]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * Generic pidhash and scalable, time-bounded PID allocator | |
4 | * | |
6d49e352 NYC |
5 | * (C) 2002-2003 Nadia Yvette Chambers, IBM |
6 | * (C) 2004 Nadia Yvette Chambers, Oracle | |
1da177e4 LT |
7 | * (C) 2002-2004 Ingo Molnar, Red Hat |
8 | * | |
9 | * pid-structures are backing objects for tasks sharing a given ID to chain | |
10 | * against. There is very little to them aside from hashing them and | |
11 | * parking tasks using given ID's on a list. | |
12 | * | |
13 | * The hash is always changed with the tasklist_lock write-acquired, | |
14 | * and the hash is only accessed with the tasklist_lock at least | |
15 | * read-acquired, so there's no additional SMP locking needed here. | |
16 | * | |
17 | * We have a list of bitmap pages, which bitmaps represent the PID space. | |
18 | * Allocating and freeing PIDs is completely lockless. The worst-case | |
19 | * allocation scenario when all but one out of 1 million PIDs possible are | |
20 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | |
21 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | |
30e49c26 PE |
22 | * |
23 | * Pid namespaces: | |
24 | * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. | |
25 | * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM | |
26 | * Many thanks to Oleg Nesterov for comments and help | |
27 | * | |
1da177e4 LT |
28 | */ |
29 | ||
30 | #include <linux/mm.h> | |
9984de1a | 31 | #include <linux/export.h> |
1da177e4 LT |
32 | #include <linux/slab.h> |
33 | #include <linux/init.h> | |
82524746 | 34 | #include <linux/rculist.h> |
57c8a661 | 35 | #include <linux/memblock.h> |
61a58c6c | 36 | #include <linux/pid_namespace.h> |
820e45db | 37 | #include <linux/init_task.h> |
3eb07c8c | 38 | #include <linux/syscalls.h> |
0bb80f24 | 39 | #include <linux/proc_ns.h> |
f57e515a | 40 | #include <linux/refcount.h> |
32fcb426 CB |
41 | #include <linux/anon_inodes.h> |
42 | #include <linux/sched/signal.h> | |
29930025 | 43 | #include <linux/sched/task.h> |
95846ecf | 44 | #include <linux/idr.h> |
1da177e4 | 45 | |
e1e871af | 46 | struct pid init_struct_pid = { |
f57e515a | 47 | .count = REFCOUNT_INIT(1), |
e1e871af DH |
48 | .tasks = { |
49 | { .first = NULL }, | |
50 | { .first = NULL }, | |
51 | { .first = NULL }, | |
52 | }, | |
53 | .level = 0, | |
54 | .numbers = { { | |
55 | .nr = 0, | |
56 | .ns = &init_pid_ns, | |
57 | }, } | |
58 | }; | |
1da177e4 LT |
59 | |
60 | int pid_max = PID_MAX_DEFAULT; | |
1da177e4 LT |
61 | |
62 | #define RESERVED_PIDS 300 | |
63 | ||
64 | int pid_max_min = RESERVED_PIDS + 1; | |
65 | int pid_max_max = PID_MAX_LIMIT; | |
66 | ||
1da177e4 LT |
67 | /* |
68 | * PID-map pages start out as NULL, they get allocated upon | |
69 | * first use and are never deallocated. This way a low pid_max | |
70 | * value does not cause lots of bitmaps to be allocated, but | |
71 | * the scheme scales to up to 4 million PIDs, runtime. | |
72 | */ | |
61a58c6c | 73 | struct pid_namespace init_pid_ns = { |
1e24edca | 74 | .kref = KREF_INIT(2), |
f6bb2a2c | 75 | .idr = IDR_INIT(init_pid_ns.idr), |
e8cfbc24 | 76 | .pid_allocated = PIDNS_ADDING, |
faacbfd3 PE |
77 | .level = 0, |
78 | .child_reaper = &init_task, | |
49f4d8b9 | 79 | .user_ns = &init_user_ns, |
435d5f4b | 80 | .ns.inum = PROC_PID_INIT_INO, |
33c42940 AV |
