]>
Commit | Line | Data |
---|---|---|
fcd8b7c0 AG |
1 | /* |
2 | * Copyright (c) 2006 Oracle. All rights reserved. | |
3 | * | |
4 | * This software is available to you under a choice of one of two | |
5 | * licenses. You may choose to be licensed under the terms of the GNU | |
6 | * General Public License (GPL) Version 2, available from the file | |
7 | * COPYING in the main directory of this source tree, or the | |
8 | * OpenIB.org BSD license below: | |
9 | * | |
10 | * Redistribution and use in source and binary forms, with or | |
11 | * without modification, are permitted provided that the following | |
12 | * conditions are met: | |
13 | * | |
14 | * - Redistributions of source code must retain the above | |
15 | * copyright notice, this list of conditions and the following | |
16 | * disclaimer. | |
17 | * | |
18 | * - Redistributions in binary form must reproduce the above | |
19 | * copyright notice, this list of conditions and the following | |
20 | * disclaimer in the documentation and/or other materials | |
21 | * provided with the distribution. | |
22 | * | |
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
30 | * SOFTWARE. | |
31 | * | |
32 | */ | |
33 | #include <linux/kernel.h> | |
5a0e3ad6 | 34 | #include <linux/slab.h> |
fcd8b7c0 AG |
35 | #include <linux/pci.h> |
36 | #include <linux/dma-mapping.h> | |
37 | #include <rdma/rdma_cm.h> | |
38 | ||
39 | #include "rds.h" | |
40 | #include "iw.h" | |
41 | ||
42 | static struct kmem_cache *rds_iw_incoming_slab; | |
43 | static struct kmem_cache *rds_iw_frag_slab; | |
44 | static atomic_t rds_iw_allocation = ATOMIC_INIT(0); | |
45 | ||
46 | static void rds_iw_frag_drop_page(struct rds_page_frag *frag) | |
47 | { | |
48 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | |
49 | __free_page(frag->f_page); | |
50 | frag->f_page = NULL; | |
51 | } | |
52 | ||
53 | static void rds_iw_frag_free(struct rds_page_frag *frag) | |
54 | { | |
55 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | |
8690bfa1 | 56 | BUG_ON(frag->f_page); |
fcd8b7c0 AG |
57 | kmem_cache_free(rds_iw_frag_slab, frag); |
58 | } | |
59 | ||
60 | /* | |
61 | * We map a page at a time. Its fragments are posted in order. This | |
62 | * is called in fragment order as the fragments get send completion events. | |
63 | * Only the last frag in the page performs the unmapping. | |
64 | * | |
65 | * It's OK for ring cleanup to call this in whatever order it likes because | |
66 | * DMA is not in flight and so we can unmap while other ring entries still | |
67 | * hold page references in their frags. | |
68 | */ | |
69 | static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic, | |
70 | struct rds_iw_recv_work *recv) | |
71 | { | |
72 | struct rds_page_frag *frag = recv->r_frag; | |
73 | ||
74 | rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); | |
75 | if (frag->f_mapped) | |
76 | ib_dma_unmap_page(ic->i_cm_id->device, | |
77 | frag->f_mapped, | |
78 | RDS_FRAG_SIZE, DMA_FROM_DEVICE); | |
79 | frag->f_mapped = 0; | |
80 | } | |
81 | ||
82 | void rds_iw_recv_init_ring(struct rds_iw_connection *ic) | |
83 | { | |
84 | struct rds_iw_recv_work *recv; | |
85 | u32 i; | |
86 | ||
87 | for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { | |
88 | struct ib_sge *sge; | |
89 | ||
90 | recv->r_iwinc = NULL; | |
91 | recv->r_frag = NULL; | |
92 | ||
93 | recv->r_wr.next = NULL; | |
94 | recv->r_wr.wr_id = i; | |
95 | recv->r_wr.sg_list = recv->r_sge; | |
96 | recv->r_wr.num_sge = RDS_IW_RECV_SGE; | |
97 | ||
98 | sge = rds_iw_data_sge(ic, recv->r_sge); | |
99 | sge->addr = 0; | |
100 | sge->length = RDS_FRAG_SIZE; | |
101 | sge->lkey = 0; | |
102 | ||
103 | sge = rds_iw_header_sge(ic, recv->r_sge); | |
104 | sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); | |
105 | sge->length = sizeof(struct rds_header); | |
106 | sge->lkey = 0; | |
107 | } | |
108 | } | |
109 | ||
110 | static void rds_iw_recv_clear_one(struct rds_iw_connection *ic, | |
111 | struct rds_iw_recv_work *recv) | |
112 | { | |
113 | if (recv->r_iwinc) { | |
114 | rds_inc_put(&recv->r_iwinc->ii_inc); | |
115 | recv->r_iwinc = NULL; | |
116 | } | |
117 | if (recv->r_frag) { | |
118 | rds_iw_recv_unmap_page(ic, recv); | |
119 | if (recv->r_frag->f_page) | |
