
3515 if (!ret)
d9094414 3516 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
2115133f
CM
3517 return ret;
3518 }
3519
3520 return btrfs_update_inode_item(trans, root, inode);
3521}
3522
be6aef60
JB
3523noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3524 struct btrfs_root *root,
3525 struct inode *inode)
2115133f
CM
3526{
3527 int ret;
3528
3529 ret = btrfs_update_inode(trans, root, inode);
3530 if (ret == -ENOSPC)
3531 return btrfs_update_inode_item(trans, root, inode);
3532 return ret;
3533}
3534
d352ac68
CM
3535/*
3536 * unlink helper that gets used here in inode.c and in the tree logging
3537 * recovery code. It remove a link in a directory with a given name, and
3538 * also drops the back refs in the inode to the directory
3539 */
92986796
AV
3540static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *root,
4ec5934e
NB
3542 struct btrfs_inode *dir,
3543 struct btrfs_inode *inode,
92986796 3544 const char *name, int name_len)
39279cc3 3545{
0b246afa 3546 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3547 struct btrfs_path *path;
39279cc3 3548 int ret = 0;
39279cc3 3549 struct btrfs_dir_item *di;
aec7477b 3550 u64 index;
33345d01
LZ
3551 u64 ino = btrfs_ino(inode);
3552 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3553
3554 path = btrfs_alloc_path();
54aa1f4d
CM
3555 if (!path) {
3556 ret = -ENOMEM;
554233a6 3557 goto out;
54aa1f4d
CM
3558 }
3559
b9473439 3560 path->leave_spinning = 1;
33345d01 3561 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3562 name, name_len, -1);
3cf5068f
LB
3563 if (IS_ERR_OR_NULL(di)) {
3564 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3565 goto err;
3566 }
39279cc3 3567 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3568 if (ret)
3569 goto err;
b3b4aa74 3570 btrfs_release_path(path);
39279cc3 3571
67de1176
MX
3572 /*
3573 * If we don't have dir index, we have to get it by looking up
3574 * the inode ref, since we get the inode ref, remove it directly,
3575 * it is unnecessary to do delayed deletion.
3576 *
3577 * But if we have dir index, needn't search inode ref to get it.
3578 * Since the inode ref is close to the inode item, it is better
3579 * that we delay to delete it, and just do this deletion when
3580 * we update the inode item.
3581 */
4ec5934e 3582 if (inode->dir_index) {
67de1176
MX
3583 ret = btrfs_delayed_delete_inode_ref(inode);
3584 if (!ret) {
4ec5934e 3585 index = inode->dir_index;
67de1176
MX
3586 goto skip_backref;
3587 }
3588 }
3589
33345d01
LZ
3590 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3591 dir_ino, &index);
aec7477b 3592 if (ret) {
0b246afa 3593 btrfs_info(fs_info,
c2cf52eb 3594 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3595 name_len, name, ino, dir_ino);
66642832 3596 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3597 goto err;
3598 }
67de1176 3599skip_backref:
9add2945 3600 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3601 if (ret) {
66642832 3602 btrfs_abort_transaction(trans, ret);
39279cc3 3603 goto err;
79787eaa 3604 }
39279cc3 3605
4ec5934e
NB
3606 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3607 dir_ino);
79787eaa 3608 if (ret != 0 && ret != -ENOENT) {
66642832 3609 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3610 goto err;
3611 }
e02119d5 3612
4ec5934e
NB
3613 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3614 index);
6418c961
CM
3615 if (ret == -ENOENT)
3616 ret = 0;
d4e3991b 3617 else if (ret)
66642832 3618 btrfs_abort_transaction(trans, ret);
63611e73
JB
3619
3620 /*
3621 * If we have a pending delayed iput we could end up with the final iput
3622 * being run in btrfs-cleaner context. If we have enough of these built
3623 * up we can end up burning a lot of time in btrfs-cleaner without any
3624 * way to throttle the unlinks. Since we're currently holding a ref on
3625 * the inode we can run the delayed iput here without any issues as the
3626 * final iput won't be done until after we drop the ref we're currently
3627 * holding.
3628 */
3629 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3630err:
3631 btrfs_free_path(path);
e02119d5
CM
3632 if (ret)
3633 goto out;
3634
6ef06d27 3635 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3636 inode_inc_iversion(&inode->vfs_inode);
3637 inode_inc_iversion(&dir->vfs_inode);
3638 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3639 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3640 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3641out:
39279cc3
CM
3642 return ret;
3643}
3644
92986796
AV
3645int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3646 struct btrfs_root *root,
4ec5934e 3647 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3648 const char *name, int name_len)
3649{
3650 int ret;
3651 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3652 if (!ret) {
4ec5934e
NB
3653 drop_nlink(&inode->vfs_inode);
3654 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3655 }
3656 return ret;
3657}
39279cc3 3658
a22285a6
YZ
3659/*
3660 * helper to start transaction for unlink and rmdir.
3661 *
d52be818
JB
3662 * unlink and rmdir are special in btrfs, they do not always free space, so
3663 * if we cannot make our reservations the normal way try and see if there is
3664 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3665 * allow the unlink to occur.
a22285a6 3666 */
d52be818 3667static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3668{
a22285a6 3669 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3670
e70bea5f
JB
3671 /*
3672 * 1 for the possible orphan item
3673 * 1 for the dir item
3674 * 1 for the dir index
3675 * 1 for the inode ref
e70bea5f
JB
3676 * 1 for the inode
3677 */
7f9fe614 3678 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3679}
3680
3681static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3682{
3683 struct btrfs_root *root = BTRFS_I(dir)->root;
3684 struct btrfs_trans_handle *trans;
2b0143b5 3685 struct inode *inode = d_inode(dentry);
a22285a6 3686 int ret;
a22285a6 3687
d52be818 3688 trans = __unlink_start_trans(dir);
a22285a6
YZ
3689 if (IS_ERR(trans))
3690 return PTR_ERR(trans);
5f39d397 3691
4ec5934e
NB
3692 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3693 0);
12fcfd22 3694
4ec5934e
NB
3695 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3696 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3697 dentry->d_name.len);
b532402e
TI
3698 if (ret)
3699 goto out;
7b128766 3700
a22285a6 3701 if (inode->i_nlink == 0) {
73f2e545 3702 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3703 if (ret)
3704 goto out;
a22285a6 3705 }
7b128766 3706
b532402e 3707out:
3a45bb20 3708 btrfs_end_transaction(trans);
2ff7e61e 3709 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3710 return ret;
3711}
3712
f60a2364 3713static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3714 struct inode *dir, struct dentry *dentry)
4df27c4d 3715{
401b3b19 3716 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3717 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3718 struct btrfs_path *path;
3719 struct extent_buffer *leaf;
3720 struct btrfs_dir_item *di;
3721 struct btrfs_key key;
045d3967
JB
3722 const char *name = dentry->d_name.name;
3723 int name_len = dentry->d_name.len;
4df27c4d
YZ
3724 u64 index;
3725 int ret;
045d3967 3726 u64 objectid;
4a0cc7ca 3727 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3728
045d3967
JB
3729 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3730 objectid = inode->root->root_key.objectid;
3731 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3732 objectid = inode->location.objectid;
3733 } else {
3734 WARN_ON(1);
3735 return -EINVAL;
3736 }
3737
4df27c4d
YZ
3738 path = btrfs_alloc_path();
3739 if (!path)
3740 return -ENOMEM;
3741
33345d01 3742 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3743 name, name_len, -1);
79787eaa 3744 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3745 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3746 goto out;
3747 }
4df27c4d
YZ
3748
3749 leaf = path->nodes[0];
3750 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3751 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3752 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3753 if (ret) {
66642832 3754 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3755 goto out;
3756 }
b3b4aa74 3757 btrfs_release_path(path);
4df27c4d 3758
d49d3287
JB
3759 /*
3760 * This is a placeholder inode for a subvolume we didn't have a
3761 * reference to at the time of the snapshot creation. In the meantime
3762 * we could have renamed the real subvol link into our snapshot, so
3763 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3764 * Instead simply lookup the dir_index_item for this entry so we can
3765 * remove it. Otherwise we know we have a ref to the root and we can
3766 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3767 */
3768 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3769 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3770 name, name_len);
79787eaa
JM
3771 if (IS_ERR_OR_NULL(di)) {
3772 if (!di)
3773 ret = -ENOENT;
3774 else
3775 ret = PTR_ERR(di);
66642832 3776 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3777 goto out;
3778 }
4df27c4d
YZ
3779
3780 leaf = path->nodes[0];
3781 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3782 index = key.offset;
d49d3287
JB
3783 btrfs_release_path(path);
3784 } else {
3785 ret = btrfs_del_root_ref(trans, objectid,
3786 root->root_key.objectid, dir_ino,
3787 &index, name, name_len);
3788 if (ret) {
3789 btrfs_abort_transaction(trans, ret);
3790 goto out;
3791 }
4df27c4d
YZ
3792 }
3793
9add2945 3794 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3795 if (ret) {
66642832 3796 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3797 goto out;
3798 }
4df27c4d 3799
6ef06d27 3800 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3801 inode_inc_iversion(dir);
c2050a45 3802 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3803 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3804 if (ret)
66642832 3805 btrfs_abort_transaction(trans, ret);
79787eaa 3806out:
71d7aed0 3807 btrfs_free_path(path);
79787eaa 3808 return ret;
4df27c4d
YZ
3809}
3810
ec42f167
MT
3811/*
3812 * Helper to check if the subvolume references other subvolumes or if it's
3813 * default.
3814 */
f60a2364 3815static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3816{
3817 struct btrfs_fs_info *fs_info = root->fs_info;
3818 struct btrfs_path *path;
3819 struct btrfs_dir_item *di;
3820 struct btrfs_key key;
3821 u64 dir_id;
3822 int ret;
3823
3824 path = btrfs_alloc_path();
3825 if (!path)
3826 return -ENOMEM;
3827
3828 /* Make sure this root isn't set as the default subvol */
3829 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3830 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3831 dir_id, "default", 7, 0);
3832 if (di && !IS_ERR(di)) {
3833 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3834 if (key.objectid == root->root_key.objectid) {
3835 ret = -EPERM;
3836 btrfs_err(fs_info,
3837 "deleting default subvolume %llu is not allowed",
3838 key.objectid);
3839 goto out;
3840 }
3841 btrfs_release_path(path);
3842 }
3843
3844 key.objectid = root->root_key.objectid;
3845 key.type = BTRFS_ROOT_REF_KEY;
3846 key.offset = (u64)-1;
3847
3848 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3849 if (ret < 0)
3850 goto out;
3851 BUG_ON(ret == 0);
3852
3853 ret = 0;
3854 if (path->slots[0] > 0) {
3855 path->slots[0]--;
3856 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3857 if (key.objectid == root->root_key.objectid &&
3858 key.type == BTRFS_ROOT_REF_KEY)
3859 ret = -ENOTEMPTY;
3860 }
3861out:
3862 btrfs_free_path(path);
3863 return ret;
3864}
3865
20a68004
NB
3866/* Delete all dentries for inodes belonging to the root */
3867static void btrfs_prune_dentries(struct btrfs_root *root)
3868{
3869 struct btrfs_fs_info *fs_info = root->fs_info;
3870 struct rb_node *node;
3871 struct rb_node *prev;
3872 struct btrfs_inode *entry;
3873 struct inode *inode;
3874 u64 objectid = 0;
3875
3876 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3877 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3878
3879 spin_lock(&root->inode_lock);
3880again:
3881 node = root->inode_tree.rb_node;
3882 prev = NULL;
3883 while (node) {
3884 prev = node;
3885 entry = rb_entry(node, struct btrfs_inode, rb_node);
3886
37508515 3887 if (objectid < btrfs_ino(entry))
20a68004 3888 node = node->rb_left;
37508515 3889 else if (objectid > btrfs_ino(entry))
20a68004
NB
3890 node = node->rb_right;
3891 else
3892 break;
3893 }
3894 if (!node) {
3895 while (prev) {
3896 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3897 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3898 node = prev;
3899 break;
3900 }
3901 prev = rb_next(prev);
3902 }
3903 }
3904 while (node) {
3905 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3906 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3907 inode = igrab(&entry->vfs_inode);
3908 if (inode) {
3909 spin_unlock(&root->inode_lock);
3910 if (atomic_read(&inode->i_count) > 1)
3911 d_prune_aliases(inode);
3912 /*
3913 * btrfs_drop_inode will have it removed from the inode
3914 * cache when its usage count hits zero.
3915 */
3916 iput(inode);
3917 cond_resched();
3918 spin_lock(&root->inode_lock);
3919 goto again;
3920 }
3921
3922 if (cond_resched_lock(&root->inode_lock))
3923 goto again;
3924
3925 node = rb_next(node);
3926 }
3927 spin_unlock(&root->inode_lock);
3928}
3929
f60a2364
MT
3930int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3931{
3932 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3933 struct btrfs_root *root = BTRFS_I(dir)->root;
3934 struct inode *inode = d_inode(dentry);
3935 struct btrfs_root *dest = BTRFS_I(inode)->root;
3936 struct btrfs_trans_handle *trans;
3937 struct btrfs_block_rsv block_rsv;
3938 u64 root_flags;
f60a2364
MT
3939 int ret;
3940 int err;
3941
3942 /*
3943 * Don't allow to delete a subvolume with send in progress. This is
3944 * inside the inode lock so the error handling that has to drop the bit
3945 * again is not run concurrently.
3946 */
3947 spin_lock(&dest->root_item_lock);
a7176f74 3948 if (dest->send_in_progress) {
f60a2364
MT
3949 spin_unlock(&dest->root_item_lock);
3950 btrfs_warn(fs_info,
3951 "attempt to delete subvolume %llu during send",
3952 dest->root_key.objectid);
3953 return -EPERM;
3954 }
a7176f74
LF
3955 root_flags = btrfs_root_flags(&dest->root_item);
3956 btrfs_set_root_flags(&dest->root_item,
3957 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3958 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3959
3960 down_write(&fs_info->subvol_sem);
3961
3962 err = may_destroy_subvol(dest);
3963 if (err)
3964 goto out_up_write;
3965
3966 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3967 /*
3968 * One for dir inode,
3969 * two for dir entries,
3970 * two for root ref/backref.
3971 */
c4c129db 3972 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3973 if (err)
3974 goto out_up_write;
3975
3976 trans = btrfs_start_transaction(root, 0);
3977 if (IS_ERR(trans)) {
3978 err = PTR_ERR(trans);
3979 goto out_release;
3980 }
3981 trans->block_rsv = &block_rsv;
3982 trans->bytes_reserved = block_rsv.size;
3983
3984 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3985
045d3967 3986 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
3987 if (ret) {
3988 err = ret;
3989 btrfs_abort_transaction(trans, ret);
3990 goto out_end_trans;
3991 }
3992
3993 btrfs_record_root_in_trans(trans, dest);
3994
3995 memset(&dest->root_item.drop_progress, 0,
3996 sizeof(dest->root_item.drop_progress));
3997 dest->root_item.drop_level = 0;
3998 btrfs_set_root_refs(&dest->root_item, 0);
3999
4000 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4001 ret = btrfs_insert_orphan_item(trans,
4002 fs_info->tree_root,
4003 dest->root_key.objectid);
4004 if (ret) {
4005 btrfs_abort_transaction(trans, ret);
4006 err = ret;
4007 goto out_end_trans;
4008 }
4009 }
4010
d1957791 4011 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4012 BTRFS_UUID_KEY_SUBVOL,
4013 dest->root_key.objectid);
4014 if (ret && ret != -ENOENT) {
4015 btrfs_abort_transaction(trans, ret);
4016 err = ret;
4017 goto out_end_trans;
4018 }
4019 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4020 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4021 dest->root_item.received_uuid,
4022 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4023 dest->root_key.objectid);
4024 if (ret && ret != -ENOENT) {
4025 btrfs_abort_transaction(trans, ret);
4026 err = ret;
4027 goto out_end_trans;
4028 }
4029 }
4030
082b6c97
QW
4031 free_anon_bdev(dest->anon_dev);
4032 dest->anon_dev = 0;
f60a2364
MT
4033out_end_trans:
4034 trans->block_rsv = NULL;
4035 trans->bytes_reserved = 0;
4036 ret = btrfs_end_transaction(trans);
4037 if (ret && !err)
4038 err = ret;
4039 inode->i_flags |= S_DEAD;
4040out_release:
e85fde51 4041 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4042out_up_write:
4043 up_write(&fs_info->subvol_sem);
4044 if (err) {
4045 spin_lock(&dest->root_item_lock);
4046 root_flags = btrfs_root_flags(&dest->root_item);
4047 btrfs_set_root_flags(&dest->root_item,
4048 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4049 spin_unlock(&dest->root_item_lock);
4050 } else {
4051 d_invalidate(dentry);
20a68004 4052 btrfs_prune_dentries(dest);
f60a2364
MT
4053 ASSERT(dest->send_in_progress == 0);
4054
4055 /* the last ref */
4056 if (dest->ino_cache_inode) {
4057 iput(dest->ino_cache_inode);
4058 dest->ino_cache_inode = NULL;
4059 }
4060 }
4061
4062 return err;
4063}
4064
39279cc3
CM
4065static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4066{
2b0143b5 4067 struct inode *inode = d_inode(dentry);
1832a6d5 4068 int err = 0;
39279cc3 4069 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4070 struct btrfs_trans_handle *trans;
44f714da 4071 u64 last_unlink_trans;
39279cc3 4072
b3ae244e 4073 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4074 return -ENOTEMPTY;
4a0cc7ca 4075 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4076 return btrfs_delete_subvolume(dir, dentry);
134d4512 4077
d52be818 4078 trans = __unlink_start_trans(dir);
a22285a6 4079 if (IS_ERR(trans))
5df6a9f6 4080 return PTR_ERR(trans);
5df6a9f6 4081
4a0cc7ca 4082 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4083 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4084 goto out;
4085 }
4086
73f2e545 4087 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4088 if (err)
4df27c4d 4089 goto out;
7b128766 4090
44f714da
FM
4091 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4092
39279cc3 4093 /* now the directory is empty */
4ec5934e
NB
4094 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4095 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4096 dentry->d_name.len);
44f714da 4097 if (!err) {
6ef06d27 4098 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4099 /*
4100 * Propagate the last_unlink_trans value of the deleted dir to
4101 * its parent directory. This is to prevent an unrecoverable
4102 * log tree in the case we do something like this:
4103 * 1) create dir foo
4104 * 2) create snapshot under dir foo
4105 * 3) delete the snapshot
4106 * 4) rmdir foo
4107 * 5) mkdir foo
4108 * 6) fsync foo or some file inside foo
4109 */
4110 if (last_unlink_trans >= trans->transid)
4111 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4112 }
4df27c4d 4113out:
3a45bb20 4114 btrfs_end_transaction(trans);
2ff7e61e 4115 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4116
39279cc3
CM
4117 return err;
4118}
4119
ddfae63c
JB
4120/*
4121 * Return this if we need to call truncate_block for the last bit of the
4122 * truncate.
4123 */
4124#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4125
39279cc3
CM
4126/*
4127 * this can truncate away extent items, csum items and directory items.
4128 * It starts at a high offset and removes keys until it can't find
d352ac68 4129 * any higher than new_size
39279cc3
CM
4130 *
4131 * csum items that cross the new i_size are truncated to the new size
4132 * as well.
7b128766
JB
4133 *
4134 * min_type is the minimum key type to truncate down to. If set to 0, this
4135 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4136 */
8082510e
YZ
4137int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4138 struct btrfs_root *root,
4139 struct inode *inode,
4140 u64 new_size, u32 min_type)
39279cc3 4141{
0b246afa 4142 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4143 struct btrfs_path *path;
5f39d397 4144 struct extent_buffer *leaf;
39279cc3 4145 struct btrfs_file_extent_item *fi;
8082510e
YZ
4146 struct btrfs_key key;
4147 struct btrfs_key found_key;
39279cc3 4148 u64 extent_start = 0;
db94535d 4149 u64 extent_num_bytes = 0;
5d4f98a2 4150 u64 extent_offset = 0;
39279cc3 4151 u64 item_end = 0;
c1aa4575 4152 u64 last_size = new_size;
8082510e 4153 u32 found_type = (u8)-1;
39279cc3
CM
4154 int found_extent;
4155 int del_item;
85e21bac
CM
4156 int pending_del_nr = 0;
4157 int pending_del_slot = 0;
179e29e4 4158 int extent_type = -1;
8082510e 4159 int ret;
4a0cc7ca 4160 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4161 u64 bytes_deleted = 0;
897ca819
TM
4162 bool be_nice = false;
4163 bool should_throttle = false;
28553fa9
FM
4164 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4165 struct extent_state *cached_state = NULL;
8082510e
YZ
4166
4167 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4168
28ed1345 4169 /*
92a7cc42
QW
4170 * For non-free space inodes and non-shareable roots, we want to back
4171 * off from time to time. This means all inodes in subvolume roots,
4172 * reloc roots, and data reloc roots.
28ed1345 4173 */
70ddc553 4174 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4175 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4176 be_nice = true;
28ed1345 4177
0eb0e19c
MF
4178 path = btrfs_alloc_path();
4179 if (!path)
4180 return -ENOMEM;
e4058b54 4181 path->reada = READA_BACK;
0eb0e19c 4182
82028e0a 4183 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4184 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4185 &cached_state);
28553fa9 4186
82028e0a
QW
4187 /*
4188 * We want to drop from the next block forward in case this
4189 * new size is not block aligned since we will be keeping the
4190 * last block of the extent just the way it is.
4191 */
dcdbc059 4192 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4193 fs_info->sectorsize),
da17066c 4194 (u64)-1, 0);
82028e0a 4195 }
8082510e 4196
16cdcec7
MX
4197 /*
4198 * This function is also used to drop the items in the log tree before
4199 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4200 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4201 * items.
4202 */
4203 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4204 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4205
33345d01 4206 key.objectid = ino;
39279cc3 4207 key.offset = (u64)-1;
5f39d397
CM
4208 key.type = (u8)-1;
4209
85e21bac 4210search_again:
28ed1345
CM
4211 /*
4212 * with a 16K leaf size and 128MB extents, you can actually queue
4213 * up a huge file in a single leaf. Most of the time that
4214 * bytes_deleted is > 0, it will be huge by the time we get here
4215 */
fd86a3a3
OS
4216 if (be_nice && bytes_deleted > SZ_32M &&
4217 btrfs_should_end_transaction(trans)) {
4218 ret = -EAGAIN;
4219 goto out;
28ed1345
CM
4220 }
4221
85e21bac 4222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4223 if (ret < 0)
8082510e 4224 goto out;
d397712b 4225
85e21bac 4226 if (ret > 0) {
fd86a3a3 4227 ret = 0;
e02119d5
CM
4228 /* there are no items in the tree for us to truncate, we're
4229 * done
4230 */
8082510e
YZ
4231 if (path->slots[0] == 0)
4232 goto out;
85e21bac
CM
4233 path->slots[0]--;
4234 }
4235
d397712b 4236 while (1) {
9ddc959e
JB
4237 u64 clear_start = 0, clear_len = 0;
4238
39279cc3 4239 fi = NULL;
5f39d397
CM
4240 leaf = path->nodes[0];
4241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4242 found_type = found_key.type;
39279cc3 4243
33345d01 4244 if (found_key.objectid != ino)
39279cc3 4245 break;
5f39d397 4246
85e21bac 4247 if (found_type < min_type)
39279cc3
CM
4248 break;
4249
5f39d397 4250 item_end = found_key.offset;
39279cc3 4251 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4252 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4253 struct btrfs_file_extent_item);
179e29e4
CM
4254 extent_type = btrfs_file_extent_type(leaf, fi);
4255 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4256 item_end +=
db94535d 4257 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4258
4259 trace_btrfs_truncate_show_fi_regular(
4260 BTRFS_I(inode), leaf, fi,
4261 found_key.offset);
179e29e4 4262 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4263 item_end += btrfs_file_extent_ram_bytes(leaf,
4264 fi);
09ed2f16
LB
4265
4266 trace_btrfs_truncate_show_fi_inline(
4267 BTRFS_I(inode), leaf, fi, path->slots[0],
4268 found_key.offset);
39279cc3 4269 }
008630c1 4270 item_end--;
39279cc3 4271 }
8082510e
YZ
4272 if (found_type > min_type) {
4273 del_item = 1;
4274 } else {
76b42abb 4275 if (item_end < new_size)
b888db2b 4276 break;
8082510e
YZ
4277 if (found_key.offset >= new_size)
4278 del_item = 1;
4279 else
4280 del_item = 0;
39279cc3 4281 }
39279cc3 4282 found_extent = 0;
39279cc3 4283 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4284 if (found_type != BTRFS_EXTENT_DATA_KEY)
4285 goto delete;
4286
4287 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4288 u64 num_dec;
9ddc959e
JB
4289
4290 clear_start = found_key.offset;
db94535d 4291 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4292 if (!del_item) {
db94535d
CM
4293 u64 orig_num_bytes =
4294 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4295 extent_num_bytes = ALIGN(new_size -
4296 found_key.offset,
0b246afa 4297 fs_info->sectorsize);
9ddc959e 4298 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4299 btrfs_set_file_extent_num_bytes(leaf, fi,
4300 extent_num_bytes);
4301 num_dec = (orig_num_bytes -
9069218d 4302 extent_num_bytes);
92a7cc42 4303 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4304 &root->state) &&
4305 extent_start != 0)
a76a3cd4 4306 inode_sub_bytes(inode, num_dec);
5f39d397 4307 btrfs_mark_buffer_dirty(leaf);
39279cc3 4308 } else {
db94535d
CM
4309 extent_num_bytes =
4310 btrfs_file_extent_disk_num_bytes(leaf,
4311 fi);
5d4f98a2
YZ
4312 extent_offset = found_key.offset -
4313 btrfs_file_extent_offset(leaf, fi);
4314
39279cc3 4315 /* FIXME blocksize != 4096 */
9069218d 4316 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4317 if (extent_start != 0) {
4318 found_extent = 1;
92a7cc42 4319 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4320 &root->state))
a76a3cd4 4321 inode_sub_bytes(inode, num_dec);
e02119d5 4322 }
39279cc3 4323 }
9ddc959e 4324 clear_len = num_dec;
9069218d 4325 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4326 /*
4327 * we can't truncate inline items that have had
4328 * special encodings
4329 */
4330 if (!del_item &&
c8b97818 4331 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4332 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4333 btrfs_file_extent_compression(leaf, fi) == 0) {
4334 u32 size = (u32)(new_size - found_key.offset);
4335
4336 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4337 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4338 btrfs_truncate_item(path, size, 1);
ddfae63c 4339 } else if (!del_item) {
514ac8ad 4340 /*
ddfae63c
JB
4341 * We have to bail so the last_size is set to
4342 * just before this extent.
514ac8ad 4343 */
fd86a3a3 4344 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4345 break;
9ddc959e
JB
4346 } else {
4347 /*
4348 * Inline extents are special, we just treat
4349 * them as a full sector worth in the file
4350 * extent tree just for simplicity sake.
4351 */
4352 clear_len = fs_info->sectorsize;
ddfae63c 4353 }
0305cd5f 4354
92a7cc42 4355 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4356 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4357 }
179e29e4 4358delete:
9ddc959e
JB
4359 /*
4360 * We use btrfs_truncate_inode_items() to clean up log trees for
4361 * multiple fsyncs, and in this case we don't want to clear the
4362 * file extent range because it's just the log.