81 | #ifdef CONFIG_PID_NS |
82 | .ns.ops = &pidns_operations, | |
83 | #endif | |
3fbc9648 | 84 | }; |
198fe21b | 85 | EXPORT_SYMBOL_GPL(init_pid_ns); |
1da177e4 | 86 | |
92476d7f EB |
87 | /* |
88 | * Note: disable interrupts while the pidmap_lock is held as an | |
89 | * interrupt might come in and do read_lock(&tasklist_lock). | |
90 | * | |
91 | * If we don't disable interrupts there is a nasty deadlock between | |
92 | * detach_pid()->free_pid() and another cpu that does | |
93 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | |
94 | * read_lock(&tasklist_lock); | |
95 | * | |
96 | * After we clean up the tasklist_lock and know there are no | |
97 | * irq handlers that take it we can leave the interrupts enabled. | |
98 | * For now it is easier to be safe than to prove it can't happen. | |
99 | */ | |
3fbc9648 | 100 | |
1da177e4 LT |
101 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
102 | ||
7ad5b3a5 | 103 | void put_pid(struct pid *pid) |
92476d7f | 104 | { |
baf8f0f8 PE |
105 | struct pid_namespace *ns; |
106 | ||
92476d7f EB |
107 | if (!pid) |
108 | return; | |
baf8f0f8 | 109 | |
8ef047aa | 110 | ns = pid->numbers[pid->level].ns; |
f57e515a | 111 | if (refcount_dec_and_test(&pid->count)) { |
baf8f0f8 | 112 | kmem_cache_free(ns->pid_cachep, pid); |
b461cc03 | 113 | put_pid_ns(ns); |
8ef047aa | 114 | } |
92476d7f | 115 | } |
bbf73147 | 116 | EXPORT_SYMBOL_GPL(put_pid); |
92476d7f EB |
117 | |
118 | static void delayed_put_pid(struct rcu_head *rhp) | |
119 | { | |
120 | struct pid *pid = container_of(rhp, struct pid, rcu); | |
121 | put_pid(pid); | |
122 | } | |
123 | ||
7ad5b3a5 | 124 | void free_pid(struct pid *pid) |
92476d7f EB |
125 | { |
126 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | |
8ef047aa | 127 | int i; |
92476d7f EB |
128 | unsigned long flags; |
129 | ||
130 | spin_lock_irqsave(&pidmap_lock, flags); | |
0a01f2cc EB |
131 | for (i = 0; i <= pid->level; i++) { |
132 | struct upid *upid = pid->numbers + i; | |
af4b8a83 | 133 | struct pid_namespace *ns = upid->ns; |
e8cfbc24 | 134 | switch (--ns->pid_allocated) { |
a6064885 | 135 | case 2: |
af4b8a83 EB |
136 | case 1: |
137 | /* When all that is left in the pid namespace | |
138 | * is the reaper wake up the reaper. The reaper | |
139 | * may be sleeping in zap_pid_ns_processes(). | |
140 | */ | |
141 | wake_up_process(ns->child_reaper); | |
142 | break; | |
e8cfbc24 | 143 | case PIDNS_ADDING: |
314a8ad0 ON |
144 | /* Handle a fork failure of the first process */ |
145 | WARN_ON(ns->child_reaper); | |
e8cfbc24 | 146 | ns->pid_allocated = 0; |
314a8ad0 | 147 | /* fall through */ |
af4b8a83 | 148 | case 0: |
af4b8a83 EB |
149 | schedule_work(&ns->proc_work); |
150 | break; | |
5e1182de | 151 | } |
95846ecf GS |
152 | |
153 | idr_remove(&ns->idr, upid->nr); | |
0a01f2cc | 154 | } |
92476d7f EB |
155 | spin_unlock_irqrestore(&pidmap_lock, flags); |
156 | ||
92476d7f EB |
157 | call_rcu(&pid->rcu, delayed_put_pid); |
158 | } | |
159 | ||
8ef047aa | 160 | struct pid *alloc_pid(struct pid_namespace *ns) |
92476d7f EB |
161 | { |
162 | struct pid *pid; | |
163 | enum pid_type type; | |
8ef047aa PE |
164 | int i, nr; |
165 | struct pid_namespace *tmp; | |
198fe21b | 166 | struct upid *upid; |
35f71bc0 | 167 | int retval = -ENOMEM; |
92476d7f | 168 | |