120 | rds_iw_frag_drop_page(recv->r_frag); | |
121 | rds_iw_frag_free(recv->r_frag); | |
122 | recv->r_frag = NULL; | |
123 | } | |
124 | } | |
125 | ||
126 | void rds_iw_recv_clear_ring(struct rds_iw_connection *ic) | |
127 | { | |
128 | u32 i; | |
129 | ||
130 | for (i = 0; i < ic->i_recv_ring.w_nr; i++) | |
131 | rds_iw_recv_clear_one(ic, &ic->i_recvs[i]); | |
132 | ||
133 | if (ic->i_frag.f_page) | |
134 | rds_iw_frag_drop_page(&ic->i_frag); | |
135 | } | |
136 | ||
137 | static int rds_iw_recv_refill_one(struct rds_connection *conn, | |
138 | struct rds_iw_recv_work *recv, | |
139 | gfp_t kptr_gfp, gfp_t page_gfp) | |
140 | { | |
141 | struct rds_iw_connection *ic = conn->c_transport_data; | |
142 | dma_addr_t dma_addr; | |
143 | struct ib_sge *sge; | |
144 | int ret = -ENOMEM; | |
145 | ||
8690bfa1 | 146 | if (!recv->r_iwinc) { |
86357b19 | 147 | if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) { |
fcd8b7c0 AG |
148 | rds_iw_stats_inc(s_iw_rx_alloc_limit); |
149 | goto out; | |
150 | } | |
151 | recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab, | |
152 | kptr_gfp); | |
8690bfa1 | 153 | if (!recv->r_iwinc) { |
86357b19 | 154 | atomic_dec(&rds_iw_allocation); |
fcd8b7c0 | 155 | goto out; |
86357b19 | 156 | } |
fcd8b7c0 AG |
157 | INIT_LIST_HEAD(&recv->r_iwinc->ii_frags); |
158 | rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr); | |
159 | } | |
160 | ||
8690bfa1 | 161 | if (!recv->r_frag) { |
fcd8b7c0 | 162 | recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp); |
8690bfa1 | 163 | if (!recv->r_frag) |
fcd8b7c0 AG |
164 | goto out; |
165 | INIT_LIST_HEAD(&recv->r_frag->f_item); | |
166 | recv->r_frag->f_page = NULL; | |
167 | } | |
168 | ||
8690bfa1 | 169 | if (!ic->i_frag.f_page) { |
fcd8b7c0 | 170 | ic->i_frag.f_page = alloc_page(page_gfp); |
8690bfa1 | 171 | if (!ic->i_frag.f_page) |
fcd8b7c0 AG |
172 | goto out; |
173 | ic->i_frag.f_offset = 0; | |
174 | } | |
175 | ||
176 | dma_addr = ib_dma_map_page(ic->i_cm_id->device, | |
177 | ic->i_frag.f_page, | |
178 | ic->i_frag.f_offset, | |
179 | RDS_FRAG_SIZE, | |
180 | DMA_FROM_DEVICE); | |
181 | if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) | |
182 | goto out; | |
183 | ||
184 | /* | |
185 | * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap() | |
186 | * must be called on this recv. This happens as completions hit | |
187 | * in order or on connection shutdown. | |
188 | */ | |
189 | recv->r_frag->f_page = ic->i_frag.f_page; | |
190 | recv->r_frag->f_offset = ic->i_frag.f_offset; | |
191 | recv->r_frag->f_mapped = dma_addr; | |
192 | ||
193 | sge = rds_iw_data_sge(ic, recv->r_sge); | |
194 | sge->addr = dma_addr; | |
195 | sge->length = RDS_FRAG_SIZE; | |
196 | ||
197 | sge = rds_iw_header_sge(ic, recv->r_sge); | |
198 | sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); | |
199 | sge->length = sizeof(struct rds_header); | |
200 | ||
201 | get_page(recv->r_frag->f_page); | |
202 | ||
203 | if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { | |
204 | ic->i_frag.f_offset += RDS_FRAG_SIZE; | |
205 | } else { | |
206 | put_page(ic->i_frag.f_page); | |
207 | ic->i_frag.f_page = NULL; | |
208 | ic->i_frag.f_offset = 0; | |
209 | } | |
210 | ||
211 | ret = 0; | |
212 | out: | |
213 | return ret; | |
214 | } | |
215 | ||
216 | /* | |
217 | * This tries to allocate and post unused work requests after making sure that | |
218 | * they have all the allocations they need to queue received fragments into | |
219 | * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc | |
220 | * pairs don't go unmatched. | |
221 | * | |
222 | * -1 is returned if posting fails due to temporary resource exhaustion. | |
223 | */ | |
224 | int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, | |
225 | gfp_t page_gfp, int prefill) | |
226 | { | |
227 | struct rds_iw_connection *ic = conn->c_transport_data; | |
228 | struct rds_iw_recv_work *recv; | |
229 | struct ib_recv_wr *failed_wr; | |
230 | unsigned int posted = 0; | |
231 | int ret = 0; | |
232 | u32 pos; | |
233 | ||
f64f9e71 JP |
234 | while ((prefill || rds_conn_up(conn)) && |
235 | rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) { | |
fcd8b7c0 AG |
236 | if (pos >= ic->i_recv_ring.w_nr) { |
237 | printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", | |