4363 */
4364 if (root == BTRFS_I(inode)->root) {
4365 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4366 clear_start, clear_len);
4367 if (ret) {
4368 btrfs_abort_transaction(trans, ret);
4369 break;
4370 }
4371 }
4372
ddfae63c
JB
4373 if (del_item)
4374 last_size = found_key.offset;
4375 else
4376 last_size = new_size;
39279cc3 4377 if (del_item) {
85e21bac
CM
4378 if (!pending_del_nr) {
4379 /* no pending yet, add ourselves */
4380 pending_del_slot = path->slots[0];
4381 pending_del_nr = 1;
4382 } else if (pending_del_nr &&
4383 path->slots[0] + 1 == pending_del_slot) {
4384 /* hop on the pending chunk */
4385 pending_del_nr++;
4386 pending_del_slot = path->slots[0];
4387 } else {
d397712b 4388 BUG();
85e21bac 4389 }
39279cc3
CM
4390 } else {
4391 break;
4392 }
897ca819 4393 should_throttle = false;
28f75a0e 4394
27cdeb70 4395 if (found_extent &&
82028e0a 4396 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4397 struct btrfs_ref ref = { 0 };
4398
28ed1345 4399 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4400
4401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4402 extent_start, extent_num_bytes, 0);
4403 ref.real_root = root->root_key.objectid;
4404 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4405 ino, extent_offset);
4406 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4407 if (ret) {
4408 btrfs_abort_transaction(trans, ret);
4409 break;
4410 }
28f75a0e 4411 if (be_nice) {
7c861627 4412 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4413 should_throttle = true;
28f75a0e 4414 }
39279cc3 4415 }
85e21bac 4416
8082510e
YZ
4417 if (found_type == BTRFS_INODE_ITEM_KEY)
4418 break;
4419
4420 if (path->slots[0] == 0 ||
1262133b 4421 path->slots[0] != pending_del_slot ||
28bad212 4422 should_throttle) {
8082510e
YZ
4423 if (pending_del_nr) {
4424 ret = btrfs_del_items(trans, root, path,
4425 pending_del_slot,
4426 pending_del_nr);
79787eaa 4427 if (ret) {
66642832 4428 btrfs_abort_transaction(trans, ret);
fd86a3a3 4429 break;
79787eaa 4430 }
8082510e
YZ
4431 pending_del_nr = 0;
4432 }
b3b4aa74 4433 btrfs_release_path(path);
28bad212 4434
28f75a0e 4435 /*
28bad212
JB
4436 * We can generate a lot of delayed refs, so we need to
4437 * throttle every once and a while and make sure we're
4438 * adding enough space to keep up with the work we are
4439 * generating. Since we hold a transaction here we
4440 * can't flush, and we don't want to FLUSH_LIMIT because
4441 * we could have generated too many delayed refs to
4442 * actually allocate, so just bail if we're short and
4443 * let the normal reservation dance happen higher up.
28f75a0e 4444 */
28bad212
JB
4445 if (should_throttle) {
4446 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4447 BTRFS_RESERVE_NO_FLUSH);
4448 if (ret) {
4449 ret = -EAGAIN;
4450 break;
4451 }
28f75a0e 4452 }
85e21bac 4453 goto search_again;
8082510e
YZ
4454 } else {
4455 path->slots[0]--;
85e21bac 4456 }
39279cc3 4457 }
8082510e 4458out:
fd86a3a3
OS
4459 if (ret >= 0 && pending_del_nr) {
4460 int err;
4461
4462 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4463 pending_del_nr);
fd86a3a3
OS
4464 if (err) {
4465 btrfs_abort_transaction(trans, err);
4466 ret = err;
4467 }
85e21bac 4468 }
76b42abb
FM
4469 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4470 ASSERT(last_size >= new_size);
fd86a3a3 4471 if (!ret && last_size > new_size)
76b42abb 4472 last_size = new_size;
d923afe9 4473 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4474 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4475 (u64)-1, &cached_state);
76b42abb 4476 }
28ed1345 4477
39279cc3 4478 btrfs_free_path(path);
fd86a3a3 4479 return ret;
39279cc3
CM
4480}
4481
4482/*
9703fefe 4483 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4484 * @inode - inode that we're zeroing
4485 * @from - the offset to start zeroing
4486 * @len - the length to zero, 0 to zero the entire range respective to the
4487 * offset
4488 * @front - zero up to the offset instead of from the offset on
4489 *
9703fefe 4490 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4491 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4492 */
9703fefe 4493int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4494 int front)
39279cc3 4495{
0b246afa 4496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4497 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4498 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4499 struct btrfs_ordered_extent *ordered;
2ac55d41 4500 struct extent_state *cached_state = NULL;
364ecf36 4501 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4502 char *kaddr;
6d4572a9 4503 bool only_release_metadata = false;
0b246afa 4504 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4505 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4506 unsigned offset = from & (blocksize - 1);
39279cc3 4507 struct page *page;
3b16a4e3 4508 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4509 size_t write_bytes = blocksize;
39279cc3 4510 int ret = 0;
9703fefe
CR
4511 u64 block_start;
4512 u64 block_end;
39279cc3 4513
b03ebd99
NB
4514 if (IS_ALIGNED(offset, blocksize) &&
4515 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4516 goto out;
9703fefe 4517
8b62f87b
JB
4518 block_start = round_down(from, blocksize);
4519 block_end = block_start + blocksize - 1;
4520
36ea6f3e
NB
4521 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4522 block_start, blocksize);
6d4572a9 4523 if (ret < 0) {
38d37aa9
QW
4524 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4525 &write_bytes) > 0) {
6d4572a9
QW
4526 /* For nocow case, no need to reserve data space */
4527 only_release_metadata = true;
4528 } else {
4529 goto out;
4530 }
4531 }
4532 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4533 if (ret < 0) {
4534 if (!only_release_metadata)
25ce28ca
NB
4535 btrfs_free_reserved_data_space(BTRFS_I(inode),
4536 data_reserved, block_start, blocksize);
6d4572a9
QW
4537 goto out;
4538 }
211c17f5 4539again:
3b16a4e3 4540 page = find_or_create_page(mapping, index, mask);
5d5e103a 4541 if (!page) {
86d52921 4542 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4543 block_start, blocksize, true);
8702ba93 4544 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4545 ret = -ENOMEM;
39279cc3 4546 goto out;
5d5e103a 4547 }
e6dcd2dc 4548
39279cc3 4549 if (!PageUptodate(page)) {
9ebefb18 4550 ret = btrfs_readpage(NULL, page);
39279cc3 4551 lock_page(page);
211c17f5
CM
4552 if (page->mapping != mapping) {
4553 unlock_page(page);
09cbfeaf 4554 put_page(page);
211c17f5
CM
4555 goto again;
4556 }
39279cc3
CM
4557 if (!PageUptodate(page)) {
4558 ret = -EIO;
89642229 4559 goto out_unlock;
39279cc3
CM
4560 }
4561 }
211c17f5 4562 wait_on_page_writeback(page);
e6dcd2dc 4563
9703fefe 4564 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4565 set_page_extent_mapped(page);
4566
c3504372 4567 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4568 if (ordered) {
9703fefe 4569 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4570 &cached_state);
e6dcd2dc 4571 unlock_page(page);
09cbfeaf 4572 put_page(page);
c0a43603 4573 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
4574 btrfs_put_ordered_extent(ordered);
4575 goto again;
4576 }
4577
9703fefe 4578 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4579 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4580 0, 0, &cached_state);
5d5e103a 4581
c2566f22 4582 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4583 &cached_state);
9ed74f2d 4584 if (ret) {
9703fefe 4585 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4586 &cached_state);
9ed74f2d
JB
4587 goto out_unlock;
4588 }
4589
9703fefe 4590 if (offset != blocksize) {
2aaa6655 4591 if (!len)
9703fefe 4592 len = blocksize - offset;
e6dcd2dc 4593 kaddr = kmap(page);
2aaa6655 4594 if (front)
9703fefe
CR
4595 memset(kaddr + (block_start - page_offset(page)),
4596 0, offset);
2aaa6655 4597 else
9703fefe
CR
4598 memset(kaddr + (block_start - page_offset(page)) + offset,
4599 0, len);
e6dcd2dc
CM
4600 flush_dcache_page(page);
4601 kunmap(page);
4602 }
247e743c 4603 ClearPageChecked(page);
e6dcd2dc 4604 set_page_dirty(page);
e43bbe5e 4605 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4606
6d4572a9
QW
4607 if (only_release_metadata)
4608 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4609 block_end, EXTENT_NORESERVE, NULL, NULL,
4610 GFP_NOFS);
4611
89642229 4612out_unlock:
6d4572a9
QW
4613 if (ret) {
4614 if (only_release_metadata)
4615 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4616 blocksize, true);
4617 else
86d52921 4618 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4619 block_start, blocksize, true);
4620 }
8702ba93 4621 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4622 unlock_page(page);
09cbfeaf 4623 put_page(page);
39279cc3 4624out:
6d4572a9 4625 if (only_release_metadata)
38d37aa9 4626 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4627 extent_changeset_free(data_reserved);
39279cc3
CM
4628 return ret;
4629}
4630
16e7549f
JB
4631static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4632 u64 offset, u64 len)
4633{
0b246afa 4634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4635 struct btrfs_trans_handle *trans;
4636 int ret;
4637
4638 /*
4639 * Still need to make sure the inode looks like it's been updated so
4640 * that any holes get logged if we fsync.
4641 */
0b246afa
JM
4642 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4643 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4644 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4645 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4646 return 0;
4647 }
4648
4649 /*
4650 * 1 - for the one we're dropping
4651 * 1 - for the one we're adding
4652 * 1 - for updating the inode.
4653 */
4654 trans = btrfs_start_transaction(root, 3);
4655 if (IS_ERR(trans))
4656 return PTR_ERR(trans);
4657
4658 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4659 if (ret) {
66642832 4660 btrfs_abort_transaction(trans, ret);
3a45bb20 4661 btrfs_end_transaction(trans);
16e7549f
JB
4662 return ret;
4663 }
4664
f85b7379
DS
4665 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4666 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4667 if (ret)
66642832 4668 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4669 else
4670 btrfs_update_inode(trans, root, inode);
3a45bb20 4671 btrfs_end_transaction(trans);
16e7549f
JB
4672 return ret;
4673}
4674
695a0d0d
JB
4675/*
4676 * This function puts in dummy file extents for the area we're creating a hole
4677 * for. So if we are truncating this file to a larger size we need to insert
4678 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4679 * the range between oldsize and size
4680 */
a41ad394 4681int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4682{
0b246afa 4683 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4684 struct btrfs_root *root = BTRFS_I(inode)->root;
4685 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4686 struct extent_map *em = NULL;
2ac55d41 4687 struct extent_state *cached_state = NULL;
5dc562c5 4688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4689 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4690 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4691 u64 last_byte;
4692 u64 cur_offset;
4693 u64 hole_size;
9ed74f2d 4694 int err = 0;
39279cc3 4695
a71754fc 4696 /*
9703fefe
CR
4697 * If our size started in the middle of a block we need to zero out the
4698 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4699 * expose stale data.
4700 */
9703fefe 4701 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4702 if (err)
4703 return err;
4704
9036c102
YZ
4705 if (size <= hole_start)
4706 return 0;
4707
b272ae22 4708 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4709 block_end - 1, &cached_state);
9036c102
YZ
4710 cur_offset = hole_start;
4711 while (1) {
fc4f21b1 4712 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4713 block_end - cur_offset);
79787eaa
JM
4714 if (IS_ERR(em)) {
4715 err = PTR_ERR(em);
f2767956 4716 em = NULL;
79787eaa
JM
4717 break;
4718 }
9036c102 4719 last_byte = min(extent_map_end(em), block_end);
0b246afa 4720 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4721 hole_size = last_byte - cur_offset;
4722
8082510e 4723 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4724 struct extent_map *hole_em;
9ed74f2d 4725
16e7549f
JB
4726 err = maybe_insert_hole(root, inode, cur_offset,
4727 hole_size);
4728 if (err)
3893e33b 4729 break;
9ddc959e
JB
4730
4731 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4732 cur_offset, hole_size);
4733 if (err)
4734 break;
4735
dcdbc059 4736 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4737 cur_offset + hole_size - 1, 0);
4738 hole_em = alloc_extent_map();
4739 if (!hole_em) {
4740 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4741 &BTRFS_I(inode)->runtime_flags);
4742 goto next;
4743 }
4744 hole_em->start = cur_offset;
4745 hole_em->len = hole_size;
4746 hole_em->orig_start = cur_offset;
8082510e 4747
5dc562c5
JB
4748 hole_em->block_start = EXTENT_MAP_HOLE;
4749 hole_em->block_len = 0;
b4939680 4750 hole_em->orig_block_len = 0;
cc95bef6 4751 hole_em->ram_bytes = hole_size;
5dc562c5 4752 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4753 hole_em->generation = fs_info->generation;
8082510e 4754
5dc562c5
JB
4755 while (1) {
4756 write_lock(&em_tree->lock);
09a2a8f9 4757 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4758 write_unlock(&em_tree->lock);
4759 if (err != -EEXIST)
4760 break;
dcdbc059
NB
4761 btrfs_drop_extent_cache(BTRFS_I(inode),
4762 cur_offset,
5dc562c5
JB
4763 cur_offset +
4764 hole_size - 1, 0);
4765 }
4766 free_extent_map(hole_em);
9ddc959e
JB
4767 } else {
4768 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4769 cur_offset, hole_size);
4770 if (err)
4771 break;
9036c102 4772 }
16e7549f 4773next:
9036c102 4774 free_extent_map(em);
a22285a6 4775 em = NULL;
9036c102 4776 cur_offset = last_byte;
8082510e 4777 if (cur_offset >= block_end)
9036c102
YZ
4778 break;
4779 }
a22285a6 4780 free_extent_map(em);
e43bbe5e 4781 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4782 return err;
4783}
39279cc3 4784
3972f260 4785static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4786{
f4a2f4c5
MX
4787 struct btrfs_root *root = BTRFS_I(inode)->root;
4788 struct btrfs_trans_handle *trans;
a41ad394 4789 loff_t oldsize = i_size_read(inode);
3972f260
ES
4790 loff_t newsize = attr->ia_size;
4791 int mask = attr->ia_valid;
8082510e
YZ
4792 int ret;
4793
3972f260
ES
4794 /*
4795 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4796 * special case where we need to update the times despite not having
4797 * these flags set. For all other operations the VFS set these flags
4798 * explicitly if it wants a timestamp update.
4799 */
dff6efc3
CH
4800 if (newsize != oldsize) {
4801 inode_inc_iversion(inode);
4802 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4803 inode->i_ctime = inode->i_mtime =
c2050a45 4804 current_time(inode);
dff6efc3 4805 }
3972f260 4806
a41ad394 4807 if (newsize > oldsize) {
9ea24bbe 4808 /*
ea14b57f 4809 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4810 * This is to ensure the snapshot captures a fully consistent
4811 * state of this file - if the snapshot captures this expanding
4812 * truncation, it must capture all writes that happened before
4813 * this truncation.
4814 */
dcc3eb96 4815 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4816 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4817 if (ret) {
dcc3eb96 4818 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4819 return ret;
9ea24bbe 4820 }
8082510e 4821
f4a2f4c5 4822 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4823 if (IS_ERR(trans)) {
dcc3eb96 4824 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4825 return PTR_ERR(trans);
9ea24bbe 4826 }
f4a2f4c5
MX
4827
4828 i_size_write(inode, newsize);
d923afe9 4829 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4830 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4831 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4832 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4833 btrfs_end_transaction(trans);
a41ad394 4834 } else {
8082510e 4835
a41ad394
JB
4836 /*
4837 * We're truncating a file that used to have good data down to
1fd4033d
NB
4838 * zero. Make sure any new writes to the file get on disk
4839 * on close.
a41ad394
JB
4840 */
4841 if (newsize == 0)
1fd4033d 4842 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 4843 &BTRFS_I(inode)->runtime_flags);
8082510e 4844
a41ad394 4845 truncate_setsize(inode, newsize);
2e60a51e 4846
2e60a51e 4847 inode_dio_wait(inode);
2e60a51e 4848
213e8c55 4849 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4850 if (ret && inode->i_nlink) {
4851 int err;
4852
4853 /*
f7e9e8fc
OS
4854 * Truncate failed, so fix up the in-memory size. We
4855 * adjusted disk_i_size down as we removed extents, so
4856 * wait for disk_i_size to be stable and then update the
4857 * in-memory size to match.
7f4f6e0a 4858 */
f7e9e8fc 4859 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4860 if (err)
f7e9e8fc
OS
4861 return err;
4862 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4863 }
8082510e
YZ
4864 }
4865
a41ad394 4866 return ret;
8082510e
YZ
4867}
4868
9036c102
YZ
4869static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4870{
2b0143b5 4871 struct inode *inode = d_inode(dentry);
b83cc969 4872 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4873 int err;
39279cc3 4874
b83cc969
LZ
4875 if (btrfs_root_readonly(root))
4876 return -EROFS;
4877
31051c85 4878 err = setattr_prepare(dentry, attr);
9036c102
YZ
4879 if (err)
4880 return err;
2bf5a725 4881
5a3f23d5 4882 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4883 err = btrfs_setsize(inode, attr);
8082510e
YZ
4884 if (err)
4885 return err;
39279cc3 4886 }
9036c102 4887
1025774c
CH
4888 if (attr->ia_valid) {
4889 setattr_copy(inode, attr);
0c4d2d95 4890 inode_inc_iversion(inode);
22c44fe6 4891 err = btrfs_dirty_inode(inode);
1025774c 4892
22c44fe6 4893 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4894 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4895 }
33268eaf 4896
39279cc3
CM
4897 return err;
4898}
61295eb8 4899
131e404a
FDBM
4900/*
4901 * While truncating the inode pages during eviction, we get the VFS calling
4902 * btrfs_invalidatepage() against each page of the inode. This is slow because
4903 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4904 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4905 * extent_state structures over and over, wasting lots of time.
4906 *
4907 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4908 * those expensive operations on a per page basis and do only the ordered io
4909 * finishing, while we release here the extent_map and extent_state structures,
4910 * without the excessive merging and splitting.
4911 */
4912static void evict_inode_truncate_pages(struct inode *inode)
4913{
4914 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4915 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4916 struct rb_node *node;
4917
4918 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4919 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4920
4921 write_lock(&map_tree->lock);
07e1ce09 4922 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4923 struct extent_map *em;
4924
07e1ce09 4925 node = rb_first_cached(&map_tree->map);
131e404a 4926 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4927 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4928 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4929 remove_extent_mapping(map_tree, em);
4930 free_extent_map(em);
7064dd5c
FM
4931 if (need_resched()) {
4932 write_unlock(&map_tree->lock);
4933 cond_resched();
4934 write_lock(&map_tree->lock);
4935 }
131e404a
FDBM
4936 }
4937 write_unlock(&map_tree->lock);
4938
6ca07097
FM
4939 /*
4940 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4941 * We can have ongoing bios started by readahead that have
4942 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4943 * still in progress (unlocked the pages in the bio but did not yet
4944 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4945 * ranges can still be locked and eviction started because before
4946 * submitting those bios, which are executed by a separate task (work
4947 * queue kthread), inode references (inode->i_count) were not taken
4948 * (which would be dropped in the end io callback of each bio).
4949 * Therefore here we effectively end up waiting for those bios and
4950 * anyone else holding locked ranges without having bumped the inode's
4951 * reference count - if we don't do it, when they access the inode's
4952 * io_tree to unlock a range it may be too late, leading to an
4953 * use-after-free issue.
4954 */
131e404a
FDBM
4955 spin_lock(&io_tree->lock);
4956 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4957 struct extent_state *state;
4958 struct extent_state *cached_state = NULL;
6ca07097
FM
4959 u64 start;
4960 u64 end;
421f0922 4961 unsigned state_flags;
131e404a
FDBM
4962
4963 node = rb_first(&io_tree->state);
4964 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4965 start = state->start;
4966 end = state->end;
421f0922 4967 state_flags = state->state;
131e404a
FDBM
4968 spin_unlock(&io_tree->lock);
4969
ff13db41 4970 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4971
4972 /*
4973 * If still has DELALLOC flag, the extent didn't reach disk,
4974 * and its reserved space won't be freed by delayed_ref.
4975 * So we need to free its reserved space here.
4976 * (Refer to comment in btrfs_invalidatepage, case 2)
4977 *
4978 * Note, end is the bytenr of last byte, so we need + 1 here.
4979 */
421f0922 4980 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4981 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4982 end - start + 1);
b9d0b389 4983
6ca07097 4984 clear_extent_bit(io_tree, start, end,
e182163d
OS
4985 EXTENT_LOCKED | EXTENT_DELALLOC |
4986 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4987 &cached_state);
131e404a 4988
7064dd5c 4989 cond_resched();
131e404a
FDBM
4990 spin_lock(&io_tree->lock);
4991 }
4992 spin_unlock(&io_tree->lock);
4993}
4994
4b9d7b59 4995static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 4996 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
4997{
4998 struct btrfs_fs_info *fs_info = root->fs_info;
4999 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5000 struct btrfs_trans_handle *trans;
2bd36e7b 5001 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5002 int ret;
4b9d7b59 5003
d3984c90
JB
5004 /*
5005 * Eviction should be taking place at some place safe because of our
5006 * delayed iputs. However the normal flushing code will run delayed
5007 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5008 *
5009 * We reserve the delayed_refs_extra here again because we can't use
5010 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5011 * above. We reserve our extra bit here because we generate a ton of
5012 * delayed refs activity by truncating.
5013 *
5014 * If we cannot make our reservation we'll attempt to steal from the
5015 * global reserve, because we really want to be able to free up space.
5016 */
5017 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5018 BTRFS_RESERVE_FLUSH_EVICT);
5019 if (ret) {
4b9d7b59
OS
5020 /*
5021 * Try to steal from the global reserve if there is space for
5022 * it.
5023 */
d3984c90
JB
5024 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5025 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5026 btrfs_warn(fs_info,
5027 "could not allocate space for delete; will truncate on mount");
5028 return ERR_PTR(-ENOSPC);
5029 }
5030 delayed_refs_extra = 0;
5031 }
4b9d7b59 5032
d3984c90
JB
5033 trans = btrfs_join_transaction(root);
5034 if (IS_ERR(trans))
5035 return trans;
5036
5037 if (delayed_refs_extra) {
5038 trans->block_rsv = &fs_info->trans_block_rsv;
5039 trans->bytes_reserved = delayed_refs_extra;
5040 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5041 delayed_refs_extra, 1);
4b9d7b59 5042 }
d3984c90 5043 return trans;
4b9d7b59
OS
5044}
5045
bd555975 5046void btrfs_evict_inode(struct inode *inode)
39279cc3 5047{
0b246afa 5048 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5049 struct btrfs_trans_handle *trans;
5050 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5051 struct btrfs_block_rsv *rsv;
39279cc3
CM
5052 int ret;
5053
1abe9b8a 5054 trace_btrfs_inode_evict(inode);
5055
3d48d981 5056 if (!root) {
e8f1bc14 5057 clear_inode(inode);
3d48d981
NB
5058 return;
5059 }
5060
131e404a
FDBM
5061 evict_inode_truncate_pages(inode);
5062
69e9c6c6
SB
5063 if (inode->i_nlink &&
5064 ((btrfs_root_refs(&root->root_item) != 0 &&
5065 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5066 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5067 goto no_delete;
5068
27919067 5069 if (is_bad_inode(inode))
39279cc3 5070 goto no_delete;
5f39d397 5071
7ab7956e 5072 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5073
7b40b695 5074 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5075 goto no_delete;
c71bf099 5076
76dda93c 5077 if (inode->i_nlink > 0) {
69e9c6c6
SB
5078 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5079 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5080 goto no_delete;
5081 }
5082
aa79021f 5083 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5084 if (ret)
0e8c36a9 5085 goto no_delete;
0e8c36a9 5086
2ff7e61e 5087 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5088 if (!rsv)
4289a667 5089 goto no_delete;
2bd36e7b 5090 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5091 rsv->failfast = 1;
4289a667 5092
6ef06d27 5093 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5094
8082510e 5095 while (1) {
ad80cf50 5096 trans = evict_refill_and_join(root, rsv);
27919067
OS
5097 if (IS_ERR(trans))
5098 goto free_rsv;
7b128766 5099
4289a667
JB
5100 trans->block_rsv = rsv;
5101
d68fc57b 5102 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5103 trans->block_rsv = &fs_info->trans_block_rsv;
5104 btrfs_end_transaction(trans);
5105 btrfs_btree_balance_dirty(fs_info);
5106 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5107 goto free_rsv;
5108 else if (!ret)
8082510e 5109 break;
8082510e 5110 }
5f39d397 5111
4ef31a45 5112 /*
27919067
OS
5113 * Errors here aren't a big deal, it just means we leave orphan items in
5114 * the tree. They will be cleaned up on the next mount. If the inode
5115 * number gets reused, cleanup deletes the orphan item without doing
5116 * anything, and unlink reuses the existing orphan item.
5117 *
5118 * If it turns out that we are dropping too many of these, we might want
5119 * to add a mechanism for retrying these after a commit.
4ef31a45 5120 */
ad80cf50 5121 trans = evict_refill_and_join(root, rsv);
27919067
OS
5122 if (!IS_ERR(trans)) {
5123 trans->block_rsv = rsv;
5124 btrfs_orphan_del(trans, BTRFS_I(inode));
5125 trans->block_rsv = &fs_info->trans_block_rsv;
5126 btrfs_end_transaction(trans);
5127 }
54aa1f4d 5128
0b246afa 5129 if (!(root == fs_info->tree_root ||
581bb050 5130 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5131 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5132
27919067
OS
5133free_rsv:
5134 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5135no_delete:
27919067
OS
5136 /*
5137 * If we didn't successfully delete, the orphan item will still be in
5138 * the tree and we'll retry on the next mount. Again, we might also want
5139 * to retry these periodically in the future.
5140 */
f48d1cf5 5141 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5142 clear_inode(inode);
39279cc3
CM
5143}
5144
5145/*
6bf9e4bd
QW
5146 * Return the key found in the dir entry in the location pointer, fill @type
5147 * with BTRFS_FT_*, and return 0.
5148 *
005d6712
SY
5149 * If no dir entries were found, returns -ENOENT.
5150 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5151 */
5152static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5153 struct btrfs_key *location, u8 *type)
39279cc3
CM
5154{
5155 const char *name = dentry->d_name.name;
5156 int namelen = dentry->d_name.len;
5157 struct btrfs_dir_item *di;
5158 struct btrfs_path *path;
5159 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5160 int ret = 0;
39279cc3
CM
5161
5162 path = btrfs_alloc_path();
d8926bb3
MF
5163 if (!path)
5164 return -ENOMEM;
3954401f 5165
f85b7379
DS
5166 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5167 name, namelen, 0);
3cf5068f
LB
5168 if (IS_ERR_OR_NULL(di)) {
5169 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5170 goto out;
5171 }
d397712b 5172
5f39d397 5173 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5174 if (location->type != BTRFS_INODE_ITEM_KEY &&
5175 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5176 ret = -EUCLEAN;
56a0e706
LB
5177 btrfs_warn(root->fs_info,
5178"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5179 __func__, name, btrfs_ino(BTRFS_I(dir)),
5180 location->objectid, location->type, location->offset);
56a0e706 5181 }
6bf9e4bd
QW
5182 if (!ret)
5183 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5184out:
39279cc3
CM
5185 btrfs_free_path(path);
5186 return ret;
5187}
5188
5189/*
5190 * when we hit a tree root in a directory, the btrfs part of the inode
5191 * needs to be changed to reflect the root directory of the tree root. This
5192 * is kind of like crossing a mount point.