baf8f0f8 | 169 | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); |
92476d7f | 170 | if (!pid) |
35f71bc0 | 171 | return ERR_PTR(retval); |
92476d7f | 172 | |
8ef047aa | 173 | tmp = ns; |
0a01f2cc | 174 | pid->level = ns->level; |
95846ecf | 175 | |
8ef047aa | 176 | for (i = ns->level; i >= 0; i--) { |
95846ecf GS |
177 | int pid_min = 1; |
178 | ||
179 | idr_preload(GFP_KERNEL); | |
180 | spin_lock_irq(&pidmap_lock); | |
181 | ||
182 | /* | |
183 | * init really needs pid 1, but after reaching the maximum | |
184 | * wrap back to RESERVED_PIDS | |
185 | */ | |
186 | if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) | |
187 | pid_min = RESERVED_PIDS; | |
188 | ||
189 | /* | |
190 | * Store a null pointer so find_pid_ns does not find | |
191 | * a partially initialized PID (see below). | |
192 | */ | |
193 | nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, | |
194 | pid_max, GFP_ATOMIC); | |
195 | spin_unlock_irq(&pidmap_lock); | |
196 | idr_preload_end(); | |
197 | ||
287980e4 | 198 | if (nr < 0) { |
f83606f5 | 199 | retval = (nr == -ENOSPC) ? -EAGAIN : nr; |
8ef047aa | 200 | goto out_free; |
35f71bc0 | 201 | } |
92476d7f | 202 | |
8ef047aa PE |
203 | pid->numbers[i].nr = nr; |
204 | pid->numbers[i].ns = tmp; | |
205 | tmp = tmp->parent; | |
206 | } | |
207 | ||
0a01f2cc | 208 | if (unlikely(is_child_reaper(pid))) { |
c0ee5549 | 209 | if (pid_ns_prepare_proc(ns)) |
0a01f2cc EB |
210 | goto out_free; |
211 | } | |
212 | ||
b461cc03 | 213 | get_pid_ns(ns); |
f57e515a | 214 | refcount_set(&pid->count, 1); |
92476d7f EB |
215 | for (type = 0; type < PIDTYPE_MAX; ++type) |
216 | INIT_HLIST_HEAD(&pid->tasks[type]); | |
217 | ||
b53b0b9d JFG |
218 | init_waitqueue_head(&pid->wait_pidfd); |
219 | ||
417e3152 | 220 | upid = pid->numbers + ns->level; |
92476d7f | 221 | spin_lock_irq(&pidmap_lock); |
e8cfbc24 | 222 | if (!(ns->pid_allocated & PIDNS_ADDING)) |
5e1182de | 223 | goto out_unlock; |
0a01f2cc | 224 | for ( ; upid >= pid->numbers; --upid) { |
95846ecf GS |
225 | /* Make the PID visible to find_pid_ns. */ |
226 | idr_replace(&upid->ns->idr, pid, upid->nr); | |
e8cfbc24 | 227 | upid->ns->pid_allocated++; |
0a01f2cc | 228 | } |
92476d7f EB |
229 | spin_unlock_irq(&pidmap_lock); |
230 | ||
92476d7f EB |
231 | return pid; |
232 | ||
5e1182de | 233 | out_unlock: |
6e666884 | 234 | spin_unlock_irq(&pidmap_lock); |
24c037eb ON |
235 | put_pid_ns(ns); |
236 | ||
92476d7f | 237 | out_free: |
95846ecf | 238 | spin_lock_irq(&pidmap_lock); |
1a80dade MW |
239 | while (++i <= ns->level) { |
240 | upid = pid->numbers + i; | |
241 | idr_remove(&upid->ns->idr, upid->nr); | |
242 | } | |
95846ecf | 243 | |
c0ee5549 EB |
244 | /* On failure to allocate the first pid, reset the state */ |
245 | if (ns->pid_allocated == PIDNS_ADDING) | |
246 | idr_set_cursor(&ns->idr, 0); | |
247 | ||
95846ecf | 248 | spin_unlock_irq(&pidmap_lock); |
8ef047aa | 249 | |
baf8f0f8 | 250 | kmem_cache_free(ns->pid_cachep, pid); |
35f71bc0 | 251 | return ERR_PTR(retval); |
92476d7f EB |
252 | } |
253 | ||
c876ad76 EB |
254 | void disable_pid_allocation(struct pid_namespace *ns) |
255 | { | |
256 | spin_lock_irq(&pidmap_lock); | |
e8cfbc24 | 257 | ns->pid_allocated &= ~PIDNS_ADDING; |
c876ad76 EB |
258 | spin_unlock_irq(&pidmap_lock); |
259 | } | |
260 | ||
7ad5b3a5 | 261 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) |