238 | pos); | |
239 | ret = -EINVAL; | |
240 | break; | |
241 | } | |
242 | ||
243 | recv = &ic->i_recvs[pos]; | |
244 | ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp); | |
245 | if (ret) { | |
246 | ret = -1; | |
247 | break; | |
248 | } | |
249 | ||
250 | /* XXX when can this fail? */ | |
251 | ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); | |
252 | rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv, | |
253 | recv->r_iwinc, recv->r_frag->f_page, | |
254 | (long) recv->r_frag->f_mapped, ret); | |
255 | if (ret) { | |
256 | rds_iw_conn_error(conn, "recv post on " | |
257 | "%pI4 returned %d, disconnecting and " | |
258 | "reconnecting\n", &conn->c_faddr, | |
259 | ret); | |
260 | ret = -1; | |
261 | break; | |
262 | } | |
263 | ||
264 | posted++; | |
265 | } | |
266 | ||
267 | /* We're doing flow control - update the window. */ | |
268 | if (ic->i_flowctl && posted) | |
269 | rds_iw_advertise_credits(conn, posted); | |
270 | ||
271 | if (ret) | |
272 | rds_iw_ring_unalloc(&ic->i_recv_ring, 1); | |
273 | return ret; | |
274 | } | |
275 | ||
809fa148 | 276 | static void rds_iw_inc_purge(struct rds_incoming *inc) |
fcd8b7c0 AG |
277 | { |
278 | struct rds_iw_incoming *iwinc; | |
279 | struct rds_page_frag *frag; | |
280 | struct rds_page_frag *pos; | |
281 | ||
282 | iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | |
283 | rdsdebug("purging iwinc %p inc %p\n", iwinc, inc); | |
284 | ||
285 | list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) { | |
286 | list_del_init(&frag->f_item); | |
287 | rds_iw_frag_drop_page(frag); | |
288 | rds_iw_frag_free(frag); | |
289 | } | |
290 | } | |
291 | ||
292 | void rds_iw_inc_free(struct rds_incoming *inc) | |
293 | { | |
294 | struct rds_iw_incoming *iwinc; | |
295 | ||
296 | iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | |
297 | ||
298 | rds_iw_inc_purge(inc); | |
299 | rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc); | |
300 | BUG_ON(!list_empty(&iwinc->ii_frags)); | |
301 | kmem_cache_free(rds_iw_incoming_slab, iwinc); | |
302 | atomic_dec(&rds_iw_allocation); | |
303 | BUG_ON(atomic_read(&rds_iw_allocation) < 0); | |
304 | } | |
305 | ||
306 | int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, | |
307 | size_t size) | |
308 | { | |
309 | struct rds_iw_incoming *iwinc; | |
310 | struct rds_page_frag *frag; | |
311 | struct iovec *iov = first_iov; | |
312 | unsigned long to_copy; | |
313 | unsigned long frag_off = 0; | |
314 | unsigned long iov_off = 0; | |
315 | int copied = 0; | |
316 | int ret; | |
317 | u32 len; | |
318 | ||
319 | iwinc = container_of(inc, struct rds_iw_incoming, ii_inc); | |
320 | frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item); | |
321 | len = be32_to_cpu(inc->i_hdr.h_len); | |
322 | ||
323 | while (copied < size && copied < len) { | |
324 | if (frag_off == RDS_FRAG_SIZE) { | |
325 | frag = list_entry(frag->f_item.next, | |
326 | struct rds_page_frag, f_item); | |
327 | frag_off = 0; | |
328 | } | |
329 | while (iov_off == iov->iov_len) { | |
330 | iov_off = 0; | |
331 | iov++; | |
332 | } | |
333 | ||
334 | to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); | |
335 | to_copy = min_t(size_t, to_copy, size - copied); | |
336 | to_copy = min_t(unsigned long, to_copy, len - copied); | |
337 | ||
338 | rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " | |
339 | "[%p, %lu] + %lu\n", | |
340 | to_copy, iov->iov_base, iov->iov_len, iov_off, | |
341 | frag->f_page, frag->f_offset, frag_off); | |
342 | ||
343 | /* XXX needs + offset for multiple recvs per page */ | |
344 | ret = rds_page_copy_to_user(frag->f_page, | |
345 | frag->f_offset + frag_off, | |
346 | iov->iov_base + iov_off, | |
347 | to_copy); | |
348 | if (ret) { | |
349 | copied = ret; | |
350 | break; | |
351 | } | |
352 | ||
353 | iov_off += to_copy; | |
354 | frag_off += to_copy; | |
355 | copied += to_copy; | |
356 | } | |
357 | ||
358 | return copied; | |
359 | } | |
360 | ||
361 | /* ic starts out kzalloc()ed */ | |
362 | void rds_iw_recv_init_ack(struct rds_iw_connection *ic) | |
363 | { | |
364 | struct ib_send_wr *wr = &ic->i_ack_wr; | |
365 | struct ib_sge *sge = &ic->i_ack_sge; | |
366 | ||
367 | sge->addr = ic->i_ack_dma; | |