5193 */
2ff7e61e 5194static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5195 struct inode *dir,
5196 struct dentry *dentry,
5197 struct btrfs_key *location,
5198 struct btrfs_root **sub_root)
39279cc3 5199{
4df27c4d
YZ
5200 struct btrfs_path *path;
5201 struct btrfs_root *new_root;
5202 struct btrfs_root_ref *ref;
5203 struct extent_buffer *leaf;
1d4c08e0 5204 struct btrfs_key key;
4df27c4d
YZ
5205 int ret;
5206 int err = 0;
39279cc3 5207
4df27c4d
YZ
5208 path = btrfs_alloc_path();
5209 if (!path) {
5210 err = -ENOMEM;
5211 goto out;
5212 }
39279cc3 5213
4df27c4d 5214 err = -ENOENT;
1d4c08e0
DS
5215 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5216 key.type = BTRFS_ROOT_REF_KEY;
5217 key.offset = location->objectid;
5218
0b246afa 5219 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5220 if (ret) {
5221 if (ret < 0)
5222 err = ret;
5223 goto out;
5224 }
39279cc3 5225
4df27c4d
YZ
5226 leaf = path->nodes[0];
5227 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5228 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5229 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5230 goto out;
39279cc3 5231
4df27c4d
YZ
5232 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5233 (unsigned long)(ref + 1),
5234 dentry->d_name.len);
5235 if (ret)
5236 goto out;
5237
b3b4aa74 5238 btrfs_release_path(path);
4df27c4d 5239
56e9357a 5240 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5241 if (IS_ERR(new_root)) {
5242 err = PTR_ERR(new_root);
5243 goto out;
5244 }
5245
4df27c4d
YZ
5246 *sub_root = new_root;
5247 location->objectid = btrfs_root_dirid(&new_root->root_item);
5248 location->type = BTRFS_INODE_ITEM_KEY;
5249 location->offset = 0;
5250 err = 0;
5251out:
5252 btrfs_free_path(path);
5253 return err;
39279cc3
CM
5254}
5255
5d4f98a2
YZ
5256static void inode_tree_add(struct inode *inode)
5257{
5258 struct btrfs_root *root = BTRFS_I(inode)->root;
5259 struct btrfs_inode *entry;
03e860bd
NP
5260 struct rb_node **p;
5261 struct rb_node *parent;
cef21937 5262 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5263 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5264
1d3382cb 5265 if (inode_unhashed(inode))
76dda93c 5266 return;
e1409cef 5267 parent = NULL;
5d4f98a2 5268 spin_lock(&root->inode_lock);
e1409cef 5269 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5270 while (*p) {
5271 parent = *p;
5272 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5273
37508515 5274 if (ino < btrfs_ino(entry))
03e860bd 5275 p = &parent->rb_left;
37508515 5276 else if (ino > btrfs_ino(entry))
03e860bd 5277 p = &parent->rb_right;
5d4f98a2
YZ
5278 else {
5279 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5280 (I_WILL_FREE | I_FREEING)));
cef21937 5281 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5282 RB_CLEAR_NODE(parent);
5283 spin_unlock(&root->inode_lock);
cef21937 5284 return;
5d4f98a2
YZ
5285 }
5286 }
cef21937
FDBM
5287 rb_link_node(new, parent, p);
5288 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5289 spin_unlock(&root->inode_lock);
5290}
5291
b79b7249 5292static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5293{
b79b7249 5294 struct btrfs_root *root = inode->root;
76dda93c 5295 int empty = 0;
5d4f98a2 5296
03e860bd 5297 spin_lock(&root->inode_lock);
b79b7249
NB
5298 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5299 rb_erase(&inode->rb_node, &root->inode_tree);
5300 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5301 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5302 }
03e860bd 5303 spin_unlock(&root->inode_lock);
76dda93c 5304
69e9c6c6 5305 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5306 spin_lock(&root->inode_lock);
5307 empty = RB_EMPTY_ROOT(&root->inode_tree);
5308 spin_unlock(&root->inode_lock);
5309 if (empty)
5310 btrfs_add_dead_root(root);
5311 }
5312}
5313
5d4f98a2 5314
e02119d5
CM
5315static int btrfs_init_locked_inode(struct inode *inode, void *p)
5316{
5317 struct btrfs_iget_args *args = p;
0202e83f
DS
5318
5319 inode->i_ino = args->ino;
5320 BTRFS_I(inode)->location.objectid = args->ino;
5321 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5322 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5323 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5324 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5325 return 0;
5326}
5327
5328static int btrfs_find_actor(struct inode *inode, void *opaque)
5329{
5330 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5331
5332 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5333 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5334}
5335
0202e83f 5336static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5337 struct btrfs_root *root)
39279cc3
CM
5338{
5339 struct inode *inode;
5340 struct btrfs_iget_args args;
0202e83f 5341 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5342
0202e83f 5343 args.ino = ino;
39279cc3
CM
5344 args.root = root;
5345
778ba82b 5346 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5347 btrfs_init_locked_inode,
5348 (void *)&args);
5349 return inode;
5350}
5351
4c66e0d4 5352/*
0202e83f 5353 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5354 * Path can be preallocated to prevent recursing back to iget through
5355 * allocator. NULL is also valid but may require an additional allocation
5356 * later.
1a54ef8c 5357 */
0202e83f 5358struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5359 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5360{
5361 struct inode *inode;
5362
0202e83f 5363 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5364 if (!inode)
5d4f98a2 5365 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5366
5367 if (inode->i_state & I_NEW) {
67710892
FM
5368 int ret;
5369
4222ea71 5370 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5371 if (!ret) {
1748f843
MF
5372 inode_tree_add(inode);
5373 unlock_new_inode(inode);
1748f843 5374 } else {
f5b3a417
AV
5375 iget_failed(inode);
5376 /*
5377 * ret > 0 can come from btrfs_search_slot called by
5378 * btrfs_read_locked_inode, this means the inode item
5379 * was not found.
5380 */
5381 if (ret > 0)
5382 ret = -ENOENT;
5383 inode = ERR_PTR(ret);
1748f843
MF
5384 }
5385 }
5386
1a54ef8c
BR
5387 return inode;
5388}
5389
0202e83f 5390struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5391{
0202e83f 5392 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5393}
5394
4df27c4d
YZ
5395static struct inode *new_simple_dir(struct super_block *s,
5396 struct btrfs_key *key,
5397 struct btrfs_root *root)
5398{
5399 struct inode *inode = new_inode(s);
5400
5401 if (!inode)
5402 return ERR_PTR(-ENOMEM);
5403
5c8fd99f 5404 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5405 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5406 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5407
5408 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5409 /*
5410 * We only need lookup, the rest is read-only and there's no inode
5411 * associated with the dentry
5412 */
5413 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5414 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5415 inode->i_fop = &simple_dir_operations;
5416 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5417 inode->i_mtime = current_time(inode);
9cc97d64 5418 inode->i_atime = inode->i_mtime;
5419 inode->i_ctime = inode->i_mtime;
d3c6be6f 5420 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5421
5422 return inode;
5423}
5424
6bf9e4bd
QW
5425static inline u8 btrfs_inode_type(struct inode *inode)
5426{
5427 /*
5428 * Compile-time asserts that generic FT_* types still match
5429 * BTRFS_FT_* types
5430 */
5431 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5432 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5433 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5434 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5435 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5436 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5437 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5438 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5439
5440 return fs_umode_to_ftype(inode->i_mode);
5441}
5442
3de4586c 5443struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5444{
0b246afa 5445 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5446 struct inode *inode;
4df27c4d 5447 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5448 struct btrfs_root *sub_root = root;
5449 struct btrfs_key location;
6bf9e4bd 5450 u8 di_type = 0;
b4aff1f8 5451 int ret = 0;
39279cc3
CM
5452
5453 if (dentry->d_name.len > BTRFS_NAME_LEN)
5454 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5455
6bf9e4bd 5456 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5457 if (ret < 0)
5458 return ERR_PTR(ret);
5f39d397 5459
4df27c4d 5460 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5461 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5462 if (IS_ERR(inode))
5463 return inode;
5464
5465 /* Do extra check against inode mode with di_type */
5466 if (btrfs_inode_type(inode) != di_type) {
5467 btrfs_crit(fs_info,
5468"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5469 inode->i_mode, btrfs_inode_type(inode),
5470 di_type);
5471 iput(inode);
5472 return ERR_PTR(-EUCLEAN);
5473 }
4df27c4d
YZ
5474 return inode;
5475 }
5476
2ff7e61e 5477 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5478 &location, &sub_root);
5479 if (ret < 0) {
5480 if (ret != -ENOENT)
5481 inode = ERR_PTR(ret);
5482 else
5483 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5484 } else {
0202e83f 5485 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5486 }
8727002f 5487 if (root != sub_root)
00246528 5488 btrfs_put_root(sub_root);
76dda93c 5489
34d19bad 5490 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5491 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5492 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5493 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5494 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5495 if (ret) {
5496 iput(inode);
66b4ffd1 5497 inode = ERR_PTR(ret);
01cd3367 5498 }
c71bf099
YZ
5499 }
5500
3de4586c
CM
5501 return inode;
5502}
5503
fe15ce44 5504static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5505{
5506 struct btrfs_root *root;
2b0143b5 5507 struct inode *inode = d_inode(dentry);
76dda93c 5508
848cce0d 5509 if (!inode && !IS_ROOT(dentry))
2b0143b5 5510 inode = d_inode(dentry->d_parent);
76dda93c 5511
848cce0d
LZ
5512 if (inode) {
5513 root = BTRFS_I(inode)->root;
efefb143
YZ
5514 if (btrfs_root_refs(&root->root_item) == 0)
5515 return 1;
848cce0d 5516
4a0cc7ca 5517 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5518 return 1;
efefb143 5519 }
76dda93c
YZ
5520 return 0;
5521}
5522
3de4586c 5523static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5524 unsigned int flags)
3de4586c 5525{
3837d208 5526 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5527
3837d208
AV
5528 if (inode == ERR_PTR(-ENOENT))
5529 inode = NULL;
41d28bca 5530 return d_splice_alias(inode, dentry);
39279cc3
CM
5531}
5532
23b5ec74
JB
5533/*
5534 * All this infrastructure exists because dir_emit can fault, and we are holding
5535 * the tree lock when doing readdir. For now just allocate a buffer and copy
5536 * our information into that, and then dir_emit from the buffer. This is
5537 * similar to what NFS does, only we don't keep the buffer around in pagecache
5538 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5539 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5540 * tree lock.
5541 */
5542static int btrfs_opendir(struct inode *inode, struct file *file)
5543{
5544 struct btrfs_file_private *private;
5545
5546 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5547 if (!private)
5548 return -ENOMEM;
5549 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5550 if (!private->filldir_buf) {
5551 kfree(private);
5552 return -ENOMEM;
5553 }
5554 file->private_data = private;
5555 return 0;
5556}
5557
5558struct dir_entry {
5559 u64 ino;
5560 u64 offset;
5561 unsigned type;
5562 int name_len;
5563};
5564
5565static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5566{
5567 while (entries--) {
5568 struct dir_entry *entry = addr;
5569 char *name = (char *)(entry + 1);
5570
92d32170
DS
5571 ctx->pos = get_unaligned(&entry->offset);
5572 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5573 get_unaligned(&entry->ino),
5574 get_unaligned(&entry->type)))
23b5ec74 5575 return 1;
92d32170
DS
5576 addr += sizeof(struct dir_entry) +
5577 get_unaligned(&entry->name_len);
23b5ec74
JB
5578 ctx->pos++;
5579 }
5580 return 0;
5581}
5582
9cdda8d3 5583static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5584{
9cdda8d3 5585 struct inode *inode = file_inode(file);
39279cc3 5586 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5587 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5588 struct btrfs_dir_item *di;
5589 struct btrfs_key key;
5f39d397 5590 struct btrfs_key found_key;
39279cc3 5591 struct btrfs_path *path;
23b5ec74 5592 void *addr;
16cdcec7
MX
5593 struct list_head ins_list;
5594 struct list_head del_list;
39279cc3 5595 int ret;
5f39d397 5596 struct extent_buffer *leaf;
39279cc3 5597 int slot;
5f39d397
CM
5598 char *name_ptr;
5599 int name_len;
23b5ec74
JB
5600 int entries = 0;
5601 int total_len = 0;
02dbfc99 5602 bool put = false;
c2951f32 5603 struct btrfs_key location;
5f39d397 5604
9cdda8d3
AV
5605 if (!dir_emit_dots(file, ctx))
5606 return 0;
5607
49593bfa 5608 path = btrfs_alloc_path();
16cdcec7
MX
5609 if (!path)
5610 return -ENOMEM;
ff5714cc 5611
23b5ec74 5612 addr = private->filldir_buf;
e4058b54 5613 path->reada = READA_FORWARD;
49593bfa 5614
c2951f32
JM
5615 INIT_LIST_HEAD(&ins_list);
5616 INIT_LIST_HEAD(&del_list);
5617 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5618
23b5ec74 5619again:
c2951f32 5620 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5621 key.offset = ctx->pos;
4a0cc7ca 5622 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5623
39279cc3
CM
5624 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5625 if (ret < 0)
5626 goto err;
49593bfa
DW
5627
5628 while (1) {
23b5ec74
JB
5629 struct dir_entry *entry;
5630
5f39d397 5631 leaf = path->nodes[0];
39279cc3 5632 slot = path->slots[0];
b9e03af0
LZ
5633 if (slot >= btrfs_header_nritems(leaf)) {
5634 ret = btrfs_next_leaf(root, path);
5635 if (ret < 0)
5636 goto err;
5637 else if (ret > 0)
5638 break;
5639 continue;
39279cc3 5640 }
3de4586c 5641
5f39d397
CM
5642 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5643
5644 if (found_key.objectid != key.objectid)
39279cc3 5645 break;
c2951f32 5646 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5647 break;
9cdda8d3 5648 if (found_key.offset < ctx->pos)
b9e03af0 5649 goto next;
c2951f32 5650 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5651 goto next;
39279cc3 5652 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5653 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5654 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5655 PAGE_SIZE) {
5656 btrfs_release_path(path);
5657 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5658 if (ret)
5659 goto nopos;
5660 addr = private->filldir_buf;
5661 entries = 0;
5662 total_len = 0;
5663 goto again;
c2951f32 5664 }
23b5ec74
JB
5665
5666 entry = addr;
92d32170 5667 put_unaligned(name_len, &entry->name_len);
23b5ec74 5668 name_ptr = (char *)(entry + 1);
c2951f32
JM
5669 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5670 name_len);
7d157c3d 5671 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5672 &entry->type);
c2951f32 5673 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5674 put_unaligned(location.objectid, &entry->ino);
5675 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5676 entries++;
5677 addr += sizeof(struct dir_entry) + name_len;
5678 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5679next:
5680 path->slots[0]++;
39279cc3 5681 }
23b5ec74
JB
5682 btrfs_release_path(path);
5683
5684 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5685 if (ret)
5686 goto nopos;
49593bfa 5687
d2fbb2b5 5688 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5689 if (ret)
bc4ef759
DS
5690 goto nopos;
5691
db62efbb
ZB
5692 /*
5693 * Stop new entries from being returned after we return the last
5694 * entry.
5695 *
5696 * New directory entries are assigned a strictly increasing
5697 * offset. This means that new entries created during readdir
5698 * are *guaranteed* to be seen in the future by that readdir.
5699 * This has broken buggy programs which operate on names as
5700 * they're returned by readdir. Until we re-use freed offsets
5701 * we have this hack to stop new entries from being returned
5702 * under the assumption that they'll never reach this huge
5703 * offset.
5704 *
5705 * This is being careful not to overflow 32bit loff_t unless the
5706 * last entry requires it because doing so has broken 32bit apps
5707 * in the past.
5708 */
c2951f32
JM
5709 if (ctx->pos >= INT_MAX)
5710 ctx->pos = LLONG_MAX;
5711 else
5712 ctx->pos = INT_MAX;
39279cc3
CM
5713nopos:
5714 ret = 0;
5715err:
02dbfc99
OS
5716 if (put)
5717 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5718 btrfs_free_path(path);
39279cc3
CM
5719 return ret;
5720}
5721
39279cc3 5722/*
54aa1f4d 5723 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5724 * inode changes. But, it is most likely to find the inode in cache.
5725 * FIXME, needs more benchmarking...there are no reasons other than performance
5726 * to keep or drop this code.
5727 */
48a3b636 5728static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5729{
2ff7e61e 5730 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5731 struct btrfs_root *root = BTRFS_I(inode)->root;
5732 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5733 int ret;
5734
72ac3c0d 5735 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5736 return 0;
39279cc3 5737
7a7eaa40 5738 trans = btrfs_join_transaction(root);
22c44fe6
JB
5739 if (IS_ERR(trans))
5740 return PTR_ERR(trans);
8929ecfa
YZ
5741
5742 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5743 if (ret && ret == -ENOSPC) {
5744 /* whoops, lets try again with the full transaction */
3a45bb20 5745 btrfs_end_transaction(trans);
94b60442 5746 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5747 if (IS_ERR(trans))
5748 return PTR_ERR(trans);
8929ecfa 5749
94b60442 5750 ret = btrfs_update_inode(trans, root, inode);
94b60442 5751 }
3a45bb20 5752 btrfs_end_transaction(trans);
16cdcec7 5753 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5754 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5755
5756 return ret;
5757}
5758
5759/*
5760 * This is a copy of file_update_time. We need this so we can return error on
5761 * ENOSPC for updating the inode in the case of file write and mmap writes.
5762 */
95582b00 5763static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5764 int flags)
22c44fe6 5765{
2bc55652 5766 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5767 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5768
5769 if (btrfs_root_readonly(root))
5770 return -EROFS;
5771
e41f941a 5772 if (flags & S_VERSION)
3a8c7231 5773 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5774 if (flags & S_CTIME)
5775 inode->i_ctime = *now;
5776 if (flags & S_MTIME)
5777 inode->i_mtime = *now;
5778 if (flags & S_ATIME)
5779 inode->i_atime = *now;
3a8c7231 5780 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5781}
5782
d352ac68
CM
5783/*
5784 * find the highest existing sequence number in a directory
5785 * and then set the in-memory index_cnt variable to reflect
5786 * free sequence numbers
5787 */
4c570655 5788static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5789{
4c570655 5790 struct btrfs_root *root = inode->root;
aec7477b
JB
5791 struct btrfs_key key, found_key;
5792 struct btrfs_path *path;
5793 struct extent_buffer *leaf;
5794 int ret;
5795
4c570655 5796 key.objectid = btrfs_ino(inode);
962a298f 5797 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5798 key.offset = (u64)-1;
5799
5800 path = btrfs_alloc_path();
5801 if (!path)
5802 return -ENOMEM;
5803
5804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5805 if (ret < 0)
5806 goto out;
5807 /* FIXME: we should be able to handle this */
5808 if (ret == 0)
5809 goto out;
5810 ret = 0;
5811
5812 /*
5813 * MAGIC NUMBER EXPLANATION:
5814 * since we search a directory based on f_pos we have to start at 2
5815 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5816 * else has to start at 2
5817 */
5818 if (path->slots[0] == 0) {
4c570655 5819 inode->index_cnt = 2;
aec7477b
JB
5820 goto out;
5821 }
5822
5823 path->slots[0]--;
5824
5825 leaf = path->nodes[0];
5826 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5827
4c570655 5828 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5829 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5830 inode->index_cnt = 2;
aec7477b
JB
5831 goto out;
5832 }
5833
4c570655 5834 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5835out:
5836 btrfs_free_path(path);
5837 return ret;
5838}
5839
d352ac68
CM
5840/*
5841 * helper to find a free sequence number in a given directory. This current
5842 * code is very simple, later versions will do smarter things in the btree
5843 */
877574e2 5844int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5845{
5846 int ret = 0;
5847
877574e2
NB
5848 if (dir->index_cnt == (u64)-1) {
5849 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5850 if (ret) {
5851 ret = btrfs_set_inode_index_count(dir);
5852 if (ret)
5853 return ret;
5854 }
aec7477b
JB
5855 }
5856
877574e2
NB
5857 *index = dir->index_cnt;
5858 dir->index_cnt++;
aec7477b
JB
5859
5860 return ret;
5861}
5862
b0d5d10f
CM
5863static int btrfs_insert_inode_locked(struct inode *inode)
5864{
5865 struct btrfs_iget_args args;
0202e83f
DS
5866
5867 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5868 args.root = BTRFS_I(inode)->root;
5869
5870 return insert_inode_locked4(inode,
5871 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5872 btrfs_find_actor, &args);
5873}
5874
19aee8de
AJ
5875/*
5876 * Inherit flags from the parent inode.
5877 *
5878 * Currently only the compression flags and the cow flags are inherited.
5879 */
5880static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5881{
5882 unsigned int flags;
5883
5884 if (!dir)
5885 return;
5886
5887 flags = BTRFS_I(dir)->flags;
5888
5889 if (flags & BTRFS_INODE_NOCOMPRESS) {
5890 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5891 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5892 } else if (flags & BTRFS_INODE_COMPRESS) {
5893 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5894 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5895 }
5896
5897 if (flags & BTRFS_INODE_NODATACOW) {
5898 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5899 if (S_ISREG(inode->i_mode))
5900 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5901 }
5902
7b6a221e 5903 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5904}
5905
39279cc3
CM
5906static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5907 struct btrfs_root *root,
aec7477b 5908 struct inode *dir,
9c58309d 5909 const char *name, int name_len,
175a4eb7
AV
5910 u64 ref_objectid, u64 objectid,
5911 umode_t mode, u64 *index)
39279cc3 5912{
0b246afa 5913 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5914 struct inode *inode;
5f39d397 5915 struct btrfs_inode_item *inode_item;
39279cc3 5916 struct btrfs_key *location;
5f39d397 5917 struct btrfs_path *path;
9c58309d
CM
5918 struct btrfs_inode_ref *ref;
5919 struct btrfs_key key[2];
5920 u32 sizes[2];
ef3b9af5 5921 int nitems = name ? 2 : 1;
9c58309d 5922 unsigned long ptr;
11a19a90 5923 unsigned int nofs_flag;
39279cc3 5924 int ret;
39279cc3 5925
5f39d397 5926 path = btrfs_alloc_path();
d8926bb3
MF
5927 if (!path)
5928 return ERR_PTR(-ENOMEM);
5f39d397 5929
11a19a90 5930 nofs_flag = memalloc_nofs_save();
0b246afa 5931 inode = new_inode(fs_info->sb);
11a19a90 5932 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5933 if (!inode) {
5934 btrfs_free_path(path);
39279cc3 5935 return ERR_PTR(-ENOMEM);
8fb27640 5936 }
39279cc3 5937
5762b5c9
FM
5938 /*
5939 * O_TMPFILE, set link count to 0, so that after this point,
5940 * we fill in an inode item with the correct link count.
5941 */
5942 if (!name)
5943 set_nlink(inode, 0);
5944
581bb050
LZ
5945 /*
5946 * we have to initialize this early, so we can reclaim the inode
5947 * number if we fail afterwards in this function.
5948 */
5949 inode->i_ino = objectid;
5950
ef3b9af5 5951 if (dir && name) {
1abe9b8a 5952 trace_btrfs_inode_request(dir);
5953
877574e2 5954 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5955 if (ret) {
8fb27640 5956 btrfs_free_path(path);
09771430 5957 iput(inode);
aec7477b 5958 return ERR_PTR(ret);
09771430 5959 }
ef3b9af5
FM
5960 } else if (dir) {
5961 *index = 0;
aec7477b
JB
5962 }
5963 /*
5964 * index_cnt is ignored for everything but a dir,
df6703e1 5965 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5966 * number
5967 */
5968 BTRFS_I(inode)->index_cnt = 2;
67de1176 5969 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5970 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5971 BTRFS_I(inode)->generation = trans->transid;
76195853 5972 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5973
5dc562c5
JB
5974 /*
5975 * We could have gotten an inode number from somebody who was fsynced
5976 * and then removed in this same transaction, so let's just set full
5977 * sync since it will be a full sync anyway and this will blow away the
5978 * old info in the log.
5979 */
5980 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5981
9c58309d 5982 key[0].objectid = objectid;
962a298f 5983 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5984 key[0].offset = 0;
5985
9c58309d 5986 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5987
5988 if (name) {
5989 /*
5990 * Start new inodes with an inode_ref. This is slightly more
5991 * efficient for small numbers of hard links since they will
5992 * be packed into one item. Extended refs will kick in if we
5993 * add more hard links than can fit in the ref item.
5994 */
5995 key[1].objectid = objectid;
962a298f 5996 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5997 key[1].offset = ref_objectid;
5998
5999 sizes[1] = name_len + sizeof(*ref);
6000 }
9c58309d 6001
b0d5d10f
CM
6002 location = &BTRFS_I(inode)->location;
6003 location->objectid = objectid;
6004 location->offset = 0;
962a298f 6005 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6006
6007 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6008 if (ret < 0) {
6009 iput(inode);
b0d5d10f 6010 goto fail;
32955c54 6011 }
b0d5d10f 6012
b9473439 6013 path->leave_spinning = 1;
ef3b9af5 6014 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6015 if (ret != 0)
b0d5d10f 6016 goto fail_unlock;
5f39d397 6017
ecc11fab 6018 inode_init_owner(inode, dir, mode);
a76a3cd4 6019 inode_set_bytes(inode, 0);
9cc97d64 6020
c2050a45 6021 inode->i_mtime = current_time(inode);
9cc97d64 6022 inode->i_atime = inode->i_mtime;
6023 inode->i_ctime = inode->i_mtime;
d3c6be6f 6024 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6025
5f39d397
CM
6026 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6027 struct btrfs_inode_item);
b159fa28 6028 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6029 sizeof(*inode_item));
e02119d5 6030 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6031
ef3b9af5
FM
6032 if (name) {
6033 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6034 struct btrfs_inode_ref);
6035 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6036 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6037 ptr = (unsigned long)(ref + 1);
6038 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6039 }
9c58309d 6040
5f39d397
CM
6041 btrfs_mark_buffer_dirty(path->nodes[0]);
6042 btrfs_free_path(path);
6043
6cbff00f
CH
6044 btrfs_inherit_iflags(inode, dir);
6045
569254b0 6046 if (S_ISREG(mode)) {
0b246afa 6047 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6048 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6049 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6050 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6051 BTRFS_INODE_NODATASUM;
94272164
CM
6052 }
6053
5d4f98a2 6054 inode_tree_add(inode);
1abe9b8a 6055
6056 trace_btrfs_inode_new(inode);
d9094414 6057 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6058
8ea05e3a
AB
6059 btrfs_update_root_times(trans, root);
6060
63541927
FDBM
6061 ret = btrfs_inode_inherit_props(trans, inode, dir);
6062 if (ret)
0b246afa 6063 btrfs_err(fs_info,
63541927 6064 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6065 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6066
39279cc3 6067 return inode;
b0d5d10f
CM
6068
6069fail_unlock:
32955c54 6070 discard_new_inode(inode);
5f39d397 6071fail:
ef3b9af5 6072 if (dir && name)
aec7477b 6073 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6074 btrfs_free_path(path);
6075 return ERR_PTR(ret);
39279cc3
CM
6076}
6077
d352ac68
CM
6078/*
6079 * utility function to add 'inode' into 'parent_inode' with
6080 * a give name and a given sequence number.
6081 * if 'add_backref' is true, also insert a backref from the
6082 * inode to the parent directory.
6083 */
e02119d5 6084int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6085 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6086 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6087{
4df27c4d 6088 int ret = 0;
39279cc3 6089 struct btrfs_key key;
db0a669f
NB
6090 struct btrfs_root *root = parent_inode->root;
6091 u64 ino = btrfs_ino(inode);
6092 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6093
33345d01 6094 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6095 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6096 } else {
33345d01 6097 key.objectid = ino;
962a298f 6098 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6099 key.offset = 0;
6100 }
6101
33345d01 6102 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6103 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6104 root->root_key.objectid, parent_ino,
6105 index, name, name_len);
4df27c4d 6106 } else if (add_backref) {
33345d01
LZ
6107 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6108 parent_ino, index);
4df27c4d 6109 }
39279cc3 6110
79787eaa
JM
6111 /* Nothing to clean up yet */
6112 if (ret)
6113 return ret;
4df27c4d 6114
684572df 6115 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6116 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6117 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6118 goto fail_dir_item;
6119 else if (ret) {
66642832 6120 btrfs_abort_transaction(trans, ret);
79787eaa 6121 return ret;
39279cc3 6122 }
79787eaa 6123
db0a669f 6124 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6125 name_len * 2);
db0a669f 6126 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6127 /*
6128 * If we are replaying a log tree, we do not want to update the mtime
6129 * and ctime of the parent directory with the current time, since the
6130 * log replay procedure is responsible for setting them to their correct
6131 * values (the ones it had when the fsync was done).