1da177e4 | 262 | { |
e8cfbc24 | 263 | return idr_find(&ns->idr, nr); |
1da177e4 | 264 | } |
198fe21b | 265 | EXPORT_SYMBOL_GPL(find_pid_ns); |
1da177e4 | 266 | |
8990571e PE |
267 | struct pid *find_vpid(int nr) |
268 | { | |
17cf22c3 | 269 | return find_pid_ns(nr, task_active_pid_ns(current)); |
8990571e PE |
270 | } |
271 | EXPORT_SYMBOL_GPL(find_vpid); | |
272 | ||
2c470475 EB |
273 | static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) |
274 | { | |
275 | return (type == PIDTYPE_PID) ? | |
276 | &task->thread_pid : | |
2c470475 EB |
277 | &task->signal->pids[type]; |
278 | } | |
279 | ||
e713d0da SB |
280 | /* |
281 | * attach_pid() must be called with the tasklist_lock write-held. | |
282 | */ | |
81907739 | 283 | void attach_pid(struct task_struct *task, enum pid_type type) |
1da177e4 | 284 | { |
2c470475 EB |
285 | struct pid *pid = *task_pid_ptr(task, type); |
286 | hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); | |
1da177e4 LT |
287 | } |
288 | ||
24336eae ON |
289 | static void __change_pid(struct task_struct *task, enum pid_type type, |
290 | struct pid *new) | |
1da177e4 | 291 | { |
2c470475 | 292 | struct pid **pid_ptr = task_pid_ptr(task, type); |
92476d7f EB |
293 | struct pid *pid; |
294 | int tmp; | |
1da177e4 | 295 | |
2c470475 | 296 | pid = *pid_ptr; |
1da177e4 | 297 | |
2c470475 EB |
298 | hlist_del_rcu(&task->pid_links[type]); |
299 | *pid_ptr = new; | |
1da177e4 | 300 | |
92476d7f EB |
301 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
302 | if (!hlist_empty(&pid->tasks[tmp])) | |
303 | return; | |
1da177e4 | 304 | |
92476d7f | 305 | free_pid(pid); |
1da177e4 LT |
306 | } |
307 | ||
24336eae ON |
308 | void detach_pid(struct task_struct *task, enum pid_type type) |
309 | { | |
310 | __change_pid(task, type, NULL); | |
311 | } | |
312 | ||
313 | void change_pid(struct task_struct *task, enum pid_type type, | |
314 | struct pid *pid) | |
315 | { | |
316 | __change_pid(task, type, pid); | |
81907739 | 317 | attach_pid(task, type); |
24336eae ON |
318 | } |
319 | ||
c18258c6 | 320 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ |
7ad5b3a5 | 321 | void transfer_pid(struct task_struct *old, struct task_struct *new, |
c18258c6 EB |
322 | enum pid_type type) |
323 | { | |
2c470475 EB |
324 | if (type == PIDTYPE_PID) |
325 | new->thread_pid = old->thread_pid; | |
326 | hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); | |
c18258c6 EB |
327 | } |
328 | ||
7ad5b3a5 | 329 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) |
1da177e4 | 330 | { |
92476d7f EB |
331 | struct task_struct *result = NULL; |
332 | if (pid) { | |
333 | struct hlist_node *first; | |
67bdbffd | 334 | first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), |
db1466b3 | 335 | lockdep_tasklist_lock_is_held()); |
92476d7f | 336 | if (first) |
2c470475 | 337 | result = hlist_entry(first, struct task_struct, pid_links[(type)]); |
92476d7f EB |
338 | } |
339 | return result; | |
340 | } | |
eccba068 | 341 | EXPORT_SYMBOL(pid_task); |
1da177e4 | 342 | |
92476d7f | 343 | /* |
9728e5d6 | 344 | * Must be called under rcu_read_lock(). |
92476d7f | 345 | */ |
17f98dcf | 346 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) |
92476d7f | 347 | { |
f78f5b90 PM |
348 | RCU_LOCKDEP_WARN(!rcu_read_lock_held(), |
349 | "find_task_by_pid_ns() needs rcu_read_lock() protection"); | |