368 | sge->length = sizeof(struct rds_header); | |
369 | sge->lkey = rds_iw_local_dma_lkey(ic); | |
370 | ||
371 | wr->sg_list = sge; | |
372 | wr->num_sge = 1; | |
373 | wr->opcode = IB_WR_SEND; | |
374 | wr->wr_id = RDS_IW_ACK_WR_ID; | |
375 | wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; | |
376 | } | |
377 | ||
378 | /* | |
379 | * You'd think that with reliable IB connections you wouldn't need to ack | |
380 | * messages that have been received. The problem is that IB hardware generates | |
381 | * an ack message before it has DMAed the message into memory. This creates a | |
382 | * potential message loss if the HCA is disabled for any reason between when it | |
383 | * sends the ack and before the message is DMAed and processed. This is only a | |
384 | * potential issue if another HCA is available for fail-over. | |
385 | * | |
386 | * When the remote host receives our ack they'll free the sent message from | |
387 | * their send queue. To decrease the latency of this we always send an ack | |
388 | * immediately after we've received messages. | |
389 | * | |
390 | * For simplicity, we only have one ack in flight at a time. This puts | |
391 | * pressure on senders to have deep enough send queues to absorb the latency of | |
392 | * a single ack frame being in flight. This might not be good enough. | |
393 | * | |
394 | * This is implemented by have a long-lived send_wr and sge which point to a | |
395 | * statically allocated ack frame. This ack wr does not fall under the ring | |
396 | * accounting that the tx and rx wrs do. The QP attribute specifically makes | |
397 | * room for it beyond the ring size. Send completion notices its special | |
398 | * wr_id and avoids working with the ring in that case. | |
399 | */ | |
8cbd9606 | 400 | #ifndef KERNEL_HAS_ATOMIC64 |
fcd8b7c0 AG |
401 | static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq, |
402 | int ack_required) | |
403 | { | |
8cbd9606 AG |
404 | unsigned long flags; |
405 | ||
406 | spin_lock_irqsave(&ic->i_ack_lock, flags); | |
407 | ic->i_ack_next = seq; | |
408 | if (ack_required) | |
409 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
410 | spin_unlock_irqrestore(&ic->i_ack_lock, flags); | |
411 | } | |
412 | ||
413 | static u64 rds_iw_get_ack(struct rds_iw_connection *ic) | |
414 | { | |
415 | unsigned long flags; | |
416 | u64 seq; | |
417 | ||
418 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
419 | ||
420 | spin_lock_irqsave(&ic->i_ack_lock, flags); | |
421 | seq = ic->i_ack_next; | |
422 | spin_unlock_irqrestore(&ic->i_ack_lock, flags); | |
423 | ||
424 | return seq; | |
425 | } | |
426 | #else | |
427 | static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq, | |
428 | int ack_required) | |
429 | { | |
430 | atomic64_set(&ic->i_ack_next, seq); | |
fcd8b7c0 AG |
431 | if (ack_required) { |
432 | smp_mb__before_clear_bit(); | |
433 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
434 | } | |
435 | } | |
436 | ||
437 | static u64 rds_iw_get_ack(struct rds_iw_connection *ic) | |
438 | { | |
439 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
440 | smp_mb__after_clear_bit(); | |
441 | ||
8cbd9606 | 442 | return atomic64_read(&ic->i_ack_next); |
fcd8b7c0 | 443 | } |
8cbd9606 AG |
444 | #endif |
445 | ||
fcd8b7c0 AG |
446 | |
447 | static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits) | |
448 | { | |
449 | struct rds_header *hdr = ic->i_ack; | |
450 | struct ib_send_wr *failed_wr; | |
451 | u64 seq; | |
452 | int ret; | |
453 | ||
454 | seq = rds_iw_get_ack(ic); | |
455 | ||
456 | rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); | |
457 | rds_message_populate_header(hdr, 0, 0, 0); | |
458 | hdr->h_ack = cpu_to_be64(seq); | |
459 | hdr->h_credit = adv_credits; | |
460 | rds_message_make_checksum(hdr); | |
461 | ic->i_ack_queued = jiffies; | |
462 | ||
463 | ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); | |
464 | if (unlikely(ret)) { | |
465 | /* Failed to send. Release the WR, and | |
466 | * force another ACK. | |
467 | */ | |
468 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | |
469 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
470 | ||
471 | rds_iw_stats_inc(s_iw_ack_send_failure); | |
735f61e6 AG |
472 | |