6132 */
6133 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6134 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6135
6136 parent_inode->vfs_inode.i_mtime = now;
6137 parent_inode->vfs_inode.i_ctime = now;
6138 }
db0a669f 6139 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6140 if (ret)
66642832 6141 btrfs_abort_transaction(trans, ret);
39279cc3 6142 return ret;
fe66a05a
CM
6143
6144fail_dir_item:
6145 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6146 u64 local_index;
6147 int err;
3ee1c553 6148 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6149 root->root_key.objectid, parent_ino,
6150 &local_index, name, name_len);
1690dd41
JT
6151 if (err)
6152 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6153 } else if (add_backref) {
6154 u64 local_index;
6155 int err;
6156
6157 err = btrfs_del_inode_ref(trans, root, name, name_len,
6158 ino, parent_ino, &local_index);
1690dd41
JT
6159 if (err)
6160 btrfs_abort_transaction(trans, err);
fe66a05a 6161 }
1690dd41
JT
6162
6163 /* Return the original error code */
fe66a05a 6164 return ret;
39279cc3
CM
6165}
6166
6167static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6168 struct btrfs_inode *dir, struct dentry *dentry,
6169 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6170{
a1b075d2
JB
6171 int err = btrfs_add_link(trans, dir, inode,
6172 dentry->d_name.name, dentry->d_name.len,
6173 backref, index);
39279cc3
CM
6174 if (err > 0)
6175 err = -EEXIST;
6176 return err;
6177}
6178
618e21d5 6179static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6180 umode_t mode, dev_t rdev)
618e21d5 6181{
2ff7e61e 6182 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6183 struct btrfs_trans_handle *trans;
6184 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6185 struct inode *inode = NULL;
618e21d5 6186 int err;
618e21d5 6187 u64 objectid;
00e4e6b3 6188 u64 index = 0;
618e21d5 6189
9ed74f2d
JB
6190 /*
6191 * 2 for inode item and ref
6192 * 2 for dir items
6193 * 1 for xattr if selinux is on
6194 */
a22285a6
YZ
6195 trans = btrfs_start_transaction(root, 5);
6196 if (IS_ERR(trans))
6197 return PTR_ERR(trans);
1832a6d5 6198
581bb050
LZ
6199 err = btrfs_find_free_ino(root, &objectid);
6200 if (err)
6201 goto out_unlock;
6202
aec7477b 6203 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6204 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6205 mode, &index);
7cf96da3
TI
6206 if (IS_ERR(inode)) {
6207 err = PTR_ERR(inode);
32955c54 6208 inode = NULL;
618e21d5 6209 goto out_unlock;
7cf96da3 6210 }
618e21d5 6211
ad19db71
CS
6212 /*
6213 * If the active LSM wants to access the inode during
6214 * d_instantiate it needs these. Smack checks to see
6215 * if the filesystem supports xattrs by looking at the
6216 * ops vector.
6217 */
ad19db71 6218 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6219 init_special_inode(inode, inode->i_mode, rdev);
6220
6221 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6222 if (err)
32955c54 6223 goto out_unlock;
b0d5d10f 6224
cef415af
NB
6225 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6226 0, index);
32955c54
AV
6227 if (err)
6228 goto out_unlock;
6229
6230 btrfs_update_inode(trans, root, inode);
6231 d_instantiate_new(dentry, inode);
b0d5d10f 6232
618e21d5 6233out_unlock:
3a45bb20 6234 btrfs_end_transaction(trans);
2ff7e61e 6235 btrfs_btree_balance_dirty(fs_info);
32955c54 6236 if (err && inode) {
618e21d5 6237 inode_dec_link_count(inode);
32955c54 6238 discard_new_inode(inode);
618e21d5 6239 }
618e21d5
JB
6240 return err;
6241}
6242
39279cc3 6243static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6244 umode_t mode, bool excl)
39279cc3 6245{
2ff7e61e 6246 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6247 struct btrfs_trans_handle *trans;
6248 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6249 struct inode *inode = NULL;
a22285a6 6250 int err;
39279cc3 6251 u64 objectid;
00e4e6b3 6252 u64 index = 0;
39279cc3 6253
9ed74f2d
JB
6254 /*
6255 * 2 for inode item and ref
6256 * 2 for dir items
6257 * 1 for xattr if selinux is on
6258 */
a22285a6
YZ
6259 trans = btrfs_start_transaction(root, 5);
6260 if (IS_ERR(trans))
6261 return PTR_ERR(trans);
9ed74f2d 6262
581bb050
LZ
6263 err = btrfs_find_free_ino(root, &objectid);
6264 if (err)
6265 goto out_unlock;
6266
aec7477b 6267 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6268 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6269 mode, &index);
7cf96da3
TI
6270 if (IS_ERR(inode)) {
6271 err = PTR_ERR(inode);
32955c54 6272 inode = NULL;
39279cc3 6273 goto out_unlock;
7cf96da3 6274 }
ad19db71
CS
6275 /*
6276 * If the active LSM wants to access the inode during
6277 * d_instantiate it needs these. Smack checks to see
6278 * if the filesystem supports xattrs by looking at the
6279 * ops vector.
6280 */
6281 inode->i_fop = &btrfs_file_operations;
6282 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6283 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6284
6285 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6286 if (err)
32955c54 6287 goto out_unlock;
b0d5d10f
CM
6288
6289 err = btrfs_update_inode(trans, root, inode);
6290 if (err)
32955c54 6291 goto out_unlock;
ad19db71 6292
cef415af
NB
6293 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6294 0, index);
39279cc3 6295 if (err)
32955c54 6296 goto out_unlock;
43baa579 6297
1e2e547a 6298 d_instantiate_new(dentry, inode);
43baa579 6299
39279cc3 6300out_unlock:
3a45bb20 6301 btrfs_end_transaction(trans);
32955c54 6302 if (err && inode) {
39279cc3 6303 inode_dec_link_count(inode);
32955c54 6304 discard_new_inode(inode);
39279cc3 6305 }
2ff7e61e 6306 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6307 return err;
6308}
6309
6310static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6311 struct dentry *dentry)
6312{
271dba45 6313 struct btrfs_trans_handle *trans = NULL;
39279cc3 6314 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6315 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6317 u64 index;
39279cc3
CM
6318 int err;
6319 int drop_inode = 0;
6320
4a8be425 6321 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6322 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6323 return -EXDEV;
4a8be425 6324
f186373f 6325 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6326 return -EMLINK;
4a8be425 6327
877574e2 6328 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6329 if (err)
6330 goto fail;
6331
a22285a6 6332 /*
7e6b6465 6333 * 2 items for inode and inode ref
a22285a6 6334 * 2 items for dir items
7e6b6465 6335 * 1 item for parent inode
399b0bbf 6336 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6337 */
399b0bbf 6338 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6339 if (IS_ERR(trans)) {
6340 err = PTR_ERR(trans);
271dba45 6341 trans = NULL;
a22285a6
YZ
6342 goto fail;
6343 }
5f39d397 6344
67de1176
MX
6345 /* There are several dir indexes for this inode, clear the cache. */
6346 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6347 inc_nlink(inode);
0c4d2d95 6348 inode_inc_iversion(inode);
c2050a45 6349 inode->i_ctime = current_time(inode);
7de9c6ee 6350 ihold(inode);
e9976151 6351 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6352
cef415af
NB
6353 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6354 1, index);
5f39d397 6355
a5719521 6356 if (err) {
54aa1f4d 6357 drop_inode = 1;
a5719521 6358 } else {
10d9f309 6359 struct dentry *parent = dentry->d_parent;
d4682ba0 6360
a5719521 6361 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6362 if (err)
6363 goto fail;
ef3b9af5
FM
6364 if (inode->i_nlink == 1) {
6365 /*
6366 * If new hard link count is 1, it's a file created
6367 * with open(2) O_TMPFILE flag.
6368 */
3d6ae7bb 6369 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6370 if (err)
6371 goto fail;
6372 }
08c422c2 6373 d_instantiate(dentry, inode);
75b463d2 6374 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6375 }
39279cc3 6376
1832a6d5 6377fail:
271dba45 6378 if (trans)
3a45bb20 6379 btrfs_end_transaction(trans);
39279cc3
CM
6380 if (drop_inode) {
6381 inode_dec_link_count(inode);
6382 iput(inode);
6383 }
2ff7e61e 6384 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6385 return err;
6386}
6387
18bb1db3 6388static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6389{
2ff7e61e 6390 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6391 struct inode *inode = NULL;
39279cc3
CM
6392 struct btrfs_trans_handle *trans;
6393 struct btrfs_root *root = BTRFS_I(dir)->root;
6394 int err = 0;
b9d86667 6395 u64 objectid = 0;
00e4e6b3 6396 u64 index = 0;
39279cc3 6397
9ed74f2d
JB
6398 /*
6399 * 2 items for inode and ref
6400 * 2 items for dir items
6401 * 1 for xattr if selinux is on
6402 */
a22285a6
YZ
6403 trans = btrfs_start_transaction(root, 5);
6404 if (IS_ERR(trans))
6405 return PTR_ERR(trans);
39279cc3 6406
581bb050
LZ
6407 err = btrfs_find_free_ino(root, &objectid);
6408 if (err)
6409 goto out_fail;
6410
aec7477b 6411 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6412 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6413 S_IFDIR | mode, &index);
39279cc3
CM
6414 if (IS_ERR(inode)) {
6415 err = PTR_ERR(inode);
32955c54 6416 inode = NULL;
39279cc3
CM
6417 goto out_fail;
6418 }
5f39d397 6419
b0d5d10f
CM
6420 /* these must be set before we unlock the inode */
6421 inode->i_op = &btrfs_dir_inode_operations;
6422 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6423
2a7dba39 6424 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6425 if (err)
32955c54 6426 goto out_fail;
39279cc3 6427
6ef06d27 6428 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6429 err = btrfs_update_inode(trans, root, inode);
6430 if (err)
32955c54 6431 goto out_fail;
5f39d397 6432
db0a669f
NB
6433 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6434 dentry->d_name.name,
6435 dentry->d_name.len, 0, index);
39279cc3 6436 if (err)
32955c54 6437 goto out_fail;
5f39d397 6438
1e2e547a 6439 d_instantiate_new(dentry, inode);
39279cc3
CM
6440
6441out_fail:
3a45bb20 6442 btrfs_end_transaction(trans);
32955c54 6443 if (err && inode) {
c7cfb8a5 6444 inode_dec_link_count(inode);
32955c54 6445 discard_new_inode(inode);
c7cfb8a5 6446 }
2ff7e61e 6447 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6448 return err;
6449}
6450
c8b97818 6451static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6452 struct page *page,
c8b97818
CM
6453 size_t pg_offset, u64 extent_offset,
6454 struct btrfs_file_extent_item *item)
6455{
6456 int ret;
6457 struct extent_buffer *leaf = path->nodes[0];
6458 char *tmp;
6459 size_t max_size;
6460 unsigned long inline_size;
6461 unsigned long ptr;
261507a0 6462 int compress_type;
c8b97818
CM
6463
6464 WARN_ON(pg_offset != 0);
261507a0 6465 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6466 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6467 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6468 btrfs_item_nr(path->slots[0]));
c8b97818 6469 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6470 if (!tmp)
6471 return -ENOMEM;
c8b97818
CM
6472 ptr = btrfs_file_extent_inline_start(item);
6473
6474 read_extent_buffer(leaf, tmp, ptr, inline_size);
6475
09cbfeaf 6476 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6477 ret = btrfs_decompress(compress_type, tmp, page,
6478 extent_offset, inline_size, max_size);
e1699d2d
ZB
6479
6480 /*
6481 * decompression code contains a memset to fill in any space between the end
6482 * of the uncompressed data and the end of max_size in case the decompressed
6483 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6484 * the end of an inline extent and the beginning of the next block, so we
6485 * cover that region here.
6486 */
6487
6488 if (max_size + pg_offset < PAGE_SIZE) {
6489 char *map = kmap(page);
6490 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6491 kunmap(page);
6492 }
c8b97818 6493 kfree(tmp);
166ae5a4 6494 return ret;
c8b97818
CM
6495}
6496
39b07b5d
OS
6497/**
6498 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6499 * @inode: file to search in
6500 * @page: page to read extent data into if the extent is inline
6501 * @pg_offset: offset into @page to copy to
6502 * @start: file offset
6503 * @len: length of range starting at @start
6504 *
6505 * This returns the first &struct extent_map which overlaps with the given
6506 * range, reading it from the B-tree and caching it if necessary. Note that
6507 * there may be more extents which overlap the given range after the returned
6508 * extent_map.
d352ac68 6509 *
39b07b5d
OS
6510 * If @page is not NULL and the extent is inline, this also reads the extent
6511 * data directly into the page and marks the extent up to date in the io_tree.
6512 *
6513 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6514 */
fc4f21b1 6515struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6516 struct page *page, size_t pg_offset,
6517 u64 start, u64 len)
a52d9a80 6518{
3ffbd68c 6519 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6520 int ret = 0;
a52d9a80
CM
6521 u64 extent_start = 0;
6522 u64 extent_end = 0;
fc4f21b1 6523 u64 objectid = btrfs_ino(inode);
7e74e235 6524 int extent_type = -1;
f421950f 6525 struct btrfs_path *path = NULL;
fc4f21b1 6526 struct btrfs_root *root = inode->root;
a52d9a80 6527 struct btrfs_file_extent_item *item;
5f39d397
CM
6528 struct extent_buffer *leaf;
6529 struct btrfs_key found_key;
a52d9a80 6530 struct extent_map *em = NULL;
fc4f21b1
NB
6531 struct extent_map_tree *em_tree = &inode->extent_tree;
6532 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6533
890871be 6534 read_lock(&em_tree->lock);
d1310b2e 6535 em = lookup_extent_mapping(em_tree, start, len);
890871be 6536 read_unlock(&em_tree->lock);
d1310b2e 6537
a52d9a80 6538 if (em) {
e1c4b745
CM
6539 if (em->start > start || em->start + em->len <= start)
6540 free_extent_map(em);
6541 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6542 free_extent_map(em);
6543 else
6544 goto out;
a52d9a80 6545 }
172ddd60 6546 em = alloc_extent_map();
a52d9a80 6547 if (!em) {
1028d1c4 6548 ret = -ENOMEM;
d1310b2e 6549 goto out;
a52d9a80 6550 }
d1310b2e 6551 em->start = EXTENT_MAP_HOLE;
445a6944 6552 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6553 em->len = (u64)-1;
c8b97818 6554 em->block_len = (u64)-1;
f421950f 6555
bee6ec82 6556 path = btrfs_alloc_path();
f421950f 6557 if (!path) {
1028d1c4 6558 ret = -ENOMEM;
bee6ec82 6559 goto out;
f421950f
CM
6560 }
6561
bee6ec82
LB
6562 /* Chances are we'll be called again, so go ahead and do readahead */
6563 path->reada = READA_FORWARD;
6564
e49aabd9
LB
6565 /*
6566 * Unless we're going to uncompress the inline extent, no sleep would
6567 * happen.
6568 */
6569 path->leave_spinning = 1;
6570
51899412
JB
6571 path->recurse = btrfs_is_free_space_inode(inode);
6572
5c9a702e 6573 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6574 if (ret < 0) {
a52d9a80 6575 goto out;
b8eeab7f 6576 } else if (ret > 0) {
a52d9a80
CM
6577 if (path->slots[0] == 0)
6578 goto not_found;
6579 path->slots[0]--;
1028d1c4 6580 ret = 0;
a52d9a80
CM
6581 }
6582
5f39d397
CM
6583 leaf = path->nodes[0];
6584 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6585 struct btrfs_file_extent_item);
5f39d397 6586 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6587 if (found_key.objectid != objectid ||
694c12ed 6588 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6589 /*
6590 * If we backup past the first extent we want to move forward
6591 * and see if there is an extent in front of us, otherwise we'll
6592 * say there is a hole for our whole search range which can
6593 * cause problems.
6594 */
6595 extent_end = start;
6596 goto next;
a52d9a80
CM
6597 }
6598
694c12ed 6599 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6600 extent_start = found_key.offset;
a5eeb3d1 6601 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6602 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6603 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6604 /* Only regular file could have regular/prealloc extent */
6605 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6606 ret = -EUCLEAN;
6bf9e4bd
QW
6607 btrfs_crit(fs_info,
6608 "regular/prealloc extent found for non-regular inode %llu",
6609 btrfs_ino(inode));
6610 goto out;
6611 }
09ed2f16
LB
6612 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6613 extent_start);
694c12ed 6614 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6615 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6616 path->slots[0],
6617 extent_start);
9036c102 6618 }
25a50341 6619next:
9036c102
YZ
6620 if (start >= extent_end) {
6621 path->slots[0]++;
6622 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6623 ret = btrfs_next_leaf(root, path);
1028d1c4 6624 if (ret < 0)
9036c102 6625 goto out;
1028d1c4 6626 else if (ret > 0)
9036c102 6627 goto not_found;
1028d1c4 6628
9036c102 6629 leaf = path->nodes[0];
a52d9a80 6630 }
9036c102
YZ
6631 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6632 if (found_key.objectid != objectid ||
6633 found_key.type != BTRFS_EXTENT_DATA_KEY)
6634 goto not_found;
6635 if (start + len <= found_key.offset)
6636 goto not_found;
e2eca69d
WS
6637 if (start > found_key.offset)
6638 goto next;
02a033df
NB
6639
6640 /* New extent overlaps with existing one */
9036c102 6641 em->start = start;
70c8a91c 6642 em->orig_start = start;
9036c102 6643 em->len = found_key.offset - start;
02a033df
NB
6644 em->block_start = EXTENT_MAP_HOLE;
6645 goto insert;
9036c102
YZ
6646 }
6647
39b07b5d 6648 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6649
694c12ed
NB
6650 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6651 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6652 goto insert;
694c12ed 6653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6654 unsigned long ptr;
a52d9a80 6655 char *map;
3326d1b0
CM
6656 size_t size;
6657 size_t extent_offset;
6658 size_t copy_size;
a52d9a80 6659
39b07b5d 6660 if (!page)
689f9346 6661 goto out;
5f39d397 6662
e41ca589 6663 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6664 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6665 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6666 size - extent_offset);
3326d1b0 6667 em->start = extent_start + extent_offset;
0b246afa 6668 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6669 em->orig_block_len = em->len;
70c8a91c 6670 em->orig_start = em->start;
689f9346 6671 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6672
6673 btrfs_set_path_blocking(path);
bf46f52d 6674 if (!PageUptodate(page)) {
261507a0
LZ
6675 if (btrfs_file_extent_compression(leaf, item) !=
6676 BTRFS_COMPRESS_NONE) {
e40da0e5 6677 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6678 extent_offset, item);
1028d1c4 6679 if (ret)
166ae5a4 6680 goto out;
c8b97818
CM
6681 } else {
6682 map = kmap(page);
6683 read_extent_buffer(leaf, map + pg_offset, ptr,
6684 copy_size);
09cbfeaf 6685 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6686 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6687 PAGE_SIZE - pg_offset -
93c82d57
CM
6688 copy_size);
6689 }
c8b97818
CM
6690 kunmap(page);
6691 }
179e29e4 6692 flush_dcache_page(page);
a52d9a80 6693 }
d1310b2e 6694 set_extent_uptodate(io_tree, em->start,
507903b8 6695 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6696 goto insert;
a52d9a80
CM
6697 }
6698not_found:
6699 em->start = start;
70c8a91c 6700 em->orig_start = start;
d1310b2e 6701 em->len = len;
5f39d397 6702 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6703insert:
1028d1c4 6704 ret = 0;
b3b4aa74 6705 btrfs_release_path(path);
d1310b2e 6706 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6707 btrfs_err(fs_info,
5d163e0e
JM
6708 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6709 em->start, em->len, start, len);
1028d1c4 6710 ret = -EIO;
a52d9a80
CM
6711 goto out;
6712 }
d1310b2e 6713
890871be 6714 write_lock(&em_tree->lock);
1028d1c4 6715 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6716 write_unlock(&em_tree->lock);
a52d9a80 6717out:
c6414280 6718 btrfs_free_path(path);
1abe9b8a 6719
fc4f21b1 6720 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6721
1028d1c4 6722 if (ret) {
a52d9a80 6723 free_extent_map(em);
1028d1c4 6724 return ERR_PTR(ret);
a52d9a80
CM
6725 }
6726 return em;
6727}
6728
fc4f21b1 6729struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6730 u64 start, u64 len)
ec29ed5b
CM
6731{
6732 struct extent_map *em;
6733 struct extent_map *hole_em = NULL;
f3714ef4 6734 u64 delalloc_start = start;
ec29ed5b 6735 u64 end;
f3714ef4
NB
6736 u64 delalloc_len;
6737 u64 delalloc_end;
ec29ed5b
CM
6738 int err = 0;
6739
39b07b5d 6740 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6741 if (IS_ERR(em))
6742 return em;
9986277e
DC
6743 /*
6744 * If our em maps to:
6745 * - a hole or
6746 * - a pre-alloc extent,
6747 * there might actually be delalloc bytes behind it.
6748 */
6749 if (em->block_start != EXTENT_MAP_HOLE &&
6750 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6751 return em;
6752 else
6753 hole_em = em;
ec29ed5b
CM
6754
6755 /* check to see if we've wrapped (len == -1 or similar) */
6756 end = start + len;
6757 if (end < start)
6758 end = (u64)-1;
6759 else
6760 end -= 1;
6761
6762 em = NULL;
6763
6764 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6765 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6766 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6767 delalloc_end = delalloc_start + delalloc_len;
6768 if (delalloc_end < delalloc_start)
6769 delalloc_end = (u64)-1;
ec29ed5b
CM
6770
6771 /*
f3714ef4
NB
6772 * We didn't find anything useful, return the original results from
6773 * get_extent()
ec29ed5b 6774 */
f3714ef4 6775 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6776 em = hole_em;
6777 hole_em = NULL;
6778 goto out;
6779 }
6780
f3714ef4
NB
6781 /*
6782 * Adjust the delalloc_start to make sure it doesn't go backwards from
6783 * the start they passed in
ec29ed5b 6784 */
f3714ef4
NB
6785 delalloc_start = max(start, delalloc_start);
6786 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6787
f3714ef4
NB
6788 if (delalloc_len > 0) {
6789 u64 hole_start;
02950af4 6790 u64 hole_len;
f3714ef4 6791 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6792
172ddd60 6793 em = alloc_extent_map();
ec29ed5b
CM
6794 if (!em) {
6795 err = -ENOMEM;
6796 goto out;
6797 }
f3714ef4
NB
6798
6799 ASSERT(hole_em);
ec29ed5b 6800 /*
f3714ef4
NB
6801 * When btrfs_get_extent can't find anything it returns one
6802 * huge hole
ec29ed5b 6803 *
f3714ef4
NB
6804 * Make sure what it found really fits our range, and adjust to
6805 * make sure it is based on the start from the caller
ec29ed5b 6806 */
f3714ef4
NB
6807 if (hole_end <= start || hole_em->start > end) {
6808 free_extent_map(hole_em);
6809 hole_em = NULL;
6810 } else {
6811 hole_start = max(hole_em->start, start);
6812 hole_len = hole_end - hole_start;
ec29ed5b 6813 }
f3714ef4
NB
6814
6815 if (hole_em && delalloc_start > hole_start) {
6816 /*
6817 * Our hole starts before our delalloc, so we have to
6818 * return just the parts of the hole that go until the
6819 * delalloc starts
ec29ed5b 6820 */
f3714ef4 6821 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6822 em->start = hole_start;
6823 em->orig_start = hole_start;
6824 /*
f3714ef4
NB
6825 * Don't adjust block start at all, it is fixed at
6826 * EXTENT_MAP_HOLE
ec29ed5b
CM
6827 */
6828 em->block_start = hole_em->block_start;
6829 em->block_len = hole_len;
f9e4fb53
LB
6830 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6831 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6832 } else {
f3714ef4
NB
6833 /*
6834 * Hole is out of passed range or it starts after
6835 * delalloc range
6836 */
6837 em->start = delalloc_start;
6838 em->len = delalloc_len;
6839 em->orig_start = delalloc_start;
ec29ed5b 6840 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6841 em->block_len = delalloc_len;
ec29ed5b 6842 }
bf8d32b9 6843 } else {
ec29ed5b
CM
6844 return hole_em;
6845 }
6846out:
6847
6848 free_extent_map(hole_em);
6849 if (err) {
6850 free_extent_map(em);
6851 return ERR_PTR(err);
6852 }
6853 return em;
6854}
6855
64f54188 6856static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6857 const u64 start,
6858 const u64 len,
6859 const u64 orig_start,
6860 const u64 block_start,
6861 const u64 block_len,
6862 const u64 orig_block_len,
6863 const u64 ram_bytes,
6864 const int type)
6865{
6866 struct extent_map *em = NULL;
6867 int ret;
6868
5f9a8a51 6869 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6870 em = create_io_em(inode, start, len, orig_start, block_start,
6871 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6872 BTRFS_COMPRESS_NONE, /* compress_type */
6873 type);
5f9a8a51
FM
6874 if (IS_ERR(em))
6875 goto out;
6876 }
64f54188
NB
6877 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6878 block_len, type);
5f9a8a51
FM
6879 if (ret) {
6880 if (em) {
6881 free_extent_map(em);
64f54188 6882 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
6883 }
6884 em = ERR_PTR(ret);
6885 }
6886 out:
5f9a8a51
FM
6887
6888 return em;
6889}
6890
9fc6f911 6891static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
6892 u64 start, u64 len)
6893{
9fc6f911
NB
6894 struct btrfs_root *root = inode->root;
6895 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6896 struct extent_map *em;
4b46fce2
JB
6897 struct btrfs_key ins;
6898 u64 alloc_hint;
6899 int ret;
4b46fce2 6900
9fc6f911 6901 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 6902 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6903 0, alloc_hint, &ins, 1, 1);
00361589
JB
6904 if (ret)
6905 return ERR_PTR(ret);
4b46fce2 6906
9fc6f911 6907 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 6908 ins.objectid, ins.offset, ins.offset,
6288d6ea 6909 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6910 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6911 if (IS_ERR(em))
9fc6f911
NB
6912 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6913 1);
de0ee0ed 6914
4b46fce2
JB
6915 return em;
6916}
6917
46bfbb5c 6918/*
e4ecaf90
QW
6919 * Check if we can do nocow write into the range [@offset, @offset + @len)
6920 *
6921 * @offset: File offset
6922 * @len: The length to write, will be updated to the nocow writeable
6923 * range
6924 * @orig_start: (optional) Return the original file offset of the file extent
6925 * @orig_len: (optional) Return the original on-disk length of the file extent
6926 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
6927 * @strict: if true, omit optimizations that might force us into unnecessary
6928 * cow. e.g., don't trust generation number.
e4ecaf90
QW
6929 *
6930 * This function will flush ordered extents in the range to ensure proper
6931 * nocow checks for (nowait == false) case.
6932 *
6933 * Return:
6934 * >0 and update @len if we can do nocow write
6935 * 0 if we can't do nocow write
6936 * <0 if error happened
6937 *
6938 * NOTE: This only checks the file extents, caller is responsible to wait for
6939 * any ordered extents.