17f98dcf | 350 | return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); |
92476d7f | 351 | } |
1da177e4 | 352 | |
228ebcbe PE |
353 | struct task_struct *find_task_by_vpid(pid_t vnr) |
354 | { | |
17cf22c3 | 355 | return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); |
228ebcbe | 356 | } |
228ebcbe | 357 | |
2ee08260 MR |
358 | struct task_struct *find_get_task_by_vpid(pid_t nr) |
359 | { | |
360 | struct task_struct *task; | |
361 | ||
362 | rcu_read_lock(); | |
363 | task = find_task_by_vpid(nr); | |
364 | if (task) | |
365 | get_task_struct(task); | |
366 | rcu_read_unlock(); | |
367 | ||
368 | return task; | |
369 | } | |
370 | ||
1a657f78 ON |
371 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) |
372 | { | |
373 | struct pid *pid; | |
374 | rcu_read_lock(); | |
2c470475 | 375 | pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); |
1a657f78 ON |
376 | rcu_read_unlock(); |
377 | return pid; | |
378 | } | |
77c100c8 | 379 | EXPORT_SYMBOL_GPL(get_task_pid); |
1a657f78 | 380 | |
7ad5b3a5 | 381 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) |
92476d7f EB |
382 | { |
383 | struct task_struct *result; | |
384 | rcu_read_lock(); | |
385 | result = pid_task(pid, type); | |
386 | if (result) | |
387 | get_task_struct(result); | |
388 | rcu_read_unlock(); | |
389 | return result; | |
1da177e4 | 390 | } |
77c100c8 | 391 | EXPORT_SYMBOL_GPL(get_pid_task); |
1da177e4 | 392 | |
92476d7f | 393 | struct pid *find_get_pid(pid_t nr) |
1da177e4 LT |
394 | { |
395 | struct pid *pid; | |
396 | ||
92476d7f | 397 | rcu_read_lock(); |
198fe21b | 398 | pid = get_pid(find_vpid(nr)); |
92476d7f | 399 | rcu_read_unlock(); |
1da177e4 | 400 | |
92476d7f | 401 | return pid; |
1da177e4 | 402 | } |
339caf2a | 403 | EXPORT_SYMBOL_GPL(find_get_pid); |
1da177e4 | 404 | |
7af57294 PE |
405 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) |
406 | { | |
407 | struct upid *upid; | |
408 | pid_t nr = 0; | |
409 | ||
410 | if (pid && ns->level <= pid->level) { | |
411 | upid = &pid->numbers[ns->level]; | |
412 | if (upid->ns == ns) | |
413 | nr = upid->nr; | |
414 | } | |
415 | return nr; | |
416 | } | |
4f82f457 | 417 | EXPORT_SYMBOL_GPL(pid_nr_ns); |
7af57294 | 418 | |
44c4e1b2 EB |
419 | pid_t pid_vnr(struct pid *pid) |
420 | { | |
17cf22c3 | 421 | return pid_nr_ns(pid, task_active_pid_ns(current)); |
44c4e1b2 EB |
422 | } |
423 | EXPORT_SYMBOL_GPL(pid_vnr); | |
424 | ||
52ee2dfd ON |
425 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
426 | struct pid_namespace *ns) | |
2f2a3a46 | 427 | { |
52ee2dfd ON |
428 | pid_t nr = 0; |
429 | ||
430 | rcu_read_lock(); | |
431 | if (!ns) | |
17cf22c3 | 432 | ns = task_active_pid_ns(current); |
2c470475 EB |
433 | if (likely(pid_alive(task))) |
434 | nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); | |
52ee2dfd ON |
435 | rcu_read_unlock(); |
436 | ||
437 | return nr; | |
2f2a3a46 | 438 | } |
52ee2dfd | 439 | EXPORT_SYMBOL(__task_pid_nr_ns); |
2f2a3a46 | 440 | |
61bce0f1 EB |
441 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) |
442 | { | |
443 | return ns_of_pid(task_pid(tsk)); | |
444 | } | |
445 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | |
446 | ||
0804ef4b | 447 | /* |
025dfdaf | 448 | * Used by proc to find the first pid that is greater than or equal to nr. |