473 | rds_iw_conn_error(ic->conn, "sending ack failed\n"); | |
fcd8b7c0 AG |
474 | } else |
475 | rds_iw_stats_inc(s_iw_ack_sent); | |
476 | } | |
477 | ||
478 | /* | |
479 | * There are 3 ways of getting acknowledgements to the peer: | |
480 | * 1. We call rds_iw_attempt_ack from the recv completion handler | |
481 | * to send an ACK-only frame. | |
482 | * However, there can be only one such frame in the send queue | |
483 | * at any time, so we may have to postpone it. | |
484 | * 2. When another (data) packet is transmitted while there's | |
485 | * an ACK in the queue, we piggyback the ACK sequence number | |
486 | * on the data packet. | |
487 | * 3. If the ACK WR is done sending, we get called from the | |
488 | * send queue completion handler, and check whether there's | |
489 | * another ACK pending (postponed because the WR was on the | |
490 | * queue). If so, we transmit it. | |
491 | * | |
492 | * We maintain 2 variables: | |
493 | * - i_ack_flags, which keeps track of whether the ACK WR | |
494 | * is currently in the send queue or not (IB_ACK_IN_FLIGHT) | |
495 | * - i_ack_next, which is the last sequence number we received | |
496 | * | |
497 | * Potentially, send queue and receive queue handlers can run concurrently. | |
8cbd9606 AG |
498 | * It would be nice to not have to use a spinlock to synchronize things, |
499 | * but the one problem that rules this out is that 64bit updates are | |
500 | * not atomic on all platforms. Things would be a lot simpler if | |
501 | * we had atomic64 or maybe cmpxchg64 everywhere. | |
fcd8b7c0 AG |
502 | * |
503 | * Reconnecting complicates this picture just slightly. When we | |
504 | * reconnect, we may be seeing duplicate packets. The peer | |
505 | * is retransmitting them, because it hasn't seen an ACK for | |
506 | * them. It is important that we ACK these. | |
507 | * | |
508 | * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with | |
509 | * this flag set *MUST* be acknowledged immediately. | |
510 | */ | |
511 | ||
512 | /* | |
513 | * When we get here, we're called from the recv queue handler. | |
514 | * Check whether we ought to transmit an ACK. | |
515 | */ | |
516 | void rds_iw_attempt_ack(struct rds_iw_connection *ic) | |
517 | { | |
518 | unsigned int adv_credits; | |
519 | ||
520 | if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | |
521 | return; | |
522 | ||
523 | if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { | |
524 | rds_iw_stats_inc(s_iw_ack_send_delayed); | |
525 | return; | |
526 | } | |
527 | ||
528 | /* Can we get a send credit? */ | |
7b70d033 | 529 | if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { |
fcd8b7c0 AG |
530 | rds_iw_stats_inc(s_iw_tx_throttle); |
531 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | |
532 | return; | |
533 | } | |
534 | ||
535 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | |
536 | rds_iw_send_ack(ic, adv_credits); | |
537 | } | |
538 | ||
539 | /* | |
540 | * We get here from the send completion handler, when the | |
541 | * adapter tells us the ACK frame was sent. | |
542 | */ | |
543 | void rds_iw_ack_send_complete(struct rds_iw_connection *ic) | |
544 | { | |
545 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | |
546 | rds_iw_attempt_ack(ic); | |
547 | } | |
548 | ||
549 | /* | |
550 | * This is called by the regular xmit code when it wants to piggyback | |
551 | * an ACK on an outgoing frame. | |
552 | */ | |
553 | u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic) | |
554 | { | |
555 | if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | |
556 | rds_iw_stats_inc(s_iw_ack_send_piggybacked); | |
557 | return rds_iw_get_ack(ic); | |
558 | } | |
559 | ||
560 | /* | |
561 | * It's kind of lame that we're copying from the posted receive pages into | |
562 | * long-lived bitmaps. We could have posted the bitmaps and rdma written into | |
563 | * them. But receiving new congestion bitmaps should be a *rare* event, so | |
564 | * hopefully we won't need to invest that complexity in making it more | |
565 | * efficient. By copying we can share a simpler core with TCP which has to | |
566 | * copy. | |
567 | */ | |
568 | static void rds_iw_cong_recv(struct rds_connection *conn, | |
569 | struct rds_iw_incoming *iwinc) | |
570 | { | |