46bfbb5c 6940 */
00361589 6941noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 6942 u64 *orig_start, u64 *orig_block_len,
a84d5d42 6943 u64 *ram_bytes, bool strict)
46bfbb5c 6944{
2ff7e61e 6945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6946 struct btrfs_path *path;
6947 int ret;
6948 struct extent_buffer *leaf;
6949 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6950 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6951 struct btrfs_file_extent_item *fi;
6952 struct btrfs_key key;
6953 u64 disk_bytenr;
6954 u64 backref_offset;
6955 u64 extent_end;
6956 u64 num_bytes;
6957 int slot;
6958 int found_type;
7ee9e440 6959 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6960
46bfbb5c
CM
6961 path = btrfs_alloc_path();
6962 if (!path)
6963 return -ENOMEM;
6964
f85b7379
DS
6965 ret = btrfs_lookup_file_extent(NULL, root, path,
6966 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6967 if (ret < 0)
6968 goto out;
6969
6970 slot = path->slots[0];
6971 if (ret == 1) {
6972 if (slot == 0) {
6973 /* can't find the item, must cow */
6974 ret = 0;
6975 goto out;
6976 }
6977 slot--;
6978 }
6979 ret = 0;
6980 leaf = path->nodes[0];
6981 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 6982 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
6983 key.type != BTRFS_EXTENT_DATA_KEY) {
6984 /* not our file or wrong item type, must cow */
6985 goto out;
6986 }
6987
6988 if (key.offset > offset) {
6989 /* Wrong offset, must cow */
6990 goto out;
6991 }
6992
6993 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6994 found_type = btrfs_file_extent_type(leaf, fi);
6995 if (found_type != BTRFS_FILE_EXTENT_REG &&
6996 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6997 /* not a regular extent, must cow */
6998 goto out;
6999 }
7ee9e440
JB
7000
7001 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7002 goto out;
7003
e77751aa
MX
7004 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7005 if (extent_end <= offset)
7006 goto out;
7007
46bfbb5c 7008 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7009 if (disk_bytenr == 0)
7010 goto out;
7011
7012 if (btrfs_file_extent_compression(leaf, fi) ||
7013 btrfs_file_extent_encryption(leaf, fi) ||
7014 btrfs_file_extent_other_encoding(leaf, fi))
7015 goto out;
7016
78d4295b
EL
7017 /*
7018 * Do the same check as in btrfs_cross_ref_exist but without the
7019 * unnecessary search.
7020 */
a84d5d42
BB
7021 if (!strict &&
7022 (btrfs_file_extent_generation(leaf, fi) <=
7023 btrfs_root_last_snapshot(&root->root_item)))
78d4295b
EL
7024 goto out;
7025
46bfbb5c
CM
7026 backref_offset = btrfs_file_extent_offset(leaf, fi);
7027
7ee9e440
JB
7028 if (orig_start) {
7029 *orig_start = key.offset - backref_offset;
7030 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7031 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7032 }
eb384b55 7033
2ff7e61e 7034 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7035 goto out;
7b2b7085
MX
7036
7037 num_bytes = min(offset + *len, extent_end) - offset;
7038 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7039 u64 range_end;
7040
da17066c
JM
7041 range_end = round_up(offset + num_bytes,
7042 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7043 ret = test_range_bit(io_tree, offset, range_end,
7044 EXTENT_DELALLOC, 0, NULL);
7045 if (ret) {
7046 ret = -EAGAIN;
7047 goto out;
7048 }
7049 }
7050
1bda19eb 7051 btrfs_release_path(path);
46bfbb5c
CM
7052
7053 /*
7054 * look for other files referencing this extent, if we
7055 * find any we must cow
7056 */
00361589 7057
e4c3b2dc 7058 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
a84d5d42
BB
7059 key.offset - backref_offset, disk_bytenr,
7060 strict);
00361589
JB
7061 if (ret) {
7062 ret = 0;
7063 goto out;
7064 }
46bfbb5c
CM
7065
7066 /*
7067 * adjust disk_bytenr and num_bytes to cover just the bytes
7068 * in this extent we are about to write. If there
7069 * are any csums in that range we have to cow in order
7070 * to keep the csums correct
7071 */
7072 disk_bytenr += backref_offset;
7073 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7074 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7075 goto out;
46bfbb5c
CM
7076 /*
7077 * all of the above have passed, it is safe to overwrite this extent
7078 * without cow
7079 */
eb384b55 7080 *len = num_bytes;
46bfbb5c
CM
7081 ret = 1;
7082out:
7083 btrfs_free_path(path);
7084 return ret;
7085}
7086
eb838e73 7087static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
f85781fb 7088 struct extent_state **cached_state, bool writing)
eb838e73
JB
7089{
7090 struct btrfs_ordered_extent *ordered;
7091 int ret = 0;
7092
7093 while (1) {
7094 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7095 cached_state);
eb838e73
JB
7096 /*
7097 * We're concerned with the entire range that we're going to be
01327610 7098 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7099 * extents in this range.
7100 */
a776c6fa 7101 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7102 lockend - lockstart + 1);
7103
7104 /*
7105 * We need to make sure there are no buffered pages in this
7106 * range either, we could have raced between the invalidate in
7107 * generic_file_direct_write and locking the extent. The
7108 * invalidate needs to happen so that reads after a write do not
7109 * get stale data.
7110 */
fc4adbff 7111 if (!ordered &&
051c98eb
DS
7112 (!writing || !filemap_range_has_page(inode->i_mapping,
7113 lockstart, lockend)))
eb838e73
JB
7114 break;
7115
7116 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7117 cached_state);
eb838e73
JB
7118
7119 if (ordered) {
ade77029
FM
7120 /*
7121 * If we are doing a DIO read and the ordered extent we
7122 * found is for a buffered write, we can not wait for it
7123 * to complete and retry, because if we do so we can
7124 * deadlock with concurrent buffered writes on page
7125 * locks. This happens only if our DIO read covers more
7126 * than one extent map, if at this point has already
7127 * created an ordered extent for a previous extent map
7128 * and locked its range in the inode's io tree, and a
7129 * concurrent write against that previous extent map's
7130 * range and this range started (we unlock the ranges
7131 * in the io tree only when the bios complete and
7132 * buffered writes always lock pages before attempting
7133 * to lock range in the io tree).
7134 */
7135 if (writing ||
7136 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
c0a43603 7137 btrfs_start_ordered_extent(ordered, 1);
ade77029
FM
7138 else
7139 ret = -ENOTBLK;
eb838e73
JB
7140 btrfs_put_ordered_extent(ordered);
7141 } else {
eb838e73 7142 /*
b850ae14
FM
7143 * We could trigger writeback for this range (and wait
7144 * for it to complete) and then invalidate the pages for
7145 * this range (through invalidate_inode_pages2_range()),
7146 * but that can lead us to a deadlock with a concurrent
ba206a02 7147 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7148 * triggered a readahead) on a page lock due to an
7149 * ordered dio extent we created before but did not have
7150 * yet a corresponding bio submitted (whence it can not
ba206a02 7151 * complete), which makes readahead wait for that
b850ae14
FM
7152 * ordered extent to complete while holding a lock on
7153 * that page.
eb838e73 7154 */
b850ae14 7155 ret = -ENOTBLK;
eb838e73
JB
7156 }
7157
ade77029
FM
7158 if (ret)
7159 break;
7160
eb838e73
JB
7161 cond_resched();
7162 }
7163
7164 return ret;
7165}
7166
6f9994db 7167/* The callers of this must take lock_extent() */
4b67c11d
NB
7168static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7169 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7170 u64 block_len, u64 orig_block_len,
7171 u64 ram_bytes, int compress_type,
7172 int type)
69ffb543
JB
7173{
7174 struct extent_map_tree *em_tree;
7175 struct extent_map *em;
69ffb543
JB
7176 int ret;
7177
6f9994db
LB
7178 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7179 type == BTRFS_ORDERED_COMPRESSED ||
7180 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7181 type == BTRFS_ORDERED_REGULAR);
6f9994db 7182
4b67c11d 7183 em_tree = &inode->extent_tree;
69ffb543
JB
7184 em = alloc_extent_map();
7185 if (!em)
7186 return ERR_PTR(-ENOMEM);
7187
7188 em->start = start;
7189 em->orig_start = orig_start;
7190 em->len = len;
7191 em->block_len = block_len;
7192 em->block_start = block_start;
b4939680 7193 em->orig_block_len = orig_block_len;
cc95bef6 7194 em->ram_bytes = ram_bytes;
70c8a91c 7195 em->generation = -1;
69ffb543 7196 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7197 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7198 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7199 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7200 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7201 em->compress_type = compress_type;
7202 }
69ffb543
JB
7203
7204 do {
4b67c11d
NB
7205 btrfs_drop_extent_cache(inode, em->start,
7206 em->start + em->len - 1, 0);
69ffb543 7207 write_lock(&em_tree->lock);
09a2a8f9 7208 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7209 write_unlock(&em_tree->lock);
6f9994db
LB
7210 /*
7211 * The caller has taken lock_extent(), who could race with us
7212 * to add em?
7213 */
69ffb543
JB
7214 } while (ret == -EEXIST);
7215
7216 if (ret) {
7217 free_extent_map(em);
7218 return ERR_PTR(ret);
7219 }
7220
6f9994db 7221 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7222 return em;
7223}
7224
1c8d0175 7225
c5794e51 7226static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7227 struct inode *inode,
7228 struct btrfs_dio_data *dio_data,
7229 u64 start, u64 len)
7230{
7231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7232 struct extent_map *em = *map;
7233 int ret = 0;
7234
7235 /*
7236 * We don't allocate a new extent in the following cases
7237 *
7238 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7239 * existing extent.
7240 * 2) The extent is marked as PREALLOC. We're good to go here and can
7241 * just use the extent.
7242 *
7243 */
7244 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7245 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7246 em->block_start != EXTENT_MAP_HOLE)) {
7247 int type;
7248 u64 block_start, orig_start, orig_block_len, ram_bytes;
7249
7250 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7251 type = BTRFS_ORDERED_PREALLOC;
7252 else
7253 type = BTRFS_ORDERED_NOCOW;
7254 len = min(len, em->len - (start - em->start));
7255 block_start = em->block_start + (start - em->start);
7256
7257 if (can_nocow_extent(inode, start, &len, &orig_start,
a84d5d42 7258 &orig_block_len, &ram_bytes, false) == 1 &&
c5794e51
NB
7259 btrfs_inc_nocow_writers(fs_info, block_start)) {
7260 struct extent_map *em2;
7261
64f54188 7262 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7263 orig_start, block_start,
7264 len, orig_block_len,
7265 ram_bytes, type);
7266 btrfs_dec_nocow_writers(fs_info, block_start);
7267 if (type == BTRFS_ORDERED_PREALLOC) {
7268 free_extent_map(em);
7269 *map = em = em2;
7270 }
7271
7272 if (em2 && IS_ERR(em2)) {
7273 ret = PTR_ERR(em2);
7274 goto out;
7275 }
7276 /*
7277 * For inode marked NODATACOW or extent marked PREALLOC,
7278 * use the existing or preallocated extent, so does not
7279 * need to adjust btrfs_space_info's bytes_may_use.
7280 */
9db5d510 7281 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7282 goto skip_cow;
7283 }
7284 }
7285
7286 /* this will cow the extent */
c5794e51 7287 free_extent_map(em);
9fc6f911 7288 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7289 if (IS_ERR(em)) {
7290 ret = PTR_ERR(em);
7291 goto out;
7292 }
7293
7294 len = min(len, em->len - (start - em->start));
7295
7296skip_cow:
c5794e51
NB
7297 /*
7298 * Need to update the i_size under the extent lock so buffered
7299 * readers will get the updated i_size when we unlock.
7300 */
f85781fb 7301 if (start + len > i_size_read(inode))
c5794e51
NB
7302 i_size_write(inode, start + len);
7303
c5794e51 7304 dio_data->reserve -= len;
c5794e51
NB
7305out:
7306 return ret;
7307}
7308
f85781fb
GR
7309static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7310 loff_t length, unsigned int flags, struct iomap *iomap,
7311 struct iomap *srcmap)
4b46fce2 7312{
0b246afa 7313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7314 struct extent_map *em;
eb838e73 7315 struct extent_state *cached_state = NULL;
50745b0a 7316 struct btrfs_dio_data *dio_data = NULL;
eb838e73 7317 u64 lockstart, lockend;
f85781fb 7318 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7319 int ret = 0;
f85781fb
GR
7320 u64 len = length;
7321 bool unlock_extents = false;
0eb79294
JB
7322 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7323
7324 /*
7325 * We used current->journal_info here to see if we were sync, but
7326 * there's a lot of tests in the enospc machinery to not do flushing if
7327 * we have a journal_info set, so we need to clear this out and re-set
7328 * it in iomap_end.
7329 */
7330 ASSERT(current->journal_info == NULL ||
7331 current->journal_info == BTRFS_DIO_SYNC_STUB);
7332 current->journal_info = NULL;
eb838e73 7333
f85781fb 7334 if (!write)
0b246afa 7335 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7336
c329861d
JB
7337 lockstart = start;
7338 lockend = start + len - 1;
7339
f85781fb
GR
7340 /*
7341 * The generic stuff only does filemap_write_and_wait_range, which
7342 * isn't enough if we've written compressed pages to this area, so we
7343 * need to flush the dirty pages again to make absolutely sure that any
7344 * outstanding dirty pages are on disk.
7345 */
7346 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7347 &BTRFS_I(inode)->runtime_flags)) {
7348 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7349 start + length - 1);
7350 if (ret)
7351 return ret;
7352 }
7353
7354 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7355 if (!dio_data)
7356 return -ENOMEM;
7357
0eb79294 7358 dio_data->sync = sync;
f85781fb
GR
7359 dio_data->length = length;
7360 if (write) {
7361 dio_data->reserve = round_up(length, fs_info->sectorsize);
7362 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7363 &dio_data->data_reserved,
7364 start, dio_data->reserve);
7365 if (ret) {
7366 extent_changeset_free(dio_data->data_reserved);
7367 kfree(dio_data);
7368 return ret;
7369 }
e1cbbfa5 7370 }
f85781fb
GR
7371 iomap->private = dio_data;
7372
e1cbbfa5 7373
eb838e73
JB
7374 /*
7375 * If this errors out it's because we couldn't invalidate pagecache for
7376 * this range and we need to fallback to buffered.
7377 */
f85781fb 7378 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
9c9464cc
FM
7379 ret = -ENOTBLK;
7380 goto err;
7381 }
eb838e73 7382
39b07b5d 7383 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7384 if (IS_ERR(em)) {
7385 ret = PTR_ERR(em);
7386 goto unlock_err;
7387 }
4b46fce2
JB
7388
7389 /*
7390 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7391 * io. INLINE is special, and we could probably kludge it in here, but
7392 * it's still buffered so for safety lets just fall back to the generic
7393 * buffered path.
7394 *
7395 * For COMPRESSED we _have_ to read the entire extent in so we can
7396 * decompress it, so there will be buffering required no matter what we
7397 * do, so go ahead and fallback to buffered.
7398 *
01327610 7399 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7400 * to buffered IO. Don't blame me, this is the price we pay for using
7401 * the generic code.
7402 */
7403 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7404 em->block_start == EXTENT_MAP_INLINE) {
7405 free_extent_map(em);
eb838e73
JB
7406 ret = -ENOTBLK;
7407 goto unlock_err;
4b46fce2
JB
7408 }
7409
f85781fb
GR
7410 len = min(len, em->len - (start - em->start));
7411 if (write) {
7412 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7413 start, len);
c5794e51
NB
7414 if (ret < 0)
7415 goto unlock_err;
f85781fb
GR
7416 unlock_extents = true;
7417 /* Recalc len in case the new em is smaller than requested */
7418 len = min(len, em->len - (start - em->start));
c5794e51 7419 } else {
1c8d0175
NB
7420 /*
7421 * We need to unlock only the end area that we aren't using.
7422 * The rest is going to be unlocked by the endio routine.
7423 */
f85781fb
GR
7424 lockstart = start + len;
7425 if (lockstart < lockend)
7426 unlock_extents = true;
7427 }
7428
7429 if (unlock_extents)
7430 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7431 lockstart, lockend, &cached_state);
7432 else
7433 free_extent_state(cached_state);
7434
7435 /*
7436 * Translate extent map information to iomap.
7437 * We trim the extents (and move the addr) even though iomap code does
7438 * that, since we have locked only the parts we are performing I/O in.
7439 */
7440 if ((em->block_start == EXTENT_MAP_HOLE) ||
7441 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7442 iomap->addr = IOMAP_NULL_ADDR;
7443 iomap->type = IOMAP_HOLE;
7444 } else {
7445 iomap->addr = em->block_start + (start - em->start);
7446 iomap->type = IOMAP_MAPPED;
a43a67a2 7447 }
f85781fb
GR
7448 iomap->offset = start;
7449 iomap->bdev = fs_info->fs_devices->latest_bdev;
7450 iomap->length = len;
a43a67a2 7451
4b46fce2
JB
7452 free_extent_map(em);
7453
7454 return 0;
eb838e73
JB
7455
7456unlock_err:
e182163d
OS
7457 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7458 &cached_state);
9c9464cc 7459err:
f85781fb
GR
7460 if (dio_data) {
7461 btrfs_delalloc_release_space(BTRFS_I(inode),
7462 dio_data->data_reserved, start,
7463 dio_data->reserve, true);
7464 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7465 extent_changeset_free(dio_data->data_reserved);
7466 kfree(dio_data);
7467 }
7468 return ret;
7469}
7470
7471static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7472 ssize_t written, unsigned int flags, struct iomap *iomap)
7473{
7474 int ret = 0;
7475 struct btrfs_dio_data *dio_data = iomap->private;
7476 size_t submitted = dio_data->submitted;
7477 const bool write = !!(flags & IOMAP_WRITE);
7478
7479 if (!write && (iomap->type == IOMAP_HOLE)) {
7480 /* If reading from a hole, unlock and return */
7481 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7482 goto out;
7483 }
7484
7485 if (submitted < length) {
7486 pos += submitted;
7487 length -= submitted;
7488 if (write)
7489 __endio_write_update_ordered(BTRFS_I(inode), pos,
7490 length, false);
7491 else
7492 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7493 pos + length - 1);
7494 ret = -ENOTBLK;
7495 }
7496
7497 if (write) {
7498 if (dio_data->reserve)
7499 btrfs_delalloc_release_space(BTRFS_I(inode),
7500 dio_data->data_reserved, pos,
7501 dio_data->reserve, true);
7502 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7503 extent_changeset_free(dio_data->data_reserved);
7504 }
7505out:
0eb79294
JB
7506 /*
7507 * We're all done, we can re-set the current->journal_info now safely
7508 * for our endio.
7509 */
7510 if (dio_data->sync) {
7511 ASSERT(current->journal_info == NULL);
7512 current->journal_info = BTRFS_DIO_SYNC_STUB;
7513 }
f85781fb
GR
7514 kfree(dio_data);
7515 iomap->private = NULL;
7516
8b110e39
MX
7517 return ret;
7518}
7519
769b4f24 7520static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7521{
769b4f24
OS
7522 /*
7523 * This implies a barrier so that stores to dio_bio->bi_status before
7524 * this and loads of dio_bio->bi_status after this are fully ordered.
7525 */
7526 if (!refcount_dec_and_test(&dip->refs))
7527 return;
8b110e39 7528
769b4f24 7529 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7530 __endio_write_update_ordered(BTRFS_I(dip->inode),
7531 dip->logical_offset,
769b4f24
OS
7532 dip->bytes,
7533 !dip->dio_bio->bi_status);
7534 } else {
7535 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7536 dip->logical_offset,
7537 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7538 }
7539
f85781fb 7540 bio_endio(dip->dio_bio);
769b4f24 7541 kfree(dip);
8b110e39
MX
7542}
7543
77d5d689
OS
7544static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7545 int mirror_num,
7546 unsigned long bio_flags)
8b110e39 7547{
77d5d689 7548 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7550 blk_status_t ret;
8b110e39 7551
37226b21 7552 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7553
5c047a69 7554 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7555 if (ret)
ea057f6d 7556 return ret;
8b110e39 7557
77d5d689 7558 refcount_inc(&dip->refs);
08635bae 7559 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7560 if (ret)
fd9d6670 7561 refcount_dec(&dip->refs);
77d5d689 7562 return ret;
8b110e39
MX
7563}
7564
fd9d6670
OS
7565static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7566 struct btrfs_io_bio *io_bio,
7567 const bool uptodate)
4b46fce2 7568{
fd9d6670
OS
7569 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7570 const u32 sectorsize = fs_info->sectorsize;
7571 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7573 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7574 struct bio_vec bvec;
7575 struct bvec_iter iter;
fd9d6670
OS
7576 u64 start = io_bio->logical;
7577 int icsum = 0;
58efbc9f 7578 blk_status_t err = BLK_STS_OK;
4b46fce2 7579
fd9d6670
OS
7580 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7581 unsigned int i, nr_sectors, pgoff;
8b110e39 7582
17347cec
LB
7583 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7584 pgoff = bvec.bv_offset;
fd9d6670 7585 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7586 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7587 if (uptodate &&
7588 (!csum || !check_data_csum(inode, io_bio, icsum,
7589 bvec.bv_page, pgoff,
7590 start, sectorsize))) {
7591 clean_io_failure(fs_info, failure_tree, io_tree,
7592 start, bvec.bv_page,
7593 btrfs_ino(BTRFS_I(inode)),
7594 pgoff);
7595 } else {
7596 blk_status_t status;
7597
77d5d689
OS
7598 status = btrfs_submit_read_repair(inode,
7599 &io_bio->bio,
7600 start - io_bio->logical,
fd9d6670
OS
7601 bvec.bv_page, pgoff,
7602 start,
7603 start + sectorsize - 1,
77d5d689
OS
7604 io_bio->mirror_num,
7605 submit_dio_repair_bio);
fd9d6670
OS
7606 if (status)
7607 err = status;
7608 }
7609 start += sectorsize;
7610 icsum++;
2dabb324 7611 pgoff += sectorsize;
2dabb324 7612 }
2c30c71b 7613 }
c1dc0896
MX
7614 return err;
7615}
7616
b672b5c1 7617static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7618 const u64 offset, const u64 bytes,
7619 const bool uptodate)
4b46fce2 7620{
b672b5c1 7621 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7622 struct btrfs_ordered_extent *ordered = NULL;
52427260 7623 struct btrfs_workqueue *wq;
14543774
FM
7624 u64 ordered_offset = offset;
7625 u64 ordered_bytes = bytes;
67c003f9 7626 u64 last_offset;
4b46fce2 7627
b672b5c1 7628 if (btrfs_is_free_space_inode(inode))
52427260 7629 wq = fs_info->endio_freespace_worker;
a0cac0ec 7630 else
52427260 7631 wq = fs_info->endio_write_workers;
52427260 7632
b25f0d00
NB
7633 while (ordered_offset < offset + bytes) {
7634 last_offset = ordered_offset;
b672b5c1 7635 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7636 &ordered_offset,
7637 ordered_bytes,
7638 uptodate)) {
a0cac0ec
OS
7639 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7640 NULL);
b25f0d00
NB
7641 btrfs_queue_work(wq, &ordered->work);
7642 }
7643 /*
7644 * If btrfs_dec_test_ordered_pending does not find any ordered
7645 * extent in the range, we can exit.
7646 */
7647 if (ordered_offset == last_offset)
7648 return;
7649 /*
7650 * Our bio might span multiple ordered extents. In this case
52042d8e 7651 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7652 */
7653 if (ordered_offset < offset + bytes) {
7654 ordered_bytes = offset + bytes - ordered_offset;
7655 ordered = NULL;
7656 }
163cf09c 7657 }
14543774
FM
7658}
7659
d0ee3934 7660static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7661 struct bio *bio, u64 offset)
eaf25d93 7662{
c6100a4b 7663 struct inode *inode = private_data;
c965d640
JT
7664
7665 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
eaf25d93
CM
7666}
7667
4246a0b6 7668static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7669{
7670 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7671 blk_status_t err = bio->bi_status;
e65e1535 7672
8b110e39
MX
7673 if (err)
7674 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7675 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7676 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7677 bio->bi_opf,
8b110e39
MX
7678 (unsigned long long)bio->bi_iter.bi_sector,
7679 bio->bi_iter.bi_size, err);
7680
769b4f24
OS
7681 if (bio_op(bio) == REQ_OP_READ) {
7682 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7683 !err);
e65e1535
MX
7684 }
7685
769b4f24
OS
7686 if (err)
7687 dip->dio_bio->bi_status = err;
e65e1535 7688
e65e1535 7689 bio_put(bio);
769b4f24 7690 btrfs_dio_private_put(dip);
c1dc0896
MX
7691}
7692
d0ee3934
DS
7693static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7694 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7695{
0b246afa 7696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7697 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7698 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7699 blk_status_t ret;
e65e1535 7700
4c274bc6 7701 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7702 if (async_submit)
7703 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7704
5fd02043 7705 if (!write) {
0b246afa 7706 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7707 if (ret)
7708 goto err;
7709 }
e65e1535 7710
e6961cac 7711 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7712 goto map;
7713
7714 if (write && async_submit) {
c6100a4b
JB
7715 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7716 file_offset, inode,
e288c080 7717 btrfs_submit_bio_start_direct_io);
e65e1535 7718 goto err;
1ae39938
JB
7719 } else if (write) {
7720 /*
7721 * If we aren't doing async submit, calculate the csum of the
7722 * bio now.
7723 */
bd242a08 7724 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7725 if (ret)
7726 goto err;
23ea8e5a 7727 } else {
85879573
OS
7728 u64 csum_offset;
7729
7730 csum_offset = file_offset - dip->logical_offset;
7731 csum_offset >>= inode->i_sb->s_blocksize_bits;
7732 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7733 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7734 }
1ae39938 7735map:
08635bae 7736 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7737err:
e65e1535
MX
7738 return ret;
7739}
7740
c36cac28
OS
7741/*
7742 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7743 * or ordered extents whether or not we submit any bios.
7744 */
7745static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7746 struct inode *inode,
7747 loff_t file_offset)
e65e1535 7748{
c36cac28 7749 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7750 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7751 size_t dip_size;
c36cac28 7752 struct btrfs_dio_private *dip;
c36cac28 7753
85879573
OS
7754 dip_size = sizeof(*dip);
7755 if (!write && csum) {
7756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7757 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7758 size_t nblocks;
7759
7760 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7761 dip_size += csum_size * nblocks;
7762 }
7763
7764 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7765 if (!dip)
7766 return NULL;
7767
c36cac28
OS
7768 dip->inode = inode;
7769 dip->logical_offset = file_offset;
7770 dip->bytes = dio_bio->bi_iter.bi_size;
7771 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7772 dip->dio_bio = dio_bio;
e3b318d1 7773 refcount_set(&dip->refs, 1);
c36cac28
OS
7774 return dip;
7775}
7776
f85781fb
GR
7777static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7778 struct bio *dio_bio, loff_t file_offset)
c36cac28
OS
7779{
7780 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7781 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7783 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7784 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7785 struct btrfs_dio_private *dip;
e65e1535 7786 struct bio *bio;
c36cac28 7787 u64 start_sector;
1ae39938 7788 int async_submit = 0;
725130ba
LB
7789 u64 submit_len;
7790 int clone_offset = 0;
7791 int clone_len;
5f4dc8fc 7792 int ret;
58efbc9f 7793 blk_status_t status;
89b798ad 7794 struct btrfs_io_geometry geom;
f85781fb 7795 struct btrfs_dio_data *dio_data = iomap->private;
e65e1535 7796
c36cac28
OS
7797 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7798 if (!dip) {
7799 if (!write) {
7800 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7801 file_offset + dio_bio->bi_iter.bi_size - 1);
7802 }
7803 dio_bio->bi_status = BLK_STS_RESOURCE;
f85781fb
GR
7804 bio_endio(dio_bio);
7805 return BLK_QC_T_NONE;
c36cac28 7806 }
facc8a22 7807
85879573
OS
7808 if (!write && csum) {
7809 /*
7810 * Load the csums up front to reduce csum tree searches and
7811 * contention when submitting bios.