0804ef4b | 449 | * |
e49859e7 | 450 | * If there is a pid at nr this function is exactly the same as find_pid_ns. |
0804ef4b | 451 | */ |
198fe21b | 452 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) |
0804ef4b | 453 | { |
95846ecf | 454 | return idr_get_next(&ns->idr, &nr); |
0804ef4b EB |
455 | } |
456 | ||
32fcb426 CB |
457 | /** |
458 | * pidfd_create() - Create a new pid file descriptor. | |
459 | * | |
460 | * @pid: struct pid that the pidfd will reference | |
461 | * | |
462 | * This creates a new pid file descriptor with the O_CLOEXEC flag set. | |
463 | * | |
464 | * Note, that this function can only be called after the fd table has | |
465 | * been unshared to avoid leaking the pidfd to the new process. | |
466 | * | |
467 | * Return: On success, a cloexec pidfd is returned. | |
468 | * On error, a negative errno number will be returned. | |
469 | */ | |
470 | static int pidfd_create(struct pid *pid) | |
471 | { | |
472 | int fd; | |
473 | ||
474 | fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), | |
475 | O_RDWR | O_CLOEXEC); | |
476 | if (fd < 0) | |
477 | put_pid(pid); | |
478 | ||
479 | return fd; | |
480 | } | |
481 | ||
482 | /** | |
483 | * pidfd_open() - Open new pid file descriptor. | |
484 | * | |
485 | * @pid: pid for which to retrieve a pidfd | |
486 | * @flags: flags to pass | |
487 | * | |
488 | * This creates a new pid file descriptor with the O_CLOEXEC flag set for | |
489 | * the process identified by @pid. Currently, the process identified by | |
490 | * @pid must be a thread-group leader. This restriction currently exists | |
491 | * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot | |
492 | * be used with CLONE_THREAD) and pidfd polling (only supports thread group | |
493 | * leaders). | |
494 | * | |
495 | * Return: On success, a cloexec pidfd is returned. | |
496 | * On error, a negative errno number will be returned. | |
497 | */ | |
498 | SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) | |
499 | { | |
500 | int fd, ret; | |
501 | struct pid *p; | |
502 | ||
503 | if (flags) | |
504 | return -EINVAL; | |
505 | ||
506 | if (pid <= 0) | |
507 | return -EINVAL; | |
508 | ||
509 | p = find_get_pid(pid); | |
510 | if (!p) | |
511 | return -ESRCH; | |
512 | ||
513 | ret = 0; | |
514 | rcu_read_lock(); | |
515 | if (!pid_task(p, PIDTYPE_TGID)) | |
516 | ret = -EINVAL; | |
517 | rcu_read_unlock(); | |
518 | ||
519 | fd = ret ?: pidfd_create(p); | |
520 | put_pid(p); | |
521 | return fd; | |
522 | } | |
523 | ||
95846ecf | 524 | void __init pid_idr_init(void) |
1da177e4 | 525 | { |
840d6fe7 | 526 | /* Verify no one has done anything silly: */ |
e8cfbc24 | 527 | BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); |
c876ad76 | 528 | |
72680a19 HB |
529 | /* bump default and minimum pid_max based on number of cpus */ |
530 | pid_max = min(pid_max_max, max_t(int, pid_max, | |
531 | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | |
532 | pid_max_min = max_t(int, pid_max_min, | |
533 | PIDS_PER_CPU_MIN * num_possible_cpus()); | |
534 | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | |
535 | ||
95846ecf | 536 | idr_init(&init_pid_ns.idr); |
92476d7f | 537 | |
74bd59bb | 538 | init_pid_ns.pid_cachep = KMEM_CACHE(pid, |
5d097056 | 539 | SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); |
1da177e4 | 540 | } |