571 | struct rds_cong_map *map; | |
572 | unsigned int map_off; | |
573 | unsigned int map_page; | |
574 | struct rds_page_frag *frag; | |
575 | unsigned long frag_off; | |
576 | unsigned long to_copy; | |
577 | unsigned long copied; | |
578 | uint64_t uncongested = 0; | |
579 | void *addr; | |
580 | ||
581 | /* catch completely corrupt packets */ | |
582 | if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) | |
583 | return; | |
584 | ||
585 | map = conn->c_fcong; | |
586 | map_page = 0; | |
587 | map_off = 0; | |
588 | ||
589 | frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item); | |
590 | frag_off = 0; | |
591 | ||
592 | copied = 0; | |
593 | ||
594 | while (copied < RDS_CONG_MAP_BYTES) { | |
595 | uint64_t *src, *dst; | |
596 | unsigned int k; | |
597 | ||
598 | to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); | |
599 | BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ | |
600 | ||
6114eab5 | 601 | addr = kmap_atomic(frag->f_page); |
fcd8b7c0 AG |
602 | |
603 | src = addr + frag_off; | |
604 | dst = (void *)map->m_page_addrs[map_page] + map_off; | |
605 | for (k = 0; k < to_copy; k += 8) { | |
606 | /* Record ports that became uncongested, ie | |
607 | * bits that changed from 0 to 1. */ | |
608 | uncongested |= ~(*src) & *dst; | |
609 | *dst++ = *src++; | |
610 | } | |
6114eab5 | 611 | kunmap_atomic(addr); |
fcd8b7c0 AG |
612 | |
613 | copied += to_copy; | |
614 | ||
615 | map_off += to_copy; | |
616 | if (map_off == PAGE_SIZE) { | |
617 | map_off = 0; | |
618 | map_page++; | |
619 | } | |
620 | ||
621 | frag_off += to_copy; | |
622 | if (frag_off == RDS_FRAG_SIZE) { | |
623 | frag = list_entry(frag->f_item.next, | |
624 | struct rds_page_frag, f_item); | |
625 | frag_off = 0; | |
626 | } | |
627 | } | |
628 | ||
629 | /* the congestion map is in little endian order */ | |
630 | uncongested = le64_to_cpu(uncongested); | |
631 | ||
632 | rds_cong_map_updated(map, uncongested); | |
633 | } | |
634 | ||
635 | /* | |
636 | * Rings are posted with all the allocations they'll need to queue the | |
637 | * incoming message to the receiving socket so this can't fail. | |
638 | * All fragments start with a header, so we can make sure we're not receiving | |
639 | * garbage, and we can tell a small 8 byte fragment from an ACK frame. | |
640 | */ | |
641 | struct rds_iw_ack_state { | |
642 | u64 ack_next; | |
643 | u64 ack_recv; | |
644 | unsigned int ack_required:1; | |
645 | unsigned int ack_next_valid:1; | |
646 | unsigned int ack_recv_valid:1; | |
647 | }; | |
648 | ||
649 | static void rds_iw_process_recv(struct rds_connection *conn, | |
650 | struct rds_iw_recv_work *recv, u32 byte_len, | |
651 | struct rds_iw_ack_state *state) | |
652 | { | |
653 | struct rds_iw_connection *ic = conn->c_transport_data; | |
654 | struct rds_iw_incoming *iwinc = ic->i_iwinc; | |
655 | struct rds_header *ihdr, *hdr; | |
656 | ||
657 | /* XXX shut down the connection if port 0,0 are seen? */ | |
658 | ||
659 | rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv, | |
660 | byte_len); | |
661 | ||
662 | if (byte_len < sizeof(struct rds_header)) { | |
663 | rds_iw_conn_error(conn, "incoming message " | |
5fd5c44d | 664 | "from %pI4 didn't include a " |
fcd8b7c0 AG |
665 | "header, disconnecting and " |
666 | "reconnecting\n", | |
667 | &conn->c_faddr); | |
668 | return; | |
669 | } | |
670 | byte_len -= sizeof(struct rds_header); | |
671 | ||
672 | ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; | |
673 | ||
674 | /* Validate the checksum. */ | |
675 | if (!rds_message_verify_checksum(ihdr)) { | |
676 | rds_iw_conn_error(conn, "incoming message " | |
677 | "from %pI4 has corrupted header - " | |
678 | "forcing a reconnect\n", | |
679 | &conn->c_faddr); | |
680 | rds_stats_inc(s_recv_drop_bad_checksum); | |
681 | return; | |
682 | } | |
683 | ||
684 | /* Process the ACK sequence which comes with every packet */ | |
685 | state->ack_recv = be64_to_cpu(ihdr->h_ack); | |
686 | state->ack_recv_valid = 1; | |
687 | ||
688 | /* Process the credits update if there was one */ | |
689 | if (ihdr->h_credit) | |
690 | rds_iw_send_add_credits(conn, ihdr->h_credit); | |
691 | ||
692 | if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) { | |