7812 */
7813 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7814 dip->csums);
7815 if (status != BLK_STS_OK)
7816 goto out_err;
02f57c7a
JB
7817 }
7818
769b4f24
OS
7819 start_sector = dio_bio->bi_iter.bi_sector;
7820 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7821
3c91ee69 7822 do {
769b4f24
OS
7823 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7824 start_sector << 9, submit_len,
7825 &geom);
7826 if (ret) {
7827 status = errno_to_blk_status(ret);
7828 goto out_err;
7829 }
7830 ASSERT(geom.len <= INT_MAX);
7831
89b798ad 7832 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7833
725130ba
LB
7834 /*
7835 * This will never fail as it's passing GPF_NOFS and
7836 * the allocation is backed by btrfs_bioset.
7837 */
769b4f24 7838 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7839 bio->bi_private = dip;
7840 bio->bi_end_io = btrfs_end_dio_bio;
7841 btrfs_io_bio(bio)->logical = file_offset;
7842
7843 ASSERT(submit_len >= clone_len);
7844 submit_len -= clone_len;
e65e1535 7845
725130ba
LB
7846 /*
7847 * Increase the count before we submit the bio so we know
7848 * the end IO handler won't happen before we increase the
7849 * count. Otherwise, the dip might get freed before we're
7850 * done setting it up.
769b4f24
OS
7851 *
7852 * We transfer the initial reference to the last bio, so we
7853 * don't need to increment the reference count for the last one.
725130ba 7854 */
769b4f24
OS
7855 if (submit_len > 0) {
7856 refcount_inc(&dip->refs);
7857 /*
7858 * If we are submitting more than one bio, submit them
7859 * all asynchronously. The exception is RAID 5 or 6, as
7860 * asynchronous checksums make it difficult to collect
7861 * full stripe writes.
7862 */
7863 if (!raid56)
7864 async_submit = 1;
7865 }
e65e1535 7866
d0ee3934 7867 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7868 async_submit);
7869 if (status) {
725130ba 7870 bio_put(bio);
769b4f24
OS
7871 if (submit_len > 0)
7872 refcount_dec(&dip->refs);
725130ba
LB
7873 goto out_err;
7874 }
e65e1535 7875
f85781fb 7876 dio_data->submitted += clone_len;
725130ba
LB
7877 clone_offset += clone_len;
7878 start_sector += clone_len >> 9;
7879 file_offset += clone_len;
3c91ee69 7880 } while (submit_len > 0);
f85781fb 7881 return BLK_QC_T_NONE;
e65e1535 7882
e65e1535 7883out_err:
769b4f24
OS
7884 dip->dio_bio->bi_status = status;
7885 btrfs_dio_private_put(dip);
f85781fb 7886 return BLK_QC_T_NONE;
4b46fce2
JB
7887}
7888
f4c48b44
DS
7889static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7890 const struct iov_iter *iter, loff_t offset)
7891{
7892 int seg;
7893 int i;
7894 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7895 ssize_t retval = -EINVAL;
0934856d 7896
f4c48b44
DS
7897 if (offset & blocksize_mask)
7898 goto out;
7899
7900 if (iov_iter_alignment(iter) & blocksize_mask)
7901 goto out;
7902
7903 /* If this is a write we don't need to check anymore */
7904 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7905 return 0;
7906 /*
7907 * Check to make sure we don't have duplicate iov_base's in this
7908 * iovec, if so return EINVAL, otherwise we'll get csum errors
7909 * when reading back.
7910 */
7911 for (seg = 0; seg < iter->nr_segs; seg++) {
7912 for (i = seg + 1; i < iter->nr_segs; i++) {
7913 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7914 goto out;
7915 }
7916 }
7917 retval = 0;
7918out:
7919 return retval;
7920}
7921
0eb79294
JB
7922static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
7923 int error, unsigned flags)
7924{
7925 /*
7926 * Now if we're still in the context of our submitter we know we can't
7927 * safely run generic_write_sync(), so clear our flag here so that the
7928 * caller knows to follow up with a sync.
7929 */
7930 if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
7931 current->journal_info = NULL;
7932 return error;
7933 }
7934
7935 if (error)
7936 return error;
7937
7938 if (size) {
7939 iocb->ki_flags |= IOCB_DSYNC;
7940 return generic_write_sync(iocb, size);
7941 }
7942
7943 return 0;
7944}
7945
f85781fb
GR
7946static const struct iomap_ops btrfs_dio_iomap_ops = {
7947 .iomap_begin = btrfs_dio_iomap_begin,
7948 .iomap_end = btrfs_dio_iomap_end,
7949};
7950
7951static const struct iomap_dio_ops btrfs_dio_ops = {
7952 .submit_io = btrfs_submit_direct,
7953};
7954
0eb79294
JB
7955static const struct iomap_dio_ops btrfs_sync_dops = {
7956 .submit_io = btrfs_submit_direct,
7957 .end_io = btrfs_maybe_fsync_end_io,
7958};
7959
f85781fb 7960ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7961{
7962 struct file *file = iocb->ki_filp;
7963 struct inode *inode = file->f_mapping->host;
7964 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7965 struct extent_changeset *data_reserved = NULL;
7966 loff_t offset = iocb->ki_pos;
7967 size_t count = 0;
7968 bool relock = false;
7969 ssize_t ret;
7970
7971 if (check_direct_IO(fs_info, iter, offset))
7972 return 0;
7973
7974 count = iov_iter_count(iter);
7975 if (iov_iter_rw(iter) == WRITE) {
7976 /*
7977 * If the write DIO is beyond the EOF, we need update
7978 * the isize, but it is protected by i_mutex. So we can
7979 * not unlock the i_mutex at this case.
7980 */
7981 if (offset + count <= inode->i_size) {
7982 inode_unlock(inode);
7983 relock = true;
f4c48b44
DS
7984 }
7985 down_read(&BTRFS_I(inode)->dio_sem);
7986 }
7987
0eb79294
JB
7988 /*
7989 * We have are actually a sync iocb, so we need our fancy endio to know
7990 * if we need to sync.
7991 */
7992 if (current->journal_info)
7993 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
7994 &btrfs_sync_dops, is_sync_kiocb(iocb));
7995 else
7996 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
7997 &btrfs_dio_ops, is_sync_kiocb(iocb));
f85781fb
GR
7998
7999 if (ret == -ENOTBLK)
8000 ret = 0;
8001
8002 if (iov_iter_rw(iter) == WRITE)
f4c48b44 8003 up_read(&BTRFS_I(inode)->dio_sem);
f85781fb 8004
f4c48b44
DS
8005 if (relock)
8006 inode_lock(inode);
55e20bd1 8007
f4c48b44
DS
8008 extent_changeset_free(data_reserved);
8009 return ret;
8010}
16432985 8011
1506fcc8 8012static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 8013 u64 start, u64 len)
1506fcc8 8014{
05dadc09
TI
8015 int ret;
8016
45dd052e 8017 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
8018 if (ret)
8019 return ret;
8020
facee0a0 8021 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
8022}
8023
a52d9a80 8024int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8025{
0f208812
NB
8026 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8027 u64 start = page_offset(page);
8028 u64 end = start + PAGE_SIZE - 1;
c1be9c1a 8029 unsigned long bio_flags = 0;
0f208812 8030 struct bio *bio = NULL;
c1be9c1a
NB
8031 int ret;
8032
0f208812
NB
8033 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8034
8035 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
c1be9c1a
NB
8036 if (bio)
8037 ret = submit_one_bio(bio, 0, bio_flags);
8038 return ret;
9ebefb18 8039}
1832a6d5 8040
a52d9a80 8041static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8042{
be7bd730
JB
8043 struct inode *inode = page->mapping->host;
8044 int ret;
b888db2b
CM
8045
8046 if (current->flags & PF_MEMALLOC) {
8047 redirty_page_for_writepage(wbc, page);
8048 unlock_page(page);
8049 return 0;
8050 }
be7bd730
JB
8051
8052 /*
8053 * If we are under memory pressure we will call this directly from the
8054 * VM, we need to make sure we have the inode referenced for the ordered
8055 * extent. If not just return like we didn't do anything.
8056 */
8057 if (!igrab(inode)) {
8058 redirty_page_for_writepage(wbc, page);
8059 return AOP_WRITEPAGE_ACTIVATE;
8060 }
0a9b0e53 8061 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8062 btrfs_add_delayed_iput(inode);
8063 return ret;
9ebefb18
CM
8064}
8065
48a3b636
ES
8066static int btrfs_writepages(struct address_space *mapping,
8067 struct writeback_control *wbc)
b293f02e 8068{
8ae225a8 8069 return extent_writepages(mapping, wbc);
b293f02e
CM
8070}
8071
ba206a02 8072static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8073{
ba206a02 8074 extent_readahead(rac);
3ab2fb5a 8075}
2a3ff0ad 8076
e6dcd2dc 8077static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8078{
477a30ba 8079 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8080 if (ret == 1)
8081 detach_page_private(page);
a52d9a80 8082 return ret;
39279cc3
CM
8083}
8084
e6dcd2dc
CM
8085static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8086{
98509cfc
CM
8087 if (PageWriteback(page) || PageDirty(page))
8088 return 0;
3ba7ab22 8089 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8090}
8091
f8e66081
RG
8092#ifdef CONFIG_MIGRATION
8093static int btrfs_migratepage(struct address_space *mapping,
8094 struct page *newpage, struct page *page,
8095 enum migrate_mode mode)
8096{
8097 int ret;
8098
8099 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8100 if (ret != MIGRATEPAGE_SUCCESS)
8101 return ret;
8102
d1b89bc0
GJ
8103 if (page_has_private(page))
8104 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8105
8106 if (PagePrivate2(page)) {
8107 ClearPagePrivate2(page);
8108 SetPagePrivate2(newpage);
8109 }
8110
8111 if (mode != MIGRATE_SYNC_NO_COPY)
8112 migrate_page_copy(newpage, page);
8113 else
8114 migrate_page_states(newpage, page);
8115 return MIGRATEPAGE_SUCCESS;
8116}
8117#endif
8118
d47992f8
LC
8119static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8120 unsigned int length)
39279cc3 8121{
53ac7ead
NB
8122 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8123 struct extent_io_tree *tree = &inode->io_tree;
e6dcd2dc 8124 struct btrfs_ordered_extent *ordered;
2ac55d41 8125 struct extent_state *cached_state = NULL;
e6dcd2dc 8126 u64 page_start = page_offset(page);
09cbfeaf 8127 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8128 u64 start;
8129 u64 end;
53ac7ead 8130 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 8131
8b62b72b
CM
8132 /*
8133 * we have the page locked, so new writeback can't start,
8134 * and the dirty bit won't be cleared while we are here.
8135 *
8136 * Wait for IO on this page so that we can safely clear
8137 * the PagePrivate2 bit and do ordered accounting
8138 */
e6dcd2dc 8139 wait_on_page_writeback(page);
8b62b72b 8140
e6dcd2dc
CM
8141 if (offset) {
8142 btrfs_releasepage(page, GFP_NOFS);
8143 return;
8144 }
131e404a
FDBM
8145
8146 if (!inode_evicting)
ff13db41 8147 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8148again:
8149 start = page_start;
53ac7ead 8150 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
e6dcd2dc 8151 if (ordered) {
bffe633e
OS
8152 end = min(page_end,
8153 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8154 /*
8155 * IO on this page will never be started, so we need
8156 * to account for any ordered extents now
8157 */
131e404a 8158 if (!inode_evicting)
dbfdb6d1 8159 clear_extent_bit(tree, start, end,
e182163d 8160 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8161 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8162 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8163 /*
8164 * whoever cleared the private bit is responsible
8165 * for the finish_ordered_io
8166 */
77cef2ec
JB
8167 if (TestClearPagePrivate2(page)) {
8168 struct btrfs_ordered_inode_tree *tree;
8169 u64 new_len;
8170
53ac7ead 8171 tree = &inode->ordered_tree;
77cef2ec
JB
8172
8173 spin_lock_irq(&tree->lock);
8174 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8175 new_len = start - ordered->file_offset;
77cef2ec
JB
8176 if (new_len < ordered->truncated_len)
8177 ordered->truncated_len = new_len;
8178 spin_unlock_irq(&tree->lock);
8179
53ac7ead
NB
8180 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8181 start,
dbfdb6d1 8182 end - start + 1, 1))
77cef2ec 8183 btrfs_finish_ordered_io(ordered);
8b62b72b 8184 }
e6dcd2dc 8185 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8186 if (!inode_evicting) {
8187 cached_state = NULL;
dbfdb6d1 8188 lock_extent_bits(tree, start, end,
131e404a
FDBM
8189 &cached_state);
8190 }
dbfdb6d1
CR
8191
8192 start = end + 1;
8193 if (start < page_end)
8194 goto again;
131e404a
FDBM
8195 }
8196
b9d0b389
QW
8197 /*
8198 * Qgroup reserved space handler
8199 * Page here will be either
fa91e4aa
QW
8200 * 1) Already written to disk or ordered extent already submitted
8201 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8202 * Qgroup will be handled by its qgroup_record then.
8203 * btrfs_qgroup_free_data() call will do nothing here.
8204 *
8205 * 2) Not written to disk yet
8206 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8207 * bit of its io_tree, and free the qgroup reserved data space.
8208 * Since the IO will never happen for this page.
b9d0b389 8209 */
53ac7ead 8210 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a 8211 if (!inode_evicting) {
e182163d 8212 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8213 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8214 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8215 &cached_state);
131e404a
FDBM
8216
8217 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8218 }
e6dcd2dc 8219
4a096752 8220 ClearPageChecked(page);
d1b89bc0 8221 detach_page_private(page);
39279cc3
CM
8222}
8223
9ebefb18
CM
8224/*
8225 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8226 * called from a page fault handler when a page is first dirtied. Hence we must
8227 * be careful to check for EOF conditions here. We set the page up correctly
8228 * for a written page which means we get ENOSPC checking when writing into
8229 * holes and correct delalloc and unwritten extent mapping on filesystems that
8230 * support these features.
8231 *
8232 * We are not allowed to take the i_mutex here so we have to play games to
8233 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8234 * truncate_setsize() writes the inode size before removing pages, once we have
8235 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8236 * beyond EOF, then the page is guaranteed safe against truncation until we
8237 * unlock the page.
8238 */
a528a241 8239vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8240{
c2ec175c 8241 struct page *page = vmf->page;
11bac800 8242 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8245 struct btrfs_ordered_extent *ordered;
2ac55d41 8246 struct extent_state *cached_state = NULL;
364ecf36 8247 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8248 char *kaddr;
8249 unsigned long zero_start;
9ebefb18 8250 loff_t size;
a528a241
SJ
8251 vm_fault_t ret;
8252 int ret2;
9998eb70 8253 int reserved = 0;
d0b7da88 8254 u64 reserved_space;
a52d9a80 8255 u64 page_start;
e6dcd2dc 8256 u64 page_end;
d0b7da88
CR
8257 u64 end;
8258
09cbfeaf 8259 reserved_space = PAGE_SIZE;
9ebefb18 8260
b2b5ef5c 8261 sb_start_pagefault(inode->i_sb);
df480633 8262 page_start = page_offset(page);
09cbfeaf 8263 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8264 end = page_end;
df480633 8265
d0b7da88
CR
8266 /*
8267 * Reserving delalloc space after obtaining the page lock can lead to
8268 * deadlock. For example, if a dirty page is locked by this function
8269 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8270 * dirty page write out, then the btrfs_writepage() function could
8271 * end up waiting indefinitely to get a lock on the page currently
8272 * being processed by btrfs_page_mkwrite() function.
8273 */
e5b7231e
NB
8274 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8275 page_start, reserved_space);
a528a241
SJ
8276 if (!ret2) {
8277 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8278 reserved = 1;
8279 }
a528a241
SJ
8280 if (ret2) {
8281 ret = vmf_error(ret2);
9998eb70
CM
8282 if (reserved)
8283 goto out;
8284 goto out_noreserve;
56a76f82 8285 }
1832a6d5 8286
56a76f82 8287 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8288again:
9ebefb18 8289 lock_page(page);
9ebefb18 8290 size = i_size_read(inode);
a52d9a80 8291
9ebefb18 8292 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8293 (page_start >= size)) {
9ebefb18
CM
8294 /* page got truncated out from underneath us */
8295 goto out_unlock;
8296 }
e6dcd2dc
CM
8297 wait_on_page_writeback(page);
8298
ff13db41 8299 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8300 set_page_extent_mapped(page);
8301
eb84ae03
CM
8302 /*
8303 * we can't set the delalloc bits if there are pending ordered
8304 * extents. Drop our locks and wait for them to finish
8305 */
a776c6fa
NB
8306 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8307 PAGE_SIZE);
e6dcd2dc 8308 if (ordered) {
2ac55d41 8309 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8310 &cached_state);
e6dcd2dc 8311 unlock_page(page);
c0a43603 8312 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
8313 btrfs_put_ordered_extent(ordered);
8314 goto again;
8315 }
8316
09cbfeaf 8317 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8318 reserved_space = round_up(size - page_start,
0b246afa 8319 fs_info->sectorsize);
09cbfeaf 8320 if (reserved_space < PAGE_SIZE) {
d0b7da88 8321 end = page_start + reserved_space - 1;
86d52921
NB
8322 btrfs_delalloc_release_space(BTRFS_I(inode),
8323 data_reserved, page_start,
8324 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8325 }
8326 }
8327
fbf19087 8328 /*
5416034f
LB
8329 * page_mkwrite gets called when the page is firstly dirtied after it's
8330 * faulted in, but write(2) could also dirty a page and set delalloc
8331 * bits, thus in this case for space account reason, we still need to
8332 * clear any delalloc bits within this page range since we have to
8333 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8334 */
d0b7da88 8335 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8336 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8337 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8338
c2566f22 8339 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8340 &cached_state);
a528a241 8341 if (ret2) {
2ac55d41 8342 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8343 &cached_state);
9ed74f2d
JB
8344 ret = VM_FAULT_SIGBUS;
8345 goto out_unlock;
8346 }
9ebefb18
CM
8347
8348 /* page is wholly or partially inside EOF */
09cbfeaf 8349 if (page_start + PAGE_SIZE > size)
7073017a 8350 zero_start = offset_in_page(size);
9ebefb18 8351 else
09cbfeaf 8352 zero_start = PAGE_SIZE;
9ebefb18 8353
09cbfeaf 8354 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8355 kaddr = kmap(page);
09cbfeaf 8356 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8357 flush_dcache_page(page);
8358 kunmap(page);
8359 }
247e743c 8360 ClearPageChecked(page);
e6dcd2dc 8361 set_page_dirty(page);
50a9b214 8362 SetPageUptodate(page);
5a3f23d5 8363
0b246afa 8364 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8365 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8366 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8367
e43bbe5e 8368 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8369
76de60ed
YY
8370 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8371 sb_end_pagefault(inode->i_sb);
8372 extent_changeset_free(data_reserved);
8373 return VM_FAULT_LOCKED;
717beb96
CM
8374
8375out_unlock:
9ebefb18 8376 unlock_page(page);
1832a6d5 8377out:
8702ba93 8378 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8379 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8380 reserved_space, (ret != 0));
9998eb70 8381out_noreserve:
b2b5ef5c 8382 sb_end_pagefault(inode->i_sb);
364ecf36 8383 extent_changeset_free(data_reserved);
9ebefb18
CM
8384 return ret;
8385}
8386
213e8c55 8387static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8388{
0b246afa 8389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8390 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8391 struct btrfs_block_rsv *rsv;
ad7e1a74 8392 int ret;
39279cc3 8393 struct btrfs_trans_handle *trans;
0b246afa 8394 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8395 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8396
213e8c55
FM
8397 if (!skip_writeback) {
8398 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8399 (u64)-1);
8400 if (ret)
8401 return ret;
8402 }
39279cc3 8403
fcb80c2a 8404 /*
f7e9e8fc
OS
8405 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8406 * things going on here:
fcb80c2a 8407 *
f7e9e8fc 8408 * 1) We need to reserve space to update our inode.
fcb80c2a 8409 *
f7e9e8fc 8410 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8411 * be free'd up by the truncate operation, but also have some slack
8412 * space reserved in case it uses space during the truncate (thank you
8413 * very much snapshotting).
8414 *
f7e9e8fc 8415 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8416 * space doing the truncate, and we have no earthly idea how much space
01327610 8417 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8418 * doesn't end up using space reserved for updating the inode. We also
8419 * need to be able to stop the transaction and start a new one, which
8420 * means we need to be able to update the inode several times, and we
8421 * have no idea of knowing how many times that will be, so we can't just
8422 * reserve 1 item for the entirety of the operation, so that has to be
8423 * done separately as well.
fcb80c2a
JB
8424 *
8425 * So that leaves us with
8426 *
f7e9e8fc 8427 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8428 * transaction reservation.
f7e9e8fc 8429 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8430 * updating the inode.
8431 */
2ff7e61e 8432 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8433 if (!rsv)
8434 return -ENOMEM;
4a338542 8435 rsv->size = min_size;
ca7e70f5 8436 rsv->failfast = 1;
f0cd846e 8437
907cbceb 8438 /*
07127184 8439 * 1 for the truncate slack space
907cbceb
JB
8440 * 1 for updating the inode.
8441 */
f3fe820c 8442 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8443 if (IS_ERR(trans)) {
ad7e1a74 8444 ret = PTR_ERR(trans);
fcb80c2a
JB
8445 goto out;
8446 }
f0cd846e 8447
907cbceb 8448 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8449 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8450 min_size, false);
fcb80c2a 8451 BUG_ON(ret);
f0cd846e 8452
5dc562c5
JB
8453 /*
8454 * So if we truncate and then write and fsync we normally would just
8455 * write the extents that changed, which is a problem if we need to
8456 * first truncate that entire inode. So set this flag so we write out
8457 * all of the extents in the inode to the sync log so we're completely
8458 * safe.
8459 */
8460 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8461 trans->block_rsv = rsv;
907cbceb 8462
8082510e
YZ
8463 while (1) {
8464 ret = btrfs_truncate_inode_items(trans, root, inode,
8465 inode->i_size,
8466 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8467 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8468 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8469 break;
39279cc3 8470
8082510e 8471 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8472 if (ret)
3893e33b 8473 break;
ca7e70f5 8474
3a45bb20 8475 btrfs_end_transaction(trans);
2ff7e61e 8476 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8477
8478 trans = btrfs_start_transaction(root, 2);
8479 if (IS_ERR(trans)) {
ad7e1a74 8480 ret = PTR_ERR(trans);
ca7e70f5
JB
8481 trans = NULL;
8482 break;
8483 }
8484
63f018be 8485 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8486 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8487 rsv, min_size, false);
ca7e70f5
JB
8488 BUG_ON(ret); /* shouldn't happen */
8489 trans->block_rsv = rsv;
8082510e
YZ
8490 }
8491
ddfae63c
JB
8492 /*
8493 * We can't call btrfs_truncate_block inside a trans handle as we could
8494 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8495 * we've truncated everything except the last little bit, and can do
8496 * btrfs_truncate_block and then update the disk_i_size.
8497 */
8498 if (ret == NEED_TRUNCATE_BLOCK) {
8499 btrfs_end_transaction(trans);
8500 btrfs_btree_balance_dirty(fs_info);
8501
8502 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8503 if (ret)
8504 goto out;
8505 trans = btrfs_start_transaction(root, 1);
8506 if (IS_ERR(trans)) {
8507 ret = PTR_ERR(trans);
8508 goto out;
8509 }
d923afe9 8510 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8511 }
8512
917c16b2 8513 if (trans) {
ad7e1a74
OS
8514 int ret2;
8515
0b246afa 8516 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8517 ret2 = btrfs_update_inode(trans, root, inode);
8518 if (ret2 && !ret)
8519 ret = ret2;
7b128766 8520
ad7e1a74
OS
8521 ret2 = btrfs_end_transaction(trans);
8522 if (ret2 && !ret)
8523 ret = ret2;
2ff7e61e 8524 btrfs_btree_balance_dirty(fs_info);
917c16b2 8525 }
fcb80c2a 8526out:
2ff7e61e 8527 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8528
ad7e1a74 8529 return ret;
39279cc3
CM
8530}
8531
d352ac68
CM
8532/*
8533 * create a new subvolume directory/inode (helper for the ioctl).
8534 */
d2fb3437 8535int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8536 struct btrfs_root *new_root,
8537 struct btrfs_root *parent_root,
8538 u64 new_dirid)
39279cc3 8539{
39279cc3 8540 struct inode *inode;
76dda93c 8541 int err;
00e4e6b3 8542 u64 index = 0;
39279cc3 8543
12fc9d09
FA
8544 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8545 new_dirid, new_dirid,
8546 S_IFDIR | (~current_umask() & S_IRWXUGO),
8547 &index);
54aa1f4d 8548 if (IS_ERR(inode))
f46b5a66 8549 return PTR_ERR(inode);
39279cc3
CM
8550 inode->i_op = &btrfs_dir_inode_operations;
8551 inode->i_fop = &btrfs_dir_file_operations;
8552
bfe86848 8553 set_nlink(inode, 1);
6ef06d27 8554 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8555 unlock_new_inode(inode);
3b96362c 8556
63541927
FDBM
8557 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8558 if (err)
8559 btrfs_err(new_root->fs_info,
351fd353 8560 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8561 new_root->root_key.objectid, err);
8562
76dda93c 8563 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8564
76dda93c 8565 iput(inode);
ce598979 8566 return err;
39279cc3
CM
8567}
8568
39279cc3
CM
8569struct inode *btrfs_alloc_inode(struct super_block *sb)
8570{
69fe2d75 8571 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8572 struct btrfs_inode *ei;
2ead6ae7 8573 struct inode *inode;
39279cc3 8574
712e36c5 8575 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8576 if (!ei)
8577 return NULL;
2ead6ae7
YZ
8578
8579 ei->root = NULL;
2ead6ae7 8580 ei->generation = 0;
15ee9bc7 8581 ei->last_trans = 0;
257c62e1 8582 ei->last_sub_trans = 0;
e02119d5 8583 ei->logged_trans = 0;
2ead6ae7 8584 ei->delalloc_bytes = 0;
a7e3b975 8585 ei->new_delalloc_bytes = 0;
47059d93 8586 ei->defrag_bytes = 0;
2ead6ae7
YZ
8587 ei->disk_i_size = 0;
8588 ei->flags = 0;
7709cde3 8589 ei->csum_bytes = 0;
2ead6ae7 8590 ei->index_cnt = (u64)-1;
67de1176 8591 ei->dir_index = 0;
2ead6ae7 8592 ei->last_unlink_trans = 0;
3ebac17c 8593 ei->last_reflink_trans = 0;
46d8bc34 8594 ei->last_log_commit = 0;
2ead6ae7 8595
9e0baf60
JB
8596 spin_lock_init(&ei->lock);
8597 ei->outstanding_extents = 0;
69fe2d75
JB
8598 if (sb->s_magic != BTRFS_TEST_MAGIC)
8599 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8600 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8601 ei->runtime_flags = 0;
b52aa8c9 8602 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8603 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8604
16cdcec7
MX
8605 ei->delayed_node = NULL;
8606
9cc97d64 8607 ei->i_otime.tv_sec = 0;
8608 ei->i_otime.tv_nsec = 0;
8609
2ead6ae7 8610 inode = &ei->vfs_inode;
a8067e02 8611 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8612 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8613 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8614 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8615 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8616 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8617 ei->io_tree.track_uptodate = true;
8618 ei->io_failure_tree.track_uptodate = true;
b812ce28 8619 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8620 mutex_init(&ei->log_mutex);
e6dcd2dc 8621 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8622 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8623 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8624 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8625 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8626
8627 return inode;
39279cc3
CM
8628}
8629
aaedb55b
JB
8630#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8631void btrfs_test_destroy_inode(struct inode *inode)
8632{
dcdbc059 8633 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8634 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8635}
8636#endif
8637
26602cab 8638void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8639{
fa0d7e3d
NP
8640 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8641}
8642
633cc816 8643void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8644{
e6dcd2dc 8645 struct btrfs_ordered_extent *ordered;
633cc816
NB
8646 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8647 struct btrfs_root *root = inode->root;
5a3f23d5 8648
633cc816
NB
8649 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8650 WARN_ON(vfs_inode->i_data.nrpages);
8651 WARN_ON(inode->block_rsv.reserved);
8652 WARN_ON(inode->block_rsv.size);
8653 WARN_ON(inode->outstanding_extents);
8654 WARN_ON(inode->delalloc_bytes);
8655 WARN_ON(inode->new_delalloc_bytes);
8656 WARN_ON(inode->csum_bytes);
8657 WARN_ON(inode->defrag_bytes);
39279cc3 8658
a6dbd429
JB
8659 /*
8660 * This can happen where we create an inode, but somebody else also
8661 * created the same inode and we need to destroy the one we already
8662 * created.