693 | /* This is an ACK-only packet. The fact that it gets | |
694 | * special treatment here is that historically, ACKs | |
695 | * were rather special beasts. | |
696 | */ | |
697 | rds_iw_stats_inc(s_iw_ack_received); | |
698 | ||
699 | /* | |
700 | * Usually the frags make their way on to incs and are then freed as | |
701 | * the inc is freed. We don't go that route, so we have to drop the | |
702 | * page ref ourselves. We can't just leave the page on the recv | |
703 | * because that confuses the dma mapping of pages and each recv's use | |
704 | * of a partial page. We can leave the frag, though, it will be | |
705 | * reused. | |
706 | * | |
707 | * FIXME: Fold this into the code path below. | |
708 | */ | |
709 | rds_iw_frag_drop_page(recv->r_frag); | |
710 | return; | |
711 | } | |
712 | ||
713 | /* | |
714 | * If we don't already have an inc on the connection then this | |
715 | * fragment has a header and starts a message.. copy its header | |
716 | * into the inc and save the inc so we can hang upcoming fragments | |
717 | * off its list. | |
718 | */ | |
8690bfa1 | 719 | if (!iwinc) { |
fcd8b7c0 AG |
720 | iwinc = recv->r_iwinc; |
721 | recv->r_iwinc = NULL; | |
722 | ic->i_iwinc = iwinc; | |
723 | ||
724 | hdr = &iwinc->ii_inc.i_hdr; | |
725 | memcpy(hdr, ihdr, sizeof(*hdr)); | |
726 | ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); | |
727 | ||
728 | rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc, | |
729 | ic->i_recv_data_rem, hdr->h_flags); | |
730 | } else { | |
731 | hdr = &iwinc->ii_inc.i_hdr; | |
732 | /* We can't just use memcmp here; fragments of a | |
733 | * single message may carry different ACKs */ | |
f64f9e71 JP |
734 | if (hdr->h_sequence != ihdr->h_sequence || |
735 | hdr->h_len != ihdr->h_len || | |
736 | hdr->h_sport != ihdr->h_sport || | |
737 | hdr->h_dport != ihdr->h_dport) { | |
fcd8b7c0 AG |
738 | rds_iw_conn_error(conn, |
739 | "fragment header mismatch; forcing reconnect\n"); | |
740 | return; | |
741 | } | |
742 | } | |
743 | ||
744 | list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags); | |
745 | recv->r_frag = NULL; | |
746 | ||
747 | if (ic->i_recv_data_rem > RDS_FRAG_SIZE) | |
748 | ic->i_recv_data_rem -= RDS_FRAG_SIZE; | |
749 | else { | |
750 | ic->i_recv_data_rem = 0; | |
751 | ic->i_iwinc = NULL; | |
752 | ||
753 | if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) | |
754 | rds_iw_cong_recv(conn, iwinc); | |
755 | else { | |
756 | rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, | |
6114eab5 | 757 | &iwinc->ii_inc, GFP_ATOMIC); |
fcd8b7c0 AG |
758 | state->ack_next = be64_to_cpu(hdr->h_sequence); |
759 | state->ack_next_valid = 1; | |
760 | } | |
761 | ||
762 | /* Evaluate the ACK_REQUIRED flag *after* we received | |
763 | * the complete frame, and after bumping the next_rx | |
764 | * sequence. */ | |
765 | if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { | |
766 | rds_stats_inc(s_recv_ack_required); | |
767 | state->ack_required = 1; | |
768 | } | |
769 | ||
770 | rds_inc_put(&iwinc->ii_inc); | |
771 | } | |
772 | } | |
773 | ||
774 | /* | |
775 | * Plucking the oldest entry from the ring can be done concurrently with | |
776 | * the thread refilling the ring. Each ring operation is protected by | |
777 | * spinlocks and the transient state of refilling doesn't change the | |
778 | * recording of which entry is oldest. | |
779 | * | |
780 | * This relies on IB only calling one cq comp_handler for each cq so that | |
781 | * there will only be one caller of rds_recv_incoming() per RDS connection. | |
782 | */ | |
783 | void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context) | |
784 | { | |
785 | struct rds_connection *conn = context; | |
786 | struct rds_iw_connection *ic = conn->c_transport_data; | |
fcd8b7c0 AG |
787 | |
788 | rdsdebug("conn %p cq %p\n", conn, cq); | |
789 | ||
790 | rds_iw_stats_inc(s_iw_rx_cq_call); | |
791 | ||
d521b63b AG |
792 | tasklet_schedule(&ic->i_recv_tasklet); |
793 | } | |
fcd8b7c0 | 794 | |
d521b63b AG |
795 | static inline void rds_poll_cq(struct rds_iw_connection *ic, |
796 | struct rds_iw_ack_state *state) | |
797 | { | |
798 | struct rds_connection *conn = ic->conn; | |
799 | struct ib_wc wc; | |
800 | struct rds_iw_recv_work *recv; | |
801 | ||
802 | while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) { | |
fcd8b7c0 AG |
803 | rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", |
804 | (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | |
805 | be32_to_cpu(wc.ex.imm_data)); | |
806 | rds_iw_stats_inc(s_iw_rx_cq_event); | |
807 | ||
808 | recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)]; | |
809 | ||
810 | rds_iw_recv_unmap_page(ic, recv); | |
811 | ||
812 | /* | |
813 | * Also process recvs in connecting state because it is possible | |
814 | * to get a recv completion _before_ the rdmacm ESTABLISHED | |
815 | * event is processed. | |
816 | */ | |
817 | if (rds_conn_up(conn) || rds_conn_connecting(conn)) { | |
818 | /* We expect errors as the qp is drained during shutdown */ | |
819 | if (wc.status == IB_WC_SUCCESS) { | |
d521b63b | 820 | rds_iw_process_recv(conn, recv, wc.byte_len, state); |
fcd8b7c0 AG |
821 | } else { |
822 | rds_iw_conn_error(conn, "recv completion on " | |
823 | "%pI4 had status %u, disconnecting and " | |
824 | "reconnecting\n", &conn->c_faddr, | |
825 | wc.status); | |
826 | } | |
827 | } | |
828 | ||
829 | rds_iw_ring_free(&ic->i_recv_ring, 1); | |
830 | } | |
d521b63b AG |
831 | } |
832 | ||
833 | void rds_iw_recv_tasklet_fn(unsigned long data) | |
834 | { | |
835 | struct rds_iw_connection *ic = (struct rds_iw_connection *) data; | |
836 | struct rds_connection *conn = ic->conn; | |
837 | struct rds_iw_ack_state state = { 0, }; | |
838 | ||
839 | rds_poll_cq(ic, &state); | |
840 | ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); | |
841 | rds_poll_cq(ic, &state); | |
fcd8b7c0 AG |
842 | |
843 | if (state.ack_next_valid) | |
844 | rds_iw_set_ack(ic, state.ack_next, state.ack_required); | |
845 | if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { | |
846 | rds_send_drop_acked(conn, state.ack_recv, NULL); | |
847 | ic->i_ack_recv = state.ack_recv; | |
848 | } | |
849 | if (rds_conn_up(conn)) | |
850 | rds_iw_attempt_ack(ic); | |
851 | ||
852 | /* If we ever end up with a really empty receive ring, we're | |
853 | * in deep trouble, as the sender will definitely see RNR | |
854 | * timeouts. */ | |
855 | if (rds_iw_ring_empty(&ic->i_recv_ring)) | |
856 | rds_iw_stats_inc(s_iw_rx_ring_empty); | |
857 | ||
858 | /* | |
859 | * If the ring is running low, then schedule the thread to refill. | |
860 | */ | |
861 | if (rds_iw_ring_low(&ic->i_recv_ring)) | |
862 | queue_delayed_work(rds_wq, &conn->c_recv_w, 0); | |
863 | } | |
864 | ||
865 | int rds_iw_recv(struct rds_connection *conn) | |
866 | { | |
867 | struct rds_iw_connection *ic = conn->c_transport_data; | |
868 | int ret = 0; | |
869 | ||
870 | rdsdebug("conn %p\n", conn); | |
871 | ||
872 | /* | |
873 | * If we get a temporary posting failure in this context then | |
874 | * we're really low and we want the caller to back off for a bit. | |
875 | */ | |
876 | mutex_lock(&ic->i_recv_mutex); | |
877 | if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) | |
878 | ret = -ENOMEM; | |
879 | else | |
880 | rds_iw_stats_inc(s_iw_rx_refill_from_thread); | |
881 | mutex_unlock(&ic->i_recv_mutex); | |
882 | ||
883 | if (rds_conn_up(conn)) | |
884 | rds_iw_attempt_ack(ic); | |
885 | ||
886 | return ret; | |
887 | } | |
888 | ||
ef87b7ea | 889 | int rds_iw_recv_init(void) |
fcd8b7c0 AG |
890 | { |
891 | struct sysinfo si; | |
892 | int ret = -ENOMEM; | |
893 | ||
894 | /* Default to 30% of all available RAM for recv memory */ | |
895 | si_meminfo(&si); | |
896 | rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; | |
897 | ||
898 | rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming", | |
899 | sizeof(struct rds_iw_incoming), | |
900 | 0, 0, NULL); | |
8690bfa1 | 901 | if (!rds_iw_incoming_slab) |
fcd8b7c0 AG |
902 | goto out; |
903 | ||
904 | rds_iw_frag_slab = kmem_cache_create("rds_iw_frag", | |
905 | sizeof(struct rds_page_frag), | |
906 | 0, 0, NULL); | |
8690bfa1 | 907 | if (!rds_iw_frag_slab) |
fcd8b7c0 AG |
908 | kmem_cache_destroy(rds_iw_incoming_slab); |
909 | else | |
910 | ret = 0; | |
911 | out: | |
912 | return ret; | |
913 | } | |
914 | ||
915 | void rds_iw_recv_exit(void) | |
916 | { | |
917 | kmem_cache_destroy(rds_iw_incoming_slab); | |
918 | kmem_cache_destroy(rds_iw_frag_slab); | |
919 | } |