8663 */
8664 if (!root)
26602cab 8665 return;
a6dbd429 8666
d397712b 8667 while (1) {
633cc816 8668 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8669 if (!ordered)
8670 break;
8671 else {
633cc816 8672 btrfs_err(root->fs_info,
5d163e0e 8673 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8674 ordered->file_offset, ordered->num_bytes);
71fe0a55 8675 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8676 btrfs_put_ordered_extent(ordered);
8677 btrfs_put_ordered_extent(ordered);
8678 }
8679 }
633cc816
NB
8680 btrfs_qgroup_check_reserved_leak(inode);
8681 inode_tree_del(inode);
8682 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8683 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8684 btrfs_put_root(inode->root);
39279cc3
CM
8685}
8686
45321ac5 8687int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8688{
8689 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8690
6379ef9f
NA
8691 if (root == NULL)
8692 return 1;
8693
fa6ac876 8694 /* the snap/subvol tree is on deleting */
69e9c6c6 8695 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8696 return 1;
76dda93c 8697 else
45321ac5 8698 return generic_drop_inode(inode);
76dda93c
YZ
8699}
8700
0ee0fda0 8701static void init_once(void *foo)
39279cc3
CM
8702{
8703 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8704
8705 inode_init_once(&ei->vfs_inode);
8706}
8707
e67c718b 8708void __cold btrfs_destroy_cachep(void)
39279cc3 8709{
8c0a8537
KS
8710 /*
8711 * Make sure all delayed rcu free inodes are flushed before we
8712 * destroy cache.
8713 */
8714 rcu_barrier();
5598e900
KM
8715 kmem_cache_destroy(btrfs_inode_cachep);
8716 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8717 kmem_cache_destroy(btrfs_path_cachep);
8718 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8719 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8720}
8721
f5c29bd9 8722int __init btrfs_init_cachep(void)
39279cc3 8723{
837e1972 8724 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8725 sizeof(struct btrfs_inode), 0,
5d097056
VD
8726 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8727 init_once);
39279cc3
CM
8728 if (!btrfs_inode_cachep)
8729 goto fail;
9601e3f6 8730
837e1972 8731 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8732 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8733 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8734 if (!btrfs_trans_handle_cachep)
8735 goto fail;
9601e3f6 8736
837e1972 8737 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8738 sizeof(struct btrfs_path), 0,
fba4b697 8739 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8740 if (!btrfs_path_cachep)
8741 goto fail;
9601e3f6 8742
837e1972 8743 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8744 sizeof(struct btrfs_free_space), 0,
fba4b697 8745 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8746 if (!btrfs_free_space_cachep)
8747 goto fail;
8748
3acd4850
CL
8749 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8750 PAGE_SIZE, PAGE_SIZE,
8751 SLAB_RED_ZONE, NULL);
8752 if (!btrfs_free_space_bitmap_cachep)
8753 goto fail;
8754
39279cc3
CM
8755 return 0;
8756fail:
8757 btrfs_destroy_cachep();
8758 return -ENOMEM;
8759}
8760
a528d35e
DH
8761static int btrfs_getattr(const struct path *path, struct kstat *stat,
8762 u32 request_mask, unsigned int flags)
39279cc3 8763{
df0af1a5 8764 u64 delalloc_bytes;
a528d35e 8765 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8766 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8767 u32 bi_flags = BTRFS_I(inode)->flags;
8768
8769 stat->result_mask |= STATX_BTIME;
8770 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8771 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8772 if (bi_flags & BTRFS_INODE_APPEND)
8773 stat->attributes |= STATX_ATTR_APPEND;
8774 if (bi_flags & BTRFS_INODE_COMPRESS)
8775 stat->attributes |= STATX_ATTR_COMPRESSED;
8776 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8777 stat->attributes |= STATX_ATTR_IMMUTABLE;
8778 if (bi_flags & BTRFS_INODE_NODUMP)
8779 stat->attributes |= STATX_ATTR_NODUMP;
8780
8781 stat->attributes_mask |= (STATX_ATTR_APPEND |
8782 STATX_ATTR_COMPRESSED |
8783 STATX_ATTR_IMMUTABLE |
8784 STATX_ATTR_NODUMP);
fadc0d8b 8785
39279cc3 8786 generic_fillattr(inode, stat);
0ee5dc67 8787 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8788
8789 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8790 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8791 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8792 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8793 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8794 return 0;
8795}
8796
cdd1fedf
DF
8797static int btrfs_rename_exchange(struct inode *old_dir,
8798 struct dentry *old_dentry,
8799 struct inode *new_dir,
8800 struct dentry *new_dentry)
8801{
0b246afa 8802 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8803 struct btrfs_trans_handle *trans;
8804 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8805 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8806 struct inode *new_inode = new_dentry->d_inode;
8807 struct inode *old_inode = old_dentry->d_inode;
95582b00 8808 struct timespec64 ctime = current_time(old_inode);
4a0cc7ca
NB
8809 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8810 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8811 u64 old_idx = 0;
8812 u64 new_idx = 0;
cdd1fedf 8813 int ret;
75b463d2 8814 int ret2;
86e8aa0e
FM
8815 bool root_log_pinned = false;
8816 bool dest_log_pinned = false;
cdd1fedf
DF
8817
8818 /* we only allow rename subvolume link between subvolumes */
8819 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8820 return -EXDEV;
8821
8822 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8823 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8824 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8825 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8826
8827 /*
8828 * We want to reserve the absolute worst case amount of items. So if
8829 * both inodes are subvols and we need to unlink them then that would
8830 * require 4 item modifications, but if they are both normal inodes it
8831 * would require 5 item modifications, so we'll assume their normal
8832 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8833 * should cover the worst case number of items we'll modify.
8834 */
8835 trans = btrfs_start_transaction(root, 12);
8836 if (IS_ERR(trans)) {
8837 ret = PTR_ERR(trans);
8838 goto out_notrans;
8839 }
8840
3e174099
JB
8841 if (dest != root)
8842 btrfs_record_root_in_trans(trans, dest);
8843
cdd1fedf
DF
8844 /*
8845 * We need to find a free sequence number both in the source and
8846 * in the destination directory for the exchange.
8847 */
877574e2 8848 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8849 if (ret)
8850 goto out_fail;
877574e2 8851 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8852 if (ret)
8853 goto out_fail;
8854
8855 BTRFS_I(old_inode)->dir_index = 0ULL;
8856 BTRFS_I(new_inode)->dir_index = 0ULL;
8857
8858 /* Reference for the source. */
8859 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8860 /* force full log commit if subvolume involved. */
90787766 8861 btrfs_set_log_full_commit(trans);
cdd1fedf 8862 } else {
376e5a57
FM
8863 btrfs_pin_log_trans(root);
8864 root_log_pinned = true;
cdd1fedf
DF
8865 ret = btrfs_insert_inode_ref(trans, dest,
8866 new_dentry->d_name.name,
8867 new_dentry->d_name.len,
8868 old_ino,
f85b7379
DS
8869 btrfs_ino(BTRFS_I(new_dir)),
8870 old_idx);
cdd1fedf
DF
8871 if (ret)
8872 goto out_fail;
cdd1fedf
DF
8873 }
8874
8875 /* And now for the dest. */
8876 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8877 /* force full log commit if subvolume involved. */
90787766 8878 btrfs_set_log_full_commit(trans);
cdd1fedf 8879 } else {
376e5a57
FM
8880 btrfs_pin_log_trans(dest);
8881 dest_log_pinned = true;
cdd1fedf
DF
8882 ret = btrfs_insert_inode_ref(trans, root,
8883 old_dentry->d_name.name,
8884 old_dentry->d_name.len,
8885 new_ino,
f85b7379
DS
8886 btrfs_ino(BTRFS_I(old_dir)),
8887 new_idx);
cdd1fedf
DF
8888 if (ret)
8889 goto out_fail;
cdd1fedf
DF
8890 }
8891
8892 /* Update inode version and ctime/mtime. */
8893 inode_inc_iversion(old_dir);
8894 inode_inc_iversion(new_dir);
8895 inode_inc_iversion(old_inode);
8896 inode_inc_iversion(new_inode);
8897 old_dir->i_ctime = old_dir->i_mtime = ctime;
8898 new_dir->i_ctime = new_dir->i_mtime = ctime;
8899 old_inode->i_ctime = ctime;
8900 new_inode->i_ctime = ctime;
8901
8902 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8903 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8904 BTRFS_I(old_inode), 1);
8905 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8906 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8907 }
8908
8909 /* src is a subvolume */
8910 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8911 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8912 } else { /* src is an inode */
4ec5934e
NB
8913 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8914 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8915 old_dentry->d_name.name,
8916 old_dentry->d_name.len);
8917 if (!ret)
8918 ret = btrfs_update_inode(trans, root, old_inode);
8919 }
8920 if (ret) {
66642832 8921 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8922 goto out_fail;
8923 }
8924
8925 /* dest is a subvolume */
8926 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8927 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8928 } else { /* dest is an inode */
4ec5934e
NB
8929 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8930 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8931 new_dentry->d_name.name,
8932 new_dentry->d_name.len);
8933 if (!ret)
8934 ret = btrfs_update_inode(trans, dest, new_inode);
8935 }
8936 if (ret) {
66642832 8937 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8938 goto out_fail;
8939 }
8940
db0a669f 8941 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8942 new_dentry->d_name.name,
8943 new_dentry->d_name.len, 0, old_idx);
8944 if (ret) {
66642832 8945 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8946 goto out_fail;
8947 }
8948
db0a669f 8949 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8950 old_dentry->d_name.name,
8951 old_dentry->d_name.len, 0, new_idx);
8952 if (ret) {
66642832 8953 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8954 goto out_fail;
8955 }
8956
8957 if (old_inode->i_nlink == 1)
8958 BTRFS_I(old_inode)->dir_index = old_idx;
8959 if (new_inode->i_nlink == 1)
8960 BTRFS_I(new_inode)->dir_index = new_idx;
8961
86e8aa0e 8962 if (root_log_pinned) {
75b463d2
FM
8963 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
8964 new_dentry->d_parent);
cdd1fedf 8965 btrfs_end_log_trans(root);
86e8aa0e 8966 root_log_pinned = false;
cdd1fedf 8967 }
86e8aa0e 8968 if (dest_log_pinned) {
75b463d2
FM
8969 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
8970 old_dentry->d_parent);
cdd1fedf 8971 btrfs_end_log_trans(dest);
86e8aa0e 8972 dest_log_pinned = false;
cdd1fedf
DF
8973 }
8974out_fail:
86e8aa0e
FM
8975 /*
8976 * If we have pinned a log and an error happened, we unpin tasks
8977 * trying to sync the log and force them to fallback to a transaction
8978 * commit if the log currently contains any of the inodes involved in
8979 * this rename operation (to ensure we do not persist a log with an
8980 * inconsistent state for any of these inodes or leading to any
8981 * inconsistencies when replayed). If the transaction was aborted, the
8982 * abortion reason is propagated to userspace when attempting to commit
8983 * the transaction. If the log does not contain any of these inodes, we
8984 * allow the tasks to sync it.
8985 */
8986 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8987 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8988 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8989 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8990 (new_inode &&
0f8939b8 8991 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8992 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8993
8994 if (root_log_pinned) {
8995 btrfs_end_log_trans(root);
8996 root_log_pinned = false;
8997 }
8998 if (dest_log_pinned) {
8999 btrfs_end_log_trans(dest);
9000 dest_log_pinned = false;
9001 }
9002 }
75b463d2
FM
9003 ret2 = btrfs_end_transaction(trans);
9004 ret = ret ? ret : ret2;
cdd1fedf 9005out_notrans:
943eb3bf
JB
9006 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9007 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9008 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9009
9010 return ret;
9011}
9012
9013static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9014 struct btrfs_root *root,
9015 struct inode *dir,
9016 struct dentry *dentry)
9017{
9018 int ret;
9019 struct inode *inode;
9020 u64 objectid;
9021 u64 index;
9022
9023 ret = btrfs_find_free_ino(root, &objectid);
9024 if (ret)
9025 return ret;
9026
9027 inode = btrfs_new_inode(trans, root, dir,
9028 dentry->d_name.name,
9029 dentry->d_name.len,
4a0cc7ca 9030 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9031 objectid,
9032 S_IFCHR | WHITEOUT_MODE,
9033 &index);
9034
9035 if (IS_ERR(inode)) {
9036 ret = PTR_ERR(inode);
9037 return ret;
9038 }
9039
9040 inode->i_op = &btrfs_special_inode_operations;
9041 init_special_inode(inode, inode->i_mode,
9042 WHITEOUT_DEV);
9043
9044 ret = btrfs_init_inode_security(trans, inode, dir,
9045 &dentry->d_name);
9046 if (ret)
c9901618 9047 goto out;
cdd1fedf 9048
cef415af
NB
9049 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9050 BTRFS_I(inode), 0, index);
cdd1fedf 9051 if (ret)
c9901618 9052 goto out;
cdd1fedf
DF
9053
9054 ret = btrfs_update_inode(trans, root, inode);
c9901618 9055out:
cdd1fedf 9056 unlock_new_inode(inode);
c9901618
FM
9057 if (ret)
9058 inode_dec_link_count(inode);
cdd1fedf
DF
9059 iput(inode);
9060
c9901618 9061 return ret;
cdd1fedf
DF
9062}
9063
d397712b 9064static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9065 struct inode *new_dir, struct dentry *new_dentry,
9066 unsigned int flags)
39279cc3 9067{
0b246afa 9068 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9069 struct btrfs_trans_handle *trans;
5062af35 9070 unsigned int trans_num_items;
39279cc3 9071 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9072 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9073 struct inode *new_inode = d_inode(new_dentry);
9074 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9075 u64 index = 0;
39279cc3 9076 int ret;
75b463d2 9077 int ret2;
4a0cc7ca 9078 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9079 bool log_pinned = false;
39279cc3 9080
4a0cc7ca 9081 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9082 return -EPERM;
9083
4df27c4d 9084 /* we only allow rename subvolume link between subvolumes */
33345d01 9085 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9086 return -EXDEV;
9087
33345d01 9088 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9089 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9090 return -ENOTEMPTY;
5f39d397 9091
4df27c4d
YZ
9092 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9093 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9094 return -ENOTEMPTY;
9c52057c
CM
9095
9096
9097 /* check for collisions, even if the name isn't there */
4871c158 9098 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9099 new_dentry->d_name.name,
9100 new_dentry->d_name.len);
9101
9102 if (ret) {
9103 if (ret == -EEXIST) {
9104 /* we shouldn't get
9105 * eexist without a new_inode */
fae7f21c 9106 if (WARN_ON(!new_inode)) {
9c52057c
CM
9107 return ret;
9108 }
9109 } else {
9110 /* maybe -EOVERFLOW */
9111 return ret;
9112 }
9113 }
9114 ret = 0;
9115
5a3f23d5 9116 /*
8d875f95
CM
9117 * we're using rename to replace one file with another. Start IO on it
9118 * now so we don't add too much work to the end of the transaction
5a3f23d5 9119 */
8d875f95 9120 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9121 filemap_flush(old_inode->i_mapping);
9122
76dda93c 9123 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9124 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9125 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9126 /*
9127 * We want to reserve the absolute worst case amount of items. So if
9128 * both inodes are subvols and we need to unlink them then that would
9129 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9130 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9131 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9132 * should cover the worst case number of items we'll modify.
5062af35
FM
9133 * If our rename has the whiteout flag, we need more 5 units for the
9134 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9135 * when selinux is enabled).
a22285a6 9136 */
5062af35
FM
9137 trans_num_items = 11;
9138 if (flags & RENAME_WHITEOUT)
9139 trans_num_items += 5;
9140 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9141 if (IS_ERR(trans)) {
cdd1fedf
DF
9142 ret = PTR_ERR(trans);
9143 goto out_notrans;
9144 }
76dda93c 9145
4df27c4d
YZ
9146 if (dest != root)
9147 btrfs_record_root_in_trans(trans, dest);
5f39d397 9148
877574e2 9149 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9150 if (ret)
9151 goto out_fail;
5a3f23d5 9152
67de1176 9153 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9154 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9155 /* force full log commit if subvolume involved. */
90787766 9156 btrfs_set_log_full_commit(trans);
4df27c4d 9157 } else {
c4aba954
FM
9158 btrfs_pin_log_trans(root);
9159 log_pinned = true;
a5719521
YZ
9160 ret = btrfs_insert_inode_ref(trans, dest,
9161 new_dentry->d_name.name,
9162 new_dentry->d_name.len,
33345d01 9163 old_ino,
4a0cc7ca 9164 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9165 if (ret)
9166 goto out_fail;
4df27c4d 9167 }
5a3f23d5 9168
0c4d2d95
JB
9169 inode_inc_iversion(old_dir);
9170 inode_inc_iversion(new_dir);
9171 inode_inc_iversion(old_inode);
04b285f3
DD
9172 old_dir->i_ctime = old_dir->i_mtime =
9173 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9174 old_inode->i_ctime = current_time(old_dir);
5f39d397 9175
12fcfd22 9176 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9177 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9178 BTRFS_I(old_inode), 1);
12fcfd22 9179
33345d01 9180 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9181 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9182 } else {
4ec5934e
NB
9183 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9184 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9185 old_dentry->d_name.name,
9186 old_dentry->d_name.len);
9187 if (!ret)
9188 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9189 }
79787eaa 9190 if (ret) {
66642832 9191 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9192 goto out_fail;
9193 }
39279cc3
CM
9194
9195 if (new_inode) {
0c4d2d95 9196 inode_inc_iversion(new_inode);
c2050a45 9197 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9198 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9199 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9200 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9201 BUG_ON(new_inode->i_nlink == 0);
9202 } else {
4ec5934e
NB
9203 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9204 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9205 new_dentry->d_name.name,
9206 new_dentry->d_name.len);
9207 }
4ef31a45 9208 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9209 ret = btrfs_orphan_add(trans,
9210 BTRFS_I(d_inode(new_dentry)));
79787eaa 9211 if (ret) {
66642832 9212 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9213 goto out_fail;
9214 }
39279cc3 9215 }
aec7477b 9216
db0a669f 9217 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9218 new_dentry->d_name.name,
a5719521 9219 new_dentry->d_name.len, 0, index);
79787eaa 9220 if (ret) {
66642832 9221 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9222 goto out_fail;
9223 }
39279cc3 9224
67de1176
MX
9225 if (old_inode->i_nlink == 1)
9226 BTRFS_I(old_inode)->dir_index = index;
9227
3dc9e8f7 9228 if (log_pinned) {
75b463d2
FM
9229 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9230 new_dentry->d_parent);
4df27c4d 9231 btrfs_end_log_trans(root);
3dc9e8f7 9232 log_pinned = false;
4df27c4d 9233 }
cdd1fedf
DF
9234
9235 if (flags & RENAME_WHITEOUT) {
9236 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9237 old_dentry);
9238
9239 if (ret) {
66642832 9240 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9241 goto out_fail;
9242 }
4df27c4d 9243 }
39279cc3 9244out_fail:
3dc9e8f7
FM
9245 /*
9246 * If we have pinned the log and an error happened, we unpin tasks
9247 * trying to sync the log and force them to fallback to a transaction
9248 * commit if the log currently contains any of the inodes involved in
9249 * this rename operation (to ensure we do not persist a log with an
9250 * inconsistent state for any of these inodes or leading to any
9251 * inconsistencies when replayed). If the transaction was aborted, the
9252 * abortion reason is propagated to userspace when attempting to commit
9253 * the transaction. If the log does not contain any of these inodes, we
9254 * allow the tasks to sync it.
9255 */
9256 if (ret && log_pinned) {
0f8939b8
NB
9257 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9258 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9259 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9260 (new_inode &&
0f8939b8 9261 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9262 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9263
9264 btrfs_end_log_trans(root);
9265 log_pinned = false;
9266 }
75b463d2
FM
9267 ret2 = btrfs_end_transaction(trans);
9268 ret = ret ? ret : ret2;
b44c59a8 9269out_notrans:
33345d01 9270 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9271 up_read(&fs_info->subvol_sem);
9ed74f2d 9272
39279cc3
CM
9273 return ret;
9274}
9275
80ace85c
MS
9276static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9277 struct inode *new_dir, struct dentry *new_dentry,
9278 unsigned int flags)
9279{
cdd1fedf 9280 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9281 return -EINVAL;
9282
cdd1fedf
DF
9283 if (flags & RENAME_EXCHANGE)
9284 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9285 new_dentry);
9286
9287 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9288}
9289
3a2f8c07
NB
9290struct btrfs_delalloc_work {
9291 struct inode *inode;
9292 struct completion completion;
9293 struct list_head list;
9294 struct btrfs_work work;
9295};
9296
8ccf6f19
MX
9297static void btrfs_run_delalloc_work(struct btrfs_work *work)
9298{
9299 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9300 struct inode *inode;
8ccf6f19
MX
9301
9302 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9303 work);
9f23e289 9304 inode = delalloc_work->inode;
30424601
DS
9305 filemap_flush(inode->i_mapping);
9306 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9307 &BTRFS_I(inode)->runtime_flags))
9f23e289 9308 filemap_flush(inode->i_mapping);
8ccf6f19 9309
076da91c 9310 iput(inode);
8ccf6f19
MX
9311 complete(&delalloc_work->completion);
9312}
9313
3a2f8c07 9314static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9315{
9316 struct btrfs_delalloc_work *work;
9317
100d5702 9318 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9319 if (!work)
9320 return NULL;
9321
9322 init_completion(&work->completion);
9323 INIT_LIST_HEAD(&work->list);
9324 work->inode = inode;
a0cac0ec 9325 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9326
9327 return work;
9328}
9329
d352ac68
CM
9330/*
9331 * some fairly slow code that needs optimization. This walks the list
9332 * of all the inodes with pending delalloc and forces them to disk.
9333 */
b4912139 9334static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot)
ea8c2819 9335{
ea8c2819 9336 struct btrfs_inode *binode;
5b21f2ed 9337 struct inode *inode;
8ccf6f19
MX
9338 struct btrfs_delalloc_work *work, *next;
9339 struct list_head works;
1eafa6c7 9340 struct list_head splice;
8ccf6f19 9341 int ret = 0;
ea8c2819 9342
8ccf6f19 9343 INIT_LIST_HEAD(&works);
1eafa6c7 9344 INIT_LIST_HEAD(&splice);
63607cc8 9345
573bfb72 9346 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9347 spin_lock(&root->delalloc_lock);
9348 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9349 while (!list_empty(&splice)) {
9350 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9351 delalloc_inodes);
1eafa6c7 9352
eb73c1b7
MX
9353 list_move_tail(&binode->delalloc_inodes,
9354 &root->delalloc_inodes);
5b21f2ed 9355 inode = igrab(&binode->vfs_inode);
df0af1a5 9356 if (!inode) {
eb73c1b7 9357 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9358 continue;
df0af1a5 9359 }
eb73c1b7 9360 spin_unlock(&root->delalloc_lock);
1eafa6c7 9361
3cd24c69
EL
9362 if (snapshot)
9363 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9364 &binode->runtime_flags);
076da91c 9365 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9366 if (!work) {
4fbb5147 9367 iput(inode);
1eafa6c7 9368 ret = -ENOMEM;
a1ecaabb 9369 goto out;
5b21f2ed 9370 }
1eafa6c7 9371 list_add_tail(&work->list, &works);
a44903ab
QW
9372 btrfs_queue_work(root->fs_info->flush_workers,
9373 &work->work);
b4912139
JB
9374 if (*nr != U64_MAX) {
9375 (*nr)--;
9376 if (*nr == 0)
9377 goto out;
9378 }
5b21f2ed 9379 cond_resched();
eb73c1b7 9380 spin_lock(&root->delalloc_lock);
ea8c2819 9381 }
eb73c1b7 9382 spin_unlock(&root->delalloc_lock);
8c8bee1d 9383
a1ecaabb 9384out:
eb73c1b7
MX
9385 list_for_each_entry_safe(work, next, &works, list) {
9386 list_del_init(&work->list);
40012f96
NB
9387 wait_for_completion(&work->completion);
9388 kfree(work);
eb73c1b7
MX
9389 }
9390
81f1d390 9391 if (!list_empty(&splice)) {
eb73c1b7
MX
9392 spin_lock(&root->delalloc_lock);
9393 list_splice_tail(&splice, &root->delalloc_inodes);
9394 spin_unlock(&root->delalloc_lock);
9395 }
573bfb72 9396 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9397 return ret;
9398}
1eafa6c7 9399
3cd24c69 9400int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9401{
0b246afa 9402 struct btrfs_fs_info *fs_info = root->fs_info;
b4912139 9403 u64 nr = U64_MAX;
1eafa6c7 9404
0b246afa 9405 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9406 return -EROFS;
9407
b4912139 9408 return start_delalloc_inodes(root, &nr, true);
eb73c1b7
MX
9409}
9410
b4912139 9411int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr)
eb73c1b7
MX
9412{
9413 struct btrfs_root *root;
9414 struct list_head splice;
9415 int ret;
9416
2c21b4d7 9417 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9418 return -EROFS;
9419
9420 INIT_LIST_HEAD(&splice);
9421
573bfb72 9422 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9423 spin_lock(&fs_info->delalloc_root_lock);
9424 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9425 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9426 root = list_first_entry(&splice, struct btrfs_root,
9427 delalloc_root);
00246528 9428 root = btrfs_grab_root(root);
eb73c1b7
MX
9429 BUG_ON(!root);
9430 list_move_tail(&root->delalloc_root,
9431 &fs_info->delalloc_roots);
9432 spin_unlock(&fs_info->delalloc_root_lock);
9433
b4912139 9434 ret = start_delalloc_inodes(root, &nr, false);
00246528 9435 btrfs_put_root(root);
6c255e67 9436 if (ret < 0)
eb73c1b7 9437 goto out;
eb73c1b7 9438 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9439 }
eb73c1b7 9440 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9441
6c255e67 9442 ret = 0;
eb73c1b7 9443out:
81f1d390 9444 if (!list_empty(&splice)) {
eb73c1b7
MX
9445 spin_lock(&fs_info->delalloc_root_lock);
9446 list_splice_tail(&splice, &fs_info->delalloc_roots);
9447 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9448 }
573bfb72 9449 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9450 return ret;
ea8c2819
CM
9451}
9452
39279cc3
CM
9453static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9454 const char *symname)
9455{
0b246afa 9456 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9457 struct btrfs_trans_handle *trans;
9458 struct btrfs_root *root = BTRFS_I(dir)->root;
9459 struct btrfs_path *path;
9460 struct btrfs_key key;
1832a6d5 9461 struct inode *inode = NULL;
39279cc3 9462 int err;
39279cc3 9463 u64 objectid;
67871254 9464 u64 index = 0;
39279cc3
CM
9465 int name_len;
9466 int datasize;
5f39d397 9467 unsigned long ptr;
39279cc3 9468 struct btrfs_file_extent_item *ei;
5f39d397 9469 struct extent_buffer *leaf;
39279cc3 9470
f06becc4 9471 name_len = strlen(symname);
0b246afa 9472 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9473 return -ENAMETOOLONG;
1832a6d5 9474
9ed74f2d
JB
9475 /*
9476 * 2 items for inode item and ref
9477 * 2 items for dir items
9269d12b
FM
9478 * 1 item for updating parent inode item
9479 * 1 item for the inline extent item
9ed74f2d
JB
9480 * 1 item for xattr if selinux is on
9481 */
9269d12b 9482 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9483 if (IS_ERR(trans))
9484 return PTR_ERR(trans);
1832a6d5 9485
581bb050
LZ
9486 err = btrfs_find_free_ino(root, &objectid);
9487 if (err)
9488 goto out_unlock;
9489
aec7477b 9490 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9491 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9492 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9493 if (IS_ERR(inode)) {
9494 err = PTR_ERR(inode);
32955c54 9495 inode = NULL;
39279cc3 9496 goto out_unlock;
7cf96da3 9497 }
39279cc3 9498
ad19db71
CS
9499 /*
9500 * If the active LSM wants to access the inode during
9501 * d_instantiate it needs these. Smack checks to see
9502 * if the filesystem supports xattrs by looking at the
9503 * ops vector.
9504 */
9505 inode->i_fop = &btrfs_file_operations;
9506 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9507 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9508
9509 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9510 if (err)
32955c54 9511 goto out_unlock;
ad19db71 9512
39279cc3 9513 path = btrfs_alloc_path();
d8926bb3
MF
9514 if (!path) {
9515 err = -ENOMEM;
32955c54 9516 goto out_unlock;
d8926bb3 9517 }
4a0cc7ca 9518 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9519 key.offset = 0;
962a298f 9520 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9521 datasize = btrfs_file_extent_calc_inline_size(name_len);
9522 err = btrfs_insert_empty_item(trans, root, path, &key,
9523 datasize);
54aa1f4d 9524 if (err) {
b0839166 9525 btrfs_free_path(path);
32955c54 9526 goto out_unlock;
54aa1f4d 9527 }
5f39d397
CM
9528 leaf = path->nodes[0];
9529 ei = btrfs_item_ptr(leaf, path->slots[0],
9530 struct btrfs_file_extent_item);
9531 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9532 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9533 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9534 btrfs_set_file_extent_encryption(leaf, ei, 0);
9535 btrfs_set_file_extent_compression(leaf, ei, 0);
9536 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9537 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9538
39279cc3 9539 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9540 write_extent_buffer(leaf, symname, ptr, name_len);
9541 btrfs_mark_buffer_dirty(leaf);
39279cc3 9542 btrfs_free_path(path);
5f39d397 9543
39279cc3 9544 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9545 inode_nohighmem(inode);
d899e052 9546 inode_set_bytes(inode, name_len);
6ef06d27 9547 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9548 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9549 /*
9550 * Last step, add directory indexes for our symlink inode. This is the
9551 * last step to avoid extra cleanup of these indexes if an error happens
9552 * elsewhere above.
9553 */
9554 if (!err)
cef415af
NB
9555 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9556 BTRFS_I(inode), 0, index);
32955c54
AV
9557 if (err)
9558 goto out_unlock;
b0d5d10f 9559
1e2e547a 9560 d_instantiate_new(dentry, inode);
39279cc3
CM
9561
9562out_unlock:
3a45bb20 9563 btrfs_end_transaction(trans);
32955c54 9564 if (err && inode) {
39279cc3 9565 inode_dec_link_count(inode);
32955c54 9566 discard_new_inode(inode);
39279cc3 9567 }
2ff7e61e 9568 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9569 return err;
9570}
16432985 9571
8fccebfa
FM
9572static struct btrfs_trans_handle *insert_prealloc_file_extent(
9573 struct btrfs_trans_handle *trans_in,
203f44c5
QW
9574 struct inode *inode, struct btrfs_key *ins,
9575 u64 file_offset)
9576{
9577 struct btrfs_file_extent_item stack_fi;
bf385648 9578 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9579 struct btrfs_trans_handle *trans = trans_in;
9580 struct btrfs_path *path;
203f44c5
QW
9581 u64 start = ins->objectid;
9582 u64 len = ins->offset;
9729f10a 9583 int ret;
203f44c5
QW
9584
9585 memset(&stack_fi, 0, sizeof(stack_fi));
9586
9587 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9588 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9589 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9590 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9591 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9592 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9593 /* Encryption and other encoding is reserved and all 0 */
9594
72b7d15b 9595 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a 9596 if (ret < 0)
8fccebfa
FM
9597 return ERR_PTR(ret);
9598
9599 if (trans) {
9600 ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9601 file_offset, &stack_fi, ret);
9602 if (ret)
9603 return ERR_PTR(ret);
9604 return trans;
9605 }
9606
9607 extent_info.disk_offset = start;
9608 extent_info.disk_len = len;
9609 extent_info.data_offset = 0;
9610 extent_info.data_len = len;
9611 extent_info.file_offset = file_offset;
9612 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa
FM
9613 extent_info.is_new_extent = true;
9614 extent_info.qgroup_reserved = ret;
9615 extent_info.insertions = 0;
9616
9617 path = btrfs_alloc_path();
9618 if (!path)
9619 return ERR_PTR(-ENOMEM);
9620
306bfec0 9621 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9622 file_offset + len - 1, &extent_info,
9623 &trans);
9624 btrfs_free_path(path);
9625 if (ret)
9626 return ERR_PTR(ret);
9627
9628 return trans;
203f44c5 9629}
8fccebfa 9630
0af3d00b
JB
9631static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9632 u64 start, u64 num_bytes, u64 min_size,
9633 loff_t actual_len, u64 *alloc_hint,
9634 struct btrfs_trans_handle *trans)
d899e052 9635{
0b246afa 9636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9637 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9638 struct extent_map *em;
d899e052
YZ
9639 struct btrfs_root *root = BTRFS_I(inode)->root;
9640 struct btrfs_key ins;
d899e052 9641 u64 cur_offset = start;
b778cf96 9642 u64 clear_offset = start;
55a61d1d 9643 u64 i_size;
154ea289 9644 u64 cur_bytes;
0b670dc4 9645 u64 last_alloc = (u64)-1;
d899e052 9646 int ret = 0;
0af3d00b 9647 bool own_trans = true;
18513091 9648 u64 end = start + num_bytes - 1;
d899e052 9649
0af3d00b
JB
9650 if (trans)
9651 own_trans = false;
d899e052 9652 while (num_bytes > 0) {
ee22184b 9653 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9654 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9655 /*
9656 * If we are severely fragmented we could end up with really
9657 * small allocations, so if the allocator is returning small
9658 * chunks lets make its job easier by only searching for those
9659 * sized chunks.
9660 */
9661 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9662 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9663 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9664 if (ret)
a22285a6 9665 break;
b778cf96
JB
9666
9667 /*
9668 * We've reserved this space, and thus converted it from
9669 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9670 * from here on out we will only need to clear our reservation
9671 * for the remaining unreserved area, so advance our
9672 * clear_offset by our extent size.
9673 */
9674 clear_offset += ins.offset;
5a303d5d 9675
0b670dc4 9676 last_alloc = ins.offset;
8fccebfa 9677 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
1afc708d
FM
9678 /*
9679 * Now that we inserted the prealloc extent we can finally
9680 * decrement the number of reservations in the block group.
9681 * If we did it before, we could race with relocation and have
9682 * relocation miss the reserved extent, making it fail later.
9683 */
9684 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9685 if (IS_ERR(trans)) {
9686 ret = PTR_ERR(trans);
2ff7e61e 9687 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9688 ins.offset, 0);
79787eaa
JM
9689 break;
9690 }
31193213 9691
dcdbc059 9692 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9693 cur_offset + ins.offset -1, 0);
5a303d5d 9694
5dc562c5
JB
9695 em = alloc_extent_map();
9696 if (!em) {
9697 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9698 &BTRFS_I(inode)->runtime_flags);
9699 goto next;
9700 }
9701
9702 em->start = cur_offset;
9703 em->orig_start = cur_offset;
9704 em->len = ins.offset;
9705 em->block_start = ins.objectid;
9706 em->block_len = ins.offset;
b4939680 9707 em->orig_block_len = ins.offset;
cc95bef6 9708 em->ram_bytes = ins.offset;
5dc562c5
JB
9709 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9710 em->generation = trans->transid;
9711
9712 while (1) {
9713 write_lock(&em_tree->lock);
09a2a8f9 9714 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9715 write_unlock(&em_tree->lock);
9716 if (ret != -EEXIST)
9717 break;
dcdbc059 9718 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9719 cur_offset + ins.offset - 1,
9720 0);
9721 }
9722 free_extent_map(em);
9723next:
d899e052
YZ
9724 num_bytes -= ins.offset;
9725 cur_offset += ins.offset;
efa56464 9726 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9727
0c4d2d95 9728 inode_inc_iversion(inode);
c2050a45 9729 inode->i_ctime = current_time(inode);
6cbff00f 9730 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9731 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9732 (actual_len > inode->i_size) &&
9733 (cur_offset > inode->i_size)) {
d1ea6a61 9734 if (cur_offset > actual_len)
55a61d1d 9735 i_size = actual_len;
d1ea6a61 9736 else
55a61d1d
JB
9737 i_size = cur_offset;
9738 i_size_write(inode, i_size);
d923afe9 9739 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9740 }
9741
d899e052 9742 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9743
9744 if (ret) {
66642832 9745 btrfs_abort_transaction(trans, ret);
79787eaa 9746 if (own_trans)
3a45bb20 9747 btrfs_end_transaction(trans);
79787eaa
JM
9748 break;
9749 }
d899e052 9750
8fccebfa 9751 if (own_trans) {
3a45bb20 9752 btrfs_end_transaction(trans);
8fccebfa
FM
9753 trans = NULL;
9754 }
5a303d5d 9755 }
b778cf96 9756 if (clear_offset < end)
25ce28ca 9757 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9758 end - clear_offset + 1);
d899e052
YZ
9759 return ret;
9760}
9761
0af3d00b
JB
9762int btrfs_prealloc_file_range(struct inode *inode, int mode,
9763 u64 start, u64 num_bytes, u64 min_size,
9764 loff_t actual_len, u64 *alloc_hint)
9765{
9766 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9767 min_size, actual_len, alloc_hint,
9768 NULL);
9769}
9770
9771int btrfs_prealloc_file_range_trans(struct inode *inode,
9772 struct btrfs_trans_handle *trans, int mode,
9773 u64 start, u64 num_bytes, u64 min_size,
9774 loff_t actual_len, u64 *alloc_hint)
9775{
9776 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9777 min_size, actual_len, alloc_hint, trans);
9778}
9779
e6dcd2dc
CM
9780static int btrfs_set_page_dirty(struct page *page)
9781{
e6dcd2dc
CM
9782 return __set_page_dirty_nobuffers(page);
9783}
9784
10556cb2 9785static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9786{
b83cc969 9787 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9788 umode_t mode = inode->i_mode;
b83cc969 9789
cb6db4e5
JM
9790 if (mask & MAY_WRITE &&
9791 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9792 if (btrfs_root_readonly(root))
9793 return -EROFS;
9794 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9795 return -EACCES;
9796 }
2830ba7f 9797 return generic_permission(inode, mask);
fdebe2bd 9798}
39279cc3 9799
ef3b9af5
FM
9800static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9801{
2ff7e61e 9802 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9803 struct btrfs_trans_handle *trans;
9804 struct btrfs_root *root = BTRFS_I(dir)->root;
9805 struct inode *inode = NULL;
9806 u64 objectid;
9807 u64 index;
9808 int ret = 0;
9809
9810 /*
9811 * 5 units required for adding orphan entry
9812 */
9813 trans = btrfs_start_transaction(root, 5);
9814 if (IS_ERR(trans))
9815 return PTR_ERR(trans);
9816
9817 ret = btrfs_find_free_ino(root, &objectid);
9818 if (ret)
9819 goto out;
9820
9821 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9822 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9823 if (IS_ERR(inode)) {
9824 ret = PTR_ERR(inode);
9825 inode = NULL;
9826 goto out;
9827 }
9828
ef3b9af5
FM
9829 inode->i_fop = &btrfs_file_operations;
9830 inode->i_op = &btrfs_file_inode_operations;
9831
9832 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 9833
b0d5d10f
CM
9834 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9835 if (ret)
32955c54 9836 goto out;
b0d5d10f
CM
9837
9838 ret = btrfs_update_inode(trans, root, inode);
9839 if (ret)
32955c54 9840 goto out;
73f2e545 9841 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9842 if (ret)
32955c54 9843 goto out;
ef3b9af5 9844
5762b5c9
FM
9845 /*
9846 * We set number of links to 0 in btrfs_new_inode(), and here we set
9847 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9848 * through:
9849 *
9850 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9851 */
9852 set_nlink(inode, 1);
ef3b9af5 9853 d_tmpfile(dentry, inode);
32955c54 9854 unlock_new_inode(inode);
ef3b9af5 9855 mark_inode_dirty(inode);
ef3b9af5 9856out:
3a45bb20 9857 btrfs_end_transaction(trans);
32955c54
AV
9858 if (ret && inode)
9859 discard_new_inode(inode);
2ff7e61e 9860 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9861 return ret;
9862}
9863
5cdc84bf 9864void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9865{
5cdc84bf 9866 struct inode *inode = tree->private_data;
c6100a4b
JB
9867 unsigned long index = start >> PAGE_SHIFT;
9868 unsigned long end_index = end >> PAGE_SHIFT;
9869 struct page *page;
9870
9871 while (index <= end_index) {
9872 page = find_get_page(inode->i_mapping, index);
9873 ASSERT(page); /* Pages should be in the extent_io_tree */
9874 set_page_writeback(page);
9875 put_page(page);
9876 index++;
9877 }
9878}
9879
ed46ff3d
OS
9880#ifdef CONFIG_SWAP
9881/*
9882 * Add an entry indicating a block group or device which is pinned by a
9883 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9884 * negative errno on failure.
9885 */
9886static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9887 bool is_block_group)
9888{
9889 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9890 struct btrfs_swapfile_pin *sp, *entry;
9891 struct rb_node **p;
9892 struct rb_node *parent = NULL;
9893
9894 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9895 if (!sp)
9896 return -ENOMEM;
9897 sp->ptr = ptr;
9898 sp->inode = inode;
9899 sp->is_block_group = is_block_group;
9900
9901 spin_lock(&fs_info->swapfile_pins_lock);
9902 p = &fs_info->swapfile_pins.rb_node;
9903 while (*p) {
9904 parent = *p;
9905 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9906 if (sp->ptr < entry->ptr ||
9907 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9908 p = &(*p)->rb_left;
9909 } else if (sp->ptr > entry->ptr ||
9910 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9911 p = &(*p)->rb_right;
9912 } else {
9913 spin_unlock(&fs_info->swapfile_pins_lock);
9914 kfree(sp);
9915 return 1;
9916 }
9917 }
9918 rb_link_node(&sp->node, parent, p);
9919 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9920 spin_unlock(&fs_info->swapfile_pins_lock);
9921 return 0;
9922}
9923
9924/* Free all of the entries pinned by this swapfile. */
9925static void btrfs_free_swapfile_pins(struct inode *inode)
9926{
9927 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9928 struct btrfs_swapfile_pin *sp;
9929 struct rb_node *node, *next;
9930
9931 spin_lock(&fs_info->swapfile_pins_lock);
9932 node = rb_first(&fs_info->swapfile_pins);
9933 while (node) {
9934 next = rb_next(node);
9935 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9936 if (sp->inode == inode) {
9937 rb_erase(&sp->node, &fs_info->swapfile_pins);
9938 if (sp->is_block_group)
9939 btrfs_put_block_group(sp->ptr);
9940 kfree(sp);
9941 }
9942 node = next;
9943 }
9944 spin_unlock(&fs_info->swapfile_pins_lock);
9945}
9946
9947struct btrfs_swap_info {
9948 u64 start;
9949 u64 block_start;
9950 u64 block_len;
9951 u64 lowest_ppage;
9952 u64 highest_ppage;
9953 unsigned long nr_pages;
9954 int nr_extents;
9955};
9956
9957static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9958 struct btrfs_swap_info *bsi)
9959{
9960 unsigned long nr_pages;
9961 u64 first_ppage, first_ppage_reported, next_ppage;
9962 int ret;
9963
9964 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9965 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9966 PAGE_SIZE) >> PAGE_SHIFT;
9967
9968 if (first_ppage >= next_ppage)
9969 return 0;
9970 nr_pages = next_ppage - first_ppage;
9971
9972 first_ppage_reported = first_ppage;
9973 if (bsi->start == 0)
9974 first_ppage_reported++;
9975 if (bsi->lowest_ppage > first_ppage_reported)
9976 bsi->lowest_ppage = first_ppage_reported;
9977 if (bsi->highest_ppage < (next_ppage - 1))
9978 bsi->highest_ppage = next_ppage - 1;
9979
9980 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9981 if (ret < 0)
9982 return ret;
9983 bsi->nr_extents += ret;
9984 bsi->nr_pages += nr_pages;
9985 return 0;
9986}
9987
9988static void btrfs_swap_deactivate(struct file *file)
9989{
9990 struct inode *inode = file_inode(file);
9991
9992 btrfs_free_swapfile_pins(inode);
9993 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9994}
9995
9996static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9997 sector_t *span)
9998{
9999 struct inode *inode = file_inode(file);
10000 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10001 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10002 struct extent_state *cached_state = NULL;
10003 struct extent_map *em = NULL;
10004 struct btrfs_device *device = NULL;
10005 struct btrfs_swap_info bsi = {
10006 .lowest_ppage = (sector_t)-1ULL,
10007 };
10008 int ret = 0;
10009 u64 isize;
10010 u64 start;
10011
10012 /*
10013 * If the swap file was just created, make sure delalloc is done. If the
10014 * file changes again after this, the user is doing something stupid and
10015 * we don't really care.
10016 */
10017 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10018 if (ret)
10019 return ret;
10020
10021 /*
10022 * The inode is locked, so these flags won't change after we check them.
10023 */
10024 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10025 btrfs_warn(fs_info, "swapfile must not be compressed");
10026 return -EINVAL;
10027 }
10028 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10029 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10030 return -EINVAL;
10031 }
10032 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10033 btrfs_warn(fs_info, "swapfile must not be checksummed");
10034 return -EINVAL;
10035 }
10036
10037 /*
10038 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10039 * under us. The exclop protection makes sure they aren't running/won't
10040 * run concurrently while we are mapping the swap extents, and
10041 * fs_info->swapfile_pins prevents them from running while the swap
10042 * file is active and moving the extents. Note that this also prevents
10043 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10044 * really worth the trouble to allow it.
10045 */
c3e1f96c 10046 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10047 btrfs_warn(fs_info,
10048 "cannot activate swapfile while exclusive operation is running");
10049 return -EBUSY;
10050 }
10051 /*
10052 * Snapshots can create extents which require COW even if NODATACOW is
10053 * set. We use this counter to prevent snapshots. We must increment it
10054 * before walking the extents because we don't want a concurrent
10055 * snapshot to run after we've already checked the extents.
10056 */
10057 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10058
10059 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10060
10061 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10062 start = 0;
10063 while (start < isize) {
10064 u64 logical_block_start, physical_block_start;
32da5386 10065 struct btrfs_block_group *bg;
ed46ff3d
OS
10066 u64 len = isize - start;
10067
39b07b5d 10068 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10069 if (IS_ERR(em)) {
10070 ret = PTR_ERR(em);
10071 goto out;
10072 }
10073
10074 if (em->block_start == EXTENT_MAP_HOLE) {
10075 btrfs_warn(fs_info, "swapfile must not have holes");
10076 ret = -EINVAL;
10077 goto out;
10078 }
10079 if (em->block_start == EXTENT_MAP_INLINE) {
10080 /*
10081 * It's unlikely we'll ever actually find ourselves
10082 * here, as a file small enough to fit inline won't be
10083 * big enough to store more than the swap header, but in
10084 * case something changes in the future, let's catch it
10085 * here rather than later.
10086 */
10087 btrfs_warn(fs_info, "swapfile must not be inline");
10088 ret = -EINVAL;
10089 goto out;
10090 }
10091 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10092 btrfs_warn(fs_info, "swapfile must not be compressed");
10093 ret = -EINVAL;
10094 goto out;
10095 }
10096
10097 logical_block_start = em->block_start + (start - em->start);
10098 len = min(len, em->len - (start - em->start));
10099 free_extent_map(em);
10100 em = NULL;
10101
a84d5d42 10102 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
ed46ff3d
OS
10103 if (ret < 0) {
10104 goto out;
10105 } else if (ret) {
10106 ret = 0;
10107 } else {
10108 btrfs_warn(fs_info,
10109 "swapfile must not be copy-on-write");
10110 ret = -EINVAL;
10111 goto out;
10112 }
10113
10114 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10115 if (IS_ERR(em)) {
10116 ret = PTR_ERR(em);
10117 goto out;
10118 }
10119
10120 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10121 btrfs_warn(fs_info,
10122 "swapfile must have single data profile");
10123 ret = -EINVAL;
10124 goto out;
10125 }
10126
10127 if (device == NULL) {
10128 device = em->map_lookup->stripes[0].dev;
10129 ret = btrfs_add_swapfile_pin(inode, device, false);
10130 if (ret == 1)
10131 ret = 0;
10132 else if (ret)
10133 goto out;
10134 } else if (device != em->map_lookup->stripes[0].dev) {
10135 btrfs_warn(fs_info, "swapfile must be on one device");
10136 ret = -EINVAL;
10137 goto out;
10138 }
10139
10140 physical_block_start = (em->map_lookup->stripes[0].physical +
10141 (logical_block_start - em->start));
10142 len = min(len, em->len - (logical_block_start - em->start));
10143 free_extent_map(em);
10144 em = NULL;
10145
10146 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10147 if (!bg) {
10148 btrfs_warn(fs_info,
10149 "could not find block group containing swapfile");
10150 ret = -EINVAL;
10151 goto out;
10152 }
10153
10154 ret = btrfs_add_swapfile_pin(inode, bg, true);
10155 if (ret) {
10156 btrfs_put_block_group(bg);
10157 if (ret == 1)
10158 ret = 0;
10159 else
10160 goto out;
10161 }
10162
10163 if (bsi.block_len &&
10164 bsi.block_start + bsi.block_len == physical_block_start) {
10165 bsi.block_len += len;
10166 } else {
10167 if (bsi.block_len) {
10168 ret = btrfs_add_swap_extent(sis, &bsi);
10169 if (ret)
10170 goto out;
10171 }
10172 bsi.start = start;
10173 bsi.block_start = physical_block_start;
10174 bsi.block_len = len;
10175 }
10176
10177 start += len;
10178 }
10179
10180 if (bsi.block_len)
10181 ret = btrfs_add_swap_extent(sis, &bsi);
10182
10183out:
10184 if (!IS_ERR_OR_NULL(em))
10185 free_extent_map(em);
10186
10187 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10188
10189 if (ret)
10190 btrfs_swap_deactivate(file);
10191
c3e1f96c 10192 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10193
10194 if (ret)
10195 return ret;
10196
10197 if (device)
10198 sis->bdev = device->bdev;
10199 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10200 sis->max = bsi.nr_pages;
10201 sis->pages = bsi.nr_pages - 1;
10202 sis->highest_bit = bsi.nr_pages - 1;
10203 return bsi.nr_extents;
10204}
10205#else
10206static void btrfs_swap_deactivate(struct file *file)
10207{
10208}
10209
10210static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10211 sector_t *span)
10212{
10213 return -EOPNOTSUPP;
10214}
10215#endif
10216
6e1d5dcc 10217static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10218 .getattr = btrfs_getattr,
39279cc3
CM
10219 .lookup = btrfs_lookup,
10220 .create = btrfs_create,
10221 .unlink = btrfs_unlink,
10222 .link = btrfs_link,
10223 .mkdir = btrfs_mkdir,
10224 .rmdir = btrfs_rmdir,
2773bf00 10225 .rename = btrfs_rename2,
39279cc3
CM
10226 .symlink = btrfs_symlink,
10227 .setattr = btrfs_setattr,
618e21d5 10228 .mknod = btrfs_mknod,
5103e947 10229 .listxattr = btrfs_listxattr,
fdebe2bd 10230 .permission = btrfs_permission,
4e34e719 10231 .get_acl = btrfs_get_acl,
996a710d 10232 .set_acl = btrfs_set_acl,
93fd63c2 10233 .update_time = btrfs_update_time,
ef3b9af5 10234 .tmpfile = btrfs_tmpfile,
39279cc3 10235};
76dda93c 10236
828c0950 10237static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10238 .llseek = generic_file_llseek,
10239 .read = generic_read_dir,
02dbfc99 10240 .iterate_shared = btrfs_real_readdir,
23b5ec74 10241 .open = btrfs_opendir,
34287aa3 10242 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10243#ifdef CONFIG_COMPAT
4c63c245 10244 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10245#endif
6bf13c0c 10246 .release = btrfs_release_file,
e02119d5 10247 .fsync = btrfs_sync_file,
39279cc3
CM
10248};
10249
35054394
CM
10250/*
10251 * btrfs doesn't support the bmap operation because swapfiles
10252 * use bmap to make a mapping of extents in the file. They assume
10253 * these extents won't change over the life of the file and they
10254 * use the bmap result to do IO directly to the drive.
10255 *
10256 * the btrfs bmap call would return logical addresses that aren't
10257 * suitable for IO and they also will change frequently as COW
10258 * operations happen. So, swapfile + btrfs == corruption.
10259 *
10260 * For now we're avoiding this by dropping bmap.
10261 */
7f09410b 10262static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10263 .readpage = btrfs_readpage,
10264 .writepage = btrfs_writepage,
b293f02e 10265 .writepages = btrfs_writepages,
ba206a02 10266 .readahead = btrfs_readahead,
f85781fb 10267 .direct_IO = noop_direct_IO,
a52d9a80
CM
10268 .invalidatepage = btrfs_invalidatepage,
10269 .releasepage = btrfs_releasepage,
f8e66081
RG
10270#ifdef CONFIG_MIGRATION
10271 .migratepage = btrfs_migratepage,
10272#endif
e6dcd2dc 10273 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10274 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10275 .swap_activate = btrfs_swap_activate,
10276 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10277};
10278
6e1d5dcc 10279static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10280 .getattr = btrfs_getattr,
10281 .setattr = btrfs_setattr,
5103e947 10282 .listxattr = btrfs_listxattr,
fdebe2bd 10283 .permission = btrfs_permission,
1506fcc8 10284 .fiemap = btrfs_fiemap,
4e34e719 10285 .get_acl = btrfs_get_acl,
996a710d 10286 .set_acl = btrfs_set_acl,
e41f941a 10287 .update_time = btrfs_update_time,
39279cc3 10288};
6e1d5dcc 10289static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10290 .getattr = btrfs_getattr,
10291 .setattr = btrfs_setattr,
fdebe2bd 10292 .permission = btrfs_permission,
33268eaf 10293 .listxattr = btrfs_listxattr,
4e34e719 10294 .get_acl = btrfs_get_acl,
996a710d 10295 .set_acl = btrfs_set_acl,
e41f941a 10296 .update_time = btrfs_update_time,
618e21d5 10297};
6e1d5dcc 10298static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10299 .get_link = page_get_link,
f209561a 10300 .getattr = btrfs_getattr,
22c44fe6 10301 .setattr = btrfs_setattr,
fdebe2bd 10302 .permission = btrfs_permission,
0279b4cd 10303 .listxattr = btrfs_listxattr,
e41f941a 10304 .update_time = btrfs_update_time,
39279cc3 10305};
76dda93c 10306
82d339d9 10307const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10308 .d_delete = btrfs_dentry_delete,
10309};
This page took 4.922436 seconds and 4 git commands to generate.